Obsolete Device
TC55
1 µA Low Dropout Positive Voltage Regulator
Features
• Low Dropout Voltage: 120 mV (typ) at 100 mA, 380 mV (typ) at 200 mA • High Output Current: 250 mA (VOUT = 5.0V) • High Accuracy Output Voltage: ±2% (max) (±1% Semi-Custom Version) • Low Power Consumption: 1.1 µA (typ) • Low Temperature Drift: ±100 ppm/°C (typ) • Excellent Line Regulation: 0.2%/V (typ) • Package Options: 3-Pin SOT-23A, 3-Pin SOT-89 and 3-Pin TO-92 • Short-Circuit Protection • Standard Output Voltage Options: 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
General Description
The TC55 Series is a collection of CMOS low dropout, positive voltage regulators that can source up to 250 mA of current, with an extremely low input-output voltage differential of 380 mV (typ) at 200 mA. The TC55’s low dropout voltage, combined with the low current consumption of only 1.1 µA (typ), makes it ideal for battery operation. The low voltage differential (dropout voltage) extends the battery operating lifetime. It also permits high currents in small packages when operated with minimum VIN – VOUT differentials. The circuit also incorporates short-circuit protection to ensure maximum reliability.
Functional Block Diagram
VIN VOUT
Applications
• • • • • Battery-Powered Devices Cameras and Portable Video Equipment Pagers and Cellular Phones Solar Powered Instruments Consumer Products
Short-Circuit Protection – + Voltage Reference GND
DS21435F-page 1
Package Types
3-Pin SOT-23A VIN 3 TC55 1 GND 2 VOUT TC55 1 2 3 GND VIN VOUT 3-Pin TO-92 123 3-Pin SOT-89 VIN
Bottom View GND VIN VOUT Note: 3-Pin SOT-23A is equivalent to the EIAJ SC-59.
© 2005 Microchip Technology Inc.
TC55
1.0 ELECTRICAL CHARACTERISTICS
† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings†
Input Voltage ........................................................+12V Output Current (Continuous) ......... PD/(VIN – VOUT)mA Output Current (peak) ..................................... 500 mA Output Voltage.................. (VSS – 0.3V) to (VIN + 0.3V) Continuous Power Dissipation: 3-Pin SOT-23A ..........................................240 mW 3-Pin SOT-89 ............................................500 mW 3-Pin TO-92...............................................440 mW
PIN FUNCTION TABLE
Symbol GND VOUT VIN Description Ground Terminal Regulated Voltage Output Unregulated Supply Input
TC55RP50: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 5.0V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•106 VOUT(S)•ΔTA
Min
— 4.90 250 — — — — — — — —
Typ
— 5.0 — 40 120 380 1.1 0.2 — ±100 0.5
Max
— 5.10 — 80 300 600 3.0 0.3 10 — —
Units V
mA mV mV µA %/V V
Conditions
IOUT = 40 mA VIN = 6.0V VIN = 6.0V, VOUT(A) ≥ 4.5V VIN = 6.0V, 1 mA ≤ IOUT ≤ 100 mA IOUT = 100 mA IOUT = 200 mA VIN = 6.0V IOUT = 40 mA, 6.0V ≤ VIN ≤ 10.0V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C % TA = +125°C, 1000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
TC55RP40: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 4.0V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•106 VOUT(S)•ΔTA
Min
— 3.92 200 — — — — — — — —
Typ
— 4.0 — 45 170 400 1.0 0.2 — ±100 0.5
Max
— 4.08 — 90 330 630 2.9 0.3 10 — —
Units
V mA mV mV µA %/V V
Conditions
IOUT = 40 mA VIN = 5.0V VIN = 5.0V, VOUT(A) ≥ 3.6V VIN = 5.0V, 1 mA ≤ IOUT ≤ 100 mA IOUT = 100 mA IOUT = 200 mA VIN = 5.0V IOUT = 40 mA, 5.0V ≤ VIN ≤ 10.0V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C % TA = +125°C, 1000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
DS21435F-page 2
© 2005 Microchip Technology Inc.
