0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M28W160CB70N6E

M28W160CB70N6E

  • 厂商:

    MICRON(镁光)

  • 封装:

    TFSOP48

  • 描述:

    IC FLASH 16MBIT PARALLEL 48TSOP

  • 数据手册
  • 价格&库存
M28W160CB70N6E 数据手册
M28W160CT M28W160CB 16 Mbit (1Mb x16, Boot Block) 3V Supply Flash Memory FEATURES SUMMARY ■ SUPPLY VOLTAGE Figure 1. Packages – VDD = 2.7V to 3.6V Core Power Supply – VDDQ= 1.65V to 3.6V for Input/Output ■ – VPP = 12V for fast Program (optional) ACCESS TIME: 70, 85, 90,100ns ■ PROGRAMMING TIME: FBGA TFBGA46 (ZB) 6.39 x 6.37mm – 10µs typical – Double Word Programming Option ■ COMMON FLASH INTERFACE – 64 bit Security Code ■ MEMORY BLOCKS – Parameter Blocks (Top or Bottom location) – Main Blocks ■ BLOCK LOCKING TSOP48 (N) 12 x 20mm – All blocks locked at Power Up – Any combination of blocks can be locked – WP for Block Lock-Down ■ SECURITY – 64 bit user Programmable OTP cells – 64 bit unique device identifier ■ ELECTRONIC SIGNATURE – Manufacturer Code: 20h – One Parameter Block Permanently Lockable ■ AUTOMATIC STAND-BY MODE ■ PROGRAM and ERASE SUSPEND ■ 100,000 PROGRAM/ERASE CYCLES per BLOCK ■ ECOPACK® PACKAGES AVAILABLE December 2007 Table 1. Device Codes Root Part Number Device Code M28W160CT 88CEh M28W160CB 88CFh 1/50 M28W160CT, M28W160CB TABLE OF CONTENTS SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. TSOP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5. Block Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6. Security Block and Protection Register Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data Input/Output (DQ0-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Protect (WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reset (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VDD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VDDQ Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VPP Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 3. Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Memory Array Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read Electronic Signature Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Double Word Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clear Status Register Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Program/Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Program/Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Protection Register Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Block Lock-Down Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2/50 M28W160CT, M28W160CB Table 4. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 5. Read Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 6. Read Block Lock Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 7. Read Protection Register and Lock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 8. Program, Erase Times and Program/Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . . 15 BLOCK LOCKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Reading a Block’s Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Locked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Unlocked State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Lock-Down State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Locking Operations During Erase Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 9. Block Lock Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 10. Protection Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program/Erase Controller Status (Bit 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Erase Suspend Status (Bit 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Erase Status (Bit 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Status (Bit 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VPP Status (Bit 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Program Suspend Status (Bit 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Block Protection Status (Bit 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reserved (Bit 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 11. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 12. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 13. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 8. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 14. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 15. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 9. Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 16. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 10. Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 17. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 11. Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 18. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 12. Power-Up and Reset AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 19. Power-Up and Reset AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3/50 M28W160CT, M28W160CB PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline . . . . . . . . 29 Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 29 Figure 14. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline30 Table 21. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data . . . 30 Figure 15. TFBGA46 Daisy Chain - Package Connections (Top view through package) . . . . . . . . 31 Figure 16. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package) . . . . 31 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 22. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 23. Daisy Chain Ordering Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 APPENDIX A. BLOCK ADDRESS TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 24. Top Boot Block Addresses, M28W160CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 25. Bottom Boot Block Addresses, M28W160CB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 APPENDIX B. COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 26. Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 27. CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 28. CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 29. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 30. Primary Algorithm-Specific Extended Query Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 31. Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 APPENDIX C. FLOWCHARTS AND PSEUDO CODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 17. Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 18. Double Word Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 19. Program Suspend & Resume Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . 42 Figure 20. Erase Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 21. Erase Suspend & Resume Flowchart and Pseudo Code. . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 22. Locking Operations Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 23. Protection Register Program Flowchart and Pseudo Code . . . . . . . . . . . . . . . . . . . . . . 46 APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE . . . . . . . 47 Table 32. Write State Machine Current/Next, sheet 1 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 33. Write State Machine Current/Next, sheet 2 of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 34. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4/50 M28W160CT, M28W160CB SUMMARY DESCRIPTION The M28W160C is a 16 Mbit (1 Mbit x 16) non-volatile Flash memory that can be erased electrically at the block level and programmed in-system on a Word-by-Word basis. These operations can be performed using a single low voltage (2.7 to 3.6V) supply. VDDQ allows to drive the I/O pin down to 1.65V. An optional 12V VPP power supply is provided to speed up customer programming. The device features an asymmetrical blocked architecture. The M28W160C has an array of 39 blocks: 8 Parameter Blocks of 4 KWord and 31 Main Blocks of 32 KWord. M28W160CT has the Parameter Blocks at the top of the memory address space while the M28W160CB locates the Parameter Blocks starting from the bottom. The memory maps are shown in Figure 5, Block Addresses. The M28W160C features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency, enabling instant code and data protection. All blocks have three levels of protection. They can be locked and locked-down individually preventing any accidental programming or erasure. There is an additional hardware protection against program and erase. When VPP ≤VPPLK all blocks are protected against program or erase. All blocks are locked at powerup. Each block can be erased separately. Erase can be suspended in order to perform either read or program in any other block and then resumed. Program can be suspended to read data in any other block and then resumed. Each block can be programmed and erased over 100,000 cycles. The device includes a 128 bit Protection Register and a Security Block to increase the protection of a system design. The Protection Register is divided into two 64 bit segments, the first one contains a unique device number written by Numonyx, while the second one is one-time-programmable by the user. The user programmable segment can be permanently protected. The Security Block, parameter block 0, can be permanently protected by the user. Figure 6, shows the Security Block and Protection Register Memory Map. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller takes care of the timings necessary for program and erase operations. