0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MT40A1G16KD-062E:E

MT40A1G16KD-062E:E

  • 厂商:

    MICRON(镁光)

  • 封装:

    FBGA96_9X13MM

  • 描述:

    其他存储器 16Gbit 1.6GHz 13.75ns 1.14V~1.26V FBGA96_9X13MM

  • 数据手册
  • 价格&库存
MT40A1G16KD-062E:E 数据手册
16Gb: x4, x8, x16 DDR4 SDRAM Features DDR4 SDRAM MT40A4G4 MT40A2G8 MT40A1G16 Options1 Features • • • • • • • • • • • • • • • • • • • • • • • • • • • • Marking • Configuration – 4 Gig x 4 – 2 Gig x 8 – 1 Gig x 16 • 78-ball FBGA package (Pb-free) – x4, x8 – 10mm x 11mm – Rev. B – 9mm x 11mm – Rev. E • 96-ball FBGA package (Pb-free) – x16 – 10mm x 13mm – Rev. B – 9mm x 13mm – Rev. E • Timing – cycle time – 0.625ns @ CL = 22 (DDR4-3200) – 0.682ns @ CL = 21 (DDR4-2933) • Operating temperature – Commercial (0° ื T C ื 95°C) – Industrial (–40° ื T C ื 95°C) • Revision VDD = V DDQ = 1.2V ±60mV VPP = 2.5V, –125mV, +250mV On-die, internal, adjustable V REFDQ generation 1.2V pseudo open-drain I/O TC maximum up to 95°C – 64ms, 8192-cycle refresh up to 85°C – 32ms, 8192-cycle refresh at >85°C to 95°C 16 internal banks (x4, x8): 4 groups of 4 banks each 8 internal banks (x16): 2 groups of 4 banks each 8n-bit prefetch architecture Programmable data strobe preambles Data strobe preamble training Command/Address latency (CAL) Multipurpose register READ and WRITE capability Write leveling Self refresh mode Low-power auto self refresh (LPASR) Temperature controlled refresh (TCR) Fine granularity refresh Self refresh abort Maximum power saving Output driver calibration Nominal, park, and dynamic on-die termination (ODT) Data bus inversion (DBI) for data bus Command/Address (CA) parity Databus write cyclic redundancy check (CRC) Per-DRAM addressability Connectivity test JEDEC JESD-79-4 compliant sPPR and hPPR capability Note: 4G4 2G8 1G16 VA JC RC KD -062E -068 None IT :B, :E 1. Not all options listed can be combined to define an offered product. Use the part catalog search on http://www.micron.com for available offerings. Table 1: Key Timing Parameters Speed Grade1 Data Rate (MT/s) Target CL-nRCD-nRP -062E 3200 22-22-22 13.75 13.75 13.75 -068 2933 21-21-21 14.32 (13.75) 14.32 (13.75) 14.32 (13.75) Note: tAA (ns) tRCD (ns) tRP (ns) 1. Refer to the Speed Bin Tables for additional details. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 16Gb: x4, x8, x16 DDR4 SDRAM Features Table 2: Addressing Parameter Number of bank groups Bank group address Bank count per group Bank address in bank group Row addressing Column addressing Page size1 Note: 4096 Meg x 4 2048 Meg x 8 1024 Meg x 16 4 4 2 BG[1:0] BG[1:0] BG0 4 4 4 BA[1:0] BA[1:0] BA[1:0] 256K (A[17:0]) 128K (A[16:0]) 128K (A[16:0]) 1K (A[9:0]) 1K (A[9:0]) 1K (A[9:0]) 512B 1KB 2KB 1. Page size is per bank, calculated as follows: Page size = 2COLBITS × ORG/8, where COLBIT = the number of column address bits and ORG = the number of DQ bits. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 2 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Figure 1: Order Part Number Example Example Part Number: MT40A2G8VA-068:B Configuration Package Revision Speed { MT40A : Revision Configuration 4 Gig x 4 4G4 2 Gig x 8 2G8 1 Gig x 16 1G16 :B, :E Case Temperature Commercial Package VA 96-ball 10.0mm x 13.0mm FBGA RC 78-ball 9.0mm x 11.0mm FBGA JC 96-ball 9.0mm x 13.0mm FBGA KD CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Industrial temperature Mark 78-ball 10.0mm x 11.0mm FBGA None Speed Grade -068 -062E 3 IT Cycle Time, CAS Latency t CK = 0.682ns, CL = 21 t CK = 0.625ns, CL = 22 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Contents Important Notes and Warnings ....................................................................................................................... General Notes and Description ....................................................................................................................... Description ................................................................................................................................................ Industrial Temperature ............................................................................................................................... Automotive Temperature ............................................................................................................................ General Notes ............................................................................................................................................ Definitions of the Device-Pin Signal Level ................................................................................................... Definitions of the Bus Signal Level ............................................................................................................... Functional Block Diagrams ............................................................................................................................. Ball Assignments ............................................................................................................................................ Ball Descriptions ............................................................................................................................................ Package Dimensions ....................................................................................................................................... State Diagram ................................................................................................................................................ Functional Description ................................................................................................................................... RESET and Initialization Procedure ................................................................................................................. Power-Up and Initialization Sequence ......................................................................................................... RESET Initialization with Stable Power Sequence ......................................................................................... Uncontrolled Power-Down Sequence .......................................................................................................... Programming Mode Registers ......................................................................................................................... Mode Register 0 .............................................................................................................................................. Burst Length, Type, and Order ..................................................................................................................... CAS Latency ............................................................................................................................................... Test Mode .................................................................................................................................................. Write Recovery (WR)/READ-to-PRECHARGE ............................................................................................... DLL RESET ................................................................................................................................................. Mode Register 1 .............................................................................................................................................. DLL Enable/DLL Disable ............................................................................................................................ Output Driver Impedance Control ............................................................................................................... ODT RTT(NOM) Values .................................................................................................................................. Additive Latency ......................................................................................................................................... Rx CTLE Control ......................................................................................................................................... Write Leveling ............................................................................................................................................ Output Disable ........................................................................................................................................... Termination Data Strobe ............................................................................................................................. Mode Register 2 .............................................................................................................................................. CAS WRITE Latency .................................................................................................................................... Low-Power Auto Self Refresh ....................................................................................................................... Dynamic ODT ............................................................................................................................................ Write Cyclic Redundancy Check Data Bus .................................................................................................... Mode Register 3 .............................................................................................................................................. Multipurpose Register ................................................................................................................................ WRITE Command Latency When CRC/DM is Enabled ................................................................................. Fine Granularity Refresh Mode .................................................................................................................... Temperature Sensor Status ......................................................................................................................... Per-DRAM Addressability ........................................................................................................................... Gear-Down Mode ....................................................................................................................................... Mode Register 4 .............................................................................................................................................. Hard Post Package Repair Mode .................................................................................................................. Soft Post Package Repair Mode .................................................................................................................... WRITE Preamble ........................................................................................................................................ CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 4 19 19 19 20 20 20 21 21 22 24 26 29 33 35 36 36 39 40 41 44 45 46 47 47 47 48 49 50 50 50 50 51 51 51 52 54 54 54 54 55 56 57 57 57 57 57 58 59 59 60 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features READ Preamble .......................................................................................................................................... 60 READ Preamble Training ............................................................................................................................ 60 Temperature-Controlled Refresh ................................................................................................................. 60 Command Address Latency ........................................................................................................................ 60 Internal V REF Monitor ................................................................................................................................. 60 Maximum Power Savings Mode ................................................................................................................... 61 Mode Register 5 .............................................................................................................................................. 62 Data Bus Inversion ..................................................................................................................................... 63 Data Mask .................................................................................................................................................. 64 CA Parity Persistent Error Mode .................................................................................................................. 64 ODT Input Buffer for Power-Down .............................................................................................................. 64 CA Parity Error Status ................................................................................................................................. 64 CRC Error Status ......................................................................................................................................... 64 CA Parity Latency Mode .............................................................................................................................. 64 Mode Register 6 .............................................................................................................................................. 65 Data Rate Programming .............................................................................................................................. 66 VREFDQ Calibration Enable .......................................................................................................................... 66 VREFDQ Calibration Range ........................................................................................................................... 66 VREFDQ Calibration Value ............................................................................................................................ 66 Truth Tables ................................................................................................................................................... 67 NOP Command .............................................................................................................................................. 70 DESELECT Command .................................................................................................................................... 70 DLL-Off Mode ................................................................................................................................................ 70 DLL-On/Off Switching Procedures .................................................................................................................. 72 DLL Switch Sequence from DLL-On to DLL-Off ........................................................................................... 72 DLL-Off to DLL-On Procedure .................................................................................................................... 74 Input Clock Frequency Change ....................................................................................................................... 75 Write Leveling ................................................................................................................................................ 76 DRAM Setting for Write Leveling and DRAM TERMINATION Function in that Mode ..................................... 77 Procedure Description ................................................................................................................................ 78 Write Leveling Mode Exit ............................................................................................................................ 79 Command Address Latency ............................................................................................................................ 81 Low-Power Auto Self Refresh Mode ................................................................................................................. 86 Manual Self Refresh Mode .......................................................................................................................... 86 Multipurpose Register .................................................................................................................................... 88 MPR Reads ................................................................................................................................................. 89 MPR Readout Format ................................................................................................................................. 91 MPR Readout Serial Format ........................................................................................................................ 91 MPR Readout Parallel Format ..................................................................................................................... 92 MPR Readout Staggered Format .................................................................................................................. 93 MPR READ Waveforms ............................................................................................................................... 94 MPR Writes ................................................................................................................................................ 96 MPR WRITE Waveforms .............................................................................................................................. 97 MPR REFRESH Waveforms ......................................................................................................................... 98 Gear-Down Mode .......................................................................................................................................... 101 Maximum Power-Saving Mode ....................................................................................................................... 104 Maximum Power-Saving Mode Entry .......................................................................................................... 104 Maximum Power-Saving Mode Entry in PDA .............................................................................................. 105 CKE Transition During Maximum Power-Saving Mode ................................................................................ 105 Maximum Power-Saving Mode Exit ............................................................................................................ 105 Command/Address Parity .............................................................................................................................. 107 Per-DRAM Addressability .............................................................................................................................. 115 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 5 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features VREFDQ Calibration ........................................................................................................................................ 118 VREFDQ Range and Levels ........................................................................................................................... 119 VREFDQ Step Size ........................................................................................................................................ 119 VREFDQ Increment and Decrement Timing .................................................................................................. 120 VREFDQ Target Settings ............................................................................................................................... 124 Connectivity Test Mode ................................................................................................................................. 126 Pin Mapping ............................................................................................................................................. 126 Minimum Terms Definition for Logic Equations ......................................................................................... 127 Logic Equations for a x4 Device .................................................................................................................. 127 Logic Equations for a x8 Device .................................................................................................................. 128 Logic Equations for a x16 Device ................................................................................................................ 128 CT Input Timing Requirements .................................................................................................................. 128 Excessive Row Activation ............................................................................................................................... 130 Post Package Repair ....................................................................................................................................... 131 Post Package Repair ................................................................................................................................... 131 Hard Post Package Repair .............................................................................................................................. 132 hPPR Row Repair - Entry ............................................................................................................................ 132 hPPR Row Repair – WRA Initiated (REF Commands Allowed) ...................................................................... 132 hPPR Row Repair – WR Initiated (REF Commands NOT Allowed) ................................................................. 134 sPPR Row Repair ........................................................................................................................................... 136 hPPR/sPPR Support Identifier ........................................................................................................................ 139 ACTIVATE Command .................................................................................................................................... 139 PRECHARGE Command ................................................................................................................................ 140 REFRESH Command ..................................................................................................................................... 140 Temperature-Controlled Refresh Mode .......................................................................................................... 143 Normal Temperature Mode ........................................................................................................................ 143 Extended Temperature Mode ..................................................................................................................... 143 Fine Granularity Refresh Mode ....................................................................................................................... 146 Mode Register and Command Truth Table .................................................................................................. 146 tREFI and tRFC Parameters ........................................................................................................................ 146 Changing Refresh Rate ............................................................................................................................... 149 Usage with TCR Mode ................................................................................................................................ 149 Self Refresh Entry and Exit ......................................................................................................................... 149 SELF REFRESH Operation .............................................................................................................................. 151 Self Refresh Abort ...................................................................................................................................... 153 Self Refresh Exit with NOP Command ......................................................................................................... 154 Power-Down Mode ........................................................................................................................................ 156 Power-Down Clarifications – Case 1 ........................................................................................................... 161 Power-Down Entry, Exit Timing with CAL ................................................................................................... 162 ODT Input Buffer Disable Mode for Power-Down ............................................................................................ 164 CRC Write Data Feature ................................................................................................................................. 166 CRC Write Data ......................................................................................................................................... 166 WRITE CRC DATA Operation ...................................................................................................................... 166 DBI_n and CRC Both Enabled .................................................................................................................... 167 DM_n and CRC Both Enabled .................................................................................................................... 167 DM_n and DBI_n Conflict During Writes with CRC Enabled ........................................................................ 167 CRC and Write Preamble Restrictions ......................................................................................................... 167 CRC Simultaneous Operation Restrictions .................................................................................................. 167 CRC Polynomial ........................................................................................................................................ 167 CRC Combinatorial Logic Equations .......................................................................................................... 168 Burst Ordering for BL8 ............................................................................................................................... 