TC55
TC55RP33: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 3.3V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•106 VOUT(S)•ΔTA
Min
— 3.23 150 — — — — — — — —
Typ
— 3.30 — 45 180 400 1.0 0.2 — ±100 0.5
Max
— 3.37 — 90 360 700 2.9 0.3 10 — —
Units
V mA mV mV µA %/V V
Conditions
IOUT = 40 mA VIN = 4.3V VIN = 4.3V, VOUT(A) ≥ 3.0V VIN = 4.3V, 1 mA ≤ IOUT ≤ 80 mA IOUT = 80 mA IOUT = 160 mA VIN = 4.3V IOUT = 40 mA, 4.3V ≤ IOUT ≤ 10.0V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C % TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
TC55RP30: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 3.0V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•106 VOUT(S)•ΔTA
Min
— 2.94 150 — — — — — — — —
Typ
— 3.0 — 45 180 400 0.9 0.2 — ±100 0.5
Max
— 3.06 — 90 360 700 2.8 0.3 10 — —
Units
V mA mV mV µA %/V V
Conditions
IOUT = 40 mA VIN = 4.0V VIN = 4.0V, VOUT(A) ≥ 2.7V VIN = 4.0V, 1 mA ≤ IOUT ≤ 80 mA IOUT = 80 mA IOUT = 160 mA VIN = 4.0V IOUT = 40 mA, 4.0V ≤ VIN ≤ 10.0V
ppm/°C IOUT = 40 mA, -40°C ≤ TA ≤ +85°C % TA = +125°C, 1000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
© 2005 Microchip Technology Inc.
DS21435F-page 3
TC55
TC55RP25: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 2.5V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•106 VOUT(S)•ΔTA
Min
— 2.45 125 — — — — — — —
Typ
— 2.5 — 45 180 400 1.0 0.2 — ±100 0.5
Max
— 2.55 — 90 360 700 2.8 0.3 10 — —
Units
V mA mV mV µA %/V V
Conditions
IOUT = 40 mA VIN = 3.5V VIN = 3.5V, VOUT(A) ≥ 2.25V VIN = 3.5V, 1 mA ≤ IOUT ≤ 60 mA IOUT = 60 mA IOUT = 120 mA VIN = 3.5V IOUT = 40 mA, 3.5V ≤ IOUT ≤ 10.0V
ppm/°C IOUT = 40 mA, -30°C ≤ TA ≤ +80°C % TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
TC55RP18: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 1.8V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•106 VOUT(S)•ΔTA
Min
— 1.764 110 — — — — — — —
Typ
— 1.8 — — — — — — ±100 0.5
Max
— 1.836 — 30 300 3.0 0.25 6.0 — —
Units
V mA mV mV µA %/V V
Conditions
IOUT = 0.5 mA VIN = 2.8V VIN = 2.8V, VOUT(A) ≥ 1.62V VIN = 2.8V, 1 mA ≤ IOUT ≤ 30 mA IOUT = 0.5 mA VIN = 2.8V IOUT = 0.5 mA, 2.8V ≤ IOUT ≤ 10.0V
ppm/°C IOUT = 0.5 mA, -30°C ≤ TA ≤ +80°C % TA = +125°C, 1,000 Hours
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
DS21435F-page 4
© 2005 Microchip Technology Inc.
TC55
TC55RP12: ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 1.2V, TA = +25°C (see Note 1).