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards. The memory is offered in TSOP48 (10 X 20mm) and TFBGA46 (6.39 x 6.37mm, 0.75mm pitch) packages and is supplied with all the bits erased (set to ’1’). In order to meet environmental requirements, Numonyx offers the M28W160C in ECOPACK® packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. 5/50 M28W160CT, M28W160CB Figure 2. Logic Diagram Table 2. Signal Names A0-A19 Address Inputs DQ0-DQ15 Data Input/Output E Chip Enable G Output Enable W Write Enable RP Reset WP Write Protect RP VDD Core Power Supply WP VDDQ Power Supply for Input/Output VPP Optional Supply Voltage for Fast Program & Erase VSS Ground NC Not Connected Internally VDD VDDQ VPP 20 16 A0-A19 DQ0-DQ15 W E G M28W160CT M28W160CB VSS AI03811 Figure 3. TSOP Connections A15 A14 A13 A12 A11 A10 A9 A8 NC NC W RP VPP WP A19 A18 A17 A7 A6 A5 A4 A3 A2 A1 1 48 12 M28W160CT 37 13 M28W160CB 36 24 25 A16 VDDQ VSS DQ15 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VDD DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G VSS E A0 AI03812 6/50 M28W160CT, M28W160CB Figure 4. TFBGA Connections (Top view through package) 1 2 3 4 5 6 7 8 A A13 A11 A8 VPP WP A19 A7 A4 B A14 A10 W RP A18 A17 A5 A2 C A15 A12 A9 A6 A3 A1 D A16 DQ14 DQ5 DQ11 DQ2 DQ8 E A0 E VDDQ DQ15 DQ6 DQ12 DQ3 DQ9 DQ0 VSS F VSS DQ7 DQ13 DQ4 VDD DQ10 DQ1 G AI03804 7/50 M28W160CT, M28W160CB Figure 5. Block Addresses M28W160CB Bottom Boot Block Addresses M28W160CT Top Boot Block Addresses FFFFF FFFFF 4 KWords 32 KWords F8000 F7FFF FF000 32 KWords Total of 8 4 KWord Blocks F0000 Total of 31 32 KWord Blocks F8FFF 4 KWords F8000 F7FFF 32 KWords F0000 0FFFF 32 KWords 08000 07FFF 4 KWords Total of 31 32 KWord Blocks 07000 Total of 8 4 KWord Blocks 0FFFF 32 KWords 08000 07FFF 00FFF 32 KWords 4 KWords 00000 00000 AI04311 Note: Also see Appendix A, Tables 24 and 25 for a full listing of the Block Addresses. Figure 6. Security Block and Protection Register Memory Map PROTECTION REGISTER SECURITY BLOCK 88h User Programmable OTP 85h 84h Parameter Block # 0 Unique device number 81h 80h Protection Register Lock 2 1 0 AI03523 8/50 M28W160CT, M28W160CB SIGNAL DESCRIPTIONS See Figure 2 Logic Diagram and Table 2,Signal Names, for a brief overview of the signals connected to this device. Address Inputs (A0-A19). The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. Data Input/Output (DQ0-DQ15). The Data I/O outputs the data stored at the selected address during a Bus Read operation or inputs a command or the data to be programmed during a Write Bus operation. Chip Enable (E). The Chip Enable input activates the memory control logic, input buffers, decoders and sense amplifiers. When Chip Enable is at VILand Reset is at VIH the device is in active mode. When Chip Enable is at VIH the memory is deselected, the outputs are high impedance and the power consumption is reduced to the stand-by level. Output Enable (G). The Output Enable controls data outputs during the Bus Read operation of the memory. Write Enable (W). The Write Enable controls the Bus Write operation of the memory’s Command Interface. The data and address inputs are latched on the rising edge of Chip Enable, E, or Write Enable, W, whichever occurs first. Write Protect (WP). Write Protect is an input that gives an additional hardware protection for each block. When Write Protect is at VIL, the LockDown is enabled and the protection status of the block cannot be changed. When Write Protect is at VIH, the Lock-Down is disabled and the block can be locked or unlocked. (refer to Table 7, Read Protection Register and Protection Register Lock). Reset (RP). The Reset input provides a hardware reset of the memory. When Reset is at VIL, the memory is in reset mode: the outputs are high impedance and the current consumption is minimized. After Reset all blocks are in the Locked state. When Reset is at VIH, the device is in normal operation. Exiting reset mode the device enters read array mode, but a negative transition of Chip Enable or a change of the address is required to ensure valid data outputs. V DD Supply Voltage. VDD provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read, Program and Erase). V DDQ Supply Voltage. VDDQ provides the power supply to the I/O pins and enables all Outputs to be powered independently from VDD. VDDQ can be tied to VDD or can use a separate supply. V PP Program Supply Voltage. VPP is both a control input and a power supply pin. The two functions are selected by the voltage range applied to the pin. The Supply Voltage VDD and the Program Supply Voltage VPP can be applied in any order. If VPP is kept in a low voltage range (0V to 3.6V) VPP is seen as a control input. In this case a voltage lower than VPPLK gives an absolute protection against program or erase, while VPP > VPP1 enables these functions (see Table 15, DC Characteristics for the relevant values). VPP is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect and program or erase operations continue. If VPP is in the range 11.4V to 12.6V it acts as a power supply pin. In this condition VPP must be stable until the Program/Erase algorithm is completed (see Table 17 and 18). VSS Ground. VSS is the reference for all voltage measurements. Note: Each device in a system should have VDD, VDDQ and VPP decoupled with a 0.1µF capacitor close to the pin. See Figure 8, AC Measurement Load Circuit. The PCB trace widths should be sufficient to carry the required VPP program and erase currents. 9/50 M28W160CT, M28W160CB BUS OPERATIONS There are six standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby, Automatic Standby and Reset. See Table 3, Bus Operations, for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations. Read. Read Bus operations are used to output the contents of the Memory Array, the Electronic Signature, the Status Register and the Common Flash Interface. Both Chip Enable and Output Enable must be at VIL in order to perform a read operation. The Chip Enable input should be used to enable the device. Output Enable should be used to gate data onto the output. The data read depends on the previous command written to the memory (see Command Interface section). See Figure 9, Read Mode AC Waveforms, and Table 16, Read AC Characteristics, for details of when the output becomes valid. Read mode is the default state of the device when exiting Reset or after power-up. Write. Bus Write operations write Commands to the memory or latch Input Data to be programmed. A write operation is initiated when Chip Enable and Write Enable are at VIL with Output Enable at VIH. Commands, Input Data and Addresses are latched on the rising edge of Write Enable or Chip Enable, whichever occurs first. See Figures 10 and 11, Write AC Waveforms, and Tables 17 and 18, Write AC Characteristics, for details of the timing requirements. Output Disable. The data outputs are high impedance when the Output Enable is at VIH. Standby. Standby disables most of the internal circuitry allowing a substantial reduction of the current consumption. The memory is in stand-by when Chip Enable is at VIH and the device is in read mode. The power consumption is reduced to the stand-by level and the outputs are set to high impedance, independently from the Output Enable or Write Enable inputs. If Chip Enable switches to VIH during a program or erase operation, the device enters Standby mode when finished. Automatic Standby. Automatic Standby provides a low power consumption state during Read mode. Following a read operation, the device enters Automatic Standby after 150ns of bus inactivity even if Chip Enable is Low, VIL, and the supply current is reduced to IDD1. The data Inputs/Outputs will still output data if a bus Read operation is in progress. Reset. During Reset mode when Output Enable is Low, VIL, the memory is deselected and the outputs are high impedance. The memory is in Reset mode when Reset is at VIL. The power consumption is reduced to the Standby level, independently from the Chip Enable, Output Enable or Write Enable inputs. If Reset is pulled to VSS during a Program or Erase, this operation is aborted and the memory content is no longer valid. Table 3. Bus Operations E G W RP WP VPP DQ0-DQ15 Bus Read VIL VIL VIH VIH X Don't Care Data Output Bus Write VIL VIH VIL VIH X VDD or VPPH Data Input Output Disable VIL VIH VIH VIH X Don't Care Hi-Z Standby VIH X X VIH X Don't Care Hi-Z X X X VIL X Don't Care Hi-Z Operation Reset Note: X = VIL or VIH, VPPH = 12V ± 5%. 