169 CRC Data Bit Mapping ............................................................................................................................... 169 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 6 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features CRC Enabled With BC4 .............................................................................................................................. 170 CRC with BC4 Data Bit Mapping ................................................................................................................ 170 CRC Equations for x8 Device in BC4 Mode with A2 = 0 and A2 = 1 ................................................................ 173 CRC Error Handling ................................................................................................................................... 174 CRC Write Data Flow Diagram ................................................................................................................... 176 Data Bus Inversion ........................................................................................................................................ 177 DBI During a WRITE Operation .................................................................................................................. 177 DBI During a READ Operation ................................................................................................................... 178 Data Mask ..................................................................................................................................................... 179 Programmable Preamble Modes and DQS Postambles .................................................................................... 181 WRITE Preamble Mode .............................................................................................................................. 181 READ Preamble Mode ............................................................................................................................... 184 READ Preamble Training ........................................................................................................................... 184 WRITE Postamble ...................................................................................................................................... 185 READ Postamble ....................................................................................................................................... 185 Bank Access Operation .................................................................................................................................. 187 READ Operation ............................................................................................................................................ 191 Read Timing Definitions ............................................................................................................................ 191 Read Timing – Clock-to-Data Strobe Relationship ....................................................................................... 192 Read Timing – Data Strobe-to-Data Relationship ........................................................................................ 194 tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) Calculations ............................................................................ 195 tRPRE Calculation ..................................................................................................................................... 196 tRPST Calculation ...................................................................................................................................... 197 READ Burst Operation ............................................................................................................................... 198 READ Operation Followed by Another READ Operation .............................................................................. 200 READ Operation Followed by WRITE Operation .......................................................................................... 205 READ Operation Followed by PRECHARGE Operation ................................................................................ 211 READ Operation with Read Data Bus Inversion (DBI) .................................................................................. 214 READ Operation with Command/Address Parity (CA Parity) ........................................................................ 215 READ Followed by WRITE with CRC Enabled .............................................................................................. 217 READ Operation with Command/Address Latency (CAL) Enabled ............................................................... 218 WRITE Operation .......................................................................................................................................... 220 Write Timing Definitions ........................................................................................................................... 220 Write Timing – Clock-to-Data Strobe Relationship ...................................................................................... 220 tWPRE Calculation .................................................................................................................................... 222 tWPST Calculation ..................................................................................................................................... 223 Write Timing – Data Strobe-to-Data Relationship ........................................................................................ 223 WRITE Burst Operation ............................................................................................................................. 227 WRITE Operation Followed by Another WRITE Operation ........................................................................... 229 WRITE Operation Followed by READ Operation .......................................................................................... 235 WRITE Operation Followed by PRECHARGE Operation ............................................................................... 239 WRITE Operation with WRITE DBI Enabled ................................................................................................ 242 WRITE Operation with CA Parity Enabled ................................................................................................... 244 WRITE Operation with Write CRC Enabled ................................................................................................. 245 Write Timing Violations ................................................................................................................................. 250 Motivation ................................................................................................................................................ 250 Data Setup and Hold Violations ................................................................................................................. 250 Strobe-to-Strobe and Strobe-to-Clock Violations ........................................................................................ 250 ZQ CALIBRATION Commands ....................................................................................................................... 251 On-Die Termination ...................................................................................................................................... 253 ODT Mode Register and ODT State Table ........................................................................................................ 253 ODT Read Disable State Table .................................................................................................................... 254 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 7 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Synchronous ODT Mode ................................................................................................................................ 255 ODT Latency and Posted ODT .................................................................................................................... 255 Timing Parameters .................................................................................................................................... 255 ODT During Reads .................................................................................................................................... 257 Dynamic ODT ............................................................................................................................................... 258 Functional Description .............................................................................................................................. 258 Asynchronous ODT Mode .............................................................................................................................. 261 Electrical Specifications ................................................................................................................................. 262 Absolute Ratings ........................................................................................................................................ 262 DRAM Component Operating Temperature Range ...................................................................................... 262 Electrical Characteristics – AC and DC Operating Conditions .......................................................................... 263 Supply Operating Conditions ..................................................................................................................... 263 Leakages ................................................................................................................................................... 264 VREFCA Supply ............................................................................................................................................ 264 VREFDQ Supply and Calibration Ranges ....................................................................................................... 265 VREFDQ Ranges ........................................................................................................................................... 266 Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels .............................................. 267 RESET_n Input Levels ................................................................................................................................ 267 Command/Address Input Levels ................................................................................................................ 267 Command, Control, and Address Setup, Hold, and Derating ........................................................................ 269 Data Receiver Input Requirements ............................................................................................................. 271 Connectivity Test (CT) Mode Input Levels .................................................................................................. 275 Electrical Characteristics – AC and DC Differential Input Measurement Levels ................................................. 279 Differential Inputs ..................................................................................................................................... 279 Single-Ended Requirements for CK Differential Signals ............................................................................... 280 Slew Rate Definitions for CK Differential Input Signals ................................................................................ 281 CK Differential Input Cross Point Voltage .................................................................................................... 282 DQS Differential Input Signal Definition and Swing Requirements .............................................................. 283 DQS Differential Input Cross Point Voltage ................................................................................................. 285 Slew Rate Definitions for DQS Differential Input Signals .............................................................................. 286 Electrical Characteristics – Overshoot and Undershoot Specifications ............................................................. 288 Address, Command, and Control Overshoot and Undershoot Specifications ................................................ 288 Clock Overshoot and Undershoot Specifications ......................................................................................... 289 Data, Strobe, and Mask Overshoot and Undershoot Specifications .............................................................. 290 Electrical Characteristics – AC and DC Output Measurement Levels ................................................................ 290 Single-Ended Outputs ............................................................................................................................... 290 Differential Outputs .................................................................................................................................. 292 Reference Load for AC Timing and Output Slew Rate ................................................................................... 293 Connectivity Test Mode Output Levels ........................................................................................................ 294 Electrical Characteristics – AC and DC Output Driver Characteristics ............................................................... 295 Connectivity Test Mode Output Driver Electrical Characteristics ................................................................. 295 Output Driver Electrical Characteristics ..................................................................................................... 297 Output Driver Temperature and Voltage Sensitivity ..................................................................................... 300 Alert Driver ............................................................................................................................................... 300 Electrical Characteristics – On-Die Termination Characteristics ...................................................................... 301 ODT Levels and I-V Characteristics ............................................................................................................ 301 ODT Temperature and Voltage Sensitivity ................................................................................................... 303 ODT Timing DefinitionsODT Timing Definitions and Waveforms ................................................................ 303 DRAM Package Electrical Specifications ......................................................................................................... 307 Thermal Characteristics ................................................................................................................................. 311 Current Specifications – Measurement Conditions .......................................................................................... 312 IDD, IPP, and IDDQ Measurement Conditions ................................................................................................ 312 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 8 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features IDD Definitions .......................................................................................................................................... 314 Current Specifications – Patterns and Test Conditions ..................................................................................... 318 Current Test Definitions and Patterns ......................................................................................................... 318 IDD Specifications ...................................................................................................................................... 327 Current Specifications – Limits ....................................................................................................................... 328 Speed Bin Tables ........................................................................................................................................... 333 Backward Compatibility ............................................................................................................................ 333 Refresh Parameters By Device Density ............................................................................................................ 352 Electrical Characteristics and AC Timing Parameters ...................................................................................... 353 Electrical Characteristics and AC Timing Parameters: 2666 Through 3200 ........................................................ 365 Converting Time-Based Specifications to Clock-Based Requirements .............................................................. 376 Options Tables .............................................................................................................................................. 378 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 9 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features List of Figures Figure 1: Order Part Number Example .............................................................................................................. 3 Figure 2: 4 Gig x 4 Functional Block Diagram .................................................................................................. 22 Figure 3: 2 Gig x 8 Functional Block Diagram .................................................................................................. 22 Figure 4: 1 Gig x 16 Functional Block Diagram ................................................................................................ 23 Figure 5: 78-Ball x4, x8 Ball Assignments ........................................................................................................ 24 Figure 6: 96-Ball x16 Ball Assignments ............................................................................................................ 25 Figure 7: 78-Ball FBGA – x4, x8 (VA) ................................................................................................................ 29 Figure 8: 78-Ball FBGA – x4, x8 (JC) ................................................................................................................ 30 Figure 9: 96-Ball FBGA – x16 (RC) ................................................................................................................... 31 Figure 10: 96-Ball FBGA – x16 (KD) ................................................................................................................. 32 Figure 11: Simplified State Diagram ............................................................................................................... 33 Figure 12: RESET and Initialization Sequence at Power-On Ramping ............................................................... 39 Figure 13: RESET Procedure at Power Stable Condition ................................................................................... 40 Figure 14: tMRD Timing ................................................................................................................................ 42 Figure 15: tMOD Timing ................................................................................................................................ 42 Figure 16: DLL-Off Mode Read Timing Operation ........................................................................................... 71 Figure 17: DLL Switch Sequence from DLL-On to DLL-Off .............................................................................. 73 Figure 18: DLL Switch Sequence from DLL-Off to DLL-On .............................................................................. 74 Figure 19: Write Leveling Concept, Example 1 ................................................................................................ 76 Figure 20: Write Leveling Concept, Example 2 ................................................................................................ 77 Figure 21: Write Leveling Sequence (DQS Capturing CK LOW at T1 and CK HIGH at T2) .................................. 79 Figure 22: Write Leveling Exit ......................................................................................................................... 80 Figure 23: CAL Timing Definition ................................................................................................................... 81 Figure 24: CAL Timing Example (Consecutive CS_n = LOW) ............................................................................ 81 Figure 25: CAL Enable Timing – tMOD_CAL ................................................................................................... 82 Figure 26: tMOD_CAL, MRS to Valid Command Timing with CAL Enabled ....................................................... 82 Figure 27: CAL Enabling MRS to Next MRS Command, tMRD_CAL .................................................................. 83 Figure 28: tMRD_CAL, Mode Register Cycle Time With CAL Enabled ............................................................... 83 Figure 29: Consecutive READ BL8, CAL3, 1tCK Preamble, Different Bank Group ............................................... 84 Figure 30: Consecutive READ BL8, CAL4, 1tCK Preamble, Different Bank Group ............................................... 84 Figure 31: Auto Self Refresh Ranges ................................................................................................................ 87 Figure 32: MPR Block Diagram ....................................................................................................................... 88 Figure 33: MPR READ Timing ........................................................................................................................ 94 Figure 34: MPR Back-to-Back READ Timing ................................................................................................... 95 Figure 35: MPR READ-to-WRITE Timing ........................................................................................................ 96 Figure 36: MPR WRITE and WRITE-to-READ Timing ...................................................................................... 97 Figure 37: MPR Back-to-Back WRITE Timing .................................................................................................. 98 Figure 38: REFRESH Timing ........................................................................................................................... 98 Figure 39: READ-to-REFRESH Timing ............................................................................................................ 99 Figure 40: WRITE-to-REFRESH Timing .......................................................................................................... 99 Figure 41: Clock Mode Change from 1/2 Rate to 1/4 Rate (Initialization) ......................................................... 102 Figure 42: Clock Mode Change After Exiting Self Refresh ................................................................................ 102 Figure 43: Comparison Between Gear-Down Disable and Gear-Down Enable ................................................. 103 Figure 44: Maximum Power-Saving Mode Entry ............................................................................................. 104 Figure 45: Maximum Power-Saving Mode Entry with PDA .............................................................................. 105 Figure 46: Maintaining Maximum Power-Saving Mode with CKE Transition ................................................... 105 Figure 47: Maximum Power-Saving Mode Exit ............................................................................................... 106 Figure 48: Command/Address Parity Operation ............................................................................................. 107 Figure 49: Command/Address Parity During Normal Operation ..................................................................... 109 Figure 50: Persistent CA Parity Error Checking Operation ............................................................................... 110 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 10 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Figure 51: CA Parity Error Checking – SRE Attempt ........................................................................................ 110 Figure 52: CA Parity Error Checking – SRX Attempt ........................................................................................ 111 Figure 53: CA Parity Error Checking – PDE/PDX ............................................................................................ 111 Figure 54: Parity Entry Timing Example – tMRD_PAR ..................................................................................... 112 Figure 55: Parity Entry Timing Example – tMOD_PAR ..................................................................................... 112 Figure 56: Parity Exit Timing Example – tMRD_PAR ....................................................................................... 112 Figure 57: Parity Exit Timing Example – tMOD_PAR ....................................................................................... 113 Figure 58: CA Parity Flow Diagram ................................................................................................................ 114 Figure 59: PDA Operation Enabled, BL8 ........................................................................................................ 116 Figure 60: PDA Operation Enabled, BC4 ........................................................................................................ 116 Figure 61: MRS PDA Exit ............................................................................................................................... 117 Figure 62: V REFDQ Voltage Range ................................................................................................................... 118 Figure 63: Example of V REF Set Tolerance and Step Size .................................................................................. 120 Figure 64: V REFDQ Timing Diagram for V REF,time Parameter .............................................................................. 121 Figure 65: V REFDQ Training Mode Entry and Exit Timing Diagram ................................................................... 