Parameters
Output Voltage Maximum Output Current Load Regulation I/O Voltage Difference Current Consumption Voltage Regulation Input Voltage Temperature Coefficient of Output Voltage Long-Term Stability Note 1:
Sym
VOUT(A) IOUTMAX ΔVOUT VDIF ISS VOUT(A)•100 ΔVIN•VOUT(S) VIN ΔVOUT(A)•10
6
Min
— 1.176 50 — — — — — — —
Typ
— 1.200 — — — — — — ±100 0.5
Max
— 1.224 — 30 300 3.0 0.25 6.0 — —
Units
V mA mV mV µA %/V V
Conditions
IOUT = 0.5 mA VIN = 2.2V VIN = 2.2V, VOUT(A) ≥ 1.08V VIN = 2.2V, 1 mA ≤ IOUT ≤ 30 mA IOUT = 0.5 mA VIN = 2.2V IOUT = 0.5 , 2.2V ≤ IOUT ≤ 10.0V
ppm/°C IOUT = 0.5 mA, -30°C ≤ TA ≤ +80°C % TA = +125°C, 1,000 Hours
VOUT(S)•ΔTA
VOUT(S): Preset value of output voltage; VOUT(A): Actual value of output voltage; VDIF: Definition of I/O voltage difference = {VIN1 – VOUT(A)}; VOUT(A): Output voltage when IOUT is fixed and VIN = VOUT(S) + 1.0V; VIN1: Input voltage when the output voltage is 98% VOUT(A).
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, VOUT(S) = 5.0V, TA = +25°C. Parameters Temperature Ranges Specified Temperature Range (E) Storage Temperature Range Package Thermal Resistances Thermal Resistance, 3L-SOT-23A Thermal Resistance, 3L-SOT-89 Thermal Resistance, 3L-TO-92 θJA θJA θJA — — — 359 110 131.9 — — — ºC/W ºC/W ºC/W When mounted on 1 square inch of copper TA TA -40 -65 — — +85 +150 ºC ºC Sym Min Typ Max Units Conditions
© 2005 Microchip Technology Inc.
DS21435F-page 5
TC55
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Notes: Unless otherwise specified, VOUT(S) = 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
3.1
OUTPUT VOLTAGE VOUT (V)
VIN = 4.0V
DROPOUT VOLTAGE VDIF (V)
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
-0.2
3.0
-30°C 80°C
2.9
25°C
25°C 80°C -30°C
2.8
2.7
0
20
40
60
80 100 120 140 160
0
20 40
60
80 100 120 140 160
OUTPUT CURRENT IOUT (mA)
OUTPUT CURRENT IOUT (mA)
FIGURE 2-1: Output Voltage vs. Output Current (TC55RP3002).
3.2
OUTPUT VOLTAGE VOUT (V)
FIGURE 2-4: Dropout Voltage vs. Output Current (TC55RP3002).
3.10
OUTPUT VOLTAGE VOUT (V)
TOPR = 25°C
3.08 3.06 3.04 3.02 3.00 2.98 2.96
2.94 2.92 2.90 -40
VIN = 4.0V
3.0
IOUT = 1 mA
2.8
40 mA
IOUT = 10 mA 40 mA
2.6
10 mA
2.4
2.2
2.5
3.0
INPUT VOLTAGE VIN (V)
3.5
-20
0
20
40
60
80
100
OPERATING TEMPERATURE (°C)
FIGURE 2-2: Output Voltage vs. Input Voltage (TC55RP3002).
3.05
OUTPUT VOLTAGE VOUT (V)
FIGURE 2-5: Output Voltage vs. Operating Temperature (TC55RP3002).
1.5 1.4
SUPPLY CURRENT ISS (μA)
TOPR = 25°C
TOPR = 25°C
3.04 3.03 3.02 3.01 3.00 2.99 2.98
2.97 2.96 2.95
1.3 1.2 1.1 1.0 0.9 0.8
0.7 0.6 0.5
IOUT = 1 mA
3
4
5
6
7
8
9
10
3
4
INPUT VOLTAGE VIN (V)
5 6 7 8 9 INPUT VOLTAGE VIN (V)
10
FIGURE 2-3: Output Voltage vs. Input Voltage (TC55RP3002).
FIGURE 2-6: Supply Current vs. Input Voltage (TC55RP3002).
DS21435F-page 6
© 2005 Microchip Technology Inc.
