128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
SYNCHRONOUS
DRAM MODULE
MT8LSDT1664A – 128MB
MT16LSDT3264A – 256MB
For the latest data sheet, please refer to the Micron® Web
site: www.micron.com/products/modules
Features
Figure 1: 168-Pin DIMM (MO-161)
• 168-pin, dual in-line memory module (DIMM)
• PC100- and PC133-compliant
• Utilizes 125 MHz and 133 MHz SDRAM
components
• Unbuffered
• 128MB (16 Meg x 64) and 256MB (32 Meg x 64)
• Single +3.3V power supply
• Fully synchronous; all signals registered on positive
edge of system clock
• Internal pipelined operation; column address can
be changed every clock cycle
• Internal SDRAM banks for hiding row access/
precharge
• Programmable burst lengths: 1, 2, 4, 8, or full page
• Auto Precharge, includes CONCURRENT AUTO
PRECHARGE and Auto Refresh Modes
• Self Refresh Mode: 64ms, 4,096-cycle refresh
(15.625µs refresh interval)
• LVTTL-compatible inputs and outputs
• Serial Presence-Detect (SPD)
• Gold edge contacts
Table 1:
Standard 1.375in. (34.93mm)
Low Profile 1.125in. (28.58mm)
Y1
• Frequency/CAS Latency
133 MHz/CL = 2
133 MHz/CL = 3
100 MHz/CL = 2
• PCB
Standard 1.375in. (34.93mm)
Low-Profile 1.125in. (28.58mm)1
Timing Parameters
CL = CAS (READ) latency
ACCESS TIME
MODULE
CLOCK
MARKING FREQUENCY CL = 2 CL = 3
-13E
-133
-10E
Table 2:
133 MHz
133 MHz
100 MHz
5.4ns
–
9ns
–
5.4ns
7.5ns
SETUP
TIME
HOLD
TIME
1.5
1.5
2ns
0.8
0.8
1ns
Marking
Options
NOTE:
-13E
-133
-10E
1. Contact Micron for product availability.
Address Table
Refresh Count
Device Banks
Device Configuration
Row Addressing
Column Addressing
Module Ranks
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
128MB
256MB
4K
4 (BA0, BA1)
128Mb (16 Meg x 8)
4K (A0–A11)
1K (A0–A9)
1 (S0#, S2#)
4K
4 (BA0, BA1)
128Mb (16 Meg x 8)
4K (A0–A11)
1K (A0–A9)
2 (S0#, S2#; S1#, S3#)
1
©2003, 2004 Micron Technology, Inc. All rights reserved.
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE.
Table 3:
Part Numbers
PART NUMBER
MT8LSDT1664AG-13E_
MT8LSDT1664AY-13E_
MT8LSDT1664AG-133_
MT8LSDT1664AY-133_
MT8LSDT1664AG-10E_
MT8LSDT1664AY-10E_
MT16LSDT3264AG-13E_
MT16LSDT3264AY-13E_
MT16LSDT3264AG-133_
MT16LSDT3264AY-133_
MT16LSDT3264AG-10E_
MT16LSDT3264AY-10E_
MODULE DENSITY
CONFIGURATION
SYSTEM BUS SPEED
128MB
128MB
128MB
128MB
128MB
128MB
256MB
256MB
256MB
256MB
256MB
256MB
16 Meg x 64
16 Meg x 64
16 Meg x 64
16 Meg x 64
16 Meg x 64
16 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
133 MHz
133 MHz
133 MHz
133 MHz
100 MHz
100 MHz
133 MHz
133 MHz
133 MHz
133 MHz
100 MHz
100 MHz
NOTE:
The designators for component and PCB revision are the last two characters of each part number Consult factory for current revision codes. Example: MT16LSDT3264AG-133B1.
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
Table 4:
Pin Assignment
(168-Pin DIMM Front)
Table 5:
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
VSS
DQ0
DQ1
DQ2
DQ3
VDD
DQ4
DQ5
DQ6
DQ7
DQ8
VSS
DQ9
DQ10
DQ11
DQ12
DQ13
VDD
DQ14
DQ15
NC
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
NC
VSS
NC
NC
VDD
WE#
DQMB0
DQMB1
S0#
NC
VSS
A0
A2
A4
A6
A8
A10
BA1
VDD
VDD
CKO
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
VSS
NC
S2#
DQMB2
DQMB3
NC
VDD
NC
NC
NC
NC
VSS
DQ16
DQ17
DQ18
DQ19
VDD
DQ20
NC
NC
CKE1
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Pin Assignment
(168-Pin DIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
VSS
DQ21
DQ22
DQ23
VSS
DQ24
DQ25
DQ26
DQ27
VDD
DQ28
DQ29
DQ30
DQ31
VSS
CK2
NC
WP
SDA
SCL
VDD
Figure 2: 168-Pin DIMM Pin Locations
Front View
U10
U2
U1
U3
U4
U6
U7
U8
PIN 41
PIN 1
U9
PIN 84
Back View (Populated only for 256MB module)
U11
U12
U13
U14
U16
PIN 125
PIN 168
Indicates a VDD pin
U17
U18
U19
PIN 85
Indicates a VSS pin
3
©2003, 2004 Micron Technology, Inc. All rights reserved.
