0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCP1640_11

MCP1640_11

  • 厂商:

    MICROCHIP

  • 封装:

  • 描述:

    MCP1640_11 - 0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output ...

  • 数据手册
  • 价格&库存
MCP1640_11 数据手册
MCP1640/B/C/D 0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option Features • Up to 96% Typical Efficiency • 800 mA Typical Peak Input Current Limit: - IOUT > 100 mA @ 1.2V VIN, 3.3V VOUT - IOUT > 350 mA @ 2.4V VIN, 3.3V VOUT - IOUT > 350 mA @ 3.3V VIN, 5.0V VOUT • Low Start-up Voltage: 0.65V, typical 3.3V VOUT @ 1 mA • Low Operating Input Voltage: 0.35V, typical 3.3VOUT @ 1 mA • Adjustable Output Voltage Range: 2.0V to 5.5V • Maximum Input Voltage  VOUT < 5.5V • Automatic PFM/PWM Operation (MCP1640C): - PFM Operation Disabled (MCP1640B/D) - PWM Operation: 500 kHz • Low Device Quiescent Current: 19 µA, typical PFM Mode • Internal Synchronous Rectifier • Internal Compensation • Inrush Current Limiting and Internal Soft-Start • Selectable, Logic Controlled, Shutdown States: - True Load Disconnect Option (MCP1640B) - Input to Output Bypass Option (MCP1640C/D) • Shutdown Current (All States): < 1 µA • Low Noise, Anti-Ringing Control • Overtemperature Protection • Available Packages: - 6-Lead SOT23 - 8-Lead 2x3 DFN General Description The MCP1640/B/C/D is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. It provides an easy-to-use power supply solution for applications powered by either one-cell, two-cell, or three-cell alkaline, NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries. Low-voltage technology allows the regulator to start up without high inrush current or output voltage overshoot from a low 0.65V input. High efficiency is accomplished by integrating the low resistance N-Channel Boost switch and synchronous P-Channel switch. All compensation and protection circuitry are integrated to minimize external components. For standby applications, the MCP1640 operates and consumes only 19 µA while operating at no load, and provides a true disconnect from input to output while shut down (EN = GND). Additional device options are available that operate in PWM-only mode and connect input to output bypass while shut down. A “true” load disconnect mode provides input to output isolation while disabled by removing the normal boost regulator diode path from input to output. A Bypass mode option connects the input to the output using the integrated low resistance P-Channel MOSFET, which provides a low bias keep-alive voltage for circuits operating in Deep Sleep mode. Both options consume less than 1 µA of input current. Output voltage is set by a small external resistor divider. Two package options are available, 6-Lead SOT23 and 8-Lead 2x3 DFN. Package Types Applications • One, Two and Three Cell Alkaline and NiMH/NiCd Portable Products • Single Cell Li-Ion to 5V Converters • Li Coin Cell Powered Devices • Personal Medical Products • Wireless Sensors • Handheld Instruments • GPS Receivers • Bluetooth Headsets • +3.3V to +5.0V Distributed Power Supply MCP1640 6-Lead SOT23 SW 1 GND 2 EN 3 6 VIN 5 VOUT 4 VFB MCP1640 8-Lead 2x3 DFN* VFB 1 SGND 2 PGND 3 EN 4 EP 9 8 VIN 7 VOUTS 6 VOUTP 5 SW * Includes Exposed Thermal Pad (EP); see Table 3-1.  