TC55
Note: Unless otherwise indicated, VOUT(S) = 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
1.5 1.4
SUPPLY CURRENT ISS (μA)
VIN = 4.0V
OUTPUT VOLTAGE VOUT (V)
5.2 5.0
TOPR = 25°C
1.8 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5
IOUT = 1 mA
4.8
40 mA
4.6
10 mA
4.4
4.2
-40 -20
0
20
40
60
80 100
4.5
5.0
INPUT VOLTAGE VIN (V)
5.5
OPERATING TEMPERATURE (°C)
FIGURE 2-7: Supply Current vs. Operating Temperature (TC55RP3002).
5
OUTPUT VOLTAGE VOUT (V)
FIGURE 2-10: Output Voltage vs. Input Voltage (TC55RP5002).
5.05
OUTPUT CURRENT IOUT (mA) OUTPUT VOLTAGE VOUT (V)
TOPR = 25°C
200 160 Output Voltage
5.04 5.03 5.02 5.01 5.00 4.99
4.98 4.97 4.98 4.95
IOUT = 1 mA
4
3
120
2
80 Output Current 40 mA 1 mA
TIME (2 msec/div)
1 0
40
0
5
6
7
8
9
10
INPUT VOLTAGE VIN (V)
FIGURE 2-8: (TC55RP3002).
5.1
OUTPUT VOLTAGE VOUT (V)
Load Transient Response
FIGURE 2-11: Output Voltage vs. Input Voltage (TC55RP5002).
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
-0.2
VIN = 6.0V
DROPOUT VOLTAGE VDIF (V)
5.0
-30°C 80°C
4.9
25°C
25°C 80°C -30°C
0 40 80 120
160 200
4.8
4.7
0
40
80
120
160
200
OUTPUT CURRENT IOUT (mA)
OUTPUT CURRENT IOUT (mA)
FIGURE 2-9: Output Voltage vs. Output Current (TC55RP5002).
FIGURE 2-12: Dropout Voltage vs. Output Current (TC55RP5002).
© 2005 Microchip Technology Inc.
DS21435F-page 7
TC55
Note: Unless otherwise indicated, VOUT(S) = 3.0V, 5.0V, TA = +25°C, CIN = 1 µF Tantalum, COUT = 1 µF Tantalum.
VIN = 6.0V
5.10
OUTPUT VOLTAGE VOUT (V)
8.0
INPUT VOLTAGE VOUT (V)
5.08 5.06 5.04 5.02 5.00 4.98 4.96
4.94 4.92 4.90 -40
7.0 6.5
6.0 5.5 5.0 4.5
IOUT = 10 mA 40 mA
Output Voltage
5.0
-20
0
20
40
60
80
100
4.0
OPERATING TEMPERATURE (°C)
-1
0
1 TIME (msec)
2
3
FIGURE 2-13: Output Voltage vs. Operating Temperature (TC55RP5002).
2.0 1.9
SUPPLY CURRENT ISS (μA)
FIGURE 2-16: Input Transient Response, 1 mA (TC55RP5002).
8.0
INPUT VOLTAGE VOUT (V)
TOPR = 25°C
7.5 7.0 6.5
6.0 5.5 5.0 4.5
1.8 1.7 1.6 1.4 1.3 1.2
1.1 1.0 0.5
Output Voltage
5
7 8 9 6 INPUT VOLTAGE VIN (V)
10
4.0
-1
0
1 TIME (msec)
2
3
FIGURE 2-14: Supply Current vs. Input Voltage (TC55RP5002).
2.0 1.9
SUPPLY CURRENT ISS (μA)
FIGURE 2-17: Input Transient Response, 10 mA (TC55RP5002).
7
OUTPUT VOLTAGE VOUT (V)
VIN = 6.0V
200 160 Output Voltage
OUTPUT CURRENT IOUT (mA)
1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0
6
5
120
4
80 Output Current 40 mA 1 mA
TIME (2 msec/div)
3 2
40
0
-40
-20
0
20
40
60
80 100
OPERATING TEMPERATURE (°C)
FIGURE 2-15: Supply Current vs. Operating Temperature (TC55RP5002).
FIGURE 2-18: (TC55RP5002).