10/50 M28W160CT, M28W160CB COMMAND INTERFACE All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. An internal Program/Erase Controller handles all timings and verifies the correct execution of the Program and Erase commands. The Program/Erase Controller provides a Status Register whose output may be read at any time during, to monitor the progress of the operation, or the Program/Erase states. See Appendix 21, Table 32, Write State Machine Current/Next, for a summary of the Command Interface. The Command Interface is reset to Read mode when power is first applied, when exiting from Reset or whenever VDD is lower than VLKO. Command sequences must be followed exactly. Any invalid combination of commands will reset the device to Read mode. Refer to Table 4, Commands, in conjunction with the text descriptions below. Read Memory Array Command The Read command returns the memory to its Read mode. One Bus Write cycle is required to issue the Read Memory Array command and return the memory to Read mode. Subsequent read operations will read the addressed location and output the data. When a device Reset occurs, the memory defaults to Read mode. Read Status Register Command The Status Register indicates when a program or erase operation is complete and the success or failure of the operation itself. Issue a Read Status Register command to read the Status Register’s contents. Subsequent Bus Read operations read the Status Register at any address, until another command is issued. See Table 11, Status Register Bits, for details on the definitions of the bits. The Read Status Register command may be issued at any time, even during a Program/Erase operation. Any Read attempt during a Program/ Erase operation will automatically output the content of the Status Register. Read Electronic Signature Command The Read Electronic Signature command reads the Manufacturer and Device Codes and the Block Locking Status, or the Protection Register. The Read Electronic Signature command consists of one write cycle, a subsequent read will output the Manufacturer Code, the Device Code, the Block Lock and Lock-Down Status, or the Protection and Lock Register. See Tables 5, 6 and 7 for the valid address. Read CFI Query Command The Read Query Command is used to read data from the Common Flash Interface (CFI) Memory Area, allowing programming equipment or appli- cations to automatically match their interface to the characteristics of the device. One Bus Write cycle is required to issue the Read Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. See Appendix B, Common Flash Interface, Tables 26, 27, 28, 29, 30 and 31 for details on the information contained in the Common Flash Interface memory area. Block Erase Command The Block Erase command can be used to erase a block. It sets all the bits within the selected block to ’1’. All previous data in the block is lost. If the block is protected then the Erase operation will abort, the data in the block will not be changed and the Status Register will output the error. Two Bus Write cycles are required to issue the command. ■ The first bus cycle sets up the Erase command. ■ The second latches the block address in the internal state machine and starts the Program/ Erase Controller. If the second bus cycle is not Write Erase Confirm (D0h), Status Register bits b4 and b5 are set and the command aborts. Erase aborts if Reset turns to VIL. As data integrity cannot be guaranteed when the Erase operation is aborted, the block must be erased again. During Erase operations the memory will accept the Read Status Register command and the Program/Erase Suspend command, all other commands will be ignored. Typical Erase times are given in Table 8, Program, Erase Times and Program/Erase Endurance Cycles. See Appendix C, Figure 20, Erase Flowchart and Pseudo Code, for a suggested flowchart for using the Erase command. Program Command The memory array can be programmed word-byword. Two bus write cycles are required to issue the Program Command. ■ The first bus cycle sets up the Program command. ■ The second latches the Address and the Data to be written and starts the Program/Erase Controller. During Program operations the memory will accept the Read Status Register command and the Program/Erase Suspend command. Typical Program times are given in Table 8, Program, Erase Times and Program/Erase Endurance Cycles. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the 11/50 M28W160CT, M28W160CB memory location must be erased and reprogrammed. See Appendix C, Figure 17, Program Flowchart and Pseudo Code, for the flowchart for using the Program command. Double Word Program Command This feature is offered to improve the programming throughput, writing a page of two adjacent words in parallel.The two words must differ only for the address A0. Programming should not be attempted when VPP is not at VPPH. The command can be executed if VPP is below VPPH but the result is not guaranteed. Three bus write cycles are necessary to issue the Double Word Program command. ■ The first bus cycle sets up the Double Word Program Command. ■ The second bus cycle latches the Address and the Data of the first word to be written. ■ The third bus cycle latches the Address and the Data of the second word to be written and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. Programming aborts if Reset goes to VIL. As data integrity cannot be guaranteed when the program operation is aborted, the block containing the memory location must be erased and reprogrammed. See Appendix C, Figure 18, Double Word Program Flowchart and Pseudo Code, for the flowchart for using the Double Word Program command. Clear Status Register Command The Clear Status Register command can be used to reset bits 1, 3, 4 and 5 in the Status Register to ‘0’. One bus write cycle is required to issue the Clear Status Register command. The bits in the Status Register do not automatically return to ‘0’ when a new Program or Erase command is issued. The error bits in the Status Register should be cleared before attempting a new Program or Erase command. Program/Erase Suspend Command The Program/Erase Suspend command is used to pause a Program or Erase operation. One bus write cycle is required to issue the Program/Erase command and pause the Program/Erase controller. During Program/Erase Suspend the Command Interface will accept the Program/Erase Resume, Read Array, Read Status Register, Read Electronic Signature and Read CFI Query commands. Additionally, if the suspend operation was Erase then the Program, Block Lock, Block Lock-Down or Protection Program commands will also be ac- 12/50 cepted. The block being erased may be protected by issuing the Block Protect, Block Lock or Protection Program commands. When the Program/ Erase Resume command is issued the operation will complete. Only the blocks not being erased may be read or programmed correctly. During a Program/Erase Suspend, the device can be placed in a pseudo-standby mode by taking Chip Enable to VIH. Program/Erase is aborted if Reset turns to VIL. See Appendix C, Figure 19, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 21, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Suspend command. Program/Erase Resume Command The Program/Erase Resume command can be used to restart the Program/Erase Controller after a Program/Erase Suspend operation has paused it. One Bus Write cycle is required to issue the command. Once the command is issued subsequent Bus Read operations read the Status Register. See Appendix C, Figure 19, Program Suspend & Resume Flowchart and Pseudo Code, and Figure 21, Erase Suspend & Resume Flowchart and Pseudo Code for flowcharts for using the Program/ Erase Resume command. Protection Register Program Command The Protection Register Program command is used to Program the 64 bit user One-Time-Programmable (OTP) segment of the Protection Register. The segment is programmed 16 bits at a time. When shipped all bits in the segment are set to ‘1’. The user can only program the bits to ‘0’. Two write cycles are required to issue the Protection Register Program command. ■ The first bus cycle sets up the Protection Register Program command. ■ The second latches the Address and the Data to be written to the Protection Register and starts the Program/Erase Controller. Read operations output the Status Register content after the programming has started. The segment can be protected by programming bit 1 of the Protection Lock Register. Bit 1 of the Protection Lock Register protects bit 2 of the Protection Lock Register. Programming bit 2 of the Protection Lock Register will result in a permanent protection of the Security Block (see Figure 6, Security Block and Protection Register Memory Map). Attempting to program a previously protected Protection Register will result in a Status Register error. The protection of the Protection Register and/or the Security Block is not reversible. M28W160CT, M28W160CB The Protection Register Program cannot be suspended. See Appendix C, Figure 23, Protection Register Program Flowchart and Pseudo Code, for the flowchart for using the Protection Register Program command. Block Lock Command The Block Lock command is used to lock a block and prevent Program or Erase operations from changing the data in it. All blocks are locked at power-up or reset. Two Bus Write cycles are required to issue the Block Lock command. ■ The first bus cycle sets up the Block Lock command. ■ The second Bus Write cycle latches the block address. The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Lock command. The Block Lock bits are volatile, once set they remain set until a hardware reset or power-down/ power-up. They are cleared by a Blocks Unlock command. Refer to the section, Block Locking, for a detailed explanation. Block Unlock Command The Blocks Unlock command is used to unlock a block, allowing the block to be programmed or erased. Two Bus Write cycles are required to issue the Blocks Unlock command. The first bus cycle sets up the Block Unlock command. ■ The second Bus Write cycle latches the block address. The lock status can be monitored for each block using the Read Electronic Signature command. Table. 10 shows the protection status after issuing a Block Unlock command. Refer to the section, Block Locking, for a detailed explanation. Block Lock-Down Command A locked block cannot be Programmed or Erased, or have its protection status changed when WP is low, VIL. When WP is high, VIH, the Lock-Down function is disabled and the locked blocks can be individually unlocked by the Block Unlock command. Two Bus Write cycles are required to issue the Block Lock-Down command. ■ The first bus cycle sets up the Block Lock command. ■ The second Bus Write cycle latches the block address. The lock status can be monitored for each block using the Read Electronic Signature command. Locked-Down blocks revert to the locked (and not locked-down) state when the device is reset on power-down. Table. 