122 Figure 66: V REF Step: Single Step Size Increment Case .................................................................................... 123 Figure 67: V REF Step: Single Step Size Decrement Case ................................................................................... 123 Figure 68: V REF Full Step: From V REF,min to V REF,maxCase .................................................................................. 124 Figure 69: V REF Full Step: From V REF,max to V REF,minCase .................................................................................. 124 Figure 70: V REFDQ Equivalent Circuit ............................................................................................................. 125 Figure 71: Connectivity Test Mode Entry ....................................................................................................... 129 Figure 72: hPPR WRA – Entry ........................................................................................................................ 134 Figure 73: hPPR WRA – Repair and Exit ......................................................................................................... 134 Figure 74: hPPR WR – Entry .......................................................................................................................... 135 Figure 75: hPPR WR – Repair and Exit ............................................................................................................ 135 Figure 76: sPPR – Entry ................................................................................................................................. 138 Figure 77: sPPR – Repair, and Exit ................................................................................................................. 138 Figure 78: tRRD Timing ................................................................................................................................ 139 Figure 79: tFAW Timing ................................................................................................................................. 140 Figure 80: REFRESH Command Timing ......................................................................................................... 141 Figure 81: Postponing REFRESH Commands (Example) ................................................................................. 142 Figure 82: Pulling In REFRESH Commands (Example) ................................................................................... 142 Figure 83: TCR Mode Example 1 ..................................................................................................................... 145 Figure 84: 4Gb with Fine Granularity Refresh Mode Example ......................................................................... 148 Figure 85: OTF REFRESH Command Timing ................................................................................................. 149 Figure 86: Self Refresh Entry/Exit Timing ...................................................................................................... 152 Figure 87: Self Refresh Entry/Exit Timing with CAL Mode ............................................................................... 153 Figure 88: Self Refresh Abort ......................................................................................................................... 154 Figure 89: Self Refresh Exit with NOP Command ............................................................................................ 155 Figure 90: Active Power-Down Entry and Exit ................................................................................................ 157 Figure 91: Power-Down Entry After Read and Read with Auto Precharge ......................................................... 158 Figure 92: Power-Down Entry After Write and Write with Auto Precharge ........................................................ 158 Figure 93: Power-Down Entry After Write ...................................................................................................... 159 Figure 94: Precharge Power-Down Entry and Exit .......................................................................................... 159 Figure 95: REFRESH Command to Power-Down Entry ................................................................................... 160 Figure 96: Active Command to Power-Down Entry ......................................................................................... 160 Figure 97: PRECHARGE/PRECHARGE ALL Command to Power-Down Entry .................................................. 161 Figure 98: MRS Command to Power-Down Entry ........................................................................................... 161 Figure 99: Power-Down Entry/Exit Clarifications – Case 1 .............................................................................. 162 Figure 100: Active Power-Down Entry and Exit Timing with CAL .................................................................... 162 Figure 101: REFRESH Command to Power-Down Entry with CAL ................................................................... 163 Figure 102: ODT Power-Down Entry with ODT Buffer Disable Mode .............................................................. 164 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 11 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Figure 103: Figure 104: Figure 105: Figure 106: Figure 107: Figure 108: Figure 109: Figure 110: Figure 111: Figure 112: Figure 113: Figure 114: Figure 115: Figure 116: Figure 117: Figure 118: Figure 119: Figure 120: Figure 121: Figure 122: Figure 123: Figure 124: Figure 125: Figure 126: Figure 127: Figure 128: Figure 129: Figure 130: Figure 131: Figure 132: Figure 133: Figure 134: Figure 135: Figure 136: Figure 137: Figure 138: Figure 139: Figure 140: Figure 141: Figure 142: Figure 143: Figure 144: Figure 145: Figure 146: Figure 147: Figure 148: Figure 149: Figure 150: Figure 151: Figure 152: Figure 153: Figure 154: ODT Power-Down Exit with ODT Buffer Disable Mode ................................................................. 165 CRC Write Data Operation .......................................................................................................... 166 CRC Error Reporting ................................................................................................................... 175 CA Parity Flow Diagram .............................................................................................................. 176 1tCK vs. 2tCK WRITE Preamble Mode ........................................................................................... 181 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 4 ............................................................................ 182 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 5 ............................................................................ 183 1tCK vs. 2 tCK WRITE Preamble Mode, tCCD = 6 ........................................................................... 183 1tCK vs. 2tCK READ Preamble Mode ............................................................................................ 184 READ Preamble Training ............................................................................................................. 185 WRITE Postamble ....................................................................................................................... 185 READ Postamble ........................................................................................................................ 186 Bank Group x4/x8 Block Diagram ................................................................................................ 187 READ Burst tCCD_S and tCCD_L Examples .................................................................................. 188 Write Burst tCCD_S and tCCD_L Examples ................................................................................... 188 tRRD Timing ............................................................................................................................... 189 tWTR_S Timing (WRITE-to-READ, Different Bank Group, CRC and DM Disabled) ......................... 189 tWTR_L Timing (WRITE-to-READ, Same Bank Group, CRC and DM Disabled) .............................. 190 Read Timing Definition ............................................................................................................... 192 Clock-to-Data Strobe Relationship .............................................................................................. 193 Data Strobe-to-Data Relationship ................................................................................................ 194 tLZ and tHZ Method for Calculating Transitions and Endpoints .................................................... 195 tRPRE Method for Calculating Transitions and Endpoints ............................................................. 196 tRPST Method for Calculating Transitions and Endpoints ............................................................. 197 READ Burst Operation, RL = 11 (AL = 0, CL = 11, BL8) ................................................................... 198 READ Burst Operation, RL = 21 (AL = 10, CL = 11, BL8) ................................................................. 199 Consecutive READ (BL8) with 1tCK Preamble in Different Bank Group .......................................... 200 Consecutive READ (BL8) with 2tCK Preamble in Different Bank Group .......................................... 200 Nonconsecutive READ (BL8) with 1tCK Preamble in Same or Different Bank Group ....................... 201 Nonconsecutive READ (BL8) with 2tCK Preamble in Same or Different Bank Group ....................... 201 READ (BC4) to READ (BC4) with 1tCK Preamble in Different Bank Group ...................................... 202 READ (BC4) to READ (BC4) with 2tCK Preamble in Different Bank Group ...................................... 202 READ (BL8) to READ (BC4) OTF with 1tCK Preamble in Different Bank Group ............................... 203 READ (BL8) to READ (BC4) OTF with 2tCK Preamble in Different Bank Group ............................... 203 READ (BC4) to READ (BL8) OTF with 1tCK Preamble in Different Bank Group ............................... 204 READ (BC4) to READ (BL8) OTF with 2tCK Preamble in Different Bank Group ............................... 204 READ (BL8) to WRITE (BL8) with 1 tCK Preamble in Same or Different Bank Group ........................ 205 READ (BL8) to WRITE (BL8) with 2 tCK Preamble in Same or Different Bank Group ........................ 205 READ (BC4) OTF to WRITE (BC4) OTF with 1 tCK Preamble in Same or Different Bank Group ......... 206 READ (BC4) OTF to WRITE (BC4) OTF with 2 tCK Preamble in Same or Different Bank Group ......... 207 READ (BC4) Fixed to WRITE (BC4) Fixed with 1 tCK Preamble in Same or Different Bank Group ..... 207 READ (BC4) Fixed to WRITE (BC4) Fixed with 2 tCK Preamble in Same or Different Bank Group ..... 208 READ (BC4) to WRITE (BL8) OTF with 1 tCK Preamble in Same or Different Bank Group ................ 209 READ (BC4) to WRITE (BL8) OTF with 2 tCK Preamble in Same or Different Bank Group ................ 209 READ (BL8) to WRITE (BC4) OTF with 1 tCK Preamble in Same or Different Bank Group ................ 210 READ (BL8) to WRITE (BC4) OTF with 2 tCK Preamble in Same or Different Bank Group ................ 210 READ to PRECHARGE with 1tCK Preamble .................................................................................. 211 READ to PRECHARGE with 2tCK Preamble .................................................................................. 212 READ to PRECHARGE with Additive Latency and 1tCK Preamble .................................................. 212 READ with Auto Precharge and 1tCK Preamble ............................................................................ 213 READ with Auto Precharge, Additive Latency, and 1tCK Preamble ................................................. 214 Consecutive READ (BL8) with 1tCK Preamble and DBI in Different Bank Group ............................ 214 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 12 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Figure 155: Consecutive READ (BL8) with 1tCK Preamble and CA Parity in Different Bank Group .................... 215 Figure 156: READ (BL8) to WRITE (BL8) with 1 tCK Preamble and CA Parity in Same or Different Bank Group ... 216 Figure 157: READ (BL8) to WRITE (BL8 or BC4: OTF) with 1 tCK Preamble and Write CRC in Same or Different Bank Group ............................................................................................................................................... 217 Figure 158: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1 tCK Preamble and Write CRC in Same or Different Bank Group ............................................................................................................................................... 218 Figure 159: Consecutive READ (BL8) with CAL (3tCK) and 1tCK Preamble in Different Bank Group .................. 218 Figure 160: Consecutive READ (BL8) with CAL (4tCK) and 1tCK Preamble in Different Bank Group .................. 219 Figure 161: Write Timing Definition .............................................................................................................. 221 Figure 162: tWPRE Method for Calculating Transitions and Endpoints ............................................................ 222 Figure 163: tWPST Method for Calculating Transitions and Endpoints ............................................................ 223 Figure 164: Rx Compliance Mask .................................................................................................................. 224 Figure 165: V CENT_DQ VREFDQ Voltage Variation .............................................................................................. 224 Figure 166: Rx Mask DQ-to-DQS Timings ...................................................................................................... 225 Figure 167: Rx Mask DQ-to-DQS DRAM-Based Timings ................................................................................. 226 Figure 168: Example of Data Input Requirements Without Training ................................................................ 227 Figure 169: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8) ................................................................. 228 Figure 170: WRITE Burst Operation, WL = 19 (AL = 10, CWL = 9, BL8) ............................................................. 229 Figure 171: Consecutive WRITE (BL8) with 1 tCK Preamble in Different Bank Group ........................................ 229 Figure 172: Consecutive WRITE (BL8) with 2 tCK Preamble in Different Bank Group ........................................ 230 Figure 173: Nonconsecutive WRITE (BL8) with 1 tCK Preamble in Same or Different Bank Group ..................... 231 Figure 174: Nonconsecutive WRITE (BL8) with 2 tCK Preamble in Same or Different Bank Group ..................... 231 Figure 175: WRITE (BC4) OTF to WRITE (BC4) OTF with 1 tCK Preamble in Different Bank Group .................... 232 Figure 176: WRITE (BC4) OTF to WRITE (BC4) OTF with 2 tCK Preamble in Different Bank Group .................... 233 Figure 177: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1 tCK Preamble in Different Bank Group ................. 233 Figure 178: WRITE (BL8) to WRITE (BC4) OTF with 1 tCK Preamble in Different Bank Group ............................ 234 Figure 179: WRITE (BC4) OTF to WRITE (BL8) with 1 tCK Preamble in Different Bank Group ............................ 235 Figure 180: WRITE (BL8) to READ (BL8) with 1 tCK Preamble in Different Bank Group ..................................... 235 Figure 181: WRITE (BL8) to READ (BL8) with 1 tCK Preamble in Same Bank Group .......................................... 236 Figure 182: WRITE (BC4) OTF to READ (BC4) OTF with 1 tCK Preamble in Different Bank Group ...................... 237 Figure 183: WRITE (BC4) OTF to READ (BC4) OTF with 1 tCK Preamble in Same Bank Group ........................... 237 Figure 184: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 tCK Preamble in Different Bank Group ................. 238 Figure 185: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 tCK Preamble in Same Bank Group ....................... 238 Figure 186: WRITE (BL8/BC4-OTF) to PRECHARGE with 1 tCK Preamble ........................................................ 239 Figure 187: WRITE (BC4-Fixed) to PRECHARGE with 1 tCK Preamble .............................................................. 240 Figure 188: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1 tCK Preamble ................................................ 240 Figure 189: WRITE (BC4-Fixed) to Auto PRECHARGE with 1 tCK Preamble ...................................................... 241 Figure 190: WRITE (BL8/BC4-OTF) with 1 tCK Preamble and DBI ................................................................... 242 Figure 191: WRITE (BC4-Fixed) with 1 tCK Preamble and DBI ......................................................................... 243 Figure 192: Consecutive Write (BL8) with 1 tCK Preamble and CA Parity in Different Bank Group ..................... 244 Figure 193: Consecutive WRITE (BL8/BC4-OTF) with 1 tCK Preamble and Write CRC in Same or Different Bank Group ....................................................................................................................................................... 245 Figure 194: Consecutive WRITE (BC4-Fixed) with 1 tCK Preamble and Write CRC in Same or Different Bank Group ....................................................................................................................................................... 246 Figure 195: Nonconsecutive WRITE (BL8/BC4-OTF) with 1 tCK Preamble and Write CRC in Same or Different Bank Group ............................................................................................................................................... 247 Figure 196: Nonconsecutive WRITE (BL8/BC4-OTF) with 2 tCK Preamble and Write CRC in Same or Different Bank Group ............................................................................................................................................... 248 Figure 197: WRITE (BL8/BC4-OTF/Fixed) with 1 tCK Preamble and Write CRC in Same or Different Bank Group ... 249 Figure 198: ZQ Calibration Timing ................................................................................................................ 252 Figure 199: Functional Representation of ODT .............................................................................................. 253 Figure 200: Synchronous ODT Timing with BL8 ............................................................................................. 256 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 13 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Figure 201: Figure 202: Figure 203: Figure 204: Figure 205: Figure 206: Figure 207: Figure 208: Figure 209: Figure 210: Figure 211: Figure 212: Figure 213: Figure 214: Figure 215: Figure 216: Figure 217: Figure 218: Figure 219: Figure 220: Figure 221: Figure 222: Figure 223: Figure 224: Figure 225: Figure 226: Figure 227: Figure 228: Figure 229: Figure 230: Figure 231: Figure 232: Figure 233: Figure 234: Figure 235: Figure 236: Figure 237: Figure 238: Figure 239: Figure 240: Figure 241: Figure 242: Figure 243: Synchronous ODT with BC4 ........................................................................................................ 256 ODT During Reads ...................................................................................................................... 257 Dynamic ODT (1t CK Preamble; CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled) .......................... 259 Dynamic ODT Overlapped with RTT(NOM) (CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled) .......... 260 Asynchronous ODT Timings with DLL Off ................................................................................... 261 V REFDQ Voltage Range .................................................................................................................. 264 RESET_n Input Slew Rate Definition ............................................................................................ 267 Single-Ended Input Slew Rate Definition ..................................................................................... 269 DQ Slew Rate Definitions ............................................................................................................ 272 Rx Mask Relative to tDS/tDH ....................................................................................................... 274 Rx Mask Without Write Training .................................................................................................. 275 TEN Input Slew Rate Definition ................................................................................................... 276 CT Type-A Input Slew Rate Definition .......................................................................................... 276 CT Type-B Input Slew Rate Definition .......................................................................................... 277 CT Type-C Input Slew Rate Definition .......................................................................................... 278 CT Type-D Input Slew Rate Definition ......................................................................................... 278 Differential AC Swing and “Time Exceeding AC-Level” tDVAC ....................................................... 279 Single-Ended Requirements for CK .............................................................................................. 281 Differential Input Slew Rate Definition for CK_t, CK_c .................................................................. 282 V IX(CK) Definition ........................................................................................................................ 282 Differential Input Signal Definition for DQS_t, DQS_c .................................................................. 283 DQS_t, DQS_c Input Peak Voltage Calculation and Range of Exempt non-Monotonic Signaling ..... 284 V IXDQS Definition ........................................................................................................................ 285 Differential Input Slew Rate and Input Level Definition for DQS_t, DQS_c ..................................... 286 ADDR, CMD, CNTL Overshoot and Undershoot Definition ........................................................... 288 CK Overshoot and Undershoot Definition .................................................................................... 289 Data, Strobe, and Mask Overshoot and Undershoot Definition ..................................................... 290 Single-ended Output Slew Rate Definition ................................................................................... 291 Differential Output Slew Rate Definition ...................................................................................... 293 Reference Load For AC Timing and Output Slew Rate ................................................................... 294 Connectivity Test Mode Reference Test Load ................................................................................ 294 Connectivity Test Mode Output Slew Rate Definition .................................................................... 295 Output Driver During Connectivity Test Mode ............................................................................. 296 Output Driver: Definition of Voltages and Currents ...................................................................... 297 Alert Driver ................................................................................................................................ 301 ODT Definition of Voltages and Currents ..................................................................................... 302 ODT Timing Reference Load ....................................................................................................... 303 tADC Definition with Direct ODT Control .................................................................................... 305 tADC Definition with Dynamic ODT Control ................................................................................ 305 tAOFAS and tAONAS Definitions .................................................................................................. 306 Thermal Measurement Point ....................................................................................................... 312 Measurement Setup and Test Load for I DDx, IPPx, and IDDQx ........................................................... 313 Correlation: Simulated Channel I/O Power to Actual Channel I/O Power ....................................... 314 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 14 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features List of Tables Table 1: Key Timing Parameters ....................................................................................................................... 1 Table 2: Addressing ......................................................................................................................................... 2 Table 3: Ball Descriptions .............................................................................................................................. 26 Table 4: State Diagram Command Definitions ................................................................................................ 34 Table 5: Supply Power-up Slew Rate ............................................................................................................... 36 Table 6: Address Pin Mapping ........................................................................................................................ 44 Table 7: MR0 Register Definition .................................................................................................................... 44 Table 8: Burst Type and Burst Order ............................................................................................................... 46 Table 9: Address Pin Mapping ........................................................................................................................ 48 Table 10: MR1 Register Definition .................................................................................................................. 48 Table 11: Additive Latency (AL) Settings ......................................................................................................... 50 Table 12: TDQS Function Matrix .................................................................................................................... 