Load Transient Response
DS21435F-page 8
© 2005 Microchip Technology Inc.
OUTPUT VOLTAGE VOUT (V)
IOUT = 10 mA Input Voltage
OUTPUT VOLTAGE VIN (V)
7.5
IOUT = 1 mA Input Voltage
TC55
3.0 PIN DESCRIPTIONS 4.0 DETAILED DESCRIPTION
The descriptions of the pins are listed in Table 3-1. The TC55 is a low quiescent current, precision, fixedoutput voltage LDO. Unlike bipolar regulators, the TC55 supply current does not increase proportionally with load current.
TABLE 3-1:
Pin No. 1 2 3
PIN FUNCTION TABLE
Description Ground Terminal Regulated Voltage Output Unregulated Supply Input GND VOUT VIN
Symbol
4.1
Output Capacitor
3.1
Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the output and the negative side of the input capacitor. Only the LDO bias current (1 µA typical) flows out of this pin, there is no high current. The LDO output regulation is referenced to this pin. Minimize voltage drops between this pin and the minus side of the load.
A minimum of 1 µF output capacitor is required. The output capacitor should have an effective series resistance (esr) greater than 0.1Ω and less than 5Ω, plus a resonant frequency above 1 MHz. Larger output capacitors can be used to improve supply noise rejection and transient response. Care should be taken when increasing COUT to ensure that the input impedance is not high enough to cause high input impedance oscillation.
4.2
Input Capacitor
3.2
Regulated Voltage Output (VOUT)
Connect VOUT to the positive side of the load and the positive terminal of the output capacitor. The positive side of the output capacitor should be physically located as close to the LDO VOUT pin as is practical. The current flowing out of this pin is equal to the DC load current.
A 1 µF input capacitor is recommended for most applications when the input impedance is on the order of 10Ω. Larger input capacitance may be required for stability when operating off of a battery input, or if there is a large distance from the input source to the LDO. When large values of output capacitance are used, the input capacitance should be increased to prevent high source impedance oscillations.
3.3
Unregulated Supply Input (VIN)
Connect the input supply voltage and the positive side of the input capacitor to VIN. The input capacitor should be physically located as close as is practical to VIN. The current flow into this pin is equal to the DC load current, plus the LDO bias current (1 µA typical.)
© 2005 Microchip Technology Inc.
DS21435F-page 9
TC55
5.0
5.1
THERMAL CONSIDERATIONS
Power Dissipation
EQUATION
PD = (VINMAX – VOUTMIN) x IOUTMAX Given: VIN IOUT = 3.3V to 4.1V = 1 mA to 100 mA VOUT = 3.0 V ± 2% TAMAX = 55°C PMAX = (4.1V – (3.0V x 0.98)) x 100 mA PMAX = 116.0 milliwatts To determine the junction temperature of the device, the thermal resistance from junction-to-ambient must be known. The 3-pin SOT-23 thermal resistance from junction-to-air (RθJA) is estimated to be approximately 359°C/W. The SOT-89 RθJA is estimated to be approximately 110°C/W when mounted on 1 square inch of copper. The TO-92 RθJA is estimated to be 131.9°C/W. The RθJA will vary with physical layout, airflow and other application-specific conditions. The device junction temperature is determined by calculating the junction temperature rise above ambient, then adding the rise to the ambient temperature.
The amount of power dissipated internal to the low dropout linear regulator is the sum of the power dissipation within the linear pass device (P-Channel MOSFET) and the quiescent current required to bias the internal reference and error amplifier. The internal linear pass device power dissipation is calculated by multiplying the voltage across the linear device by the current through the device.
EQUATION
PD (Pass Device) = (VIN – VOUT) x IOUT The internal power dissipation, as a result of the bias current for the LDO internal reference and error amplifier, is calculated by multiplying the ground or quiescent current by the input voltage.
EQUATION
PD (Bias) = VIN x IGND The total internal power dissipation is the sum of PD (Pass Device) and PD (Bias).