128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
Functional Block Diagram – 128MB
S0#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQM CS#
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB5
DQM CS#
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
S2#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
DQM CS#
DQ
U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
RAS#
RAS#: SDRAMs
CAS#
CAS#: SDRAMs
CKE0
CKE0: SDRAMs
WE#
A0-A11
U1
U2
U3
U4
CK0
A0-A11: SDRAMs
BA0: SDRAMs
BA1
BA1: SDRAMs
SCL
WP
DQM CS#
DQ
U8
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
WE#: SDRAMs
BA0
DQM CS#
DQ
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
CK2
3.3pF
SPD
U10
A0
A1
U6
U7
U8
U9
A2
SDA
CK1,
CK3
10pF
VDD
SDRAMs
VSS
SDRAMs
SA0 SA1 SA2
NOTE:
1. All resistor values are 10Ω unless otherwise specified.
2. Per industry standard, Micron modules utilize various component
speed grades, as referenced in the module part numbering guide
at www.micron.com/numberguide.
4
Standard modules use the following SDRAM devices:
MT48LC16M8A2TG
Lead-free modules use the following SDRAM devices:
MT48LC16M8A2P
©2003, 2004 Micron Technology, Inc. All rights reserved.
S0#
S1#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U19
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U17
DQ
DQ
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQM CS#
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U18
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U14
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U8
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U12
DQ
DQ
DQ
DQ
DQ
DQ
DQMB5
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
S2#
S3#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U13
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
U9
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ U11
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
VDD
10K
CKE1
CKE0
CKE: SDRAMs U1-U4; U6-U9
CAS#
CAS#: SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
RAS#
RAS#: SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
WE#
WE#: SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
A0-A11
CK0
U1
U2
U3
U4
CK1
U16
U17
U18
U19
CK2
U6
U7
U8
U9
CK3
U11
U12
U13
U14
CKE: SDRAMs U11-U14; U16-U19
A0-A11: SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
BA0
BA0: SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
BA1
BA1: SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
VDD
SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
VSS
SDRAMs U1-U4; U6-U9; U11-U14; U16-U19
3.3pF
SCL
WP
3.3pF
SPD
U10
A0
A1
A2
SDA
SA0 SA1 SA2
NOTE:
1. All resistor values are 10Ω unless otherwise specified.
2. Per industry standard, Micron modules utilize various component
speed grades, as referenced in the module part numbering guide
at www.micron.com/numberguide.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
5
Standard modules use the following SDRAM devices:
MT48LC16M8A2TG
Lead-free modules use the following SDRAM devices:
MT48LC16M8A2P
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information
27, 115, 111
RAS#,
CAS#,
WE#
CK0–CK3
Input
Command Inputs: RAS#, CAS#, and WE# (along with S#) define the command
being entered.
Input
63, 128
CKE0,
CKE1
Input
30, 45, 114, 129
S0#–S3#
Input
28–29, 46–47, 112– DQMB0–
113, 130–131
DQMB7
Input
Clock: CK is driven by the system clock. All SDRAM input signals are sampled on
the positive edge of CK. CK also increments the internal burst counter and
controls the output registers.
Clock Enable: CKE0 activate (HIGH) and deactivate (LOW) the CK signal.
Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH
operation (all device banks idle), ACTIVE POWER-DOWN (row ACTIVE in any
device bank) or CLOCK SUSPEND operation (burst access in progress). CKE is
synchronous except after the device enters power-down and self refresh
modes, where CKE becomes asynchronous until after exiting the same mode.
The input buffers, including CK, are disabled during power-down and self
refresh modes, providing low standby power.
Chip Select: S# enables (registered LOW) and disables (registered HIGH) the
command decoder. All commands are masked when S# is registered HIGH. S# is
considered part of the command code.
Input/Output Mask: DQMB is an input mask signal for write accesses and an
output enable signal for read accesses. Input data is masked when DQMB is
sampled HIGH during a WRITE cycle. The output buffers are placed in a High-Z
state (two-clock latency) when DQMB is sampled HIGH during a READ cycle.
Bank Address: BA0 and BA1 define to which device bank the ACTIVE, READ,
WRITE, or PRECHARGE command is being applied.
Address Inputs: Provide the row address for ACTIVE commands, and the
column address and auto precharge bit (A10) for READ/WRITE commands, to
select one location out of the memory array in the respective device bank. A10
sampled during a PRECHARGE command determines whether the PRECHARGE
applies to once device bank (A10 LOW, device bank selected by BA0, BA1) or all
device banks (A10 HIGH). The address inputs also provide the op-code during a
MODE REGISTER SET command.