10 shows the protection status after issuing a Block Lock-Down command. Refer to the section, Block Locking, for a detailed explanation. ■ 13/50 M28W160CT, M28W160CB Table 4. Commands Bus Write Operations 1st Cycle No. of Cycles Commands 2nd Cycle 3nd Cycle Bus Op. Addr Data Bus Op. Addr Data Read Memory Array 1+ Write X FFh Read Read Addr Data Read Status Register 1+ Write X 70h Read X Status Register Read Electronic Signature 1+ Write X 90h Read Signature Signature Addr (2) Read CFI Query 1+ Write X 98h Read CFI Addr Query Erase 2 Write X 20h Write Block Addr D0h Program 2 Write X 40h or 10h Write Addr Data Input Double Word Program(3) 3 Write X 30h Write Addr 1 Data Input Clear Status Register 1 Write X 50h Program/Erase Suspend 1 Write X B0h Program/Erase Resume 1 Write X D0h Block Lock 2 Write X 60h Write Block Address 01h Block Unlock 2 Write X 60h Write Block Address D0h Block Lock-Down 2 Write X 60h Write Block Address 2Fh Protection Register Program 2 Write X C0h Write Address Data Input Bus Op. Addr Data Write Addr 2 Data Input Note: 1. X = Don't Care. 2. The signature addresses are listed in Tables 5, 6 and 7. 3. Addr 1 and Addr 2 must be consecutive Addresses differing only for A0. Table 5. Read Electronic Signature Code Device E G W A0 A1 A2-A7 A8-A19 DQ0-DQ7 DQ8-DQ15 VIL VIL VIH VIL VIL 0 Don't Care 20h 00h M28W160CT VIL VIL VIH VIH VIL 0 Don't Care CEh 88h M28W160CB VIL VIL VIH VIH VIL 0 Don't Care CFh 88h Manufacture. Code Device Code Note: 14/50 RP = VIH. M28W160CT, M28W160CB Table 6. Read Block Lock Signature Block Status E G W A0 A1 A2-A7 Locked Block VIL VIL VIH VIL VIH 0 Unlocked Block VIL VIL VIH VIL VIH Locked-Down Block VIL VIL VIH VIL VIH A8-A11 A12-A19 DQ0 DQ1 DQ2-DQ15 Don't Care Block Address 1 0 00h 0 Don't Care Block Address 0 0 00h 0 Don't Care Block Address X (1) 1 00h Note: 1. A Locked-Down Block can be locked "DQ0 = 1" or unlocked "DQ0 = 0"; see Block Locking section. Table 7. Read Protection Register and Lock Register E G W A0-A7 A8-A19 DQ0 DQ1 DQ2 Lock VIL VIL VIH 80h Don't Care 0 OTP Prot. data Security prot. data 00h 00h Unique ID 0 VIL VIL VIH 81h Don't Care ID data ID data ID data ID data ID data Unique ID 1 VIL VIL VIH 82h Don't Care ID data ID data ID data ID data ID data Unique ID 2 VIL VIL VIH 83h Don't Care ID data ID data ID data ID data ID data Unique ID 3 VIL VIL VIH 84h Don't Care ID data ID data ID data ID data ID data OTP 0 VIL VIL VIH 85h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 1 VIL VIL VIH 86h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 2 VIL VIL VIH 87h Don't Care OTP data OTP data OTP data OTP data OTP data OTP 3 VIL VIL VIH 88h Don't Care OTP data OTP data OTP data OTP data OTP data Word DQ3-DQ7 DQ8-DQ15 Table 8. Program, Erase Times and Program/Erase Endurance Cycles M28W160C Parameter Test Conditions Unit Min Word Program Double Word Program Typ Max VPP = VDD 10 200 µs VPP = 12V ±5% 10 200 µs VPP = 12V ±5% 0.16 5 s VPP = VDD 0.32 5 s VPP = 12V ±5% 0.02 4 s VPP = VDD 0.04 4 s VPP = 12V ±5% 1 10 s VPP = VDD 1 10 s VPP = 12V ±5% 0.8 10 s VPP = VDD 0.8 10 s Main Block Program Parameter Block Program Main Block Erase Parameter Block Erase Program/Erase Cycles (per Block) Data Retention 100,000 cycles 20 years 15/50 M28W160CT, M28W160CB BLOCK LOCKING The M28W160C features an instant, individual block locking scheme that allows any block to be locked or unlocked with no latency. This locking scheme has three levels of protection. ■ Lock/Unlock - this first level allows softwareonly control of block locking. ■ Lock-Down - this second level requires hardware interaction before locking can be changed. ■ VPP ≤VPPLK - the third level offers a complete hardware protection against program and erase on all blocks. The lock status of each block can be set to Locked, Unlocked, and Lock-Down. Table 10, defines all of the possible protection states (WP, DQ1, DQ0), and Appendix C, Figure 22, shows a flowchart for the locking operations. Reading a Block’s Lock Status The lock status of every block can be read in the Read Electronic Signature mode of the device. To enter this mode write 90h to the device. Subsequent reads at the address specified in Table 6, will output the lock status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indicates the Block Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is also automatically set when entering Lock-Down. DQ1 indicates the Lock-Down status and is set by the Lock-Down command. It cannot be cleared by software, only by a hardware reset or power-down. The following sections explain the operation of the locking system. Locked State The default status of all blocks on power-up or after a hardware reset is Locked (states (0,0,1) or (1,0,1)). Locked blocks are fully protected from any program or erase. Any program or erase operations attempted on a locked block will return an error in the Status Register. The Status of a Locked block can be changed to Unlocked or Lock-Down using the appropriate software commands. An Unlocked block can be Locked by issuing the Lock command. Unlocked State Unlocked blocks (states (0,0,0), (1,0,0) (1,1,0)), can be programmed or erased. All unlocked blocks return to the Locked state after a hardware reset or when the device is powered-down. The status of an unlocked block can be changed to Locked or Locked-Down using the appropriate 16/50 software commands. A locked block can be unlocked by issuing the Unlock command. Lock-Down State Blocks that are Locked-Down (state (0,1,x))are protected from program and erase operations (as for Locked blocks) but their lock status cannot be changed using software commands alone. A Locked or Unlocked block can be Locked-Down by issuing the Lock-Down command. Locked-Down blocks revert to the Locked state when the device is reset or powered-down. The Lock-Down function is dependent on the WP input pin. When WP=0 (VIL), the blocks in the Lock-Down state (0,1,x) are protected from program, erase and protection status changes. When WP=1 (VIH) the Lock-Down function is disabled (1,1,1) and Locked-Down blocks can be individually unlocked to the (1,1,0) state by issuing the software command, where they can be erased and programmed. These blocks can then be relocked (1,1,1) and unlocked (1,1,0) as desired while WP remains high. When WP is low , blocks that were previously Locked-Down return to the Lock-Down state (0,1,x) regardless of any changes made while WP was high. Device reset or power-down resets all blocks , including those in Lock-Down, to the Locked state. Locking Operations During Erase Suspend Changes to block lock status can be performed during an erase suspend by using the standard locking command sequences to unlock, lock or lock-down a block. This is useful in the case when another block needs to be updated while an erase operation is in progress. To change block locking during an erase operation, first write the Erase Suspend command, then check the status register until it indicates that the erase operation has been suspended. Next write the desired Lock command sequence to a block and the protection status will be changed. After completing any desired lock, read, or program operations, resume the erase operation with the Erase Resume command. If a block is locked or locked-down during an erase suspend of the same block, the locking status bits will be changed immediately, but when the erase is resumed, the erase operation will complete. Locking operations cannot be performed during a program suspend. Refer to Appendix D, Command Interface and Program/Erase Controller State, for detailed information on which commands are valid during erase suspend. M28W160CT, M28W160CB Table 9. Block Lock Status Item Address Data Block Lock Configuration LOCK Block is Unlocked DQ0=0 xx002 Block is Locked DQ0=1 Block is Locked-Down DQ1=1 Table 10. Protection Status Current Protection Status(1) (WP, DQ1, DQ0) Next Protection Status(1) (WP, DQ1, DQ0) Current State Program/Erase Allowed After Block Lock Command After Block Unlock Command After Block Lock-Down Command After WP transition 1,0,0 yes 1,0,1 1,0,0 1,1,1 0,0,0 1,0,1(2) no 1,0,1 1,0,0 1,1,1 0,0,1 1,1,0 yes 1,1,1 1,1,0 1,1,1 0,1,1 1,1,1 no 1,1,1 1,1,0 1,1,1 0,1,1 0,0,0 yes 0,0,1 0,0,0 0,1,1 1,0,0 0,0,1(2) no 0,0,1 0,0,0 0,1,1 1,0,1 0,1,1 no 0,1,1 0,1,1 0,1,1 1,1,1 or 1,1,0 (3) Note: 1. The protection status is defined by the write protect pin and by DQ1 (‘1’ for a locked-down block) and DQ0 (‘1’ for a locked block) as read in the Read Electronic Signature command with A1 = VIH and A0 = VIL. 2. All blocks are locked at power-up, so the default configuration is 001 or 101 according to WP status. 3. A WP transition to VIH on a locked block will restore the previous DQ0 value, giving a 111 or 110. 