EQUATION
PTOTAL = PD (Pass Device) + PD (Bias) For the TC55, the internal quiescent bias current is so low (1 µA typical) that the PD (Bias) term of the power dissipation equation can be ignored. The maximum power dissipation can be estimated by using the maximum input voltage and the minimum output voltage to obtain a maximum voltage differential between input and output. The next step would be to multiply the maximum voltage differential by the maximum output current.
EQUATION
Junction Temperature SOT-23 Example: TJ = PDMAX x RθJA + TA TJ = 116.0 milliwatts x 359°C/W + 55°C TJ = 96.6°C SOT-89 Example: TJ = 116.0 milliwatts x 110°C/W + 55°C TJ = 67.8°C TO-92 Example: TJ = 116.0 milliwatts x 131.9°C/W + 55°C TJ = 70.3°C
DS21435F-page 10
© 2005 Microchip Technology Inc.
TC55
6.0
6.1
PACKAGING INFORMATION
Package Marking Information
3-Pin SOT-23A 3-Pin SOT-89 3-Pin TO-92
2 1 2 3 4 1
4
1234 5678 9 10 11 12
3
1
represents first voltage digit 2V, 3V, 4V, 5V, 6V Ex: 3.xV =
3
1, 2, 3 & 4
= 55RP (fixed)
5
represents first voltage digit (2-6) represents first voltage decimal (0-9) represents extra feature code: fixed: 0 represents regulation accuracy 1 = ±1.0% (custom), 2 = ±2.0% (standard) represents assembly lot number
2
represents first decimal place voltage (x.0 - x.9)
6
Ex: 3.4V = Symbol A B C D E
3
3
E
Voltage x.0 x.1 x.2 x.3 x.4
Symbol F H K L M
Voltage x.5 x.6 x.7 x.8 x.9
7
8
9 , 10, 11 & 12
represents polarity 0 = Positive (fixed) represents assembly lot number
4
© 2005 Microchip Technology Inc.
DS21435F-page 11
TC55
3-Lead Plastic Small Outline Transistor (CB) (SOT23)
E E1 2
B n p
p1
D
1 α
c A A2
φ β L
A1
Units Dimension Limits n Number of Pins p Pitch p1 Outside lead pitch (basic) Overall Height Molded Package Thickness Standoff § Overall Width Molded Package Width Overall Length Foot Length Foot Angle Lead Thickness Lead Width Mold Draft Angle Top Mold Draft Angle Bottom * Controlling Parameter § Significant Characteristic A A2 A1 E E1 D L φ c B α β
MIN
INCHES* NOM 3 .038 .076 .040 .037 .002 .093 .051 .115 .018 5 .006 .017 5 5
MAX
MIN
.035 .035 .000 .083 .047 .110 .014 0 .004 .015 0 0
.044 .040 .004 .104 .055 .120 .022 10 .007 .020 10 10
MILLIMETERS NOM 3 0.96 1.92 0.89 1.01 0.88 0.95 0.01 0.06 2.10 2.37 1.20 1.30 2.80 2.92 0.35 0.45 0 5 0.09 0.14 0.37 0.44 0 5 0 5
MAX
1.12 1.02 0.10 2.64 1.40 3.04 0.55 10 0.18 0.51 10 10
Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: TO-236 Drawing No. C04-104
DS21435F-page 12
© 2005 Microchip Technology Inc.
TC55
3-Lead Plastic Small Outline Transistor (MB) (SOT89)
H E B1
3 B D D1 2 p p1
1 B1 L E1
A
C
Pitch Outside lead pitch (basic) Overall Height Overall Width Molded Package Width at Base Molded Package Width at Top Overall Length Tab Length Foot Length Lead Thickness Lead 2 Width Leads 1 & 3 Width
Units Dimension Limits p p1 A H E E1 D D1 L c B B1
INCHES MIN MAX .059 BSC .118 BSC .055 .063 .155 .167 .090 .102 .084 .090 .173 .181 .064 .072 .035 .047 .014 .017 .017 .022 .014 .019
MILLIMETERS* MIN MAX 1.50 BSC 3.00 BSC 1.40 1.60 3.94 4.25 2.29 2.60 2.13 2.29 4.40 4.60 1.62 1.83 0.89 1.20 0.35 0.44 0.44 0.56 0.36 0.48
*Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. JEDEC Equivalent: TO-243
Drawing No. C04-29
© 2005 Microchip Technology Inc.