51 Table 13: Address Pin Mapping ...................................................................................................................... 52 Table 14: MR2 Register Definition .................................................................................................................. 52 Table 15: Address Pin Mapping ...................................................................................................................... 55 Table 16: MR3 Register Definition .................................................................................................................. 55 Table 17: Address Pin Mapping ...................................................................................................................... 58 Table 18: MR4 Register Definition .................................................................................................................. 58 Table 19: Address Pin Mapping ...................................................................................................................... 62 Table 20: MR5 Register Definition .................................................................................................................. 62 Table 21: Address Pin Mapping ...................................................................................................................... 65 Table 22: MR6 Register Definition .................................................................................................................. 65 Table 23: Truth Table – Command .................................................................................................................. 67 Table 24: Truth Table – CKE ........................................................................................................................... 69 Table 25: MR Settings for Leveling Procedures ................................................................................................ 77 Table 26: DRAM TERMINATION Function in Leveling Mode ........................................................................... 77 Table 27: Auto Self Refresh Mode ................................................................................................................... 86 Table 28: MR3 Setting for the MPR Access Mode ............................................................................................. 88 Table 29: DRAM Address to MPR UI Translation ............................................................................................. 88 Table 30: MPR Page and MPRx Definitions ..................................................................................................... 89 Table 31: MPR Readout Serial Format ............................................................................................................. 91 Table 32: MPR Readout – Parallel Format ....................................................................................................... 92 Table 33: MPR Readout Staggered Format, x4 ................................................................................................. 93 Table 34: MPR Readout Staggered Format, x4 – Consecutive READs ................................................................ 93 Table 35: MPR Readout Staggered Format, x8 and x16 ..................................................................................... 94 Table 36: Mode Register Setting for CA Parity ................................................................................................. 109 Table 37: V REFDQ Range and Levels ................................................................................................................ 119 Table 38: V REFDQ Settings (VDDQ = 1.2V) ......................................................................................................... 125 Table 39: Connectivity Mode Pin Description and Switching Levels ................................................................ 127 Table 40: MAC Encoding of MPR Page 3 MPR3 ............................................................................................... 130 Table 41: PPR MR0 Guard Key Settings .......................................................................................................... 132 Table 42: DDR4 hPPR Timing Parameters DDR4-1600 through DDR4-3200 ..................................................... 136 Table 43: sPPR Associated Rows .................................................................................................................... 136 Table 44: PPR MR0 Guard Key Settings .......................................................................................................... 137 Table 45: DDR4 sPPR Timing Parameters DDR4-1600 through DDR4-3200 ..................................................... 138 Table 46: DDR4 Repair Mode Support Identifier ............................................................................................ 139 Table 47: Normal tREFI Refresh (TCR Enabled) .............................................................................................. 143 Table 48: MRS Definition .............................................................................................................................. 146 Table 49: REFRESH Command Truth Table .................................................................................................... 146 Table 50: tREFI and tRFC Parameters ............................................................................................................. 147 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 15 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Table 51: Power-Down Entry Definitions ....................................................................................................... 156 Table 52: CRC Error Detection Coverage ........................................................................................................ 167 Table 53: CRC Data Mapping for x4 Devices, BL8 ........................................................................................... 169 Table 54: CRC Data Mapping for x8 Devices, BL8 ........................................................................................... 169 Table 55: CRC Data Mapping for x16 Devices, BL8 ......................................................................................... 170 Table 56: CRC Data Mapping for x4 Devices, BC4 ........................................................................................... 170 Table 57: CRC Data Mapping for x8 Devices, BC4 ........................................................................................... 171 Table 58: CRC Data Mapping for x16 Devices, BC4 ......................................................................................... 172 Table 59: DBI vs. DM vs. TDQS Function Matrix ............................................................................................. 177 Table 60: DBI Write, DQ Frame Format (x8) ................................................................................................... 177 Table 61: DBI Write, DQ Frame Format (x16) ................................................................................................. 177 Table 62: DBI Read, DQ Frame Format (x8) .................................................................................................... 178 Table 63: DBI Read, DQ Frame Format (x16) .................................................................................................. 178 Table 64: DM vs. TDQS vs. DBI Function Matrix ............................................................................................. 179 Table 65: Data Mask, DQ Frame Format (x8) .................................................................................................. 179 Table 66: Data Mask, DQ Frame Format (x16) ................................................................................................ 179 Table 67: CWL Selection ............................................................................................................................... 182 Table 68: DDR4 Bank Group Timing Examples .............................................................................................. 187 Table 69: Read-to-Write and Write-to-Read Command Intervals .................................................................... 192 Table 70: Termination State Table ................................................................................................................. 254 Table 71: Read Termination Disable Window ................................................................................................. 254 Table 72: ODT Latency at DDR4-1600/-1866/-2133/-2400/-2666/-3200 .......................................................... 255 Table 73: Dynamic ODT Latencies and Timing (1 tCK Preamble Mode and CRC Disabled) ................................ 258 Table 74: Dynamic ODT Latencies and Timing with Preamble Mode and CRC Mode Matrix ............................ 259 Table 75: Absolute Maximum Ratings ............................................................................................................ 262 Table 76: Temperature Range ........................................................................................................................ 262 Table 77: Recommended Supply Operating Conditions .................................................................................. 263 Table 78: V DD Slew Rate ................................................................................................................................ 263 Table 79: Leakages ....................................................................................................................................... 264 Table 80: V REFDQ Specification ...................................................................................................................... 265 Table 81: V REFDQ Range and Levels ................................................................................................................ 266 Table 82: RESET_n Input Levels (CMOS) ....................................................................................................... 267 Table 83: Command and Address Input Levels: DDR4-1600 Through DDR4-2400 ........................................... 267 Table 84: Command and Address Input Levels: DDR4-2666 ............................................................................ 268 Table 85: Command and Address Input Levels: DDR4-2933 and DDR4-3200 ................................................... 268 Table 86: Single-Ended Input Slew Rates ....................................................................................................... 269 Table 87: Command and Address Setup and Hold Values Referenced – AC/DC-Based ..................................... 270 Table 88: Derating Values for tIS/tIH – AC100DC75-Based .............................................................................. 270 Table 89: Derating Values for tIS/tIH – AC90/DC65-Based .............................................................................. 271 Table 90: DQ Input Receiver Specifications .................................................................................................... 272 Table 91: Rx Mask and tDS/tDH without Write Training .................................................................................. 275 Table 92: TEN Input Levels (CMOS) .............................................................................................................. 275 Table 93: CT Type-A Input Levels .................................................................................................................. 276 Table 94: CT Type-B Input Levels .................................................................................................................. 277 Table 95: CT Type-C Input Levels (CMOS) ..................................................................................................... 277 Table 96: CT Type-D Input Levels .................................................................................................................. 278 Table 97: Differential Input Swing Requirements for CK_t, CK_c ..................................................................... 279 Table 98: Minimum Time AC Time tDVAC for CK ........................................................................................... 280 Table 99: Single-Ended Requirements for CK ................................................................................................. 281 Table 100: CK Differential Input Slew Rate Definition ..................................................................................... 281 Table 101: Cross Point Voltage For CK Differential Input Signals at DDR4-1600 through DDR4-2400 ................ 283 Table 102: Cross Point Voltage For CK Differential Input Signals at DDR4-2666 through DDR4-3200 ................ 283 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 16 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Table 103: Table 104: Table 105: Table 106: Table 107: Table 108: Table 109: Table 110: Table 111: Table 112: Table 113: Table 114: Table 115: Table 116: Table 117: Table 118: Table 119: Table 120: Table 121: Table 122: Table 123: Table 124: Table 125: Table 126: Table 127: Table 128: Table 129: Table 130: Table 131: Table 132: Table 133: Table 134: Table 135: Table 136: Table 137: Table 138: Table 139: Table 140: Table 141: Table 142: Table 143: Table 144: Table 145: Table 146: Table 147: Table 148: Table 149: Table 150: Table 151: Table 152: Table 153: Table 154: DDR4-1600 through DDR4-2400 Differential Input Swing Requirements for DQS_t, DQS_c ............. 283 DDR4-2633 through DDR4-3200 Differential Input Swing Requirements for DQS_t, DQS_c ............. 284 Cross Point Voltage For Differential Input Signals DQS ................................................................... 285 DQS Differential Input Slew Rate Definition .................................................................................. 286 DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c ... 286 DDR4-2666 through DDR4-3200 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c ... 287 ADDR, CMD, CNTL Overshoot and Undershoot/Specifications ...................................................... 288 CK Overshoot and Undershoot/ Specifications .............................................................................. 289 Data, Strobe, and Mask Overshoot and Undershoot/ Specifications ................................................ 290 Single-Ended Output Levels ......................................................................................................... 290 Single-Ended Output Slew Rate Definition .................................................................................... 291 Single-Ended Output Slew Rate .................................................................................................... 292 Differential Output Levels ............................................................................................................. 292 Differential Output Slew Rate Definition ....................................................................................... 292 Differential Output Slew Rate ....................................................................................................... 293 Connectivity Test Mode Output Levels .......................................................................................... 294 Connectivity Test Mode Output Slew Rate ..................................................................................... 295 Output Driver Electrical Characteristics During Connectivity Test Mode ......................................... 297 Strong Mode (34˖) Output Driver Electrical Characteristics ........................................................... 298 Weak Mode (48˖) Output Driver Electrical Characteristics ............................................................. 299 Output Driver Sensitivity Definitions ............................................................................................ 300 Output Driver Voltage and Temperature Sensitivity ....................................................................... 300 Alert Driver Voltage ...................................................................................................................... 301 ODT DC Characteristics ............................................................................................................... 302 ODT Sensitivity Definitions .......................................................................................................... 303 ODT Voltage and Temperature Sensitivity ..................................................................................... 303 ODT Timing Definitions ............................................................................................................... 304 Reference Settings for ODT Timing Measurements ........................................................................ 304 DRAM Package Electrical Specifications for x4 and x8 Devices ....................................................... 307 DRAM Package Electrical Specifications for x16 Devices ................................................................ 308 Pad Input/Output Capacitance ..................................................................................................... 310 Thermal Characteristics ............................................................................................................... 311 Basic IDD, IPP, and IDDQ Measurement Conditions .......................................................................... 314 IDD0 and IPP0 Measurement-Loop Pattern1 .................................................................................... 318 IDD1 Measurement – Loop Pattern1 ............................................................................................... 319 IDD2N, IDD3N, and IPP3P Measurement – Loop Pattern1 .................................................................... 320 IDD2NT Measurement – Loop Pattern1 ............................................................................................ 321 IDD4R Measurement – Loop Pattern1 .............................................................................................. 322 IDD4W Measurement – Loop Pattern1 ............................................................................................. 323 IDD4Wc Measurement – Loop Pattern1 ............................................................................................ 324 IDD5R Measurement – Loop Pattern1 .............................................................................................. 325 IDD7 Measurement – Loop Pattern1 ............................................................................................... 326 Timings used for I DD, IPP, and IDDQ Measurement – Loop Patterns .................................................. 327 IDD and IPP Current Limits; Die Rev. B (-40° ื T C ื 85°C) ................................................................. 328 IDD and IPP Current Limits; Die Rev. E (-40° ื T C ื 85°C) ................................................................. 330 Backward Compatibility ............................................................................................................... 334 DDR4-1600 Speed Bins and Operating Conditions ......................................................................... 336 DDR4-1866 Speed Bins and Operating Conditions ......................................................................... 338 DDR4-2133 Speed Bins and Operating Conditions ......................................................................... 340 DDR4-2400 Speed Bins and Operating Conditions ......................................................................... 342 DDR4-2666 Speed Bins and Operating Conditions ......................................................................... 344 DDR4-2933 Speed Bins and Operating Conditions ......................................................................... 347 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 17 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Features Table 155: Table 156: Table 157: Table 158: Table 159: Table 160: DDR4-3200 Speed Bins and Operating Conditions ......................................................................... 350 Refresh Parameters by Device Density ........................................................................................... 352 Electrical Characteristics and AC Timing Parameters: DDR4-1600 through DDR4-2400 ................... 353 Electrical Characteristics and AC Timing Parameters ..................................................................... 365 Options – Speed Based ................................................................................................................. 378 Options – Width Based ................................................................................................................. 379 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 18 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Important Notes and Warnings Important Notes and Warnings Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron. Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of nonautomotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications. Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product. Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component. Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative. General Notes and Description Description The DDR4 SDRAM is a high-speed dynamic random-access memory internally configured as an eight-bank DRAM for the x16 configuration and as a 16-bank DRAM for the CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 19 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM General Notes and Description x4 and x8 configurations. The DDR4 SDRAM uses an 8n-prefetch architecture to achieve high-speed operation. The 8n-prefetch architecture is combined with an interface designed to transfer two data words per clock cycle at the I/O pins. A single READ or WRITE operation for the DDR4 SDRAM consists of a single 8n-bit wide, four-clock data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. Industrial Temperature An industrial temperature (IT) device option requires that the case temperature not exceed below –40°C or above 95°C. JEDEC specifications require the refresh rate to double when T C exceeds 85°C; this also requires use of the high-temperature self refresh option. Additionally, ODT resistance and the input/output impedance must be derated when operating outside of the commercial temperature range, when T C is between –40°C and 0°C. Automotive Temperature The automotive temperature (AT) device option requires that the case temperature not exceed below –40°C or above 105°C. The specifications require the refresh rate to 2X when T C exceeds 85°C; 4X when T C exceeds 95°C. Additionally, ODT resistance and the input/output impedance must be derated when operating temperature Tc @ '46BW'46BF 9''4 %& &.BW&.BF  [ 577Z  &ROXPQV DQG   577Q '//  [   =4 9''4 6HQVHDPSOLILHUV  $/(57 9''4 =4 FRQWURO %DQN %DQN %DQN %DQN %*  $$ 7(1 %DQN %DQN %DQN %DQN %DQN*URXS %DQN %DQN %DQN %DQN %DQN*URXS %DQN %DQN %DQN %DQN %* 7R2'7RXWSXWGULYHUV 2'7 7'46BF '%,BQ '0BQ 7'46BW CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 22 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Functional Block Diagrams Figure 4: 1 Gig x 16 Functional Block Diagram &5&DQG SDULW\FRQWURO 7R2'7RXWSXWGULYHUV 2'7 =4&$/ 5(6(7BQ 9UHI'4 &RQWURO ORJLF &.( =4 FRQWURO %& 27) &5& &.BW&.BF 3DULW\ 3$5 &6BQ &RPPDQGGHFRGH 5$6BQ&$6BQ:(BQ $&7BQ %DQN %DQN %DQN %DQN %* 5RZ DGGUHVV  ODWFK DQG GHFRGHU  $$$ 0RGHUHJLVWHUV    5HIUHVK FRXQWHU 2'7 FRQWURO %DQN %DQN %DQN %DQN %DQN*URXS %DQN %DQN %DQN %DQN %DQN*URXS %DQN %DQN %DQN %DQN %*  $$ 7(1 5RZ DGGUHVV 08;   &.BW&.BF 577S   $GGUHVV UHJLVWHU  %* DQG %$ FRQWURO ORJLF ,2JDWLQJ '0PDVNORJLF   &ROXPQ DGGUHVV FRXQWHU ODWFK     [ %& 27) 5($' ),)2 DQG GDWD 08;  '%, :ULWH GULYHUV DQG LQSXW ORJLF '4>@ 577S 577Q 577Z /'46BW /'46BF 8'46BW 8'46BF 9''4 577S 577Q 577Z &ROXPQ %&QLEEOH 9UHI'4 &ROXPQVDQG '4>@ /'46BW/'46BF8'46BW8'46BF &5&  'DWD LQWHUIDFH &ROXPQ GHFRGHU '4>@ 9''4 %& *OREDO ,2JDWLQJ  5HDG GULYHUV  &.BW&.BF  [ 577Z  &ROXPQV DQG   577Q '// 0HPRU\ 6HQVHDPSOLILHUV DUUD\ [[    =4 9''4 6HQVHDPSOLILHUV  $>@ %$>@ %*>@ $/(57 9''4 7R=4&RQWURO /'%,BQ /'0BQ 8'%,BQ 8'0BQ CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 23 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Ball Assignments Ball Assignments Figure 5: 78-Ball x4, x8 Ball Assignments    9'' 9664 1)1) 7'46BF       1)1)'0BQ '%,BQ7'46BW 9664 966 $ $ % % 933 9''4 '46BF '4 9''4 =4 & & 9''4 '4 '46BW 9'' 966 9''4 ' ' 9664 1)'4 '4 '4 1)'4 9664 ( ( 966 9''4 1)'4 1)'4 9''4 966 &.BW &.BF 9'' ) ) 9'' &2'71& 2'7 * * 966 &&.(1& &.( &6BQ &&6BQ1& 7(11) + + 9'' :(BQ $  $&7BQ 95()&$ %* $$3 966 %$ $ $ %$ 966 $ $ $ $/(57BQ $ $ 933 $ 9'' &$6BQ $ 5$6BQ $ 966 - $%&BQ %* 9'' . . / / 5(6(7BQ $ 0 0 9'' $ $ 966 $ 3$5 1 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1 $1)1& 1)1& 1. See Ball Descriptions. 2. A comma “,” separates the configuration; a slash “/” defines a mode register selectable function, command/address function, density, or package dependence. 3. Address bits (including bank groups) are density- and configuration-dependent (see Addressing). 24 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Ball Assignments Figure 6: 96-Ball x16 Ball Assignments          $ $ 9''4 9664 8'46BF 9664 '4 9''4 % % 933 966 8'46BW 9'' '4 9'' & & 9''4 '4 '4 '4 '4 9664 ' ' 9'' 9664 9''4 '4 '4 966 1)8'0BQ 8'%,BQ 9664 1)/'0BQ /'%,BQ 9664 966 9664 9''4 /'46BF '4 9''4 =4 9''4 '4 /'46BW 9'' 966 9''4 9664 '4 '4 '4 '4 9664 9'' 9''4 '4 '4 9''4 9'' 9664 ( ( ) ) * * + + - - . . 966 &.( 9'' :(BQ $ 2'7 &.BW &.BF &6BQ 5$6BQ $ 966 / / $&7BQ 9'' 0 0 95()&$ %* $%&BQ &$6BQ $ $$3 966 1 1 966 %$ $ $ %$ 7(1 3 3 5(6(7BQ $ $ $ $ $/(57BQ 5 5 9'' $ $ 966 $ 3$5 $ $ 933 1)1& $ 9'' 7 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 7 1. See Ball Descriptions. 2. A slash “/” defines a mode register selectable function, command/address function, density, or package dependence. 3. Address bits (including bank groups) are density- and configuration-dependent (see Addressing). 