Serial Clock for Presence-Detect: SCL is used to synchronize the presence-detect
data transfer to and from the module.
Presence-Detect Address Inputs: These pins are used to configure the presencedetect device.
Data I/O: Data bus.
42, 79, 125, 163
39, 122
BA0, BA1
Input
33, 34, 35, 36, 37,
38, 117, 118, 119,
120, 121, 123
A0–A11
Input
83
SCL
Input
165–167
SA0–SA2
Input
2–5, 7–11, 13–17,
19–20, 55–58, 60,
65–67, 69–72, 74–
77, 86–89, 91–95,
97–101, 103–104,
139–142, 144,
149–151, 153–156,
158–161
82
DQ0–
DQ63
Input/
Output
SDA
Input/
Output
6, 18, 26, 40, 41,
49, 59, 73, 84, 90,
102, 110, 124, 133,
143, 157, 168
VDD
Supply
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
Serial Presence-Detect Data: SDA is a bidirectional pin used to transfer
addresses and data into and data out of the presence-detect portion of the
module.
Power Supply: +3.3V ±0.3V.
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information
1, 12, 23, 32, 43,
54, 64, 68, 78, 85,
96, 107, 116, 127,
138, 148, 152, 162
21, 22, 24, 25, 31,
44, 48, 50–53, 61,
62, 80, 81, 105,
106, 108, 109, 126,
132, 134–137,
145–147, 164
VSS
Supply
NC
–
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
Ground.
Not Connected: These pins are not connected on this module.
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
General Description
Serial Presence-Detect Operation
SDRAM modules incorporate serial presence-detect
(SPD). The SPD function is implemented using a
2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard IIC bus
using the DIMM’s SCL (clock) and SDA (data) signals,
together with SA (2:0), which provide eight unique
DIMM/EEPROM addresses.
signals CK).
Read and write accesses to the SDRAM modules are
burst oriented; accesses start at a selected location and
continue for a programmed number of locations in a
programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select the device bank, A0–A11
select the device row). The address bits registered
coincident with the READ or WRITE command are
used to select the starting column location for the
burst access.
The modules provide for programmable READ or
WRITE burst lengths of 1, 2, 4, or 8 locations, or the full
page, with a burst terminate option. An AUTO PRECHARGE function may be enabled to provide a selftimed row precharge that is initiated at the end of the
burst sequence.
SDRAM modules use an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch
architectures, but it also allows the column address to
be changed on every clock cycle to achieve a highspeed, fully random access. Precharging one device
bank while accessing one of the other three device
banks will hide the precharge cycles and provide
seamless, high-speed, random-access operation.
SDRAM modules are designed to operate in 3.3V,
low-power memory systems. An auto refresh mode is
provided, along with a power-saving, power-down
mode. All inputs and outputs are LVTTL-compatible.
SDRAM modules offer substantial advances in
DRAM operating performance, including the ability to
synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks in order to hide
precharge time and the capability to randomly change
column addresses on each clock cycle during a burst
access. For more information regarding SDRAM operation, refer to the 128Mb SDRAM component data
sheets.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
Initialization
DD and VDDQ (simultaneously) and the clock is stable (stable clock is defined
as a signal cycling within timing constraints specified
for the clock pin), the SDRAM requires a 100µs delay
prior to issuing any command other than a COMMAND INHIBIT or NOP. Starting at some point during
this 100µs period and continuing at least through the
end of this period, Command Inhibit or NOP commands should be applied.
Once the 100µs delay has been satisfied with at least
one Command Inhibit or NOP command having been
applied, a PRECHARGE command should be applied.
All device banks must then be precharged, thereby
placing the device in the all banks idle state.
Once in the idle state, two AUTO refresh cycles must
be performed. After the AUTO refresh cycles are complete, the SDRAM is ready for mode register programming. Because the mode register will power up in an
unknown state, it should be loaded prior to applying
any operational command.
Mode Register Definition
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
A11 A10
11
10
A9
9
Reserved* WB
A8
8
A6
A7
6
7
Op Mode
A5
5
A4
A3
4
CAS Latency
3
1
2
BT
A1
A2
Address Bus
A0
0
Mode Register (Mx)
Burst Length
Burst Length
*Should program
M11, M10 = “0, 0”
to ensure compatibility
with future devices.
Burst Length
M2 M1 M0
in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached, as shown in the Burst
Definition Table. The block is uniquely selected by A1–
A9 when the burst length is set to two; by A2–A9 when
the burst length is set to four; and by A3–A9 when the
burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting
location within the block. Full-page bursts wrap within
the page if the boundary is reached, as shown in the
Table 7.
0
0
1
1
0
0
1
2
2
0
1
0
4
4
0
1
1
8
8
1
0
0
Reserved
Reserved
1
0
1
Reserved
Reserved
1
1
0
Reserved
Reserved
1
1
1
Full Page
Reserved
Burst Type
0
Sequential
1
Interleaved
M6 M5 M4
9
M3 = 1
0
M3
Burst Type
M3 = 0
CAS Latency
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
3
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
M8
M7
M6-M0
Operating Mode
0
0
Defined
Standard Operation
-
-
-
M9
Write Burst Mode
0
Programmed Burst Length
1
Single Location Access
All other states reserved
©2003, 2004 Micron Technology, Inc. All rights reserved.