2011 Microchip Technology Inc. DS22234B-page 1 MCP1640/B/C/D L1 4.7 µH VIN 0.9V to 1.7V SW V OUT VIN VOUT 3.3V @ 100 mA 976 K ALKALINE + - CIN 4.7 µF EN VFB 562 K COUT 10 µF GND L1 4.7 µH VIN 3.0V to 4.2V SW V VIN VOUT 5.0V @ 300 mA 976 K OUTS VOUTP VFB + LI-ION CIN 4.7 µF EN COUT 10 µF 309 K - PGND SGND Efficiency vs. IOUT for 3.3VOUT 100.0 V IN = 2.5V Efficiency (%) 80.0 V IN = 0.8V V IN = 1.2V 60.0 40.0 0.1 1.0 10.0 Output Current (mA) 100.0 1000.0 DS22234B-page 2  2011 Microchip Technology Inc. MCP1640/B/C/D 1.0 ELECTRICAL CHARACTERISTICS † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings † EN, FB, VIN, VSW, VOUT - GND ........................... +6.5V EN, FB ........... (GND - 0.3V) Output Short Circuit Current....................... Continuous Output Current Bypass Mode........................... 400 mA Power Dissipation ............................ Internally Limited Storage Temperature .........................-65oC to +150oC Ambient Temp. with Power Applied......-40oC to +85oC Operating Junction Temperature........-40oC to +125oC ESD Protection On All Pins: HBM........................................................ 3 kV MM........................................................ 300 V DC CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC. Parameters Input Characteristics Minimum Startup Voltage Minimum Input Voltage After Start-Up Output Voltage Adjust Range Maximum Output Current Sym VIN VIN VOUT IOUT Min — — 2.0 Typ 0.65 0.35 Max 0.8 — 5.5 Units V V V mA mA mA V pA µA Note 1 Note 1 Conditions VOUT  VIN; Note 2 1.2V VIN, 2.0V VOUT 1.5V VIN, 3.3V VOUT 3.3V VIN, 5.0V VOUT — — Measured at VOUT = 4.0V; EN = VIN, IOUT = 0 mA; Note 3 Measured at VOUT; EN = VIN IOUT = 0 mA; Note 3 VOUT = EN = GND; Includes N-Channel and P-Channel Switch Leakage VIN = VSW = 5V; VOUT = 5.5V VEN = VFB = GND VIN = VSW = GND; VOUT = 5.5V VIN = 3.3V, ISW = 100 mA 150 100 150 350 1.21 10 19 — — — 1.245 — 30 Feedback Voltage Feedback Input Bias Current Quiescent Current – PFM Mode Quiescent Current – PWM Mode Quiescent Current – Shutdown VFB IVFB IQPFM 1.175 — — IQPWM IQSHDN — — 220 0.7 — 2.3 µA µA NMOS Switch Leakage INLK — 0.3 1 µA PMOS Switch Leakage NMOS Switch ON Resistance Note 1: 2: 3: 4: 5: IPLK RDS(ON)N — — 0.05 0.6 0.2 — µA  3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested.  2011 Microchip Technology Inc. DS22234B-page 3 MCP1640/B/C/D DC CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, IOUT = 15 mA, TA = +25°C. Boldface specifications apply over the TA range of -40oC to +85oC. Parameters PMOS Switch ON Resistance NMOS Peak Switch Current Limit VOUT Accuracy Line Regulation Sym RDS(ON)P IN(MAX) VOUT% VOUT/ VOUT) / VIN| VOUT / VOUT| DCMAX fSW VIH VIL IENLK tSS TSD TSDHYS Min — 600 -3 -1 Typ 0.9 850 — 0.01 Max — — +3 1 Units  mA % %/V Note 5 Conditions VIN = 3.3V, ISW = 100 mA Includes Line and Load Regulation; VIN = 1.5V VIN = 1.5V to 3V IOUT = 25 mA IOUT = 25 mA to 100 mA; VIN = 1.5V Load Regulation Maximum Duty Cycle Switching Frequency EN Input Logic High EN Input Logic Low EN Input Leakage Current Soft-start Time Thermal Shutdown Die Temperature Die Temperature Hysteresis Note 1: 2: 3: 4: 5: -1 88 425 90 — — — — — 0.01 90 500 — — 0.005 750 150 10 1 — 575 — 20 — — — — % % kHz %of VIN IOUT = 1 mA %of VIN IOUT = 1 mA µA µS C C VEN = 5V EN Low to High, 90% of VOUT; Note 4 3.3 K resistive load, 3.3VOUT (1 mA). For VIN > VOUT, VOUT will not remain in regulation. IQ is measured from VOUT; VIN quiescent current will vary with boost ratio. VIN quiescent current can be estimated by: (IQPFM * (VOUT/VIN)), (IQPWM * (VOUT/VIN)). 