25 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Ball Descriptions Ball Descriptions The pin description table below is a comprehensive list of all possible pins for DDR4 devices. All pins listed may not be supported on the device defined in this data sheet. See the Ball Assignments section to review all pins used on this device. Table 3: Ball Descriptions Symbol Type Description A[17:0] Input Address inputs: Provide the row address for ACTIVATE commands and the column address for READ/WRITE commands to select one location out of the memory array in the respective bank. (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, RAS_n/A16 have additional functions, see individual entries in this table.) The address inputs also provide the op-code during the MODE REGISTER SET command. A16 is used on some 8Gb and 16Gb parts. A17 connection is part-number specific; Contact vendor for more information. A10/AP Input Auto precharge: A10 is sampled during READ and WRITE commands to determine whether auto precharge should be performed to the accessed bank after a READ or WRITE operation. (HIGH = auto precharge; LOW = no auto precharge.) A10 is sampled during a PRECHARGE command to determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank addresses. A12/BC_n Input Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed. (HIGH = no burst chop; LOW = burst chopped). See the Command Truth Table. ACT_n Input Command input: ACT_n indicates an ACTIVATE command. When ACT_n (along with CS_n) is LOW, the input pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are treated as row address inputs for the ACTIVATE command. When ACT_n is HIGH (along with CS_n LOW), the input pins RAS_n/ A16, CAS_n/A15, and WE_n/A14 are treated as normal commands that use the RAS_n, CAS_n, and WE_n signals. See the Command Truth Table. BA[1:0] Input Bank address inputs: Define the bank (within a bank group) to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determines which mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] Input Bank group address inputs: Define the bank group to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determines which mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configurations. BG1 is not used in the x16 configuration. C0/CKE1, C1/CS1_n, C2/ODT1 Input Stack address inputs: These inputs are used only when devices are stacked; that is, they are used in 2H, 4H, and 8H stacks for x4 and x8 configurations (these pins are not used in the x16 configuration, and are NC on the x4/x8 SDP). DDR4 will support a traditional DDP package, which uses these three signals for control of the second die (CS1_n, CKE1, ODT1). DDR4 is not expected to support a traditional QDP package. For all other stack configurations, such as a 4H or 8H, it is assumed to be a single-load (master/slave) type of configuration where C0, C1, and C2 are used as chip ID selects in conjunction with a single CS_n, CKE, and ODT signal. CK_t, CK_c Input Clock: Differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 26 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Ball Descriptions Table 3: Ball Descriptions (Continued) Symbol Type Description CKE Input Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is asynchronous for self refresh exit, however, timing parameters such as tXS are still calculated from the first rising clock edge where CKE HIGH satisfies tIS. After VREFCA has become stable during the power-on and initialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and RESET_n) are disabled during self refresh. CS_n Input Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides for external rank selection on systems with multiple ranks. CS_n is considered part of the command code. DM_n, UDM_n LDM_n Input Input data mask: DM_n is an input mask signal for write data. Input data is masked when DM is sampled LOW coincident with that input data during a write access. DM is sampled on both edges of DQS. DM is not supported on x4 configurations. The UDM_n and LDM_n pins are used in the x16 configuration: UDM_n is associated with DQ[15:8]; LDM_n is associated with DQ[7:0]. The DM, DBI, and TDQS functions are enabled by mode register settings. See the Data Mask section. ODT Input On-die termination: ODT (registered HIGH) enables termination resistance internal to the DDR4 SDRAM. When enabled, ODT (RTT) is applied only to each DQ, DQS_t, DQS_c, DM_n/DBI_n/TDQS_t, and TDQS_c signal for the x4 and x8 configurations (when the TDQS function is enabled via mode register). For the x16 configuration, RTT is applied to each DQ, UDQS_t, UDQS_c, LDQS_t, LDQS_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode registers are programmed to disable RTT. PAR Input Parity for command and address: This function can be enabled or disabled via the mode register. When enabled, the parity signal covers all command and address inputs, including ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, A[17:0], A10/AP, A12/BC_n, BA[1:0], and BG[1:0] with C0, C1, and C2 on 3DS only devices. Control pins NOT covered by the parity signal are CS_n, CKE, and ODT. Unused address pins that are density- and configuration-specific should be treated internally as 0s by the DRAM parity logic. Command and address inputs will have parity check performed when commands are latched via the rising edge of CK_t and when CS_n is LOW. RAS_n/A16, CAS_n/A15, WE_n/A14 Input Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n and ACT_n) define the command and/or address being entered. See the ACT_n description in this table. RESET_n Input Active LOW asynchronous reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD (960 mV for DC HIGH and 240 mV for DC LOW). TEN Input Connectivity test mode: TEN is active when HIGH and inactive when LOW. TEN must be LOW during normal operation. TEN is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD (960mV for DC HIGH and 240mV for DC LOW). On Micron 3DS devices, connectivity test mode is not supported and the TEN pin should be considered NF maintained LOW at all times. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 27 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Ball Descriptions Table 3: Ball Descriptions (Continued) Symbol Type Description DQ I/O Data input/output: Bidirectional data bus. DQ represents DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If write CRC is enabled via mode register, the write CRC code is added at the end of data burst. Any one or all of DQ0, DQ1, DQ2, and DQ3 may be used to monitor the internal VREF level during test via mode register setting MR[4] A[4] = HIGH, training times change when enabled. During this mode, the RTT value should be set to High-Z. This measurement is for verification purposes and is NOT an external voltage supply pin. DBI_n, UDBI_n, LDBI_n I/O DBI input/output: Data bus inversion. DBI_n is an input/output signal used for data bus inversion in the x8 configuration. UDBI_n and LDBI_n are used in the x16 configuration; UDBI_n is associated with DQ[15:8], and LDBI_n is associated with DQ[7:0]. The DBI feature is not supported on the x4 configuration. DBI is not supported for 3DS devices and should be disabled in MR5. DBI can be configured for both READ (output) and WRITE (input) operations depending on the mode register settings. The DM, DBI, and TDQS functions are enabled by mode register settings. See the Data Bus Inversion section. DQS_t, DQS_c, UDQS_t, UDQS_c, LDQS_t, LDQS_c I/O Data strobe: Output with READ data, input with WRITE data. Edge-aligned with READ data, centered-aligned with WRITE data. For the x16, LDQS corresponds to the data on DQ[7:0]; UDQS corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4 SDRAM supports a differential data strobe only and does not support a single-ended data strobe. ALERT_n Output Alert output: This signal allows the DRAM to indicate to the system's memory controller that a specific alert or event has occurred. Alerts will include the command/ address parity error and the CRC data error when either of these functions is enabled in the mode register. TDQS_t, TDQS_c Output Termination data strobe: TDQS_t and TDQS_c are used by x8 DRAMs only. When enabled via the mode register, the DRAM will enable the same RTT termination resistance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c. When the TDQS function is disabled via the mode register, the DM/TDQS_t pin will provide the DATA MASK (DM) function, and the TDQS_c pin is not used. The TDQS function must be disabled in the mode register for both the x4 and x16 configurations. The DM function is supported only in x8 and x16 configurations. VDD Supply Power supply: 1.2V ±0.060V. VDDQ Supply DQ power supply: 1.2V ±0.060V. VPP Supply DRAM activating power supply: 2.5V –0.125V/+0.250V. VREFCA Supply Reference voltage for control, command, and address pins. VSS Supply Ground. VSSQ Supply DQ ground. ZQ Reference RFU – Reserved for future use. NC – No connect: No internal electrical connection is present. NF – No function: Internal connection is present but has no function. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Reference ball for ZQ calibration: This ball is tied to an external 240˖ resistor (RZQ), which is tied to VSSQ. 28 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Package Dimensions Package Dimensions Figure 7: 78-Ball FBGA – x4, x8 (VA) 0.155 Seating plane A 1.8 CTR Nonconductive overmold 78X Ø0.47±0.05 Dimensions apply to solder balls postreflow on Ø0.42 SMD ball pads. 0.1 A Ball A1 ID 9 8 7 Ball A1 ID 3 2 1 A B C D E F G H J K L M N 11 ±0.1 9.6 CTR 0.8 TYP 1.1 ±0.1 0.8 TYP 6.4 CTR 0.34 ±0.05 10±0.1 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. All dimensions are in millimeters. 2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu). 29 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Package Dimensions Figure 8: 78-Ball FBGA – x4, x8 (JC) 0.155 Seating plane A 1.8 CTR nonconductive overmold 78X Ø0.47 ±0.05 Dimensions apply to solder balls postreflow on Ø0.42 SMD ball pads. 0.12 A Ball A1 ID Ball A1 ID 9 8 7 3 2 1 A B C D E 11 ±0.1 F 9.6 CTR G H J K L M 0.8 TYP N 1.1 ±0.1 0.8 TYP 0.34 ±0.05 6.4 CTR 9 ±0.1 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. All dimensions are in millimeters. 2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu). 30 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Package Dimensions Figure 9: 96-Ball FBGA – x16 (RC) 0.155 Seating plane A 0.1 A 1.8 CTR nonconductive overmold 96X Ø0.47 ±0.05 Dimensions apply to solder balls postreflow on Ø0.42 SMD ball pads. Ball A1 ID 9 8 7 Ball A1 ID 3 2 1 A B C D E F 13 ±0.1 G H J 12 CTR K L M N P R 0.8 TYP T 1.1 ±0.1 0.8 TYP 0.34 ±0.05 6.4 CTR 10 ±0.1 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. All dimensions are in millimeters. 2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu). 31 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Package Dimensions Figure 10: 96-Ball FBGA – x16 (KD) 0.155 Seating plane A 0.12 A 1.8 CTR Nonconductive overmold 96X Ø0.47 ±0.05 Dimensions apply to solder balls post-reflow on Ø0.42 SMD ball pads. Ball A1 ID 9 8 7 3 2 Ball A1 ID 1 A B C D E F 13 ±0.1 G H J 12 CTR K L M N P R 0.8 TYP T 1.1 ±0.1 0.8 TYP 0.34 ±0.05 6.4 CTR 9 ±0.1 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. All dimensions are in millimeters. 2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu). 32 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM State Diagram State Diagram This simplified state diagram provides an overview of the possible state transitions and the commands to control them. Situations involving more than one bank, the enabling or disabling of on-die termination, and some other events are not captured in full detail. Figure 11: Simplified State Diagram IVREFDQ, RTT, and so on MPSM From any state RESET SRX* = SRX with NOP SRX* CKE_L MRS Power applied Power-On RESET MRS SRX* Reset procedure TEN = 1 TEN = 1 MRS, MPR, write leveling, VREFDQ training PDA mode Initialization MRS MRS ZQCL SRX MRS SRE MRS Connectivity test TEN = 0 ZQ calibration Self refresh ZQCL,ZQCS REF Idle Refreshing RESET PDE ACT CKE_L CKE_L PDX Active powerdown Precharge powerdown Activating PDX PDE Bank active WRITE WRITE READ WRITE A READ Writing READ READ A WRITE Reading READ A WRITE A WRITE A READ A PRE, PREA Writing PRE, PREA PRE, PREA Precharging Reading Automatic sequence Command sequence CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 33 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM State Diagram Table 4: State Diagram Command Definitions Command Description ACT Active MPR Multipurpose register MRS Mode register set PDE Enter power-down PDX Exit power-down PRE Precharge PREA Precharge all READ RD, RDS4, RDS8 READ A RDA, RDAS4, RDAS8 REF Refresh, fine granularity refresh RESET Start reset procedure SRE Self refresh entry SRX Self refresh exit TEN Boundary scan mode enable WRITE WR, WRS4, WRS8 with/without CRC WRITE A WRA, WRAS4, WRAS8 with/without CRC ZQCL ZQ calibration long ZQCS ZQ calibration short Note: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. See the Command Truth Table for more details. 34 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Functional Description Functional Description The DDR4 SDRAM is a high-speed dynamic random-access memory internally configured as sixteen banks (4 bank groups with 4 banks for each bank group) for x4/x8 devices, and as eight banks for each bank group (2 bank groups with 4 banks each) for x16 devices. The device uses double data rate (DDR) architecture to achieve high-speed operation. DDR4 architecture is essentially an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for a device module effectively consists of a single 8n-bit-wide, four-clockcycle-data transfer at the internal DRAM core and eight corresponding n-bit-wide, onehalf-clock-cycle data transfers at the I/O pins. Read and write accesses to the device are burst-oriented. Accesses start at a selected location and continue for a burst length of eight or a chopped burst of four in a programmed sequence. Operation begins with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BG[1:0] select the bank group for x4/x8, and BG0 selects the bank group for x16; BA[1:0] select the bank, and A[17:0] select the row. See the Addressing section for more details). The address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst operation, determine if the auto PRECHARGE command is to be issued (via A10), and select BC4 or BL8 mode on-the-fly (OTF) (via A12) if enabled in the mode register. Prior to normal operation, the device must be powered up and initialized in a predefined manner. The following sections provide detailed information covering device reset and initialization, register definition, command descriptions, and device operation. NOTE: The use of the NOP command is allowed only when exiting maximum power saving mode or when entering gear-down mode. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 35 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM RESET and Initialization Procedure RESET and Initialization Procedure To ensure proper device function, the power-up and reset initialization default values for the following mode register (MR) settings are defined as: • • • • • • • Gear-down mode (MR3 A[3]): 0 = 1/2 rate Per-DRAM addressability (MR3 A[4]): 0 = disable Maximum power-saving mode (MR4 A[1]): 0 = disable CS to command/address latency (MR4 A[8:6]): 000 = disable CA parity latency mode (MR5 A[2:0]): 000 = disable Hard post package repair mode (MR4 A[13]): 0 = disable Soft post package repair mode (MR4 A[5]): 0 = disable Power-Up and Initialization Sequence The following sequence is required for power-up and initialization: 1. Apply power (RESET_n and TEN should be maintained below 0.2 × V DD while supplies ramp up; all other inputs may be undefined). When supplies have ramped to a valid stable level, RESET_n must be maintained below 0.2 × V DD for a minimum of tPW_RESET_L and TEN must be maintained below 0.2 × V DD for a minimum of 700μs. CKE is pulled LOW anytime before RESET_n is de-asserted (minimum time of 10ns). The power voltage ramp time between 300mV to V DD,min must be no greater than 200ms, and during the ramp, V DD must be greater than or equal to VDDQ and (VDD - V DDQ) < 0.3V. V PP must ramp at the same time or up to 10 minutes prior to V DD, and V PP must be equal to or higher than V DD at all times. The total time for which V PP is powered and V DD is unpowered should not exceed 360 cumulative hours. After V DD has ramped and reached a stable level, RESET_n must go high within 10 minutes. After RESET_n goes high, the initialization sequence must be started within 3 seconds. For debug purposes, the 10 minute and 3 second delay limits may be extended to 60 minutes each provided the DRAM is operated in this debug mode for no more than 360 cumulative hours. During power-up, the supply slew rate is governed by the limits stated in the table below and either condition A or condition B listed below must be met. Table 5: Supply Power-up Slew Rate Note: Symbol Min Max Unit Comment VDD_SL, VDDQ_SL, VPP_SL 0.004 600 V/ms Measured between 300mV and 80% of supply minimum VDD_ona N/A 200 ms VDD maximum ramp time from 300mV to VDD minimum VDDQ_ona N/A 200 ms VDDQ maximum ramp time from 300mV to VDDQ minimum 1. 20 MHz band-limited measurement. • Condition A: – Apply V PP without any slope reversal before or at the same time as V DD and VDDQ. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 36 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM RESET and Initialization Procedure 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN – VDD and V DDQ are driven from a single-power converter output and apply VDD/VDDQ without any slope reversal before or at the same time as V TT and VREFCA. – The voltage levels on all balls other than V DD, V DDQ, V SS, and V SSQ must be less than or equal to V DDQ and V DD on one side and must be greater than or equal to V SSQ and V SS on the other side. – VTT is limited to 0.76V MAX when the power ramp is complete. – VREFCA tracks V DD/2. • Condition B: – Apply V PP without any slope reversal before or at the same time as V DD. – Apply V DD without any slope reversal before or at the same time as V DDQ. – Apply V DDQ without any slope reversal before or at the same time as V TT and VREFCA. – The voltage levels on all pins other than V PP, V DD, V DDQ, V SS, and V SSQ must be less than or equal to V DDQ and V DD on one side and must be larger than or equal to V SSQ and V SS on the other side. After RESET_n is de-asserted, wait for a minimum of 500us, but no longer than 3 seconds, before allowing CKE to be registered HIGH at clock edge Td. During this time, the device will start internal state initialization; this will be done independently of external clocks. A reasonable attempt was made in the design to power up with the following default MR settings: gear-down mode (MR3 A[3]): 0 = 1/2 rate; per-DRAM addressability (MR3 A[4]): 0 = disable; maximum power-down (MR4 A[1]): 0 = disable; CS to command/address latency (MR4 A[8:6]): 000 = disable; CA parity latency mode (MR5 A[2:0]): 000 = disable. However, it should be assumed that at power up the MR settings are undefined and should be programmed as shown below. Clocks (CK_t, CK_c) need to be started and stabilized for at least 10ns or 5 tCK (whichever is larger) before CKE is registered HIGH at clock edge Td. Because CKE is a synchronous signal, the corresponding setup time to clock (tIS) must be met. Also, a DESELECT command must be registered (with tIS setup time to clock) at clock edge Td. After the CKE is registered HIGH after RESET, CKE needs to be continuously registered HIGH until the initialization sequence is finished, including expiration of tDLLK and tZQinit. The device keeps its ODT in High-Z state as long as RESET_n is asserted. Further, the SDRAM keeps its ODT in High-Z state after RESET_n de-assertion until CKE is registered HIGH. The ODT input signal may be in an undefined state until tIS before CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal may be statically held either LOW or HIGH. If RTT(NOM) is to be enabled in MR1, the ODT input signal must be statically held LOW. In all cases, the ODT input signal remains static until the power-up initialization sequence is finished, including the expiration of tDLLK and tZQinit. After CKE is registered HIGH, wait a minimum of RESET CKE EXIT time, tXPR, before issuing the first MRS command to load mode register (tXPR = MAX (tXS, 5 × tCK). Issue MRS command to load MR3 with all application settings, wait tMRD. Issue MRS command to load MR6 with all application settings, wait tMRD. Issue MRS command to load MR5 with all application settings, wait tMRD. Issue MRS command to load MR4 with all application settings, wait tMRD. Issue MRS command to load MR2 with all application settings, wait tMRD. Issue MRS command to load MR1 with all application settings, wait tMRD. 37 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM RESET and Initialization Procedure 12. 13. 14. 15. Issue MRS command to load MR0 with all application settings, wait tMOD. Issue a ZQCL command to start ZQ calibration. Wait for tDLLK and tZQinit to complete. The device will be ready for normal operation. Once the DRAM has been initialized, if the DRAM is in an idle state longer than 960ms, then either (a) REF commands must be issued within tREFI constraints (specification for posting allowed) or (b) CKE or CS_n must toggle once within every 960ms interval of idle time. For debug purposes, the 960ms delay limit maybe extended to 60 minutes provided the DRAM is operated in this debug mode for no more than 360 cumulative hours. A stable valid V DD level is a set DC level (0Hz to 250 KHz) and must be no less than VDD,min and no greater than V DD,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is stable. AC noise of ±60mV (greater than 250 KHz) is allowed on V DD provided the noise doesn't alter V DD to less than V DD,min or greater than V DD,max. A stable valid V DDQ level is a set DC level (0Hz to 250 KHz) and must be no less than VDDQ,min and no greater than V DDQ,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is stable. AC noise of ±60mV (greater than 250 KHz) is allowed on V DDQ provided the noise doesn't alter V DDQ to less than V DDQ,min or greater than V DDQ,max. A stable valid V PP level is a set DC level (0Hz to 250 KHz) and must be no less than VPP,min and no greater than V PP,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is stable. AC noise of ±120mV (greater than 250KHz) is allowed on V PP provided the noise doesn't alter V PP to less than V PP,min or greater than V PP,max. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 38 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM RESET and Initialization Procedure Figure 12: RESET and Initialization Sequence at Power-On Ramping Ta Tb Tc Te Td Tf Ti Th Tg Tj Tk CK_t, CK_c tCKSRX VPP VDD, VDDQ tPW_RESET_L T = 500μs RESET_n T (MIN) = 10ns tIS Valid CKE tDLLK tIS Command Note 1 BG, BA tXPR tMRD tMRD tMRD tZQinit tMOD MRS MRS MRS MRS MRx MRx MRx MRx ZQCL Note 1 Valid tIS tIS Static LOW in case RTT(NOM) is enabled at time Tg, otherwise static HIGH or LOW ODT Valid Valid RTT Time Break Notes: Don’t Care 1. From time point Td until Tk, a DES command must be applied between MRS and ZQCL commands. 2. MRS commands must be issued to all mode registers that have defined settings. 3. In general, there is no specific sequence for setting the MRS locations (except for dependent or co-related features, such as ENABLE DLL in MR1 prior to RESET DLL in MR0, for example). 4. TEN is not shown; however, it is assumed to be held LOW. RESET Initialization with Stable Power Sequence The following sequence is required for RESET at no power interruption initialization: 1. Assert RESET_n below 0.2 × V DD any time when reset is needed (all other inputs may be undefined). RESET_n needs to be maintained for minimum tPW_RESET. CKE is pulled LOW before RESET_n being de-asserted (minimum time 10ns). 2. Follow Steps 2 through 10 in the Reset and Initialization Sequence at Power-On Ramping procedure. When the reset sequence is complete, all counters except the refresh counters have been reset and the device is ready for normal operation. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 39 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM RESET and Initialization Procedure Figure 13: RESET Procedure at Power Stable Condition Ta Tb Tc Te Td Tf Ti Th Tg Tj Tk CK_t, CK_c tCKSRX VPP VDD , VDDQ tPW_RESET_S T = 500μs RESET_n T (MIN) = 10ns tIS Valid CKE tDLLK tIS Command Note 1 BG, BA tXPR tMRD tMRD tMRD tMOD MRS MRS MRS MRS MRx MRx MRx MRx tZQinit ZQCL Note 1 Valid tIS tIS Static LOW in case RTT(NOM) is enabled at time Tg, otherwise static HIGH or LOW ODT Valid Valid RTT Time Break Notes: Don’t Care 1. From time point Td until Tk, a DES command must be applied between MRS and ZQCL commands. 2. MRS commands must be issued to all mode registers that have defined settings. 3. In general, there is no specific sequence for setting the MRS locations (except for dependent or co-related features, such as ENABLE DLL in MR1 prior to RESET DLL in MR0, for example). 4. TEN is not shown; however, it is assumed to be held LOW. Uncontrolled Power-Down Sequence In the event of an uncontrolled ramping down of V PP supply, V PP is allowed to be less than V DD provided the following conditions are met: • Condition A: V PP and V DD/VDDQ are ramping down (as part of turning off) from normal operating levels. • Condition B: The amount that V PP may be less than V DD/VDDQ is less than or equal to 500mV. • Condition C: The time V PP may be less than V DD is ื10ms per occurrence with a total accumulated time in this state ื100ms. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 40 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Programming Mode Registers • Condition D: The time V PP may be less than 2.0V and above V SS while turning off is ื15ms per occurrence with a total accumulated time in this state ื150ms. Programming Mode Registers For application flexibility, various functions, features, and modes are programmable in seven mode registers (MRn) provided by the device as user defined variables that must be programmed via a MODE REGISTER SET (MRS) command. Because the default values of the mode registers are not defined, contents of mode registers must be fully initialized and/or re-initialized; that is, they must be written after power-up and/or reset for proper operation. The contents of the mode registers can be altered by re-executing the MRS command during normal operation. When programming the mode registers, even if the user chooses to modify only a sub-set of the MRS fields, all address fields within the accessed mode register must be redefined when the MRS command is issued. MRS and DLL RESET commands do not affect array contents, which means these commands can be executed any time after power-up without affecting the array contents. The MRS command cycle time, tMRD, is required to complete the WRITE operation to the mode register and is the minimum time required between the two MRS commands shown in the tMRD Timing figure. Some of the mode register settings affect address/command/control input functionality. In these cases, the next MRS command can be allowed when the function being updated by the current MRS command is completed. These MRS commands don’t apply tMRD timing to the next MRS command; however, the input cases have unique MR setting procedures, so refer to individual function descriptions: • • • • • • • Gear-down mode Per-DRAM addressability CMD address latency CA parity latency mode VREFDQ training value VREFDQ training mode VREFDQ training range Some mode register settings may not be supported because they are not required by certain speed bins. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 41 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Programming Mode Registers Figure 14: tMRD Timing T0 T1 T2 Ta0 Ta1 Tb0 Tb1 Tb2 Tc0 Tc1 Tc2 Command Valid Valid Valid MRS2 DES DES DES DES DES MRS2 Valid Address Valid Valid Valid Valid Valid Valid Valid Valid Valid Valid Valid CK_c CK_t CKE tMRD Updating settings Old settings Settings Time Break Don’t Care 1. This timing diagram depicts CA parity mode “disabled” case. 2. tMRD applies to all MRS commands with the following exceptions: Gear-down mode CA parity latency mode CMD address latency Per-DRAM addressability mode VREFDQ training value, VREFDQ training mode, and VREFDQ training range Notes: The MRS command to nonMRS command delay, tMOD, is required for the DRAM to update features, except for those noted in note 2 in figure below where the individual function descriptions may specify a different requirement. tMOD is the minimum time required from an MRS command to a nonMRS command, excluding DES, as shown in the tMOD Timing figure. Figure 15: tMOD Timing T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4 Tb0 Tb1 Tb2 Command Valid Valid Valid MRS2 DES DES DES DES DES Valid Valid Address Valid Valid Valid Valid Valid Valid Valid Valid Valid Valid Valid CK_c CK_t CKE t Settings MOD Updating settings Old settings New settings Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Don’t Care 1. This timing diagram depicts CA parity mode “disabled” case. 2. tMOD applies to all MRS commands with the following exceptions: DLL enable, DLL RESET, Gear-down mode VREFDQ training value, internal VREF training monitor, VREFDQ training mode, and VREFDQ training range 42 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Programming Mode Registers Maximum power savings mode , Per-DRAM addressability mode, and CA parity latency mode The mode register contents can be changed using the same command and timing requirements during normal operation as long as the device is in idle state; that is, all banks are in the precharged state with tRP satisfied, all data bursts are completed, and CKE is HIGH prior to writing into the mode register. If the RTT(NOM) feature is enabled in the mode register prior to and/or after an MRS command, the ODT signal must continuously be registered LOW, ensuring RTT is in an off state prior to the MRS command. The ODT signal may be registered HIGH after tMOD has expired. If the RTT(NOM) feature is disabled in the mode register prior to and after an MRS command, the ODT signal can be registered either LOW or HIGH before, during, and after the MRS command. The mode registers are divided into various fields depending on functionality and modes. In some mode register setting cases, function updating takes longer than tMOD. This type of MRS does not apply tMOD timing to the next valid command, excluding DES. These MRS command input cases have unique MR setting procedures, so refer to individual function descriptions. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 43 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 0 Mode Register 0 Mode register 0 (MR0) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR0 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR0 Register Definition table. Table 6: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command. Table 7: MR0 Register Definition Mode Register 21 20:18 17 13,11:9 Description RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved WR (WRITE recovery)/RTP (READ-to-PRECHARGE) 0000 = 10 / 5 clocks1 0001 = 12 / 6 clocks 0010 = 14 / 7 clocks1 0011 = 16 / 8 / clocks 0100 = 18 / 9 clocks1 0101 = 20 /10 clocks 0110 = 24 / 12 clocks 0111 = 22 / 11 clocks1 1000 = 26 / 13 clocks1 1001 = 28 / 14 clocks2 1010 through 1111 = Reserved CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 44 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 0 Table 7: MR0 Register Definition (Continued) Mode Register Description 8 DLL reset 0 = No 1 = Yes 7 Test mode (TM) – Manufacturer use only 0 = Normal operating mode, must be programmed to 0 12, 6:4, 2 3 1:0 CAS latency (CL) – Delay in clock cycles from the internal READ command to first data-out 00000 = 9 clocks1 00001 = 10 clocks 00010 = 11 clocks1 00011 = 12 clocks 00100 = 13 clocks1 00101 = 14 clocks 00110 = 15 clocks1 00111 = 16 clocks 01000 = 18 clocks 01001 = 20 clocks 01010 = 22 clocks 01011 = 24 clocks 01100 = 23 clocks1 01101 = 17 clocks1 01110 = 19 clocks1 01111 = 21 clocks 1 10000 = 25 clocks 10001 = 26 clocks 10011 = 28 clocks 10100 = 29 clocks1 10101 = 30 clocks 10110 = 31 clocks1 10111 = 32 clocks Burst type (BT) – Data burst ordering within a READ or WRITE burst access 0 = Nibble sequential 1 = Interleave Burst length (BL) – Data burst size associated with each read or write access 00 = BL8 (fixed) 01 = BC4 or BL8 (on-the-fly) 10 = BC4 (fixed) 11 = Reserved Notes: 1. Not allowed when 1/4 rate gear-down mode is enabled. 2. If WR requirement exceeds 28 clocks or RTP exceeds 14 clocks, WR should be set to 28 clocks and RTP should be set to 14 clocks. Burst Length, Type, and Order Accesses within a given burst may be programmed to sequential or interleaved order. The ordering of accesses within a burst is determined by the burst length, burst type, CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 45 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 0 and the starting column address as shown in the following table. Burst length options include fixed BC4, fixed BL8, and on-the-fly (OTF), which allows BC4 or BL8 to be selected coincidentally with the registration of a READ or WRITE command via A12/BC_n. Table 8: Burst Type and Burst Order Note 1 applies to the entire table Starting Column Address Burst READ/ (A[2, 1, 0]) Length WRITE BC4 READ WRITE BL8 READ WRITE Notes: Burst Type = Sequential (Decimal) Burst Type = Interleaved (Decimal) Notes 000 0, 1, 2, 3, T, T, T, T 0, 1, 2, 3, T, T, T, T 2, 3 001 1, 2, 3, 0, T, T, T, T 1, 0, 3, 2, T, T, T, T 2, 3 010 2, 3, 0, 1, T, T, T, T 2, 3, 0, 1, T, T, T, T 2, 3 011 3, 0, 1, 2, T, T, T, T 3, 2, 1, 0, T, T, T, T 2, 3 100 4, 5, 6, 7, T, T, T, T 4, 5, 6, 7, T, T, T, T 2, 3 101 5, 6, 7, 4, T, T, T, T 5, 4, 7, 6, T, T, T, T 2, 3 110 6, 7, 4, 5, T, T, T, T 6, 7, 4, 5, T, T, T, T 2, 3 111 7, 4, 5, 6, T, T, T, T 7, 6, 5, 4, T, T, T, T 2, 3 0, V, V 0, 1, 2, 3, X, X, X, X 0, 1, 2, 3, X, X, X, X 2, 3 1, V, V 4, 5, 6, 7, X, X, X, X 4, 5, 6, 7, X, X, X, X 2, 3 000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 001 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 010 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 011 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 101 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 110 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 111 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 V, V, V 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 3 1. 0...7 bit number is the value of CA[2:0] that causes this bit to be the first read during a burst. 2. When setting burst length to BC4 (fixed) in MR0, the internal WRITE operation starts two clock cycles earlier than for the BL8 mode, meaning the starting point for tWR and tWTR will be pulled in by two clocks. When setting burst length to OTF in MR0, the internal WRITE operation starts at the same time as a BL8 (even if BC4 was selected during column time using A12/BC4_n) meaning that if the OTF MR0 setting is used, the starting point for tWR and tWTR will not be pulled in by two clocks as described in the BC4 (fixed) case. 3. T = Output driver for data and strobes are in High-Z. V = Valid logic level (0 or 1), but respective buffer input ignores level on input pins. X = “Don’t Care.” CAS Latency The CAS latency (CL) setting is defined in the MR0 Register Definition table. CAS latency is the delay, in clock cycles, between the internal READ command and the availability of the first bit of output data. The device does not support half-clock latencies. The CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 46 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 0 overall read latency (RL) is defined as additive latency (AL) + CAS latency (CL): RL = AL + CL. Test Mode The normal operating mode is selected by MR0[7] and all other bits set to the desired values shown in the MR0 Register Definition table. Programming MR0[7] to a value of 1 places the device into a DRAM manufacturer-defined test mode to be used only by the manufacturer, not by the end user. No operations or functionality is specified if MR0[7] = 1. Write Recovery (WR)/READ-to-PRECHARGE The programmed write recovery (WR) value is used for the auto precharge feature along with tRP to determine tDAL. WR for auto precharge (MIN) in clock cycles is calculated by dividing tWR (in ns) by tCK (in ns) and rounding to the next integer using the rounding algorithms found in the Converting Time-Based Specifications to Clock-Based Requirements section. The WR value must be programmed to be equal to or larger than tWR (MIN). When both DM and write CRC are enabled in the mode register, the device calculates CRC before sending the write data into the array; tWR values will change when enabled. If there is a CRC error, the device blocks the WRITE operation and discards the data. Internal READ-to-PRECHARGE (RTP) command delay for auto precharge (MIN) in clock cycles is calculated by dividing tRTP (in ns) by tCK (in ns) and rounding to the next integer using the rounding algorithms found in the Converting Time-Based Specifications to Clock-Based Requirements section. The RTP value in the mode register must be programmed to be equal to or larger than RTP (MIN). The programmed RTP value is used with tRP to determine the ACT timing to the same bank. DLL RESET The DLL reset bit is self-clearing, meaning that it returns to the value of 0 after the DLL RESET function has been issued. After the DLL is enabled, a subsequent DLL RESET should be applied. Any time the DLL RESET function is used, tDLLK must be met before functions requiring the DLL can be used. Such as READ commands or synchronous ODT operations, for example. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 47 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 1 Mode Register 1 Mode register 1 (MR1) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR1 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR1 Register Definition table. Table 9: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command. Table 10: MR1 Register Definition Mode Register 21 20:18 Description RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU 17 N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved 12 Data output disable (Qoff) – Output buffer disable 0 = Enabled (normal operation) 1 = Disabled (both ODI and RTT) 11 Termination data strobe (TDQS) – Additional termination pins (x8 configuration only) 0 = TDQS disabled 1 = TDQS enabled CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 48 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 1 Table 10: MR1 Register Definition (Continued) Mode Register 10, 9, 8 7 13, 6, 5 Description Nominal ODT (RTT(NOM) – Data bus termination setting 000 = RTT(NOM) disabled 001 = RZQ/4 (60 ohm) 010 = RZQ/2 (120 ohm) 011 = RZQ/6 (40 ohm) 100 = RZQ/1 (240 ohm) 101 = RZQ/5 (48 ohm) 110 = RZQ/3 (80 ohm) 111 = RZQ/7 (34 ohm) Write leveling (WL) – Write leveling mode 0 = Disabled (normal operation) 1 = Enabled (enter WL mode) Rx CTLE Control 000 = Vendor Default 001 = Vendor Defined 010 = Vendor Defined 011 = Vendor Defined 100 = Vendor Defined 101 = Vendor Defined 110 = Vendor Defined 111 = Vendor Defined 4, 3 Additive latency (AL) – Command additive latency setting 00 = 0 (AL disabled) 01 = CL - 11 10 = CL - 2 11 = Reserved 2, 1 Output driver impedance (ODI) – Output driver impedance setting 00 = RZQ/7 (34 ohm) 01 = RZQ/5 (48 ohm) 10 = Reserved (Although not JEDEC-defined and not tested, this setting will provide RZQ/6 or 40 ohm) 11 = Reserved 0 DLL enable – DLL enable feature 0 = DLL disabled 1 = DLL enabled (normal operation) Note: 1. Not allowed when 1/4 rate gear-down mode is enabled. DLL Enable/DLL Disable The DLL must be enabled for normal operation and is required during power-up initialization and upon returning to normal operation after having the DLL disabled. During normal operation (DLL enabled with MR1[0]) the DLL is automatically disabled when entering the SELF REFRESH operation and is automatically re-enabled upon exit of the SELF REFRESH operation. Any time the DLL is enabled and subsequently reset, tDLLK clock cycles must occur before a READ or SYNCHRONOUS ODT command can be issued to allow time for the internal clock to be synchronized with the external clock. Fail- CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 49 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 1 ing to wait for synchronization to occur may result in a violation of the tDQSCK, tAON, or tAOF parameters. During tDLLK, CKE must continuously be registered HIGH. The device does not require DLL for any WRITE operation, except when R TT(WR) is enabled and the DLL is required for proper ODT operation. The direct ODT feature is not supported during DLL off mode. The ODT resistors must be disabled by continuously registering the ODT pin LOW and/or by programming the RTT(NOM) bits MR1[9,6,2] = 000 via an MRS command during DLL off mode. The dynamic ODT feature is not supported in DLL off mode; to disable dynamic ODT externally, use the MRS command to set RTT(WR), MR2[10:9] = 00. Output Driver Impedance Control The output driver impedance of the device is selected by MR1[2,1], as shown in the MR1 Register Definition table. ODT RTT(NOM) Values The device is capable of providing three different termination values: RTT(Park), RTT(NOM), and RTT(WR). The nominal termination value, R TT(NOM), is programmed in MR1. A separate value, RTT(WR), may be programmed in MR2 to enable a unique RTT value when ODT is enabled during WRITE operations. The R TT(WR) value can be applied during WRITE commands even when RTT(NOM) is disabled. A third RTT value, RTT(Park), is programed in MR5. RTT(Park) provides a termination value when the ODT signal is LOW. Additive Latency The ADDITIVE LATENCY (AL) operation is supported to make command and data buses efficient for sustainable bandwidths in the device. In this operation, the device allows a READ or WRITE command (either with or without auto precharge) to be issued immediately after the ACTIVATE command. The command is held for the time of AL before it is issued inside the device. READ latency (RL) is controlled by the sum of the AL and CAS latency (CL) register settings. WRITE latency (WL) is controlled by the sum of the AL and CAS WRITE latency (CWL) register settings. Table 11: Additive Latency (AL) Settings A4 A3 AL 0 0 0 (AL disabled) 0 1 CL - 1 1 0 CL - 2 1 1 Reserved Note: 1. AL has a value of CL - 1 or CL - 2 based on the CL values programmed in the MR0 register. Rx CTLE Control The Mode Register for Rx CTLE Control MR1[A13,A6,A5] is vendor specific. Since CTLE circuits can not be typically bypassed a disable option is not provided. Instead, a vendor optimized setting is given. It should be noted that the settings are not specifically linear CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 50 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 1 in relationship to the vendor optimized setting, so the host may opt to instead walk through all the provided options and use the setting that works best in their environment. Write Leveling For better signal integrity, the device uses fly-by topology for the commands, addresses, control signals, and clocks. Fly-by topology benefits from a reduced number of stubs and their lengths, but it causes flight-time skew between clock and strobe at every DRAM on the DIMM. This makes it difficult for the controller to maintain tDQSS, tDSS, and tDSH specifications. Therefore, the device supports a write leveling feature that allows the controller to compensate for skew. Output Disable The device outputs may be enabled/disabled by MR1[12] as shown in the MR1 Register Definition table. When MR1[12] is enabled (MR1[12] = 1) all output pins (such as DQ and DQS) are disconnected from the device, which removes any loading of the output drivers. For example, this feature may be useful when measuring module power. For normal operation, set MR1[12] to 0. Termination Data Strobe Termination data strobe (TDQS) is a feature of the x8 device and provides additional termination resistance outputs that may be useful in some system configurations. Because this function is available only in a x8 configuration, it must be disabled for x4 and x16 configurations. While TDQS is not supported in x4 or x16 configurations, the same termination resistance function that is applied to the TDQS pins is applied to the DQS pins when enabled via the mode register. The TDQS, DBI, and DATA MASK (DM) functions share the same pin. When the TDQS function is enabled via the mode register, the DM and DBI functions are not supported. When the TDQS function is disabled, the DM and DBI functions can be enabled separately. Table 12: TDQS Function Matrix TDQS Data Mask (DM) WRITE DBI READ DBI Disabled Enabled Disabled Enabled or disabled Enabled CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Disabled Enabled Enabled or disabled Disabled Disabled Enabled or disabled Disabled Disabled Disabled 51 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 2 Mode Register 2 Mode register 2 (MR2) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR2 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR2 Register Definition table. Table 13: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command. Table 14: MR2 Register Definition Mode Register Description 21 20:18 RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU 17 N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved 13 RFU 0 = Must be programmed to 0 1 = Reserved 12 WRITE data bus CRC 0 = Disabled 1 = Enabled CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 52 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 2 Table 14: MR2 Register Definition (Continued) Mode Register Description 11:9 Dynamic ODT (RTT(WR)) – Data bus termination setting during WRITEs 000 = RTT(WR) disabled (WRITE does not affect RTT value) 001 = RZQ/2 (120 ohm) 010 = RZQ/1 (240 ohm) 011 = High-Z 100 = RZQ/3 (80 ohm) 101 = Reserved 110 = Reserved 111 = Reserved 7:6 Low-power auto self refresh (LPASR) – Mode summary 00 = Manual mode - Normal operating temperature range (TC: -40°C–85°C) 01 = Manual mode - Reduced operating temperature range (TC: -40°C–45°C) 10 = Manual mode - Extended operating temperature range (TC: -40°C–105°C) 11 = ASR mode - Automatically switching among all modes 5:3 CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in 1tCK WRITE preamble 000 = 9 (DDR4-1600)1 001 = 10 (DDR4-1866) 010 = 11 (DDR4-2133/1600)1 011 = 12 (DDR4-2400/1866) 100 = 14 (DDR4-2666/2133) 101 = 16 (DDR4-2933,3200/2400) 110 = 18 (DDR4-2666) 111 = 20 (DDR4-2933, 3200) CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in 2tCK WRITE preamble 000 = N/A 001 = N/A 010 = N/A 011 = N/A 100 = 14 (DDR4-2400) 101 = 16 (DDR4-2666/2400) 110 = 18 (DDR4-2933, 3200/2666) 111 = 20 (DDR4-2933, 3200) 8, 2 RFU 0 = Must be programmed to 0 1 = Reserved 1:0 RFU 0 = Must be programmed to 0 1 = Reserved Note: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Not allowed when 1/4 rate gear-down mode is enabled. 53 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 2 CAS WRITE Latency CAS WRITE latency (CWL) is defined by MR2[5:3] as shown in the MR2 Register Definition table. CWL is the delay, in clock cycles, between the internal WRITE command and the availability of the first bit of input data. The device does not support any half-clock latencies. The overall WRITE latency (WL) is defined as additive latency (AL) + parity latency (PL) + CAS WRITE latency (CWL): WL = AL +PL + CWL. Low-Power Auto Self Refresh Low-power auto self refresh (LPASR) is supported in the device. Applications requiring SELF REFRESH operation over different temperature ranges can use this feature to optimize the IDD6 current for a given temperature range as specified in the MR2 Register Definition table. Dynamic ODT In certain applications and to further enhance signal integrity on the data bus, it is desirable to change the termination strength of the device without issuing an MRS command. This may be done by configuring the dynamic ODT (R TT(WR)) settings in MR2[11:9]. In write leveling mode, only RTT(NOM) is available. Write Cyclic Redundancy Check Data Bus The write cyclic redundancy check (CRC) data bus feature during writes has been added to the device. When enabled via the mode register, the data transfer size goes from the normal 8-bit (BL8) frame to a larger 10-bit UI frame, and the extra two UIs are used for the CRC information. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 54 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 3 Mode Register 3 Mode register 3 (MR3) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR3 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR3 Register Definition table. Table 15: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command. Table 16: MR3 Register Definition Mode Register 21 20:18 Description RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU 17 N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved 13 RFU 0 = Must be programmed to 0 1 = Reserved 12:11 Multipurpose register (MPR) – Read format 00 = Serial 01 = Parallel 10 = Staggered 11 = Reserved 10:9 WRITE CMD latency when CRC/DM enabled 00 = 4CK (DDR4-1600) 01 = 5CK (DDR4-1866/2133/2400/2666) 10 = 6CK (DDR4-2933/3200) 11 = Reserved CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 55 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 3 Table 16: MR3 Register Definition (Continued) Mode Register 8:6 Description Fine granularity refresh mode 000 = Normal mode (fixed 1x) 001 = Fixed 2x 010 = Fixed 4x 011 = Reserved 100 = Reserved 101 = On-the-fly 1x/2x 110 = On-the-fly 1x/4x 111 = Reserved 5 Temperature sensor status 0 = Disabled 1 = Enabled 4 Per-DRAM addressability 0 = Normal operation (disabled) 1 = Enable 3 Gear-down mode – Ratio of internal clock to external data rate 0 = [1:1]; (1/2 rate data) 1 = [2:1]; (1/4 rate data) 2 Multipurpose register (MPR) access 0 = Normal operation 1 = Data flow from MPR 1:0 MPR page select 00 = Page 0 01 = Page 1 10 = Page 2 11 = Page 3 (restricted for DRAM manufacturer use only) Multipurpose Register The multipurpose register (MPR) is used for several features: • Readout of the contents of the MRn registers • WRITE and READ system patterns used for data bus calibration • Readout of the error frame when the command address parity feature is enabled To enable MPR, issue an MRS command to MR3[2] = 1. MR3[12:11] define the format of read data from the MPR. Prior to issuing the MRS command, all banks must be in the idle state (all banks precharged and tRP met). After MPR is enabled, any subsequent RD or RDA commands will be redirected to a specific mode register. The mode register location is specified with the READ command using address bits. The MR is split into upper and lower halves to align with a burst length limitation of 8. Power-down mode, SELF REFRESH, and any other nonRD/RDA or nonWR/WRA commands are not allowed during MPR mode. The RESET function is supported during MPR mode, which requires device re-initialization. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 56 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 3 WRITE Command Latency When CRC/DM is Enabled The WRITE command latency (WCL) must be set when both write CRC and DM are enabled for write CRC persistent mode. This provides the extra time required when completing a WRITE burst when write CRC and DM are enabled. This means at data rates less than or equal to 1600 MT/s then 4nCK is used, 5nCK or 6nCK are not allowed; at data rates greater than 1600 MT/s and less than or equal to 2666 MT/s then 5nCK is used, 4nCK or 6nCK are not allowed; and at data rates greater than 2666 MT/s and less than or equal to 3200 MT/s then 6nCK is used; 4nCK or 5nCK are not allowed. Fine Granularity Refresh Mode This mode had been added to DDR4 to help combat the performance penalty due to refresh lockout at high densities. Shortening tRFC and decreasing cycle time allows more accesses to the chip and allows for increased scheduling flexibility. Temperature Sensor Status This mode directs the DRAM to update the temperature sensor status at MPR Page 2, MPR0 [4,3]. The temperature sensor setting should be updated within 32ms; when an MPR read of the temperature sensor status bits occurs, the temperature sensor status should be no older than 32ms. Per-DRAM Addressability This mode allows commands to be masked on a per device basis providing any device in a rank (devices sharing the same command and address signals) to be programmed individually. As an example, this feature can be used to program different ODT or V REF values on DRAM devices within a given rank. Gear-Down Mode The device defaults in 1/2 rate (1N) clock mode and uses a low frequency MRS command followed by a sync pulse to align the proper clock edge for operating the control lines CS_n, CKE, and ODT when in 1/4 rate (2N) mode. For operation in 1/2 rate mode, no MRS command or sync pulse is required. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 57 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 4 Mode Register 4 Mode register 4 (MR4) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR4 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR4 Register Definition table. Table 17: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET (MRS) command. Table 18: MR4 Register Definition Mode Register 21 20:18 Description RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU 17 N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved 13 Hard Post Package Repair (hPPR mode) 0 = Disabled 1 = Enabled 12 WRITE preamble setting 0 = 1tCK toggle1 1 = 2tCK toggle (When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable tCK range.) 