17/50 M28W160CT, M28W160CB STATUS REGISTER The Status Register provides information on the current or previous Program or Erase operation. The various bits convey information and errors on the operation. To read the Status register the Read Status Register command can be issued, refer to Read Status Register Command section. To output the contents, the Status Register is latched on the falling edge of the Chip Enable or Output Enable signals, and can be read until Chip Enable or Output Enable returns to VIH. Either Chip Enable or Output Enable must be toggled to update the latched data. Bus Read operations from any address always read the Status Register during Program and Erase operations. The bits in the Status Register are summarized in Table 11, Status Register Bits. Refer to Table 11 in conjunction with the following text descriptions. Program/Erase Controller Status (Bit 7). The Program/Erase Controller Status bit indicates whether the Program/Erase Controller is active or inactive. When the Program/Erase Controller Status bit is Low (set to ‘0’), the Program/Erase Controller is active; when the bit is High (set to ‘1’), the Program/Erase Controller is inactive, and the device is ready to process a new command. The Program/Erase Controller Status is Low immediately after a Program/Erase Suspend command is issued until the Program/Erase Controller pauses. After the Program/Erase Controller pauses the bit is High . During Program, Erase, operations the Program/ Erase Controller Status bit can be polled to find the end of the operation. Other bits in the Status Register should not be tested until the Program/Erase Controller completes the operation and the bit is High. After the Program/Erase Controller completes its operation the Erase Status, Program Status, VPP Status and Block Lock Status bits should be tested for errors. Erase Suspend Status (Bit 6). The Erase Suspend Status bit indicates that an Erase operation has been suspended or is going to be suspended. When the Erase Suspend Status bit is High (set to ‘1’), a Program/Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Erase Suspend Status should only be considered valid when the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Bit 7 is set within 30µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. 18/50 When a Program/Erase Resume command is issued the Erase Suspend Status bit returns Low. Erase Status (Bit 5). The Erase Status bit can be used to identify if the memory has failed to verify that the block has erased correctly. When the Erase Status bit is High (set to ‘1’), the Program/ Erase Controller has applied the maximum number of pulses to the block and still failed to verify that the block has erased correctly. The Erase Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Erase Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Status (Bit 4). The Program Status bit is used to identify a Program failure. When the Program Status bit is High (set to ‘1’), the Program/Erase Controller has applied the maximum number of pulses to the byte and still failed to verify that it has programmed correctly. The Program Status bit should be read once the Program/Erase Controller Status bit is High (Program/Erase Controller inactive). Once set High, the Program Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. VPP Status (Bit 3). The VPP Status bit can be used to identify an invalid voltage on the VPP pin during Program and Erase operations. The VPP pin is only sampled at the beginning of a Program or Erase operation. Indeterminate results can occur if VPP becomes invalid during an operation. When the VPP Status bit is Low (set to ‘0’), the voltage on the VPP pin was sampled at a valid voltage; when the VPP Status bit is High (set to ‘1’), the VPP pin has a voltage that is below the VPP Lockout Voltage, VPPLK, the memory is protected and Program and Erase operations cannot be performed. Once set High, the VPP Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new Program or Erase command is issued, otherwise the new command will appear to fail. Program Suspend Status (Bit 2). The Program Suspend Status bit indicates that a Program operation has been suspended. When the Program Suspend Status bit is High (set to ‘1’), a Program/ Erase Suspend command has been issued and the memory is waiting for a Program/Erase Resume command. The Program Suspend Status should only be considered valid when the Pro- M28W160CT, M28W160CB gram/Erase Controller Status bit is High (Program/ Erase Controller inactive). Bit 2 is set within 5µs of the Program/Erase Suspend command being issued therefore the memory may still complete the operation rather than entering the Suspend mode. When a Program/Erase Resume command is issued the Program Suspend Status bit returns Low. Block Protection Status (Bit 1). The Block Protection Status bit can be used to identify if a Program or Erase operation has tried to modify the contents of a locked block. When the Block Protection Status bit is High (set to ‘1’), a Program or Erase operation has been attempted on a locked block. Once set High, the Block Protection Status bit can only be reset Low by a Clear Status Register command or a hardware reset. If set High it should be reset before a new command is issued, otherwise the new command will appear to fail. Reserved (Bit 0). Bit 0 of the Status Register is reserved. Its value must be masked. Note: Refer to Appendix C, Flowcharts and Pseudo Codes, for using the Status Register. Table 11. Status Register Bits Bit 7 6 5 4 3 2 1 0 Name Logic Level Definition '1' Ready '0' Busy '1' Suspended '0' In progress or Completed '1' Erase Error '0' Erase Success '1' Program Error '0' Program Success '1' VPP Invalid, Abort '0' VPP OK '1' Suspended '0' In Progress or Completed '1' Program/Erase on protected Block, Abort '0' No operation to protected blocks P/E.C. Status Erase Suspend Status Erase Status Program Status VPP Status Program Suspend Status Block Protection Status Reserved Note: Logic level '1' is High, '0' is Low. 19/50 M28W160CT, M28W160CB MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the Numonyx SURE Program and other relevant quality documents. Table 12. Absolute Maximum Ratings Value Symbol Parameter Unit Min Max Ambient Operating Temperature (1) −40 85 °C TBIAS Temperature Under Bias −40 125 °C TSTG Storage Temperature −55 155 °C Input or Output Voltage − 0.6 VDDQ+0.6 V Supply Voltage −0.6 4.1 V Program Voltage −0.6 13 V TA VIO(2,3) VDD, VDDQ VPP Note: 1. TA depends on the temperature range. 2. The minimum voltage may undershoot to −2V during transition and for less than 20ns during transitions. 3. The maximum voltage may overshoot to Vcc + 2V during transition and for less than 20ns during transitions. 20/50 M28W160CT, M28W160CB DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measure- ment Conditions summarized in Table 13, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 13. Operating and AC Measurement Conditions M28W160CT, M28W160CB 70 85 90 100 Parameter Units Min Max Min Max Min Max Min Max VDD Supply Voltage 2.7 3.6 2.7 3.6 2.7 3.6 2.7 3.6 V VDDQ Supply Voltage (VDDQ ≤ VDD) 2.7 3.6 2.7 3.6 2.7 3.6 1.65 3.6 V Ambient Operating Temperature – 40 85 – 40 85 – 40 85 – 40 85 °C Load Capacitance (CL) 50 Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Ref. Voltages 50 50 50 pF 5 5 5 5 ns 0 to VDDQ 0 to VDDQ 0 to VDDQ 0 to VDDQ V VDDQ/2 VDDQ/2 VDDQ/2 VDDQ/2 V Figure 7. AC Measurement I/O Waveform Figure 8. AC Measurement Load Circuit VDDQ VDDQ VDDQ/2 VDDQ VDD 0V 25kΩ AI00610 DEVICE UNDER TEST CL 0.1µF 25kΩ 0.1µF CL includes JIG capacitance AI00609C Table 14. Capacitance Symbol CIN COUT Parameter Input Capacitance Output Capacitance Test Condition Min Max Unit VIN = 0V 6 pF VOUT = 0V 12 pF Note: Sampled only, not 100% tested. 21/50 M28W160CT, M28W160CB Table 15. DC Characteristics Symbol Parameter ILI Input Leakage Current ILO Output Leakage Current IDD Supply Current (Read) IDD1 Supply Current (Stand-by or Automatic Stand-by) IDD2 Supply Current (Reset) IDD3 IDD4 Supply Current (Program) Supply Current (Erase) Test Condition Min Typ Max Unit 0V≤VIN ≤VDDQ ±1 µA 0V≤VOUT ≤VDDQ ±10 µA E = VSS, G = VIH, f = 5MHz 10 20 mA E = VDDQ ± 0.2V, RP = VDDQ ± 0.2V 15 50 µA RP = VSS ± 0.2V 15 50 µA Program in progress VPP = 12V ± 5% 10 20 mA Program in progress VPP = VDD 10 20 mA Erase in progress VPP = 12V ± 5% 5 20 mA Erase in progress VPP = VDD 5 20 mA E = VDDQ ± 0.2V, Erase suspended 50 µA IDD5 Supply Current (Program/Erase Suspend) IPP Program Current (Read or Stand-by) VPP > VDD 400 µA IPP1 Program Current (Read or Stand-by) VPP ≤VDD 5 µA IPP2 Program Current (Reset) RP = VSS ± 0.2V 5 µA Program in progress VPP = 12V ± 5% 10 mA Program in progress VPP = VDD 5 µA Erase in progress VPP = 12V ± 5% 10 mA Erase in progress VPP = VDD 5 µA –0.5 0.4 V –0.5 0.8 V VDDQ –0.4 VDDQ +0.4 V 0.7 VDDQ VDDQ +0.4 V 0.1 V IPP3 IPP4 Program Current (Program) Program Current (Erase) VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage IOL = 100µA, VDD = VDD min, VDDQ = VDDQ min VOH Output High Voltage IOH = –100µA, VDD = VDD min, VDDQ = VDDQ min VPP1 Program Voltage (Program or Erase operations) 1.65 3.6 V VPPH Program Voltage (Program or Erase operations) 11.4 12.6 V VPPLK Program Voltage (Program and Erase lock-out) 1 V VLKO VDD Supply Voltage (Program and Erase lock-out) 2 V 22/50 VDDQ ≥ 2.7V VDDQ ≥ 2.7V VDDQ –0.1 V M28W160CT, M28W160CB Figure 9. Read Mode AC Waveforms tAVAV VALID A0-A19 tAVQV tAXQX E tELQV tELQX tEHQX tEHQZ G tGLQV tGHQX tGLQX tGHQZ VALID DQ0-DQ15 ADDR. VALID CHIP ENABLE OUTPUTS ENABLED DATA VALID STANDBY AI03813b Table 16. Read AC Characteristics M28W160C Symbol Alt Parameter Unit 70 85 90 100 tAVAV tRC Address Valid to Next Address Valid Min 70 85 90 100 ns tAVQV tACC Address Valid to Output Valid Max 70 85 90 100 ns tAXQX (1) tOH Address Transition to Output Transition Min 0 0 0 0 ns tEHQX (1) tOH Chip Enable High to Output Transition Min 0 0 0 0 ns tEHQZ (1) tHZ Chip Enable High to Output Hi-Z Max 20 20 25 30 ns tELQV (2) tCE Chip Enable Low to Output Valid Max 70 85 90 100 ns tELQX (1) tLZ Chip Enable Low to Output Transition Min 0 0 0 0 ns tGHQX (1) tOH Output Enable High to Output Transition Min 0 0 0 0 ns tGHQZ (1) tDF Output Enable High to Output Hi-Z Max 20 20 25 30 ns tGLQV (2) tOE Output Enable Low to Output Valid Max 20 20 30 35 ns tGLQX (1) tOLZ Output Enable Low to Output Transition Min 0 0 0 0 ns Note: 1. Sampled only, not 100% tested. 