220 resistive load, 3.3VOUT (15 mA). Peak current limit determined by characterization, not production tested. TEMPERATURE SPECIFICATIONS Electrical Specifications: Parameters Temperature Ranges Operating Junction Temperature Range Storage Temperature Range Maximum Junction Temperature Package Thermal Resistances Thermal Resistance, 5L-TSOT23 Thermal Resistance, 8L-2x3 DFN JA JA — — 192 93 — — °C/W °C/W EIA/JESD51-3 Standard TJ TA TJ -40 -65 — — — — +125 +150 +150 °C °C °C Transient Steady State Sym Min Typ Max Units Conditions DS22234B-page 4  2011 Microchip Technology Inc. MCP1640/B/C/D 2.0 Note: TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 27.5 25.0 VIN = 1.2V VOUT = 5.0V 100 90 80 VOUT = 2.0V VIN = 1.6V IQ PFM Mode (µA) 22.5 20.0 17.5 15.0 12.5 10.0 -40 -25 -10 5 20 35 50 65 80 VOUT = 2.0V VOUT = 3.3V Efficiency (%) 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 0.8V VIN = 1.2V PWM / PFM PWM ONLY 10 100 1000 Ambient Temperature (°C) IOUT (mA) FIGURE 2-1: VOUT IQ vs. Ambient Temperature in PFM Mode. 300 VOUT = 5.0V 275 250 225 200 175 150 -40 -25 -10 5 20 35 50 65 80 VOUT = 3.3V V IN = 1.2V FIGURE 2-4: 2.0V VOUT PFM / PWM Mode Efficiency vs. IOUT. 100 90 80 V OUT = 3.3V V IN = 2.5V IQ PWM Mode (µA) Efficiency (%) 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 0.8V VIN = 1.2V PWM / PFM PWM ONLY 10 100 1000 Ambient Temperature (°C) IOUT (mA) FIGURE 2-2: VOUT IQ vs. Ambient Temperature in PWM Mode. 600 VOUT = 5.0V 500 400 300 200 100 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 VOUT = 2.0V VOUT = 3.3V FIGURE 2-5: 3.3V VOUT PFM / PWM Mode Efficiency vs. IOUT. 100 90 80 VOUT = 5.0V VIN = 2.5V Efficiency (%) 70 60 50 40 30 20 10 0 0.01 0.1 1 VIN = 1.2V VIN = 1.8V IOUT (mA) PWM / PFM PWM ONLY 10 100 1000 VIN (V) IOUT (mA) FIGURE 2-3: Maximum IOUT vs. VIN. FIGURE 2-6: 5.0V VOUT PFM / PWM Mode Efficiency vs. IOUT.  2011 Microchip Technology Inc. DS22234B-page 5 MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 3.33 3.325 3.32 3.315 VIN = 1.8V 0.85 Startup 0.70 0.55 Shutdown 0.40 0.25 IOUT = 15 mA VIN = 1.2V 1.00 VOUT = 3.3V VOUT (V) 3.31 3.305 3.3 3.295 3.29 3.285 -40 -25 -10 5 20 35 50 65 80 VIN = 0.8V VIN (V) 0 20 40 60 80 100 Ambient Temperature (°C) IOUT (mA) FIGURE 2-7: Temperature. 3.38 3.36 3.3V VOUT vs. Ambient FIGURE 2-10: Minimum Start-up and Shutdown VIN into Resistive Load vs. IOUT. 525 Switching Frequency (kHz) VIN = 1.5V VOUT = 3.3V 520 515 510 505 500 495 490 485 480 -40 -25 -10 5 20 35 50 65 80 IOUT = 5 mA 3.34 VOUT (V) 3.32 3.30 IOUT = 15 mA 3.28 IOUT = 50 mA 3.26 -40 -25 -10 5 20 35 50 65 80 Ambient Temperature (°C) Ambient Temperature (°C) FIGURE 2-8: Temperature. 3.40 TA = 85°C 3.36 3.3V VOUT vs. Ambient FIGURE 2-11: Temperature. 4.5 FOSC vs. Ambient IOUT = 5 mA 4 3.5 3 VOUT = 5.0V VOUT (V) VIN (V) 3.32 3.28 TA = 25°C V OUT = 3.3V VOUT = 2.0V 2.5 2 1.5 1 0.5 TA = - 40°C 3.24 3.20 0.8 1.2 1.6 2 2.4 2.8 0 0 1 2 3 4 5 6 7 8 9 10 VIN (V) IOUT (mA) FIGURE 2-9: 3.3V VOUT vs. VIN. FIGURE 2-12: PWM Pulse Skipping Mode Threshold vs. IOUT. DS22234B-page 6  2011 Microchip Technology Inc. MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. 10000 PWM / PFM PWM ONLY 1000 VOUT = 5.0V VOUT = 3.3V IIN (µA) VOUT = 2.0V 100 VOUT = 2.0V 10 0.8 1.1 1.4 1.7 VOUT = 3.3V VOUT = 5.0V 2 2.3 2.6 2.9 3.2 3.5 VIN (V) FIGURE 2-13: VIN. 5 Switch Resistance (Ohms) 4 P - Channel Input No Load Current vs. FIGURE 2-16: MCP1640 3.3V VOUT PFM Mode Waveforms. 