Table 7:
Burst Definition
CAS Latency Diagram
ORDER OF ACCESSES WITHIN
A BURST ADDRESS
BURST
LENGTH
STARTING
COLUMN
TYPE =
SEQUENTIAL
T0
T1
T2
T3
READ
NOP
NOP
CLK
TYPE =
INTERLEAVED
COMMAND
tLZ
A0
tOH
DOUT
DQ
tAC
CAS Latency = 2
A1
A0
T0
T1
T2
T3
T4
READ
NOP
NOP
NOP
CLK
COMMAND
A2
A1
A0
tLZ
tOH
DOUT
DQ
tAC
CAS Latency = 3
DON’T CARE
UNDEFINED
Not Supported
CAS Latency
…Cn - 1, Cn…
NOTE:
1. For full-page accesses: y = 1,024.
2. For a burst length of two, A1–A9 select the block-oftwo burst; A0 selects the starting column within the
block.
3. For a burst length of four,A2–A9 select the block-offour burst; A0–A1 select the starting column within the
block.
4. For a burst length of eight, A3–A9 select the block-ofeight burst; A0–A2 select the starting column within
the block.
5. For a full-page burst, the full row is selected and A0–A9
select the starting column.
6. Whenever a boundary of the block is reached within a
given sequence above, the following access wraps
within the block.
7. For a burst length of one, A0–A9 select the unique column to be accessed, and mode register bit M3 is
ignored.
Operating Mode
10
©2003, 2004 Micron Technology, Inc. All rights reserved.
128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
CLOCK FREQUENCY (MHZ)
Write Burst Mode
CAS LATENCY = 2
≤
≤
≤
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
11
CAS LATENCY = 3
≤
≤
≤
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Table 9:
SDRAM Commands and DQMB Operation Truth Table
NAME (FUNCTION)
CS#
NO OPERATION (NOP)
ACTIVE (Select bank and activate row)
READ (Select bank and column, and start READ burst)
WRITE (Select bank and column, and start WRITE burst)
BURST TERMINATE
PRECHARGE (Deactivate row in bank or banks)
AUTO refresh or Self Refresh (Enter self refresh mode)
LOAD MODE REGISTER
Write Enable/Output Enable
L
L
L
L
L
L
L
L
–
RAS# CAS# WE# DQMB
X
H
L
H
H
H
L
L
L
–
X
H
H
L
L
H
H
L
L
–
X
H
H
H
L
L
L
H
L
–
X
X
X
L/H8
L/H8
X
X
X
X
L
ADDR
DQ
X
X
X
X
Bank/Row
X
Bank/Col
X
Bank/Col Valid
X
Active
Code
X
X
X
Op-code
X
–
Active
NOTES
1
2
2
3
4, 5
6
7
NOTE:
1. A0–A11provide device row address, and BA0, BA1 determine which device bank is made active.
2. A0–A9 provide device column address; A10 HIGH enables the auto precharge feature (nonpersistent), while A10 LOW
disables the auto precharge feature; BA0, BA1 determine which device bank is being read from or written to.
3. A10 LOW: BA0, BA1 determine which device bank is being precharged. A10 HIGH: all device banks are precharged and
BA0, BA1 are “Don’t Care.”
4. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
5. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
6. A0–A11 define the op-code written to the mode register.
7. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
Absolute Maximum Ratings
Operating Temperature
TOPR (Commercial - ambient) . . . . . .0°C to +65°C
Storage Temperature (plastic) . . . . . . . . -55°C to +150°C
SS . . . . . . . . . . . . . . . . . . . . . . . . . -1V to +4.6V
Voltage on Inputs, NC or I/O Pins
Relative to VSS . . . . . . . . . . . . . . . . . . . . . . . . -1V to +4.6V
Table 10: DC Electrical Characteristics and Operating Conditions – 128MB
PARAMETER/CONDITION
SYMBOL
MIN
MAX
UNITS
NOTES
2
-0.3
VDD + 0.3
0.8
V
V
22
22
40
20
5
5
µA
µA
µA
µA
33
IOZ
-40
-20
-5
-5
VOH
VOL
2.4
–
–
0.4
V
V
VDD, VDDQ
VIH
VIL
3
2
-0.3
-80
3.6
VDD + 0.3
0.8
80
V
V
V
µA
IOZ
-20
-10
-10
20
10
10
µA
µA
µA
VOH
VOL
2.4
–
–
0.4
V
V
IH
INPUT LOW VOLTAGE: Logic 0; All inputs
INPUT LEAKAGE CURRENT:
Any input 0V ≤ VIN ≤ VDD
(All other pins not under test = 0V)
OUTPUT LEAKAGE CURRENT: DQ pins are
disabled; 0V ≤ VOUT ≤ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
VIL
Command and
Address Inputs, CKE
CK, S#
DQMB
DQ
II
33
Notes: 1, 5, 6; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
INPUT LEAKAGE CURRENT:
Any input 0V ≤ VIN ≤ VDD
(All other pins not under test = 0V)
OUTPUT LEAKAGE CURRENT: DQ pins are
disabled; 0V ≤ VOUT ≤ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
Command and
Address Inputs, CKE
CK, S#
DQMB
DQ
13
II
22
22
33
33
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
DD
Specifications and Conditions – 128MB
MAX
PARAMETER/CONDITION
= tRC (MIN)
STANDBY CURRENT: Power-Down Mode;
All device device banks idle; CKE = LOW
STANDBY CURRENT: Active Mode;
CKE = HIGH; CS# = HIGH; All device banks active after tRCD met;
No accesses in progress
OPERATING CURRENT: Burst Mode;
Continuous burst; READ or WRITE; All device banks active
tRFC = tRFC (MIN)
AUTO REFRESH CURRENT
tRFC = 15.625µs
CKE = HIGH; CS# = HIGH
SELF REFRESH CURRENT: CKE £ 0.2V
SYMBOL
-13E
-133
-10E
UNITS
NOTES
IDD1
1,280
1,200
1,120
mA
IDD2
16
16
16
mA
3, 18, 19,
30
30
IDD3
400
400
320
mA
3, 12, 19,
30
IDD4
1,320
1,280
1,200
mA
IDD5
IDD6
IDD7
2,640
24
16
2,480
24
16
2,160
24
16
mA
mA
mA
3, 18, 19,
30
3, 12, 18,
19, 30, 31
tRC
4
Notes: 1, 5, 6, 11, 13; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V; SDRAM components only
OPERATING CURRENT: Active Mode;
Burst = 2; READ or WRITE; tRC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode;
All device banks idle; CKE = LOW
STANDBY CURRENT: Active Mode;
CKE = HIGH; CS# = HIGH; All device banks active after tRCD met;
No accesses in progress
OPERATING CURRENT: Burst Mode;
Continuous burst; READ or WRITE; All device banks active
tRFC = tRFC (MIN)
AUTO REFRESH CURRENT
tRFC = 15.625µs
CS# = HIGH; CKE = HIGH
SELF REFRESH CURRENT: CKE ≤ 0.2V
IDD1a
1,296
1,216
1,136
mA
IDD2b
32
32
32
mA
IDD3a
416
416
336
mA
3, 12, 19,
30
IDD4a
1,336
1,216
1,136
mA
IDD5b
IDD6b
IDD7b
5,280
48
32
4,960
48
32
4,320
48
32
mA
mA
mA
3, 18, 19,
30
3, 12, 18,
19, 30, 31
3, 18, 19,
30
30
4
a - Value calculated as one module rank in this operating condition, and all otherranks in Power-Down Mode.
b - Value calculated reflects all module ranks in this operating condition.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Input Capacitance: Command and Address
Input Capacitance: CK
Input Capacitance: S#
Input Capacitance: CKE
Input Capacitance: DQMB
Input/Output Capacitance: DQ
CI1
CI2
CI3
CI4
CI5
CIO
20
13.3
10
20
2.5
4
30.4
17.3
15.2
30.4
3.8
6
pF
pF
pF
pF
pF
pF
Input Capacitance: Command and Address
Input Capacitance: CK
Input Capacitance: S#
Input Capacitance: CKE
Input Capacitance: DQMB
Input/Output Capacitance: DQ
CI1
CI2
CI3
CI4
CI5
CIO
40
13.3
10
20
5
8
60.8
17.3
15.2
30.4
7.6
12
pF
pF
pF
pF
pF
pF
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Notes: 5–9, 11, 32; notes appear on page 18; module AC timing parameters comply with PC100 and PC133 design specs,
based on component parameters
Access time from CLK (pos.