DS21435F-page 13
TC55
3-Lead Plastic Transistor Outline (ZB) (TO-92)
E1
D
1
n
L
1
2
3
B p c
α
A
R
β INCHES* NOM MILLIMETERS NOM 3 1.27 3.30 3.62 4.45 4.71 4.32 4.64 2.16 2.29 12.70 14.10 0.36 0.43 0.41 0.48 4 5 2 3
Number of Pins 3 Pitch .050 Bottom to Package Flat A .130 .143 .155 Overall Width E1 .175 .186 .195 Overall Length D .170 .183 .195 Molded Package Radius R .085 .090 .095 Tip to Seating Plane L .500 .555 .610 c Lead Thickness .014 .017 .020 Lead Width B .016 .019 .022 α 4 5 6 Mold Draft Angle Top β Mold Draft Angle Bottom 2 3 4 *Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side. JEDEC Equivalent: TO-92 Drawing No. C04-101
Units Dimension Limits n p
MIN
MAX
MIN
MAX
3.94 4.95 4.95 2.41 15.49 0.51 0.56 6 4
DS21435F-page 14
© 2005 Microchip Technology Inc.
TC55
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device XX X X X XX XX Examples:
a) TC55RP1802ECB713: 1.8V LDO Positive Voltage Regulator, 2% Tolerance SOT23-A-3 package. TC55RP2502EMB713: 1.8V LDO Positive Voltage Regulator, 2% Tolerance. SOT89-3 package. TC55RP2502ECB713: 2.5V LDO Positive Voltage Regulator, 2% Tolerance. SOT23-A-3 package. TC55RP3002ECB713: 3.0V LDO Positive Voltage Regulator, 2% Tolerance. SOT23-A-3 package. TC55RP3002EMB713: 3.0V LDO Positive Voltage Regulator, 2% Tolerance. SOT89-3 package. TC55RP3302ECB713: 3.3V LDO Positive Voltage Regulator, 2% Tolerance. SOT23-A-3 package. TC55RP3302EMB713: 3.3V LDO Positive Voltage Regulator, 2% Tolerance. SOT89-3 package. TC55RP5002ECB713: 5.0V LDO Positive Voltage Regulator, 2% Tolerance. SOT23-A-3 package. TC55RP5002EMB713: 5.0V LDO Positive Voltage Regulator, 2% Tolerance. SOT89-3 package.
Output Feature Tolerance Temp. Package Taping Voltage Code Direction
b)
Device: TC55: 1 µA Low Dropout Positive Voltage Regulator
Output Voltage:
12 18 25 30 33 50
= = = = = =
1.2V "Standard" 1.8V "Standard" 2.5V "Standard" 3.0V "Standard" 3.3V "Standard" 5.0V "Standard"
c)
d)
e)
Extra Feature Code: 0 = Fixed
Tolerance:
1 2
= 1.0% (Custom) = 2.0% (Standard) = -40°C to +85°C
f)
Temperature:
E
g)
Package Type:
CB = 3-Pin SOT-23A (equivalent to EIAJ SC-59) MB = 3-Pin SOT-89 ZB = 3-Pin TO-92
h)
Taping Direction:
TR = Standard 713 = Standard
i)
Sales and Support
Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. 2. 3. Your local Microchip sales office The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
© 2005 Microchip Technology Inc.
DS21435F-page 15
TC55
NOTES:
DS21435F-page 16
© 2005 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: • • Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”
•
• •
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
© 2005 Microchip Technology Inc.
DS21435F-page 17
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256
ASIA/PACIFIC
India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820
10/31/05
DS21435F-page 18
© 2005 Microchip Technology Inc.