2. G may be delayed by up to tELQV - tGLQV after the falling edge of E without increasing tELQV. 23/50 24/50 VPP WP DQ0-DQ15 W G E A0-A19 tWLWH COMMAND SET-UP COMMAND tDVWH tELWL tWHDX tWHWL tWHEH CMD or DATA CONFIRM COMMAND OR DATA INPUT tVPHWH tWPHWH tAVWH VALID tAVAV tWHEL tWHGL tWHAX PROGRAM OR ERASE AI03814b tQVVPL tQVWPL STATUS REGISTER STATUS REGISTER READ 1st POLLING tELQV M28W160CT, M28W160CB Figure 10. Write AC Waveforms, Write Enable Controlled M28W160CT, M28W160CB Table 17. Write AC Characteristics, Write Enable Controlled M28W160C Symbol Alt Parameter Unit 70 85 90 100 tAVAV tWC Write Cycle Time Min 70 85 90 100 ns tAVWH tAS Address Valid to Write Enable High Min 45 45 50 50 ns tDVWH tDS Data Valid to Write Enable High Min 45 45 50 50 ns tELWL tCS Chip Enable Low to Write Enable Low Min 0 0 0 0 ns Chip Enable Low to Output Valid Min 70 85 90 100 ns Output Valid to VPP Low Min 0 0 0 0 ns Output Valid to Write Protect Low Min 0 0 0 0 ns tELQV tQVVPL (1,2) tQVWPL tVPHWH (1) tVPS VPP High to Write Enable High Min 200 200 200 200 ns tWHAX tAH Write Enable High to Address Transition Min 0 0 0 0 ns tWHDX tDH Write Enable High to Data Transition Min 0 0 0 0 ns tWHEH tCH Write Enable High to Chip Enable High Min 0 0 0 0 ns tWHEL Write Enable High to Chip Enable Low Min 25 25 30 30 ns tWHGL Write Enable High to Output Enable Low Min 20 20 30 30 ns tWHWL tWPH Write Enable High to Write Enable Low Min 25 25 30 30 ns tWLWH tWP Write Enable Low to Write Enable High Min 45 45 50 50 ns Write Protect High to Write Enable High Min 45 45 50 50 ns tWPHWH Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V). 25/50 26/50 VPP WP DQ0-DQ15 E G W A0-A19 tELEH COMMAND POWER-UP AND SET-UP COMMAND tDVEH tWLEL tEHDX tEHEL tEHWH CMD or DATA CONFIRM COMMAND OR DATA INPUT tVPHEH tWPHEH tAVEH VALID tAVAV tEHGL tEHAX PROGRAM OR ERASE AI03815b tQVVPL tQVWPL STATUS REGISTER STATUS REGISTER READ 1st POLLING tELQV M28W160CT, M28W160CB Figure 11. Write AC Waveforms, Chip Enable Controlled M28W160CT, M28W160CB Table 18. Write AC Characteristics, Chip Enable Controlled M28W160C Symbol Alt Parameter Unit 70 85 90 100 tAVAV tWC Write Cycle Time Min 70 85 90 100 ns tAVEH tAS Address Valid to Chip Enable High Min 45 45 50 50 ns tDVEH tDS Data Valid to Chip Enable High Min 45 45 50 50 ns tEHAX tAH Chip Enable High to Address Transition Min 0 0 0 0 ns tEHDX tDH Chip Enable High to Data Transition Min 0 0 0 0 ns tEHEL tCPH Chip Enable High to Chip Enable Low Min 25 25 30 30 ns Chip Enable High to Output Enable Low Min 25 25 30 30 ns tEHGL tEHWH tWH Chip Enable High to Write Enable High Min 0 0 0 0 ns tELEH tCP Chip Enable Low to Chip Enable High Min 45 45 50 50 ns Chip Enable Low to Output Valid Min 70 85 90 100 ns Output Valid to VPP Low Min 0 0 0 0 ns Data Valid to Write Protect Low Min 0 0 0 0 ns tELQV tQVVPL (1,2) tQVWPL tVPHEH (1) tVPS VPP High to Chip Enable High Min 200 200 200 200 ns tWLEL tCS Write Enable Low to Chip Enable Low Min 0 0 0 0 ns Write Protect High to Chip Enable High Min 45 45 50 50 ns tWPHEH Note: 1. Sampled only, not 100% tested. 2. Applicable if VPP is seen as a logic input (VPP < 3.6V). 27/50 M28W160CT, M28W160CB Figure 12. Power-Up and Reset AC Waveforms W, E, G tPHWL tPHEL tPHGL tPHWL tPHEL tPHGL RP tVDHPH tPLPH VDD, VDDQ Power-Up Reset AI03537b Table 19. Power-Up and Reset AC Characteristics M28W160C Symbol tPHWL tPHEL tPHGL Parameter Reset High to Write Enable Low, Chip Enable Low, Output Enable Low Test Condition Unit 70 85 90 100 During Program and Erase Min 50 50 50 50 µs others Min 30 30 30 30 ns tPLPH(1,2) Reset Low to Reset High Min 100 100 100 100 ns tVDHPH(3) Supply Voltages High to Reset High Min 50 50 50 50 µs Note: 1. The device Reset is possible but not guaranteed if tPLPH < 100ns. 2. Sampled only, not 100% tested. 3. It is important to assert RP in order to allow proper CPU initialization during power up or reset. 28/50 M28W160CT, M28W160CB PACKAGE MECHANICAL Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline 1 48 e D1 B 24 L1 25 A2 E1 E A α A1 DIE L C CP TSOP-G Note: Drawing is not to scale. Table 20. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data millimeters inches Symbol Typ Min A Max Typ Min 1.200 Max 0.0472 A1 0.100 0.050 0.150 0.0039 0.0020 0.0059 A2 1.000 0.950 1.050 0.0394 0.0374 0.0413 B 0.220 0.170 0.270 0.0087 0.0067 0.0106 0.100 0.210 0.0039 0.0083 C CP 0.080 0.0031 D1 12.000 11.900 12.100 0.4724 0.4685 0.4764 E 20.000 19.800 20.200 0.7874 0.7795 0.7953 E1 18.400 18.300 18.500 0.7244 0.7205 0.7283 e 0.500 – – 0.0197 – – L 0.600 0.500 0.700 0.0236 0.0197 0.0276 L1 0.800 alpha 3 0 5 0.0315 0 5 3 Note: Drawing is not to scale 29/50 M28W160CT, M28W160CB Figure 14. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Bottom View Package Outline D D1 FD SD FE SE E E1 e ddd BALL "A1" e b A A2 A1 BGA-Z13 Drawing is not to scale. Table 21. TFBGA46 6.39x6.37mm - 8x6 ball array, 0.75mm pitch, Package Mechanical Data millimeters inches Symbol Typ Min A Typ Min 1.200 A1 Max 0.0472 0.200 A2 0.0079 1.000 0.0394 b 0.400 0.350 0.450 0.0157 0.0138 0.0177 D 6.390 6.290 6.490 0.2516 0.2476 0.2555 D1 5.250 – – 0.2067 – – ddd 30/50 Max 0.100 0.0039 E 6.370 6.270 6.470 0.2508 0.2469 0.2547 e 0.750 – – 0.0295 – – E1 3.750 – – 0.1476 – – FD 0.570 – – 0.0224 – – FE 1.310 – – 0.0516 – – SD 0.375 – – 0.0148 – – SE 0.375 – – 0.0148 – – M28W160CT, M28W160CB Figure 15. TFBGA46 Daisy Chain - Package Connections (Top view through package) 1 2 3 4 5 6 7 8 A B C D E F AI03298 Figure 16. TFBGA46 Daisy Chain - PCB Connections proposal (Top view through package) 1 2 3 4 5 6 7 8 START POINT A B C D E END POINT F AI3299 31/50 M28W160CT, M28W160CB PART NUMBERING Table 22. Ordering Information Scheme Example: Device Type M28 Operating Voltage W = VDD = 2.7V to 3.6V; VDDQ = 1.65V to 3.6V Device Function 160C = 16 Mbit (1 Mb x16), Boot Block Array Matrix T = Top Boot B = Bottom Boot Speed 70 = 70 ns 85 = 85 ns 90 = 90 ns 100 = 100 ns Package N = TSOP48: 12 x 20 mm ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch Temperature Range 1 = 0 to 70 °C 6 = –40 to 85 °C Option Blank = Standard Packing T = Tape & Reel Packing(1) S = Tape & Reel Packing(2) E = ECOPACK Package, Standard Packing F = ECOPACK Package, Tape & Reel Packing(1) U = ECOPACK Package, Tape & Reel Packing(2) Note: 1. TSOP48 package only. 2. TFBGA46 package only. 32/50 M28W160CT 90 N 6 T M28W160CT, M28W160CB Table 23. Daisy Chain Ordering Scheme Example: M28W160C -ZB T Device Type M28W160C Daisy Chain -ZB = TFBGA46: 6.39 x 6.37mm, 0.75 mm pitch Option S = Tape & Reel Packing U = ECOPACK Package, Tape & Reel Packing Note:Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the Numonyx Sales Office nearest to you. 33/50 M28W160CT, M28W160CB APPENDIX A. BLOCK ADDRESS TABLES Table 24. Top Boot Block Addresses, M28W160CT Table 25. Bottom Boot Block Addresses, M28W160CB # Size (KWord) Address Range # Size (KWord) Address Range 0 4 FF000-FFFFF 38 32 F8000-FFFFF 1 4 FE000-FEFFF 37 32 F0000-F7FFF 2 4 FD000-FDFFF 36 32 E8000-EFFFF 3 4 FC000-FCFFF 35 32 E0000-E7FFF 4 4 FB000-FBFFF 34 32 D8000-DFFFF 5 4 FA000-FAFFF 33 32 D0000-D7FFF 6 4 F9000-F9FFF 32 32 C8000-CFFFF 7 4 F8000-F8FFF 31 32 C0000-C7FFF 8 32 F0000-F7FFF 30 32 B8000-BFFFF 99 32 E8000-EFFFF 29 32 B0000-B7FFF 10 32 E0000-E7FFF 28 32 A8000-AFFFF 11 32 D8000-DFFFF 27 32 A0000-A7FFF 12 32 D0000-D7FFF 26 32 98000-9FFFF 13 32 C8000-CFFFF 25 32 90000-97FFF 14 32 C0000-C7FFF 24 32 88000-8FFFF 15 32 B8000-BFFFF 23 32 80000-87FFF 16 32 B0000-B7FFF 22 32 78000-7FFFF 17 32 A8000-AFFFF 21 32 70000-77FFF 18 32 A0000-A7FFF 20 32 68000-6FFFF 19 32 98000-9FFFF 19 32 60000-67FFF 20 32 90000-97FFF 18 32 58000-5FFFF 21 32 88000-8FFFF 17 32 50000-57FFF 22 32 80000-87FFF 16 32 48000-4FFFF 23 32 78000-7FFFF 15 32 40000-47FFF 24 32 70000-77FFF 14 32 38000-3FFFF 25 32 68000-6FFFF 13 32 30000-37FFF 26 32 60000-67FFF 12 32 28000-2FFFF 27 32 58000-5FFFF 11 32 20000-27FFF 28 32 50000-57FFF 10 32 18000-1FFFF 29 32 48000-4FFFF 9 32 10000-17FFF 30 32 40000-47FFF 8 32 08000-0FFFF 31 32 38000-3FFFF 7 4 07000-07FFF 32 32 30000-37FFF 6 4 06000-06FFF 33 32 28000-2FFFF 5 4 05000-05FFF 34 32 20000-27FFF 4 4 04000-04FFF 35 32 18000-1FFFF 3 4 03000-03FFF 36 32 10000-17FFF 2 4 02000-02FFF 37 32 08000-0FFFF 1 4 01000-01FFF 38 32 00000-07FFF 0 4 00000-00FFF 34/50 M28W160CT, M28W160CB APPENDIX B. COMMON FLASH INTERFACE (CFI) The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI Query Command (RCFI) is issued the device enters CFI Query mode and the data structure is read from the memory. Tables 26, 27, 28, 29, 30 and 31 show the addresses used to retrieve the data. The CFI data structure also contains a security area where a 64 bit unique security number is written (see Table 31, Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by Numonyx. Issue a Read command to return to Read mode. Table 26. Query Structure Overview Offset Sub-section Name Description 00h Reserved Reserved for algorithm-specific information 10h CFI Query Identification String Command set ID and algorithm data offset 1Bh System Interface Information Device timing & voltage information 27h Device Geometry Definition Flash device layout P Primary Algorithm-specific Extended Query table Additional information specific to the Primary Algorithm (optional) A Alternate Algorithm-specific Extended Query table Additional information specific to the Alternate Algorithm (optional) Note: Query data are always presented on the lowest order data outputs. Table 27. CFI Query Identification String Offset Data Description 00h 0020h Manufacturer Code 01h 88CEh 88CFh Device Code 02h-0Fh reserved 10h 0051h 11h 0052h 12h 0059h 13h 0003h 14h 0000h 15h 0035h 16h 0000h 17h 0000h 18h 0000h 19h 0000h 1Ah 0000h Value Numonyx Top Bottom Reserved "Q" Query Unique ASCII String "QRY" "R" "Y" Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm Address for Primary Algorithm extended Query table (see Table 29) Intel compatible P = 35h Alternate Vendor Command Set and Control Interface ID Code second vendor specified algorithm supported (0000h means none exists) NA Address for Alternate Algorithm extended Query table (0000h means none exists) NA Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’. 