edge)
Address hold time
Address setup time
CLK high-level width
CLK low-level width
Clock cycle time
CL = 3
CL = 2
CL = 3
CL = 2
CKE hold time
CKE setup time
CS#, RAS#, CAS#, WE#, DQM hold time
CS#, RAS#, CAS#, WE#, DQM setup time
Data-in hold time
Data-in setup time
Data-out high-impedance time CL = 3
CL = 2
Data-out low-impedance time
Data-out hold time (load)
Data-out hold time (no load)
ACTIVE to PRECHARGE command
ACTIVE to ACTIVE command period
ACTIVE to READ or WRITE delay
Refresh period (8,192 rows)
AUTO REFRESH period
PRECHARGE command period
ACTIVE bank a to ACTIVE bank b
command
Transition time
Write recovery time
Exit self refresh to ACTIVE command
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
t
AC(3)
AC(2)
t
AH
t
AS
tCH
t
CL
tCK(3)
tCK(2)
tCKH
tCKS
tCMH
tCMS
tDH
tDS
tHZ(3)
tHZ(2)
tLZ
tOH
tOHN
tRAS
tRC
tRCD
tREF
tRFC
tRP
tRRD
5.4
5.4
t
tT
t
WR
tXSR
0.8
1.5
2.5
2.5
7
7.5
0.8
1.5
0.8
1.5
0.8
1.5
5.4
6
0.8
1.5
2.5
2.5
7.5
10
0.8
1.5
0.8
1.5
0.8
1.5
5.4
5.4
1
3
1.8
37
60
15
120,000
1
2
3
3
8
10
1
2
1
2
1
2
5.4
6
1
3
1.8
44
66
20
64
66
15
14
120,000
1.2
16
6
6
1
3
1.8
50
70
20
64
66
20
15
0.3
1 CLK
+ 7ns
14
67
6
6
0.3
1 CLK
+ 7.5ns
15
75
120,000
64
70
20
20
1.2
0.3
1 CLK
+ 7ns
15
80
1.2
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ms
ns
ns
ns
27
ns
ns
7
24
ns
ns
25
20
23
23
10
10
28
.
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
(Notes: 5, 6, 7, 8, 9, 11, 32; notes appear following parameter tables)
READ/WRITE command to READ/WRITE command
CKE to clock disable or power-down entry mode
CKE to clock enable or power-down exit setup mode
DQM to input data delay
DQM to data mask during WRITEs
DQM to data high-impedance during READs
WRITE command to input data delay
Data-in to ACTIVE command
Data-in to precharge command
Last data-in to burst stop command
Last data-in to new READ/WRITE command
Last data-in to precharge command
LOAD MODE REGISTER command to ACTIVE or
REFRESH command
Data-out to high-impedance from
CL = 3
precharge command
CL = 2
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
t
CCD
tCKED
tPED
t
DQD
tDQM
t
DQZ
tDWD
t
DAL
tDPL
tBDL
t
CDL
tRDL
tMRD
1
1
1
0
0
2
0
4
2
1
1
2
2
1
1
1
0
0
2
0
5
2
1
1
2
2
1
1
1
0
0
2
0
4
2
1
1
2
2
t
tROH(3)
3
2
3
2
3
2
tCK
tROH(2)
17
CK
tCK
t
CK
CK
tCK
t
CK
tCK
t
CK
tCK
tCK
t
CK
tCK
tCK
t
tCK
17
14
14
17
17
17
17
15, 21
16, 21
17
17
16, 21
26
17
17
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
1. All voltages referenced to Vss.
2. This parameter is sampled. VDD, VDDQ = +3.3V;
f = 1 MHz, TA = 25°C; pin under test biased at 1.4V.
3. Idd is dependent on output loading and cycle
rates. Specified values are obtained with minimum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to
indicate cycle time at which proper operation
over the full temperature range is ensured (0°C ≤
TA ≤ +70°C).
6. An initial pause of 100µs is required after powerup, followed by two AUTO Refresh commands,
before proper device operation is ensured. (VDD
and VDDQ must be powered up simultaneously.
Vss and VssQ must be at same potential.) The two
AUTO Refresh command wake-ups should be
repeated any time the tREF refresh requirement is
exceeded.
7. AC characteristics assume tT = 1ns.
8. In addition to meeting the transition rate specification, the clock and CKE must transit between
VIH and VIL (or between VIL and VIH) in a monotonic manner.
9. Outputs measured at 1.5V with equivalent load:
Q
50pF
10. tHZ defines the time at which the output achieves
the open circuit condition; it is not a reference to
VOH or VOL. The last valid data element will meet
t
OH before going High-Z.
11. AC timing and Idd tests have VIL = 0V and VIH = 3V,
with timing referenced to 1.5V crossover point. If
the input transition time is longer than 1 ns, then
the timing is referenced at VIL (MAX) and VIH
(MIN) and no longer at the 1.5V crossover point.
12. Other input signals are allowed to transition no
more than once every two clocks and are otherwise at valid VIH or VIL levels.
13. IDD specifications are tested after the device is
properly initialized.
14. Timing actually specified by tCKS; clock(s) specified as a reference only at minimum cycle rate.
15. Timing actually specified by tWR plus tRP; clock(s)
specified as a reference only at minimum cycle
rate.
16. Timing actually specified by tWR.
17. Required clocks are specified by JEDEC functionality and are not dependent on any timing parameter.
18. The IDD current will increase or decrease proportionally according to the amount of frequency
alteration for the test condition.
19. Address transitions average one transition every
two clocks.
20. CLK must be toggled a minimum of two times
during this period.
21. Based on tCK = 10ns for -10E, and tCK = 7.5ns for 133 and -13E.
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse
width ≤ 3ns, and the pulse width cannot be
greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for a pulse width ≤ 3ns.