3 2 1 0 1 N - Channel 1.5 2 2.5 3 3.5 4 4.5 5 > VIN or VOUT FIGURE 2-14: N-Channel and P-Channel RDSON vs. > of VIN or VOUT. 16 VOUT = 5.0V 14 12 VOUT = 2.0V V OUT = 3 .3V FIGURE 2-17: MCP1640B 3.3V VOUT PWM Mode Waveforms. IOUT (mA) 10 8 6 4 2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 VIN (V) FIGURE 2-15: Current vs. VIN. PFM / PWM Threshold FIGURE 2-18: Waveforms. MCP1640/B High Load  2011 Microchip Technology Inc. DS22234B-page 7 MCP1640/B/C/D Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 15 mA, TA = +25°C. FIGURE 2-19: 3.3V Start-up After Enable. FIGURE 2-22: MCP1640B 3.3V VOUT Load Transient Waveforms. FIGURE 2-20: VENABLE. 3.3V Start-up when VIN = FIGURE 2-23: MCP1640B 2.0V VOUT Load Transient Waveforms. FIGURE 2-21: MCP1640 3.3V VOUT Load Transient Waveforms. FIGURE 2-24: Waveforms. 3.3V VOUT Line Transient DS22234B-page 8  2011 Microchip Technology Inc. MCP1640/B/C/D 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: Pin Name SW GND EN FB VOUT VIN SGND PGND VOUTS VOUTP EP PIN FUNCTION TABLE Description Switch Node, Boost Inductor Input Pin Ground Pin Enable Control Input Pin Feedback Voltage Pin Output Voltage Pin Input Voltage Pin Signal Ground Pin Power Ground Pin Output Voltage Sense Pin Output Voltage Power Pin Exposed Thermal Pad (EP); must be connected to VSS. MCP1640/B/C/D MCP1640/B/C/D SOT23 2x3 DFN 1 2 3 4 5 6 — — — — — 5 — 4 1 — 8 2 3 7 6 9 3.1 Switch Node Pin (SW) 3.6 Connect the inductor from the input voltage to the SW pin. The SW pin carries inductor current and can be as high as 800 mA peak. The integrated N-Channel switch drain and integrated P-Channel switch source are internally connected at the SW node. Power Supply Input Voltage Pin (VIN) Connect the input voltage source to VIN. The input source should be decoupled to GND with a 4.7 µF minimum capacitor. 3.7 Signal Ground Pin (SGND) 3.2 Ground Pin (GND) The ground or return pin is used for circuit ground connection. Length of trace from input cap return, output cap return, and GND pin should be made as short as possible to minimize noise on the GND pin. In the SOT23-6 package, a single ground pin is used. The signal ground pin is used as a return for the integrated VREF and error amplifier. In the 2x3 DFN package, the SGND and power ground (PGND) pins are connected externally. 3.8 Power Ground Pin (PGND) 3.3 Enable Pin (EN) The power ground pin is used as a return for the highcurrent N-Channel switch. In the 2x3 DFN package, the PGND and SGND pins are connected externally. The EN pin is a logic-level input used to enable or disable device switching, and lower quiescent current while disabled. A logic high (>90% of VIN) will enable the regulator output. A logic low (627@ 1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWSZZZPLFURFKLSFRPSDFNDJLQJ b N 4 E E1 PIN 1 ID BY LASER MARK 1 2 e e1 D 3 A A2 c φ A1 L L1 8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120   %6&  %6&         ƒ  ± ± ± ± ± ± ± ± ± ±         ƒ  0$; 1XPEHU RI 3LQV 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F /HDG :LGWK E  ±  1RWHV  'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG  PP SHU VLGH  'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60(
MCP1640_11 价格&库存

很抱歉,暂时无法提供与“MCP1640_11”相匹配的价格&库存,您可以联系我们找货

免费人工找货