35/50 M28W160CT, M28W160CB Table 28. CFI Query System Interface Information Offset Data 1Bh 0027h VDD Logic Supply Minimum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV 2.7V 1Ch 0036h VDD Logic Supply Maximum Program/Erase or Write voltage bit 7 to 4 BCD value in volts bit 3 to 0 BCD value in 100 mV 3.6V 1Dh 00B4h VPP [Programming] Supply Minimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV 11.4V 1Eh 00C6h VPP [Programming] Supply Maximum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV 12.6V 1Fh 0004h Typical time-out per single word program = 2n µs 16µs 20h 0004h Typical time-out for Double Word Program = 2n µs 16µs 21h 000Ah Typical time-out per individual block erase = 2n ms 1s 22h 0000h Typical time-out for full chip erase = 2n ms NA 23h 0005h Maximum time-out for word program = 2n times typical 512µs 24h 0005h Maximum time-out for Double Word Program = 2n times typical 512µs 25h 0003h Maximum time-out per individual block erase = 2n times typical 8s 26h 0000h Maximum time-out for chip erase = 2n times typical NA 36/50 Description Value M28W160CT, M28W160CB Table 29. Device Geometry Definition Data 27h 0015h Device Size = 2n in number of bytes 28h 29h 0001h 0000h Flash Device Interface Code description 2Ah 2Bh 0002h 0000h Maximum number of bytes in multi-byte program or page = 2n 4 2Ch 0002h Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. 2 2Dh 2Eh 001Eh 0000h Region 1 Information Number of identical-size erase block = 001Eh+1 31 2Fh 30h 0000h 0001h Region 1 Information Block size in Region 1 = 0100h * 256 byte 31h 32h 0007h 0000h Region 2 Information Number of identical-size erase block = 0007h+1 33h 34h 0020h 0000h Region 2 Information Block size in Region 2 = 0020h * 256 byte 2Dh 2Eh 0007h 0000h Region 1 Information Number of identical-size erase block = 0007h+1 2Fh 30h 0020h 0000h Region 1 Information Block size in Region 1 = 0020h * 256 byte 31h 32h 001Eh 0000h Region 2 Information Number of identical-size erase block = 001Eh+1 33h 34h 0000h 0001h Region 2 Information Block size in Region 2 = 0100h * 256 byte M28W160CB M28W160CT Offset Word Mode Description Value 2 MByte x16 Async. 64 KByte 8 8 KByte 8 8 KByte 31 64 KByte 37/50 M28W160CT, M28W160CB Table 30. Primary Algorithm-Specific Extended Query Table Offset P = 35h (1) Data (P+0)h = 35h 0050h (P+1)h = 36h 0052h (P+2)h = 37h 0049h (P+3)h = 38h 0031h Major version number, ASCII "1" (P+4)h = 39h 0030h Minor version number, ASCII "0" (P+5)h = 3Ah 0066h (P+6)h = 3Bh 0000h (P+7)h = 3Ch 0000h (P+8)h = 3Dh 0000h Extended Query table contents for Primary Algorithm. Address (P+5)h contains less significant byte. bit 0 Chip Erase supported (1 = Yes, 0 = No) bit 1 Suspend Erase supported (1 = Yes, 0 = No) bit 2 Suspend Program supported (1 = Yes, 0 = No) bit 3 Legacy Lock/Unlock supported (1 = Yes, 0 = No) bit 4 Queued Erase supported (1 = Yes, 0 = No) bit 5 Instant individual block locking supported (1 = Yes, 0 = No) bit 6 Protection bits supported (1 = Yes, 0 = No) bit 7 Page mode read supported (1 = Yes, 0 = No) bit 8 Synchronous read supported (1 = Yes, 0 = No) bit 31 to 9 Reserved; undefined bits are ‘0’ No Yes Yes No No Yes Yes No No (P+9)h = 3Eh 0001h Supported Functions after Suspend Read Array, Read Status Register and CFI Query are always supported during Erase or Program operation bit 0 Program supported after Erase Suspend (1 = Yes, 0 = No) bit 7 to 1 Reserved; undefined bits are ‘0’ Yes (P+A)h = 3Fh 0003h (P+B)h = 40h 0000h Description Value "P" Primary Algorithm extended Query table unique ASCII string “PRI” "R" "I" Block Lock Status Defines which bits in the Block Status Register section of the Query are implemented. Address (P+A)h contains less significant byte bit 0 Block Lock Status Register Lock/Unlock bit active (1 = Yes, 0 = No) bit 1 Block Lock Status Register Lock-Down bit active (1 = Yes, 0 = No) bit 15 to 2 Reserved for future use; undefined bits are ‘0’ Yes Yes (P+C)h = 41h 0030h VDD Logic Supply Optimum Program/Erase voltage (highest performance) bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV 3V (P+D)h = 42h 00C0h VPP Supply Optimum Program/Erase voltage bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV 12V (P+E)h = 43h 0001h Number of Protection register fields in JEDEC ID space. "00h," indicates that 256 protection bytes are available 01 (P+F)h = 44h 0080h 80h (P+10)h = 45h 0000h (P+11)h = 46h 0003h (P+12)h = 47h 0003h Protection Field 1: Protection Description This field describes user-available. One Time Programmable (OTP) Protection register bytes. Some are pre-programmed with device unique serial numbers. Others are user programmable. Bits 0–15 point to the Protection register Lock byte, the section’s first byte. The following bytes are factory pre-programmed and user-programmable. bit 0 to 7 Lock/bytes JEDEC-plane physical low address bit 8 to 15 Lock/bytes JEDEC-plane physical high address bit 16 to 23 "n" such that 2n = factory pre-programmed bytes bit 24 to 31 "n" such that 2n = user programmable bytes (P+13)h = 48h Reserved Note: 1. See Table 27, offset 15 for P pointer definition. 38/50 00h 8 Byte 8 Byte M28W160CT, M28W160CB Table 31. Security Code Area Offset Data 80h 00XX 81h XXXX 82h XXXX 83h XXXX 84h XXXX 85h XXXX 86h XXXX 87h XXXX 88h XXXX Description Protection Register Lock 64 bits: unique device number 64 bits: User Programmable OTP 39/50 M28W160CT, M28W160CB APPENDIX C. FLOWCHARTS AND PSEUDO CODES Figure 17. Program Flowchart and Pseudo Code Start program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0x40) ; /*or writeToFlash (any_address, 0x10) ; */ Write 40h or 10h writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ Write Address & Data do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI03538b Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations. 40/50 M28W160CT, M28W160CB Figure 18. Double Word Program Flowchart and Pseudo Code Start Write 30h double_word_program_command (addressToProgram1, dataToProgram1, addressToProgram2, dataToProgram2) { writeToFlash (any_address, 0x30) ; writeToFlash (addressToProgram1, dataToProgram1) ; /*see note (3) */ writeToFlash (addressToProgram2, dataToProgram2) ; /*see note (3) */ /*Memory enters read status state after the Program command*/ Write Address 1 & Data 1 (3) Write Address 2 & Data 2 (3) do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI03539b Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase operations. 3. Address 1 and Address 2 must be consecutive addresses differing only for bit A0. 41/50 M28W160CT, M28W160CB Figure 19. Program Suspend & Resume Flowchart and Pseudo Code Start program_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; Write B0h writeToFlash (any_address, 0x70) ; /* read status register to check if program has already completed */ Write 70h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b2 = 1 NO Program Complete YES Write FFh } Read data from another address Write D0h if (status_register.b2==0) /*program completed */ { writeToFlash (any_address, 0xFF) ; read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/ else { writeToFlash (any_address, 0xFF) ; read_data ( ); /*read data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume program*/ } Write FFh } Program Continues Read Data AI03540b 42/50 M28W160CT, M28W160CB Figure 20. Erase Flowchart and Pseudo Code Start erase_command ( blockToErase ) { writeToFlash (any_address, 0x20) ; Write 20h writeToFlash (blockToErase, 0xD0) ; /* only A12-A20 are significannt */ /* Memory enters read status state after the Erase Command */ Write Block Address & D0h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1) YES Command Sequence Error (1) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; YES b4, b5 = 1 if ( (status_register.b4==1) && (status_register.b5==1) ) /* command sequence error */ error_handler ( ) ; NO b5 = 0 NO Erase Error (1) if ( (status_register.b5==1) ) /* erase error */ error_handler ( ) ; YES b1 = 0 NO Erase to Protected Block Error (1) if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI03541b Note: If an error is found, the Status Register must be cleared before further Program/Erase operations. 43/50 M28W160CT, M28W160CB Figure 21. Erase Suspend & Resume Flowchart and Pseudo Code Start erase_suspend_command ( ) { writeToFlash (any_address, 0xB0) ; Write B0h writeToFlash (any_address, 0x70) ; /* read status register to check if erase has already completed */ Write 70h do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b6 = 1 NO Erase Complete if (status_register.b6==0) /*erase completed */ { writeToFlash (any_address, 0xFF) ; YES read_data ( ) ; /*read data from another block*/ /*The device returns to Read Array (as if program/erase suspend was not issued).