23. The clock frequency must remain constant (stable
clock is defined as a signal cycling within timing
constraints specified for the clock pin) during
access or precharge states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may
be used to reduce the data rate.
24. Auto precharge mode only. The precharge timing
budget (tRP) begins 7ns for -13E; 7.5ns for -133
and 7ns for -10E after the first clock delay, after
the last WRITE is executed. May not exceed limit
set for precharge mode.
25. Precharge mode only.
26. JEDEC and PC100 specify three clocks.
27. tAC for -133/-13E at CL = 3 with no load is 4.6ns
and is guaranteed by design.
28. Parameter guaranteed by design.
29. For -10E, CL= 2 and tCK = 10ns; for -133, CL = 3
and tCK = 7.5ns; for -13E, CL = 2 and tCK = 7.5ns.
30. CKE is HIGH during refresh command period
t
RFC (MIN) else CKE is LOW. The Idd6 limit is
actually a nominal value and does not result in a
fail value.
31. The value of tRAS used in -13E speed grade module SPDs is calculated from tRC - tRP = 45ns.
32. Refer to device data sheet for timing waveforms.
33. Leakage number reflects the worst case leakage
possible through the module pin, not what each
memory device contributes.
SPD Clock and Data Conventions
SPD Acknowledge
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 7, Data Validity, and Figure 8, Definition of Start and Stop).
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
Figure 7: Data Validity
Figure 8: Definition of Start and Stop
SCL
SCL
SDA
SDA
DATA STABLE
DATA
CHANGE
DATA STABLE
START
BIT
STOP
BIT
Figure 9: Acknowledge Response From Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
128MB (x64, SR), 256MB (x64, DR)
168-PIN SDRAM UDIMM
Table 18: EEPROM Device Select Code
DEVICE TYPE IDENTIFIER
SELECT CODE
b7
b6
b5
b4
CHIP ENABLE
b3
b2
RW
b1
b0
Table 19: EEPROM Operating Modes
MODE
RW BIT
WC
BYTES
INITIAL SEQUENCE
≥
≤
Figure 10: SPD EEPROM Timing Diagram
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t AA
t DH
t BUF
SDA OUT
UNDEFINED
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
VDDSPD
Vih
VIL
VOL
ILI
ILO
ISB
ICC
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VDD or VSS
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz
2.3
3.6
VDDSPD × 0.7 VDDSPD + 0.5
-1
VDDSPD × 0.3
–
0.4
–
10
–
10
–
30
–
2
V
V
V
V
µA
µA
µA
mA
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
tAA
SCL LOW to SDA data-out valid
Time the bus must be free before a new transition can start
Data-out hold time
SDA and SCL fall time
Data-in hold time
Start condition hold time
Clock HIGH period
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
SDA and SCL rise time
SCL clock frequency
Data-in setup time
Start condition setup time
Stop condition setup time
WRITE cycle time
tBUF
tDH
0.2
1.3
200
tF
tHD:DAT
tHD:STA
tHIGH
300
0
0.6
0.6
tI
tLOW
50
1.3
tR
0.3
400
fSCL
tSU:DAT
tSU:STA
tSU:STO
t
WRC
0.9
100
0.6
0.6
10
µs
µs
ns
ns
µs
µs
µs
ns
µs
µs
KHz
ns
µs
µs
ms
1
2
2
3
4
NOTE:
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising
edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
0
1
2
3
4
5
6
7
8
9
Number of Bytes Used by Micron
Total Number of SPD Memory Bytes
Memory Type
Number of Row Addresses
Number of Column Addresses
Number of Module Ranks
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
10
SDRAM Access From Clock, tAC, (CAS Latency =
3)
Module Configuration Type
Refresh Rate/type
SDRAM Width (Primary SDRAM)
Error-Checking SDRAM Data Width
11
12
13
14
15
16
17
18
19
20
21
22
23
SDRAM Cycle Time, tCK, (CAS Latency = 3)
Minimum Clock Delay, tCCD
Burst Lengths Supported
Number of Banks on SDRAM Device
CAS Latencies Supported
CS Latency
WE Latency
SDRAM Module Attributes
SDRAM Device Attributes: General
SDRAM Cycle Time, tCK, (CAS Latency = 2)
128
256
SDRAM
12
10
1 or 2
64
0
LVTTL
7 (-13E)
7.5 (-133)
8 (-10E)
5.4 (-13E/-133)
6 (-10E)
80
08
04
0C
0A
01
40
00
01
70
75
80
54
60
80
08
04
0C
0A
02
40
00
01
70
75
80
54
60
NONPARITY
15.625µs/SELF
8
NONE
1
00
80
08
00
01
00
80
08
00
01
1, 2, 4, 8, PAGE
4
2, 3
0
0
UNBUFFERED
0E
7.5 (13E)
10 (-133/-10E)
54 (-13E)
6 (-133/-10E)
8F
04
06
01
01
00
0E
75
A0
54
60
8F
04
06
01
01
00
0E
75
A0
54
60
24
SDRAM Access From Clock, tAC, (CAS Latency =
2)
25
SDRAM Cycle Time, tCK ,(CAS Latency = 1)
00
00
26
SDRAM Access From Clock, tAC, (CAS Latency =
1)
00
00
27
Minimum Row Precharge Time, tRP
28
Minimum Row Active to Row Active, tRRD
29
Minimum RAS# to CAS# Delay, tRCD
30
Minimum RAS# Pulse Width, tRAS (See note 1)
31
32
Module Rank Density
0F
14
0E
0F
14
0F
14
2D
2C
32
20
15
20
0F
14
0E
0F
14
0F
14
2D
2C
32
20
15
20
Command Address Setup, tAS
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
15 (-13E)
20 (-133/-10E)
14 (-13E)
15 (-133)
20 (-10E)
15 (-13E)
20 (-133/-10E)
45 (-13E)
44 (-133)
50 (-10E)
128MB
1.5 (-13E/-133)
2 (-10E)
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
33
Command Address Hold, tAH
34
Data Signal Input Setup, tDS
35
Data Signal Input Hold, tDH
0.8 (-13E/-133)
1 (-10E)
1.5 (-13E/-133)
2 (-10E)
0.8 (-13E/-133)
1 (-10E)
36–40 Reserved Bytes
41
Device Minimum Active/Auto-Refresh Time, tRC
60ns (-13E)
66ns (-133)
70ns (-10E)
42–61 Reserved Bytes
62
SPD Revision
63
Checksum For Bytes 0-62
64
65-71
72
73–90
91
92
93
94
95–98
99–125
126
127
Manufacturer's JEDEC ID Code
Manufacturer's JEDEC Code (Cont.)
Manufacturing Location
Module Part Number (ASCII)
PCB Identification Code
Identification Code (Continuted)
Year of Manufacture in BCD
Week of Manufacture in BCD
Module Serial Number
Manufacturer-Specific Data (RSVD)
System Frequency
REV.2.0
(-13E)
(-133)
(-10E)
MICRON
00–12
0
100 MHz
(-13E/-133, -10E)
Year of Manufacture in BCD
08
10
15
20
08
10
00
3C
42
46
00
02
94
E0
2C
2C
FF
00–0C
Variable Data
Variable Data
00
Variable Data
Variable Data
Variable Data
08
10
15
20
08
10
00
3C
42
46
00
12
95
E1
2D
2C
FF
00–0C
Variable Data
Variable Data
00
Variable Data
Variable Data
Variable Data
64
64
AF
FF
NOTE:
1. The value of tRAS used for the -13E module is calculated from tRC - tRP. Actual device spec. vaule is 37ns.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Figure 11: 168-Pin DIMM Dimensions – 128MB
STANDARD PCB
FRONT VIEW
0.125 (3.18)
MAX
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U2
U1
U4
U3
U7
U6
U8
U9
0.118 (3.00)
(2X)
1.380 (35.05)
1.370 (34.80)
0.700 (17.78)
TYP
U10
0.118 (3.00)
TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.054 (1.37)
0.046 (1.17)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
PIN 84 (PIN 168 ON BACKSIDE)
PIN 1 (PIN 85 ON BACKSIDE)
4.550 (115.57)
LOW PROFILE PCB
0.125 (3.18)
MAX
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U10
U1
U2
U4
U3
U6
U7
U8
U9
1.131 (28.73)
0.700 (17.78) 1.119 (28.42)
TYP
0.118 (3.00)
(2X)
0.118 (3.00)
TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.039 (1.00)
TYP
PIN 1 (PIN 85 ON BACKSIDE)
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84 (PIN 168 ON BACKSIDE)
4.550 (115.57)
NOTE:
MAX
All dimensions in inches (millimeters); MIN or typical where noted.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
STANDARD PCB
0.157 (3.99)
MAX
5.256 (133.50)
5.244 (133.20)
FRONT VIEW
0.079 (2.00) R
(2X)
U4
U3
U2
U1
U7
U6
U8
U9
0.118 (3.00)
(2X)
1.380 (35.05)
1.370 (34.80)
0.700 (17.78)
TYP
U10
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U12
U11
U14
U13
U17
U16
U18
U19
PIN 168
PIN 85
0.157 (3.99)
MAX
LOW PROFILE PCB
5.256 (133.50)
5.244 (133.20)
FRONT VIEW
0.079 (2.00) R
(2X)
U10
U1
U4
U3
U2
U6
U7
U8
U9
1.131 (28.73)
0.700 (17.78) 1.119 (28.42)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U12
U11
U13
U14
U16
U17
PIN 168
U18
U19
PIN 85
NOTE:
MAX
All dimensions in inches (millimeters); MIN or typical where noted.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.
Released (No Mark):
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
PDF: 09005aef8137b07b/Source: 09005aef8137b02d
SD8_16C16_32x64AG.fm - Rev. E 12/10 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003, 2004 Micron Technology, Inc. All rights reserved.