*/ Write FFh Read data from another block or Program/Protection Program or Block Protect/Unprotect/Lock } else Write D0h Write FFh Erase Continues Read Data { writeToFlash (any_address, 0xFF) ; read_program_data ( ); /*read or program data from another address*/ writeToFlash (any_address, 0xD0) ; /*write 0xD0 to resume erase*/ } } AI03542b 44/50 M28W160CT, M28W160CB Figure 22. Locking Operations Flowchart and Pseudo Code Start locking_operation_command (address, lock_operation) { writeToFlash (any_address, 0x60) ; /*configuration setup*/ Write 60h if (lock_operation==LOCK) /*to protect the block*/ writeToFlash (address, 0x01) ; else if (lock_operation==UNLOCK) /*to unprotect the block*/ writeToFlash (address, 0xD0) ; else if (lock_operation==LOCK-DOWN) /*to lock the block*/ writeToFlash (address, 0x2F) ; Write 01h, D0h or 2Fh writeToFlash (any_address, 0x90) ; Write 90h Read Block Lock States Locking change confirmed? if (readFlash (address) ! = locking_state_expected) error_handler () ; /*Check the locking state (see Read Block Signature table )*/ NO YES writeToFlash (any_address, 0xFF) ; /*Reset to Read Array mode*/ Write FFh } End AI04364 45/50 M28W160CT, M28W160CB Figure 23. Protection Register Program Flowchart and Pseudo Code Start protection_register_program_command (addressToProgram, dataToProgram) {: writeToFlash (any_address, 0xC0) ; Write C0h writeToFlash (addressToProgram, dataToProgram) ; /*Memory enters read status state after the Program Command*/ Write Address & Data do { status_register=readFlash (any_address) ; /* E or G must be toggled*/ Read Status Register b7 = 1 NO } while (status_register.b7== 0) ; YES b3 = 0 NO VPP Invalid Error (1, 2) if (status_register.b3==1) /*VPP invalid error */ error_handler ( ) ; NO Program Error (1, 2) if (status_register.b4==1) /*program error */ error_handler ( ) ; NO Program to Protected Block Error (1, 2) YES b4 = 0 YES b1 = 0 if (status_register.b1==1) /*program to protect block error */ error_handler ( ) ; YES End } AI04381 Note: 1. Status check of b1 (Protected Block), b3 (VPP Invalid) and b4 (Program Error) can be made after each program operation or after a sequence. 2. If an error is found, the Status Register must be cleared before further Program/Erase Controller operations. 46/50 M28W160CT, M28W160CB APPENDIX D. COMMAND INTERFACE AND PROGRAM/ERASE CONTROLLER STATE Table 32. Write State Machine Current/Next, sheet 1 of 2. Current State SR bit 7 Data When Read Read Array “1” Array Command Input (and Next State) Read Array (FFh) Program Setup (10/40h) Erase Confirm (D0h) Prog/Ers Resume (D0h) Read Status (70h) Clear Status (50h) Read Array Read Sts. Read Array Read Array Erase Setup Read Array Read Status Read Array Electronic Signature Read Array Program Setup Erase Setup Read Array Read Status Read Array “1” CFI Read Array Program Setup Erase Setup Read Array Read Status Read Array Lock Setup “1” Status Lock Cmd Error “1” Status Read Array Program Setup Erase Setup Read Array Read Status Read Array Lock (complete) “1” Status Read Array Program Setup Erase Setup Read Array Read Status Read Array Prot. Prog. Setup “1” Status Protection Register Program Prot. Prog. (continue) “0” Status Protection Register Program continue Prot. Prog. (complete) “1” Status Read Status Read Array Prog. Setup “1” Status Program (continue) “0” Status Prog. Sus Status “1” Status Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read Array “1” Array Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read Elect.Sg. “1” Electronic Signature Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Prog. Sus Read CFI “1” CFI Prog. Sus Read Array Program Suspend to Read Array Program (continue) Prog. Sus Read Array Program (continue) Prog. Sus Read Sts Prog. Sus Read Array Program (complete) “1” Status Read Array Read Status Read Array Erase Setup “1” Status Erase Cmd.Error “1” Status Erase (continue) “0” Status Erase Sus Read Sts “1” Status Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Read Array “1” Array Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Read Elect.Sg. “1” Electronic Signature Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase Sus Read CFI “1” CFI Erase Sus Read Array Program Setup Erase Sus Read Array Erase (continue) Erase Sus Read Array Erase (continue) Erase Sus Erase Sus Read Sts Read Array Erase (complete) “1” Status Read Array Program Setup Erase Setup “1” Status Read Elect.Sg. “1” Read CFI Query Ers. Setup Prog/Ers Suspend (B0h) Program Setup Read Status Read Array Prog.Setup Erase Setup (20h) Lock (complete) Lock Command Error Read Array Program Setup Erase Setup Lock Cmd Error Lock (complete) Read Array Lock Command Error Program Prog. Sus Read Sts Program (continue) Program Setup Erase Setup Erase Command Error Read Array Program Setup Program (continue) Read Array Erase (continue) Erase Setup Erase (continue) Erase CmdError Erase (continue) Erase Command Error Read Array Read Status Erase Sus Read Sts Erase (continue) Read Array Read Status Read Array Read Array Note: Cmd = Command, Elect.Sg. = Electronic Signature, Ers = Erase, Prog. = Program, Prot = Protection, Sus = Suspend. 47/50 M28W160CT, M28W160CB Table 33. Write State Machine Current/Next, sheet 2 of 2. Command Input (and Next State) Current State Read Elect.Sg. (90h) Read CFI Query (98h) Lock Setup (60h) Prot. Prog. Setup (C0h) Lock Confirm (01h) Lock Down Confirm (2Fh) Read Array Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Read Array Read Status Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Read Array Read Elect.Sg. Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Read Array Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Read Array Lock Setup Lock Command Error Lock (complete) Lock Cmd Error Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Lock (complete) Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Prot. Prog. Setup Protection Register Program Prot. Prog. (continue) Protection Register Program (continue) Prot. Prog. (complete) Read Elect.Sg. Read CFI Query Unlock Confirm (D0h) Lock Setup Prot. Prog. Setup Prog. Setup Program Program (continue) Program (continue) Read Array Read Array Read Array Prog. Suspend Read Status Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Program Suspend Read Array Program (continue) Prog. Suspend Read Array Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Program Suspend Read Array Program (continue) Prog. Suspend Read Elect.Sg. Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Program Suspend Read Array Program (continue) Prog. Suspend Read CFI Prog. Suspend Prog. Suspend Read Elect.Sg. Read CFI Query Program Suspend Read Array Program (continue) Program (complete) Read Elect.Sg. Read CFIQuery Erase Setup Erase Cmd.Error Lock Setup Prot. Prog. Setup Read Array Erase (continue) Erase Command Error Read Elect.Sg. Read CFI Query Lock Setup Erase (continue) Prot. Prog. Setup Read Array Erase (continue) Erase Suspend Read Status Erase Suspend Erase Suspend Read Elect.Sg. Read CFI Query Lock Setup Erase Suspend Read Array Erase (continue) Erase Suspend Read Array Erase Suspend Erase Suspend Read Elect.Sg. Read CFI Query Lock Setup Erase Suspend Read Array Erase (continue) Erase Suspend Read Elect.Sg. Erase Suspend Erase Suspend Read Elect.Sg. Read CFI Query Lock Setup Erase Suspend Read Array Erase (continue) Erase Suspend Erase Suspend Erase Suspend Read CFI Query Read Elect.Sg. Read CFI Query Lock Setup Erase Suspend Read Array Erase (continue) Erase (complete) Read Elect.Sg. Read CFI Query Lock Setup Prot. Prog. Setup Note: Cmd = Command, Elect.Sg. = Electronic Signature, Prog. = Program, Prot = Protection. 48/50 Read Array M28W160CT, M28W160CB REVISION HISTORY Table 34. Document Revision History Date Version Revision Details January 2001 -01 First Issue 3/06/01 -02 Document type: from Preliminary Data to Data Sheet 70ns Speed Class added 24-Apr-2001 -03 Completely rewritten and restructured, 85ns speed class added. 29-May-2001 -04 Corrections made to CFI data. 31-May-2001 -05 Corrections to TFBGA46 package dimensions. 02-Jul-2001 -06 Corrections to Table 3. Commands (Lock, Unlock, Lock-Down) 31-Oct-2001 -07 VDDQ Maximum changed to 3.3V Commands Table, Read CFI Query Address on 1st cycle changed to ‘X’ (Table 4) tWHEL description clarified (Table 17) 16-May-2002 -08 VDDQ Maximum changed to 3.6V, TFBGA package dimensions added to description. 19-Feb-2003 8.1 Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 08 equals 8.0). Revision History moved to end of document. Data Retention parameter added to Table 8, Program, Erase Times and Program/ Erase Endurance Cycles. S option added to Table 22, Ordering Information Scheme, and T option specified. 04-Oct-2005 9.0 ECOPACK Package option added. TSOP48 Mechanical Data updated. Note 1 updated and notes 2 and 3 added belowTable 12.Absolute Maximum Ratings. 20-Jan-2006 10.0 Figure 13. TSOP48 - 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline corrected. 10-Dec-2007 11.0 Applied Numonyx branding. 49/50 M28W160CT, M28W160CB Please Read Carefully: INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Numonyx may make changes to specifications and product descriptions at any time, without notice. Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com. Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 11/5/7, Numonyx, B.V., All Rights Reserved. 50/50
M28W160CB70N6E 价格&库存

很抱歉,暂时无法提供与“M28W160CB70N6E”相匹配的价格&库存,您可以联系我们找货

免费人工找货