11 READ preamble setting 0 = 1tCK toggle1 1 = 2tCK toggle 10 READ preamble training 0 = Disabled 1 = Enabled CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 58 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 4 Table 18: MR4 Register Definition (Continued) Mode Register 9 8:6 Description Self refresh abort mode 0 = Disabled 1 = Enabled CMD (CAL) address latency 000 = 0 clocks (disabled) 001 =3 clocks1 010 = 4 clocks 011 = 5 clocks1 100 = 6 clocks 101 = 8 clocks 110 = Reserved 111 = Reserved 5 soft Post Package Repair (sPPR mode) 0 = Disabled 1 = Enabled 4 Internal VREF monitor 0 = Disabled 1 = Enabled 3 Temperature controlled refresh mode 0 = Disabled 1 = Enabled 2 Temperature controlled refresh range 0 = Normal temperature mode 1 = Extended temperature mode 1 Maximum power savings mode 0 = Normal operation 1 = Enabled 0 RFU 0 = Must be programmed to 0 1 = Reserved Note: 1. Not allowed when 1/4 rate gear-down mode is enabled. Hard Post Package Repair Mode The hard post package repair (hPPR) mode feature is JEDEC optional for 4Gb DDR4 memories. Performing an MPR read to page 2 MPR0 [7] indicates whether hPPR mode is available (A7 = 1) or not available (A7 = 0). hPPR mode provides a simple and easy repair method of the device after placed in the system. One row per bank can be repaired. The repair process is irrevocable so great care should be exercised when using. Soft Post Package Repair Mode The soft post package repair (sPPR) mode feature is JEDEC optional for 4Gb and 8Gb DDR4 memories. Performing an MPR read to page 2 MPR0 [6] indicates whether sPPR mode is available (A6 = 1) or not available (A6 = 0). sPPR mode provides a simple and CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 59 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 4 easy repair method of the device after placed in the system. One row per bank can be repaired. The repair process is revocable by either doing a reset or power-down or by rewriting a new address in the same bank. WRITE Preamble Programmable WRITE preamble, tWPRE, can be set to 1tCK or 2tCK via the MR4 register. The 1tCK setting is similar to DDR3. However, when operating in 2tCK WRITE preamble mode, CWL must be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable tCK range. Some even settings will require addition of 2 clocks. If the alternate longer CWL was used, the additional clocks will not be required. READ Preamble Programmable READ preamble tRPRE can be set to 1tCK or 2tCK via the MR4 register. Both the 1tCK and 2tCK DDR4 preamble settings are different from that defined for the DDR3 SDRAM. Both DDR4 READ preamble settings may require the memory controller to train (or read level) its data strobe receivers using the READ preamble training. READ Preamble Training Programmable READ preamble training can be set to 1tCK or 2tCK. This mode can be used by the memory controller to train or READ level its data strobe receivers. Temperature-Controlled Refresh When temperature-controlled refresh mode is enabled, the device may adjust the internal refresh period to be longer than tREFI of the normal temperature range by skipping external REFRESH commands with the proper gear ratio. For example, the DRAM temperature sensor detected less than 45°C. Normal temperature mode covers the range of -40°C to 85°C, while the extended temperature range covers -40°C to 105°C. Command Address Latency COMMAND ADDRESS LATENCY (CAL) is a power savings feature and can be enabled or disabled via the MRS setting. CAL is defined as the delay in clock cycles (tCAL) between a CS_n registered LOW and its corresponding registered command and address. The value of CAL (in clocks) must be programmed into the mode register according to the tCAL(ns)/tCK(ns) rounding algorithms found in the Converting Time-Based Specifications to Clock-Based Requirements section. Internal VREF Monitor This mode enables output of internally generated V REFDQ for monitoring on DQ0, DQ1, DQ2, and DQ3. May be used during V REFDQ training and test. While in this mode, R TT should be set to High-Z. V REF_time must be increased by 10ns if DQ load is 0pF, plus an additional 15ns per pF of loading. This measurement is for verification purposes and is NOT an external voltage supply pin. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 60 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 4 Maximum Power Savings Mode This mode provides the lowest power mode where data retention is not required. When the device is in the maximum power saving mode, it does not need to guarantee data retention or respond to any external command (except the MAXIMUM POWER SAVING MODE EXIT command and during the assertion of RESET_n signal LOW). CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 61 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 5 Mode Register 5 Mode register 5 (MR5) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR5 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR5 Register Definition table. Table 19: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command. Table 20: MR5 Register Definition Mode Register 21 20:18 Description RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU 17 N/A on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved 13 RFU 0 = Must be programmed to 0 1 = Reserved 12 Data bus inversion (DBI) – READ DBI enable 0 = Disabled 1 = Enabled 11 Data bus inversion (DBI) – WRITE DBI enable 0 = Disabled 1 = Enabled 10 Data mask (DM) 0 = Disabled 1 = Enabled CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 62 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 5 Table 20: MR5 Register Definition (Continued) Mode Register 9 8:6 Description CA parity persistent error mode 0 = Disabled 1 = Enabled Parked ODT value (RTT(Park)) 000 = RTT(Park) disabled 001 = RZQ/4 (60 ohm) 010 = RZQ/2 (120 ohm) 011 = RZQ/6 (40 ohm) 100 = RZQ/1 (240 ohm) 101 = RZQ/5 (48 ohm) 110 = RZQ/3 (80 ohm) 111 = RZQ/7 (34 ohm) 5 ODT input buffer for power-down 0 = Buffer enabled 1 = Buffer disabled 4 CA parity error status 0 = Clear 1 = Error 3 CRC error status 0 = Clear 1 = Error 2:0 CA parity latency mode 000 = Disable 001 = 4 clocks (DDR4-1600/1866/2133) 010 = 5 clocks (DDR4-2400/2666)1 011 = 6 clocks (DDR4-2933/3200) 100 = Reserved 101 = Reserved 110 = Reserved 111 = Reserved Note: 1. Not allowed when 1/4 rate gear-down mode is enabled. Data Bus Inversion The DATA BUS INVERSION (DBI) function has been added to the device and is supported only for x8 and x16 configurations (x4 is not supported). The DBI function shares a common pin with the DM and TDQS functions. The DBI function applies to both READ and WRITE operations; Write DBI cannot be enabled at the same time the DM function is enabled. Refer to the TDQS Function Matrix table for valid configurations for all three functions (TDQS/DM/DBI). DBI is not allowed during MPR READ operation; during an MPR read, the DRAM ignores the read DBI enable setting in MR5 bit A12. DBI is not supported for 3DS devices and should be disabled in MR5. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 63 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 5 Data Mask The DATA MASK (DM) function, also described as a partial write, has been added to the device and is supported only for x8 and x16 configurations (x4 is not supported). The DM function shares a common pin with the DBI and TDQS functions. The DM function applies only to WRITE operations and cannot be enabled at the same time the write DBI function is enabled. Refer to the TDQS Function Matrix table for valid configurations for all three functions (TDQS/DM/DBI). CA Parity Persistent Error Mode Normal CA parity mode (CA parity persistent mode disabled) no longer performs CA parity checking while the parity error status bit remains set at 1. However, with CA parity persistent mode enabled, CA parity checking continues to be performed when the parity error status bit is set to a 1. ODT Input Buffer for Power-Down This feature determines whether the ODT input buffer is on or off during power-down. If the input buffer is configured to be on (enabled during power-down), the ODT input signal must be at a valid logic level. If the input buffer is configured to be off (disabled during power-down), the ODT input signal may be floating and the device does not provide RTT(NOM) termination. However, the device may provide RTT(Park) termination depending on the MR settings. This is primarily for additional power savings. CA Parity Error Status The device will set the error status bit to 1 upon detecting a parity error. The parity error status bit remains set at 1 until the device controller clears it explicitly using an MRS command. CRC Error Status The device will set the error status bit to 1 upon detecting a CRC error. The CRC error status bit remains set at 1 until the device controller clears it explicitly using an MRS command. CA Parity Latency Mode CA parity is enabled when a latency value, dependent on tCK, is programmed; this accounts for parity calculation delay internal to the device. The normal state of CA parity is to be disabled. If CA parity is enabled, the device must ensure there are no parity errors before executing the command. CA parity signal (PAR) covers ACT_n, RAS_n/A16 , CAS_n/A15, WE_n/A14, and the address bus including bank address and bank group bits. The control signals CKE, ODT, and CS_n are not included in the parity calculation. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 64 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Mode Register 6 Mode Register 6 Mode register 6 (MR6) controls various device operating modes as shown in the following register definition table. Not all settings listed may be available on a die; only settings required for speed bin support are available. MR6 is written by issuing the MRS command while controlling the states of the BGx, BAx, and Ax address pins. The mapping of address pins during the MRS command is shown in the following MR6 Register Definition table. Table 21: Address Pin Mapping Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 bus _n _n _n Mode register 21 20 19 18 Note: 17 – – – 13 12 11 10 9 A8 A7 A6 A5 A4 A3 A2 A1 A0 8 7 6 5 4 3 2 1 0 1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command. Table 22: MR6 Register Definition Mode Register 21 20:18 17 12:10 Description RFU 0 = Must be programmed to 0 1 = Reserved MR select 000 = MR0 001 = MR1 010 = MR2 011 = MR3 100 = MR4 101 = MR5 110 = MR6 111 = DNU NA on 4Gb and 8Gb, RFU 0 = Must be programmed to 0 1 = Reserved Data Rate 000 = Data rateื 1333 Mb/s (1333 Mb/s) 001 = 1333 Mb/s *Skew). DRAMc represents a DRAM with the latest skews (positive tDQS2DQ, tDQHz > *Skew). t 3. DS/tDH are traditional data-eye setup/hold edges at DC levels. tDS and tDH are not specified; tDH and tDS may be any value provided the pulse width and Rx mask limits are not violated. tDH (MIN) > TdiVW + tDS (MIN) + tDQ2DQ. The DDR4 SDRAM's input receivers are expected to capture the input data with an Rx mask of TdiVW provided the minimum pulse width is satisfied. The DRAM controller will have to train the data input buffer to utilize the Rx mask specifications to this maxi- CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 226 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation mum benefit. If the DRAM controller does not train the data input buffers, then the worst case limits have to be used for the Rx mask (TdiVW + 2 × tDQS2DQ), which will generally be the classical minimum ( tDS and tDH) and is required as well. Figure 168: Example of Data Input Requirements Without Training TdiVW + 2 × tDQS2DQ VdiVW VIH(DC) 0.5 × VdiVW Rx Mask VCENTDQ,midpoint 0.5 × VdiVW VIL(DC) tDS tDH 0.5 × TdiVW + tDQS2DQ 0.5 × TdiVW + tDQS2DQ DQS_c DQS_t WRITE Burst Operation The following write timing diagrams are intended to help understand each write parameter's meaning and are only examples. Each parameter will be defined in detail separately. In these write timing diagrams, CK and DQS are shown aligned, and DQS and DQ are shown center-aligned for the purpose of illustration. DDR4 WRITE command supports bursts of BL8 (fixed), BC4 (fixed), and BL8/BC4 onthe-fly (OTF); OTF uses address A12 to control OTF when OTF is enabled: • A12 = 0, BC4 (BC4 = burst chop) • A12 = 1, BL8 WRITE commands can issue precharge automatically with a WRITE with auto precharge (WRA) command, which is enabled by A10 HIGH. • WRITE command with A10 = 0 (WR) performs standard write, bank remains active after WRITE burst • WRITE command with A10 = 1 (WRA) performs write with auto precharge, bank goes into precharge after WRITE burst The DATA MASK (DM) function is supported for the x8 and x16 configurations only (the DM function is not supported on x4 devices). The DM function shares a common pin with the DBI_n and TDQS functions. The DM function only applies to WRITE operations and cannot be enabled at the same time the DBI function is enabled. • If DM_n is sampled LOW on a given byte lane, the DRAM masks the write data received on the DQ inputs. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 227 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation • If DM_n is sampled HIGH on a given byte lane, the DRAM does not mask the data and writes this data into the DRAM core. • If CRC write is enabled, then DM enabled (via MRS) will be selected between write CRC nonpersistent mode (DM disabled) and write CRC persistent mode (DM enabled). Figure 169: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8) T0 T1 T2 T7 T8 T9 WRITE DES DES DES DES DES T10 T11 T12 T13 T14 T15 T16 DES DES DES DES DES DES CK_c CK_t Command Bank Group Address BGa Address Bank Col n DES tWPST tWPRE DQS_t, DQS_c DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 WL = AL + CWL = 9 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL8, WL = 0, AL = 0, CWL = 9, Preamble = 1tCK. 2. DI n = Data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. 5. CA parity = Disable, CS to CA Latency = Disable, Read DBI = Disable. 228 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 170: WRITE Burst Operation, WL = 19 (AL = 10, CWL = 9, BL8) T0 T1 T2 T9 T10 T11 T17 T18 T19 T20 T21 T22 T23 WRITE DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command Bank Group Address BGa Bank Col n Address tWPST tWPRE DQS_t, DQS_c DI n DQ AL = 10 DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CWL = 9 WL = AL + CWL = 19 Time Break Notes: Don’t Care Transitioning Data 1. BL8, WL = 19, AL = 10 (CL - 1), CWL = 9, Preamble = 1tCK. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable. WRITE Operation Followed by Another WRITE Operation Figure 171: Consecutive WRITE (BL8) with 1tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S Bank Group Address Address 4 Clocks =4 BGa BGb Bank Col n Bank Col b tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 WL = AL + CWL = 9 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL8, AL = 0, CWL = 9, Preamble = 1tCK. 2. DI n (or b) = data-in from column n (or column b). 229 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17. Figure 172: Consecutive WRITE (BL8) with 2tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S Bank Group Address Address 4 Clocks =4 BGa BGb Bank Col n Bank Col b tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 10 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 WL = AL + CWL = 10 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17. 7. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable tCK range, which means CWL = 9 is not allowed when operating in 2tCK WRITE preamble mode. 230 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 173: Nonconsecutive WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 WRITE DES DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S/L Bank Group Address Address 4 Clocks =5 BGa BGa or BGb Bank Col n Bank Col b tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 WL = AL + CWL = 9 Time Break Notes: Don’t Care Transitioning Data 1. BL8, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T5. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T18. Figure 174: Nonconsecutive WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group T0 T1 T2 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 WRITE DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S/L Bank Group Address Address 4 Clocks =6 BGa BGa or BGb Bank Col n Bank Col b tWPRE tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 10 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 WL = AL + CWL = 10 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 8), Preamble = 2tCK, tCCD_S/L = 6tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T6. 231 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. tCCD_S/L = 5 isn’t allowed in 2tCK preamble mode. 7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T20. 8. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable tCK range, which means CWL = 9 is not allowed when operating in 2tCK WRITE preamble mode. Figure 175: WRITE (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S Bank Group Address Address 4 Clocks =4 BGa BGb Bank Col n Bank Col b tWPST tWPRE tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DI n DQ DI n+1 DI n+2 DI n+3 DI b DI b+1 DI b+2 DI b+3 WL = AL + CWL = 9 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BC4, AL = 0, CWL = 9, Preamble = 1tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T4. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17. 232 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 176: WRITE (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES T19 CK_c CK_t Command DES tWR tCCD_S Bank Group Address Address 4 Clocks =4 BGa BGb Bank Col n Bank Col b tWPRE tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 10 DI n DQ DI n+1 DI n+2 DI n+3 DI b DI b+1 DI b+2 DI b+3 WL = AL + CWL = 10 Time Break Notes: Transitioning Data Don’t Care 1. BC4, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T18. 7. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable tCK range, which means CWL = 9 is not allowed when operating in 2tCK WRITE preamble mode. Figure 177: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S Bank Group Address Address 2 Clocks =4 BGa BGb Bank Col n Bank Col b tWPST tWPRE tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DI n DQ DI n+1 DI n+2 DI n+3 DI b DI b+1 DI b+2 DI b+3 WL = AL + CWL = 9 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BC4, AL = 0, CWL = 9, Preamble = 1tCK. 2. DI n (or b) = data-in from column n (or column b). 233 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 (fixed) setting activated by MR0[1:0] = 10. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T15. Figure 178: WRITE (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES T19 CK_c CK_t Command DES t 4 Clocks t CCD_S = 4 Bank Group Address Address BGa BGb Bank Col n Bank Col b t t WPRE WR t WTR WPST DQS_t, DQS_c WL = AL + CWL = 9 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b DI b+1 DI b+2 DI b+3 WL = AL + CWL = 9 Time Break Notes: Transitioning Data Don’t Care 1. BL = 8/BC = 4, AL = 0, CL = 9, Preamble = 1tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T4. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 234 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 179: WRITE (BC4) OTF to WRITE (BL8) with 1tCK Preamble in Different Bank Group T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES T19 CK_c CK_t Command DES tWR tCCD_S Bank Group Address Address 4 Clocks =4 BGa BGb Bank Col n Bank Col b tWPST tWPRE tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DI n DQ DI n+1 DI n+2 DI n+3 DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 WL = AL + CWL = 9 Time Break Don’t Care Transitioning Data 1. BL = 8/BC = 4, AL = 0, CL = 9, Preamble = 1tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. Notes: BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T4. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T17. WRITE Operation Followed by READ Operation Figure 180: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Different Bank Group T0 T1 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T24 T25 T26 T27 T28 T29 WRITE DES DES DES DES DES DES DES DES DES READ DES DES DES DES DES DES DES CK_c CK_t Command 4 Clocks Bank Group Address Address tWTR_S BGa =2 BGb Bank Col n Bank Col b tWPST tWPRE tRPRE DQS_t, DQS_c WL = AL + CWL = 9 RL = AL + CL = 11 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN DI b+1 DI b+2 DI b+3 Transitioning Data DI b+4 DI b+5 DI b+6 Don’t Care 1. BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK. 2. DI b = data-in from column b. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 235 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0 and READ command at T15. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown at T13. Figure 181: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Same Bank Group T0 T1 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T26 T27 T28 T29 WRITE DES DES DES DES DES DES DES DES DES DES DES READ DES DES DES DES DES CK_c CK_t Command 4 Clocks Bank Group Address Address tWTR_L BGa =4 BGa Bank Col n Bank Col b tWPST tWPRE tRPRE DQS_t, DQS_c WL = AL + CWL = 9 RL = AL + CL = 11 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data DI b+1 DI b+2 Don’t Care 1. BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK. 2. DI b = data-in from column b. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0 and READ command at T17. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown at T13. 236 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 182: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Different Bank Group T0 T1 T7 T8 T9 T10 WRITE DES DES DES DES DES T11 T12 T13 DES DES DES T14 T15 T16 T24 T25 T26 T27 T28 T29 DES READ DES DES DES DES DES DES DES CK_c CK_t Command 4 Clocks Bank Group Address Address tWTR_S =2 BGa BGb Bank Col n Bank Col b tWPST tWPRE tRPST tRPRE DQS_t, DQS_c WL = AL + CWL = 9 RL = AL + CL = 11 DI n DQ DI n+1 DI n+2 DI n+3 DI b Time Break DI b+1 DI b+2 DI b+3 Transitioning Data Don’t Care 1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK. 2. DI b = data-in from column b. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and READ command at T15. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown at T13. Notes: Figure 183: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Same Bank Group T0 T1 T7 T8 T9 T10 WRITE DES DES DES DES DES T11 T12 T13 T14 DES DES DES DES T15 T16 T17 T18 T26 T27 T28 T29 DES DES READ DES DES DES DES DES CK_c CK_t Command 4 Clocks Bank Group Address Address tWTR_L BGa =4 BGa Bank Col n Bank Col b tWPST tWPRE tRPRE DQS_t, DQS_c WL = AL + CWL = 9 RL = AL + CL = 11 DI n DQ DI n+1 DI n+2 DI n+3 DI b Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data DI b+1 DI b+2 Don’t Care 1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK. 2. DI b = data-in from column b. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and READ command at T17. 237 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown at T13. Figure 184: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 tCK Preamble in Different Bank Group T0 T1 T7 T8 T9 WRITE DES DES DES DES T10 T11 DES DES T12 T13 T14 T22 T23 T24 T25 T26 T27 T28 T29 DES DES DES DES DES READ DES DES DES DES DES CK_c CK_t Command 2 Clocks Bank Group Address Address tWTR_S =2 BGa BGb Bank Col n Bank Col b tWPST tWPRE tRPST tRPRE DQS_t, DQS_c WL = AL + CWL = 9 RL = AL + CL = 11 DI n DQ DI n+1 DI n+2 DI n+3 DI b DI b+1 DI b+2 DI b+3 Time Break Transitioning Data Don’t Care 1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1 tCK, WRITE preamble = 1tCK. 2. DI b = data-in from column b. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 10. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown at T11. Notes: Figure 185: WRITE (BC4) Fixed to READ (BC4) Fixed with 1tCK Preamble in Same Bank Group T0 T1 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T24 T25 T26 T27 T28 T29 WRITE DES DES DES DES DES DES DES DES DES READ DES DES DES DES DES DES DES CK_c CK_t Command 2 Clocks Bank Group Address Address tWTR_L =4 BGa BGa Bank Col n Bank Col b tWPST tWPRE tRPST tRPRE DQS_t, DQS_c WL = AL + CWL = 9 RL = AL + CL = 11 DI n DQ DI n+1 DI n+2 DI n+3 DI b Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN DI b+1 DI b+2 DI b+3 Transitioning Data Don’t Care 1. BC = 4, WL = 9 (CWL = 9, AL = 0), C L = 11, READ preamble = 1tCK, WRITE preamble = 1tCK. 2. DI b = data-in from column b. 238 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 10. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable. 6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown at T11. WRITE Operation Followed by PRECHARGE Operation The minimum external WRITE command to PRECHARGE command spacing is equal to WL (AL + CWL) plus either 4tCK (BL8/BC4-OTF) or 2tCK (BC4-fixed) plus tWR. The minimum ACT to PRE timing, tRAS, must be satisfied as well. Figure 186: WRITE (BL8/BC4-OTF) to PRECHARGE with 1tCK Preamble T0 T1 T2 WRITE DES DES T3 T4 T7 T8 T9 T10 DES DES DES DES DES DES T11 T12 T13 T14 T22 DES DES DES DES DES T23 T24 T25 DES DES PRE T26 CK_c CK_t Command WL = AL + CWL = 9 tWR 4 Clocks BGa, Bank b Col n DES tRP = 12 BGa, Bank b (or all) Address BC4 (OTF) Opertaion DQS_t, DQS_c DQ DI n DI n+1 DI n+2 DI n+3 DI n DI n+1 DI n+2 DI n+3 BL8 Opertaion DQS_t, DQS_c DQ DI n+4 DI n+5 DI n+6 DI n+7 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable. 6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T13. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank. 239 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 187: WRITE (BC4-Fixed) to PRECHARGE with 1tCK Preamble T0 T1 T2 WRITE DES DES T3 T4 T7 T8 T9 DES DES DES DES DES T10 T11 T12 T13 DES DES DES DES T14 T22 T23 DES DES PRE T24 T25 T26 DES DES DES CK_c CK_t Command WL = AL + CWL = 9 tWR 2 Clocks tRP = 12 BGa, Bank b Col n BGa, Bank b (or all) Address BC4 (Fixed) Opertaion DQS_t, DQS_c DI n DQ DI n+1 DI n+2 DI n+3 Time Break Notes: Transitioning Data Don’t Care 1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 10. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable. 6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T11. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank. Figure 188: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1tCK Preamble T0 T1 T2 WRITE DES DES T3 T4 T7 T8 T9 T10 DES DES DES DES DES DES T11 T12 T13 T14 T22 DES DES DES DES DES T23 T24 T25 DES DES DES T26 CK_c CK_t Command WL = AL + CWL = 9 tWR 4 Clocks DES tRP = 12 BGa, Bank b Col n Address BC4 (OTF) Opertaion DQS_t, DQS_c DQ DI n DI n+1 DI n+2 DI n+3 DI n DI n+1 DI n+2 DI n+3 BL8 Opertaion DQS_t, DQS_c DQ DI n+4 DI n+5 DI n+6 DI n+7 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable. 240 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation 6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T13. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank. Figure 189: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Preamble T0 T1 T2 WRITE DES DES T3 T4 T7 T8 T9 DES DES DES DES DES T10 T11 T12 T13 DES DES DES DES T14 T22 T23 T24 DES DES DES DES T25 T26 DES DES CK_c CK_t Command WL = AL + CWL = 9 tWR 2 Clocks tRP = 12 BGa, Bank b Col n Address BC4 (Fixed) Opertaion DQS_t, DQS_c DI n DQ DI n+1 DI n+2 DI n+3 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 10. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable. 6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T11. tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank. 241 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation WRITE Operation with WRITE DBI Enabled Figure 190: WRITE (BL8/BC4-OTF) with 1tCK Preamble and DBI T0 T1 T2 WRITE DES DES T3 T4 T5 T6 T7 T8 T9 T10 DES DES DES DES DES DES DES DES T11 T12 T13 T14 DES DES DES DES T15 T16 T17 DES DES DES CK_c CK_t Command WL = AL + CWL = 9 tWR 4 Clocks tWTR Address BGa Address Bank, Col n BC4 (OTF) Opertaion DQS_t, DQS_c DQ DI n DI n+1 DI n+2 DI n+3 DBI_n DI n DI n+1 DI n+2 DI n+3 DQ DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DBI_n DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 BL8 Opertaion DQS_t, DQS_c Transitioning Data Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Don’t Care 1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disabled. 6. The write recovery time (tWR_DBI) is referenced from the first rising clock edge after the last write data shown at T13. 242 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 191: WRITE (BC4-Fixed) with 1tCK Preamble and DBI T0 T1 T2 WRITE DES DES T3 T4 T5 T6 T7 T8 T9 DES DES DES DES DES DES DES T10 T11 T12 T13 T14 DES DES DES DES DES T15 T16 T17 DES DES DES CK_c CK_t Command WL = AL + CWL = 9 tWR 2 Clocks tWTR Address BGa Address Bank, Col n BC4 (Fixed) Opertaion DQS_t, DQS_c DQ DI n DI n+1 DI n+2 DI n+3 DBI_n DI n DI n+1 DI n+2 DI n+3 Transitioning Data Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Don’t Care 1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 10. 5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disabled. 243 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation WRITE Operation with CA Parity Enabled Figure 192: Consecutive Write (BL8) with 1tCK Preamble and CA Parity in Different Bank Group T0 T1 T2 T3 T4 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 WRITE DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES CK_c CK_t Command tWR tCCD_S Bank Group Address 4 Clocks =4 BGa BGb Address Bank Col n Bank Col b Parity Valid Valid tWTR tWPST tWPRE DQS_t, DQS_c WL = PL + AL + CWL = 13 DI n DQ DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 WL = PL + AL + CWL = 13 Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL = 8, WL = 9 (CWL = 13, AL = 0 ), Preamble = 1tCK. 2. DI n = data-in from column n. 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4. 5. CA parity = Enable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T21. 244 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation WRITE Operation with Write CRC Enabled Figure 193: Consecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Different Bank Group T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 WRITE DES DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES DES T19 CK_c CK_t Command DES tWR tCCD_S/L Bank Group Address Address 4 Clocks =5 BGa BGa or BGb Bank Col n Bank Col b tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CRC DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CRC DQ x4, BC = 4 (OTF) DI n DI n+1 DI n+2 DI n+3 CRC DQ x8/X16, BC = 4 (OTF) DI n DI n+1 DI n+2 DI n+3 CRC DQ x4, BL = 8 CRC DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 CRC DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 CRC DI b DI b+1 DI b+2 DI b+3 CRC DI b DI b+1 DI b+2 DI b+3 CRC CRC WL = AL + CWL = 9 DQ x8/X16, BL = 8 CRC Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data CRC Don’t Care 1. BL8/BC4-OTF, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T5. 5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T5. 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable. 7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T18. 245 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 194: Consecutive WRITE (BC4-Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank Group T0 T1 T2 T3 T4 T5 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 WRITE DES DES DES DES WRITE DES DES DES DES DES DES DES DES DES DES T18 T19 DES DES CK_c CK_t Command tWR tCCD_S/L Bank Group Address Address 2 Clocks =5 BGa BGa or BGb Bank Col n Bank Col b tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DQ x4, BC = 4 (Fixed) DI n DI n+1 DI n+2 DI n+3 CRC DI n DI n+1 DI n+2 DI n+3 CRC CRC DI b DI b+1 DI b+2 DI b+3 CRC DI b DI b+1 DI b+2 DI b+3 CRC CRC WL = AL + CWL = 9 DQ x8/X16, BC = 4 (Fixed) Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BC4-fixed, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BC4 setting activated by MR0[1:0] = 10 during WRITE commands at T0 and T5. 5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable. 6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T16. 246 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 195: Nonconsecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Different Bank Group 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 :5,7( '(6 '(6 :5,7( '(6 '(6 '(6 '(6 '(6 '(6 '(6 '(6 '(6 '(6 '(6 '(6 '(6 7 &.BF &.BW &RPPDQG '(6 W :5 W &&'B6/ &ORFNV  %DQN*URXS $GGUHVV %*D %*DRU %*E $GGUHVV %DQN &ROQ %DQN &ROE W :75 W :367 W :35( '46BW '46BF :/ $/&:/  ', Q ', Q ', Q ', Q ', Q ', Q ', Q ', Q &5& ', Q ', Q ', Q ', Q ', Q ', Q ', Q ', Q &5& '4[ %&  27) ', Q ', Q ', Q ', Q &5& '4[; %&  27) ', Q ', Q ', Q ', Q &5& '4[ %/  &5& ', E ', E ', E ', E ', E ', E ', E ', E &5& ', E ', E ', E ', E ', E ', E ', E ', E &5& ', E ', E ', E ', E &5& ', E ', E ', E ', E &5& &5& :/ $/&:/  '4[; %/  &5& 7LPH%UHDN Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 7UDQVLWLRQLQJ'DWD &5& 'RQ¶W&DUH 1. BL8/BC4-OTF, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 6tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T6. 5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T6. 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable. 7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T19. 247 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 196: Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK Preamble and Write CRC in Same or Different Bank Group T0 T1 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 WRITE DES WRITE DES DES DES DES DES DES DES DES DES DES DES DES DES DES T22 CK_c CK_t Command DES tWR tCCD_S/L Bank Group Address Address 4 Clocks =7 BGa BGa or BGb Bank Col n Bank Col b tWPRE tWTR tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 10 DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CRC DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CRC DQ x4, BC = 4 (OTF) DI n DI n+1 DI n+2 DI n+3 CRC DQ x8/X16, BC = 4 (OTF) DI n DI n+1 DI n+2 DI n+3 CRC DQ x4, BL = 8 CRC DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 CRC DI b DI b+1 DI b+2 DI b+3 DI b+4 DI b+5 DI b+6 DI b+7 CRC DI b DI b+1 DI b+2 DI b+3 CRC DI b DI b+1 DI b+2 DI b+3 CRC CRC WL = AL + CWL = 10 DQ x8/X16, BL = 8 CRC Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data CRC Don’t Care 1. BL8/BC4-OTF, AL = 0, CWL = 9 + 1 = 10 (see Note 9), Preamble = 2tCK, tCCD_S/L = 7tCK (see Note 7). 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T7. 5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T7. 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable. 7. tCCD_S/L = 6tCK is not allowed in 2tCK preamble mode if minimum tCCD_S/L allowed in 1tCK preamble mode would have been 6 clocks. 8. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge after the last write data shown at T21. 9. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock greater than the lowest CWL setting supported in the applicable tCK range. That means CWL = 9 is not allowed when operating in 2tCK WRITE preamble mode. 248 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM WRITE Operation Figure 197: WRITE (BL8/BC4-OTF/Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank Group T0 T1 T2 T6 T7 T8 T9 T10 T11 T12 T13 T14 WRITE DES DES DES DES DES DES DES DES DES DES DES T15 T16 T17 T18 T19 T20 DES DES DES DES DES DES CK_c CK_t Command tWR_CRC_DM 4 Clocks Bank Group Address Address tWTR_S_CRC_DM/tWTR_L_CRC_DM BGa Bank Col n tWPST tWPRE DQS_t, DQS_c WL = AL + CWL = 9 DQ x4, BL = 8 DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CRC DQ x8/X16, BL = 8 DI n DI n+1 DI n+2 DI n+3 DI n+4 DI n+5 DI n+6 DI n+7 CRC DM n DM n+1 DM n+2 DM n+3 DM n+4 DM n+5 DM n+6 DM n+7 DQ x4, BC = 4 (OTF/Fixed) DI n DI n+1 DI n+2 DI n+3 CRC DQ x8/X16, BC = 4 (OTF/Fixed) DI n DI n+1 DI n+2 DI n+3 CRC DM n DM n+1 DM n+2 DM n+3 DMx4/x8/x16 BL = 8 DM x4/x8/x16 BC = 4 (OTF / Fixed) CRC CRC Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Transitioning Data Don’t Care 1. BL8/BC4, AL = 0, CWL = 9, Preamble = 1tCK. 2. DI n (or b) = data-in from column n (or column b). 3. DES commands are shown for ease of illustration; other commands may be valid at these times. 4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0. 5. BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. 6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Enable. 7. The write recovery time (tWR_CRC_DM) and write timing parameter (tWTR_S_CRC_DM/ tWTR_L_CRC_DM) are referenced from the first rising clock edge after the last write data shown at T13. 249 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Write Timing Violations Write Timing Violations Motivation Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure that the device works properly. However, for certain minor violations, it is desirable that the device is guaranteed not to "hang up" and that errors are limited to that specific operation. A minor violation does not include a major timing violation (for example, when a DQS strobe misses in the tDQSCK window). For the following, it will be assumed that there are no timing violations with regard to the WRITE command itself (including ODT, and so on) and that it does satisfy all timing requirements not mentioned below. Data Setup and Hold Violations If the data-to-strobe timing requirements (tDS, tDH) are violated, for any of the strobe edges associated with a WRITE burst, then wrong data might be written to the memory location addressed with this WRITE command. In the example, the relevant strobe edges for WRITE Burst A are associated with the clock edges: T5, T5.5, T6, T6.5, T7, T7.5, T8, and T8.5. Subsequent reads from that location might result in unpredictable read data; however, the device will work properly otherwise. Strobe-to-Strobe and Strobe-to-Clock Violations If the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements (tDSS, tDSH, tDQSS) are violated, for any of the strobe edges associated with a WRITE burst, then wrong data might be written to the memory location addressed with the offending WRITE command. Subsequent reads from that location might result in unpredictable read data; however, the device will work properly otherwise with the following constraints: • Both write CRC and data burst OTF are disabled; timing specifications other than tDQSH, tDQSL, tWPRE, tWPST, tDSS, tDSH, tDQSS are not violated. • The offending write strobe (and preamble) arrive no earlier or later than six DQS transition edges from the WRITE latency position. • A READ command following an offending WRITE command from any open bank is allowed. • One or more subsequent WR or a subsequent WRA (to same bank as offending WR) may be issued tCCD_L later, but incorrect data could be written. Subsequent WR and WRA can be either offending or non-offending writes. Reads from these writes may provide incorrect data. • One or more subsequent WR or a subsequent WRA (to a different bank group) may be issued tCCD_S later, but incorrect data could be written. Subsequent WR and WRA can be either offending or non-offending writes. Reads from these writes may provide incorrect data. • After one or more precharge commands (PRE or PREA) are issued to the device after an offending WRITE command and all banks are in precharged state (idle state), a subsequent, non-offending WR or WRA to any open bank will be able to write correct data. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 250 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM ZQ CALIBRATION Commands ZQ CALIBRATION Commands A ZQ CALIBRATION command is used to calibrate DRAM RON and ODT values. The device needs a longer time to calibrate the output driver and on-die termination circuits at initialization and a relatively smaller time to perform periodic calibrations. The ZQCL command is used to perform the initial calibration during the power-up initialization sequence. This command may be issued at any time by the controller depending on the system environment. The ZQCL command triggers the calibration engine inside the DRAM and, after calibration is achieved, the calibrated values are transferred from the calibration engine to DRAM I/O, which is reflected as an updated output driver and ODT values. The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full calibration and the transfer of values. All other ZQCL commands except the first ZQCL command issued after reset are allowed a timing period of tZQoper. The ZQCS command is used to perform periodic calibrations to account for voltage and temperature variations. A shorter timing window is provided to perform the calibration and transfer of values as defined by timing parameter tZQCS. One ZQCS command can effectively correct a minimum of 0.5% (ZQ correction) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the Output Driver and ODT Voltage and Temperature Sensitivity tables. The appropriate interval between ZQCS commands can be determined from these tables and other application-specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdrift_rate) and voltage (Vdrift_rate) drift rates that the device is subjected to in the application, is illustrated. The interval could be defined by the following formula: ZQcorrection (Tsense x Tdrift_rate) + (Vsense x Tdrift_rate) Where T sense = MAX(dRTTdT, dRONdTM) and V sense = MAX(dRTTdV, dRONdVM) define the temperature and voltage sensitivities. For example, if T sens = 1.5%/°C, V sens = 0.15%/mV, T driftrate = 1 °C/sec and V driftrate = 15 mV/sec, then the interval between ZQCS commands is calculated as: 0.5 = 0.133 §128ms (1.5 × 1) + (0.15 × 15) No other activities should be performed on the DRAM channel by the controller for the duration of tZQinit, tZQoper, or tZQCS. The quiet time on the DRAM channel allows accurate calibration of output driver and on-die termination values. After DRAM calibration is achieved, the device should disable the ZQ current consumption path to reduce power. All banks must be precharged and tRP met before ZQCL or ZQCS commands are issued by the controller. ZQ CALIBRATION commands can also be issued in parallel to DLL lock time when coming out of self refresh. Upon self refresh exit, the device will not perform an I/O caliCCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 251 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM ZQ CALIBRATION Commands bration without an explicit ZQ CALIBRATION command. The earliest possible time for a ZQ CALIBRATION command (short or long) after self refresh exit is tXS, tXS_Abort, or tXS_FAST depending on operation mode. In systems that share the ZQ resistor between devices, the controller must not allow any overlap of tZQoper, tZQinit, or tZQCS between the devices. Figure 198: ZQ Calibration Timing T0 T1 Ta0 Ta1 Ta2 Ta3 Tb0 Tb1 Tc0 Tc1 Tc2 ZQCL DES DES DES Valid Valid ZQCS DES DES DES Valid Address Valid Valid Valid A10 Valid Valid Valid Valid Valid Valid Valid Valid Valid CK_c CK_t Command CKE Note 1 Note 2 ODT DQ Bus High-Z or RTT(Park) Activities High-Z or RTT(Park) Activities Note 3 tZQinit_tZQoper tZQCS Time Break Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Don’t Care 1. CKE must be continuously registered HIGH during the calibration procedure. 2. During ZQ calibration, the ODT signal must be held LOW and DRAM continues to provide RTT_PARK. 3. All devices connected to the DQ bus should be High-Z during the calibration procedure. 252 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM On-Die Termination On-Die Termination The on-die termination (ODT) feature enables the device to change termination resistance for each DQ, DQS, and DM_n/DBI_n signal for x4 and x8 configurations (and TDQS for the x8 configuration when enabled via A11 = 1 in MR1) via the ODT control pin, WRITE command, or default parking value with MR setting. For the x16 configuration, ODT is applied to each UDQ, LDQ, UDQS, LDQS, UDM_n/UDBI_n, and LDM_n/ LDBI_n signal. The ODT feature is designed to improve the signal integrity of the memory channel by allowing the DRAM controller to independently change termination resistance for any or all DRAM devices. If DBI read mode is enabled while the DRAM is in standby, either DM mode or DBI write mode must also be enabled if RTT(NOM) or RTT(Park) is desired. More details about ODT control modes and ODT timing modes can be found further along in this document. The ODT feature is turned off and not supported in self refresh mode. Figure 199: Functional Representation of ODT ODT To other circuitry such as RCV, ... VDDQ RTT Switch DQ, DQS, DM, TDQS The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other control information. The value of R TT is determined by the settings of mode register bits (see Mode Register). The ODT pin will be ignored if the mode register MR1 is programmed to disable RTT(NOM) [MR1[10,9,8] = 0,0,0] and in self refresh mode. ODT Mode Register and ODT State Table The ODT mode of the DDR4 device has four states: data termination disable, RTT(NOM), RTT(WR), and RTT(Park). The ODT mode is enabled if any of MR1[10:8] (R TT(NOM)), MR2[11:9] (RTT(WR)), or MR5[8:6] (RTT(Park)) are non-zero. When enabled, the value of RTT is determined by the settings of these bits. RTT control of each RTT condition is possible with a WR or RD command and ODT pin. • RTT(WR): The DRAM (rank) that is being written to provide termination regardless of ODT pin status (either HIGH or LOW). • RTT(NOM): DRAM turns ON RTT(NOM) if it sees ODT asserted HIGH (except when ODT is disabled by MR1). • RTT(Park): Default parked value set via MR5 to be enabled and RTT(NOM) is not turned on. • The Termination State Table that follows shows various interactions. The RTT values have the following priority: • • • • CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Data termination disable RTT(WR) RTT(NOM) RTT(Park) 253 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM ODT Mode Register and ODT State Table Table 70: Termination State Table Case RTT(Park) RTT(NOM)1 RTT(WR)2 ODT Pin ODT READS3 ODT Standby7 ODT WRITES A4 Disabled Disabled Disabled Don't Care Off (High-Z) Off (High-Z) Off (High-Z) Enabled Don't Care Off (High-Z) Off (High-Z) RTT(WR) RTT(Park) RTT(Park) B5 Enabled Disabled Disabled Don't Care Off (High-Z) Enabled Don't Care Off (High-Z) RTT(Park) RTT(WR) C6 Disabled Enabled Disabled Low Off (High-Z) Off (High-Z) Off (High-Z) High Off (High-Z) RTT(NOM) RTT(NOM) Low Off (High-Z) Off (High-Z) RTT(WR) High Off (High-Z) RTT(NOM) RTT(WR) Low Off (High-Z) RTT(Park) RTT(Park) High Off (High-Z) RTT(NOM) RTT(NOM) Low Off (High-Z) RTT(Park) RTT(WR) High Off (High-Z) RTT(NOM) RTT(WR) Enabled D6 Enabled Enabled Disabled Enabled Notes: 1. If RTT(NOM) MR is disabled, power to the ODT receiver will be turned off to save power. 2. If RTT(WR) is enabled, RTT(WR) will be activated by a WRITE command for a defined period time independent of the ODT pin and MR setting of RTT(Park)/RTT(NOM). This is described in the Dynamic ODT section. 3. When a READ command is executed, the DRAM termination state will be High-Z for a defined period independent of the ODT pin and MR setting of RTT(Park)/RTT(NOM). This is described in the ODT During Read section. 4. Case A is generally best for single-rank memories. 5. Case B is generally best for dual-rank, single-slotted memories. 6. Case C and Case D are generally best for multi-slotted memories. 7. The ODT feature is turned off and not supported in self refresh mode. ODT Read Disable State Table Upon receiving a READ command, the DRAM driving data disables ODT after RL - (2 or 3) clock cycles, where 2 = 1tCK preamble mode and 3 = 2tCK preamble mode. ODT stays off for a duration of BL/2 + (2 or 3) + (0 or 1) clock cycles, where 2 = 1tCK preamble mode, 3 = 2tCK preamble mode, 0 = CRC disabled, and 1 = CRC enabled. Table 71: Read Termination Disable Window Preamble CRC Start ODT Disable After Read Duration of ODT Disable 1tCK Disabled RL - 2 BL/2 + 2 Enabled RL - 2 BL/2 + 3 Disabled RL - 3 BL/2 + 3 Enabled RL - 3 BL/2 + 4 2tCK CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 254 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Synchronous ODT Mode Synchronous ODT Mode Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the power-down definition, these modes include the following: • • • • • Any bank active with CKE HIGH Refresh with CKE HIGH Idle mode with CKE HIGH Active power-down mode Precharge power-down mode In synchronous ODT mode, RTT(NOM) will be turned on DODTLon clock cycles after ODT is sampled HIGH by a rising clock edge and turned off DODTLoff clock cycles after ODT is registered LOW by a rising clock edge. The ODT latency is determined by the programmed values for: CAS WRITE latency (CWL), additive latency (AL), and parity latency (PL), as well as the programmed state of the preamble. ODT Latency and Posted ODT The ODT latencies for synchronous ODT mode are summarized in the table below. For details, refer to the latency definitions. Table 72: ODT Latency at DDR4-1600/-1866/-2133/-2400/-2666/-3200 Applicable when write CRC is disabled Symbol Parameter 1tCK Preamble 2tCK Preamble Unit tCK DODTLon Direct ODT turn-on latency CWL + AL + PL - 2 CWL + AL + PL - 3 DODTLoff Direct ODT turn-off latency CWL + AL + PL - 2 CWL + AL + PL - 3 RODTLoff READ command to internal ODT turn-off latency CL + AL + PL - 2 CL + AL + PL - 3 RODTLon4 READ command to RTT(Park) turn-on latency in BC4-fixed RODTLoff + 4 RODTLoff + 5 RODTLon8 READ command to RTT(Park) turn-on latency in BL8/BC4-OTF RODTLoff + 6 RODTLoff + 7 ODTH4 ODT Assertion time, BC4 mode 4 5 ODTH8 ODT Assertion time, BL8 mode 6 7 Timing Parameters In synchronous ODT mode, the following parameters apply: • DODTLon, DODTLoff, RODTLoff, RODTLon4, RODTLon8, and tADC (MIN)/(MAX). • tADC (MIN) and tADC (MAX) are minimum and maximum RTT change timing skew between different termination values. These timing parameters apply to both the synchronous ODT mode and the data termination disable mode. When ODT is asserted, it must remain HIGH until minimum ODTH4 (BC = 4) or ODTH8 (BL = 8) is satisfied. If write CRC mode or 2tCK preamble mode is enabled, ODTH should be adjusted to account for it. ODTHx is measured from ODT first registered HIGH to ODT first registered LOW or from the registration of a WRITE command. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 255 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Synchronous ODT Mode Figure 200: Synchronous ODT Timing with BL8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  diff_CK Command ODT DODTLon = WL - 2 DODTLoff = WL - 2 t ADC DRAM_RTT tADC (MAX) tADC tADC (MIN) RTT(Park) RTT(NOM) (MAX) (MIN) RTT(Park) Transitioning Notes: 1. Example for CWL = 9, AL = 0, PL = 0; DODTLon = AL + PL + CWL - 2 = 7; DODTLoff = AL + PL + CWL - 2 = 7. 2. ODT must be held HIGH for at least ODTH8 after assertion (T1). Figure 201: Synchronous ODT with BC4 T0 T1 T2 T3 T4 T5 T18 T19 T20 T21 T22 T23 T36 T37 T38 T39 T40 T41 42 diff_CK WRS4 Command ODTH4 ODT DODTLoff = WL - 2 ODTLcnw= WL - 2 ODTLcwn4 = ODTLcnw + 4 DODTLon = CWL - 2 tADC (MAX) tADC RTT(Park) (MIN) tADC (MAX) tADC (MIN) RTT(NOM) RTT(Park) tADC (MAX) tADC (MIN) RTT(WR) tADC tADC (MAX) (MIN) RTT(Park) DRAM_RTT Transitioning Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Example for CWL = 9, AL = 10, PL = 0; DODTLon/off = AL + PL+ CWL - 2 = 17; ODTcnw = AL + PL+ CWL - 2 = 17. 2. ODT must be held HIGH for at least ODTH4 after assertion (T1). 256 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Synchronous ODT Mode ODT During Reads Because the DRAM cannot terminate with RTT and drive with RON at the same time, RTT may nominally not be enabled until the end of the postamble as shown in the example below. At cycle T26 the device turns on the termination when it stops driving, which is determined by tHZ. If the DRAM stops driving early (that is, tHZ is early), then tADC (MIN) timing may apply. If the DRAM stops driving late (that is, tHZ is late), then the DRAM complies with tADC (MAX) timing. Using CL = 11 as an example for the figure below: PL = 0, AL = CL - 1 = 10, RL = PL + AL + CL = 21, CWL= 9; RODTLoff = RL - 2 = 19, DODTLon = PL + AL + CWL - 2 = 17, 1tCK preamble. Figure 202: ODT During Reads 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 GLIIB&. &RPPDQG $GGUHVV 5' $ 5/ $/&/3/ 2'7 52'7/RII 5/ '2'7/RQ :/ W $'& 0$; W $'& 0$; W $'& 0,1 '46B2'7 W &.3UHDPEOH W $'& 0,1 577 120 577 3DUN W $'& 0$; W $'& 0$; W $'& 0,1 '46B2'7 W &.3UHDPEOH W $'& 0,1 577 120 577 3DUN '46GLII W $'& 0$; Q&. W $'& 0,1 '4B2'7 W &.3UHDPEOH 577 120 577 3DUN '4 4$ 4$ 4$ 4$ 4$ 4$ 4$ 4$ W $'& 0$; Q&. W $'& 0,1 '4B2'7 W &.3UHDPEOH W $'& 0$; W $'& 0,1 W $'& 0$; W $'& 0,1 577 120 577 3DUN '4 4$ 4$ 4$ 4$ 4$ 4$ 4$ 4$ 7UDQVLWLRQLQJ CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 257 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Dynamic ODT Dynamic ODT In certain application cases and to further enhance signal integrity on the data bus, it is desirable that the termination strength of the device can be changed without issuing an MRS command. This requirement is supported by the dynamic ODT feature. Functional Description Dynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to 1. • Three RTT values are available: RTT(NOM), RTT(WR), and RTT(Park). – The value for RTT(NOM) is preselected via bits MR1[10:8]. – The value for RTT(WR) is preselected via bits MR2[11:9]. – The value for RTT(Park) is preselected via bits MR5[8:6]. • During operation without WRITE commands, the termination is controlled as follows: – Nominal termination strength RTT(NOM) or RTT(Park) is selected. – RTT(NOM) on/off timing is controlled via ODT pin and latencies DODTLon and DODTLoff, and RTT(Park) is on when ODT is LOW. • When a WRITE command (WR, WRA, WRS4, WRS8, WRAS4, and WRAS8) is registered, and if dynamic ODT is enabled, the termination is controlled as follows: – Latency ODTLcnw after the WRITE command, termination strength R TT(WR) is selected. – Latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS or selected OTF) after the WRITE command, termination strength RTT(WR) is de-selected. One or two clocks will be added into or subtracted from ODTLcwn8 and ODTLcwn4, depending on write CRC mode and/or 2tCK preamble enablement. The following table shows latencies and timing parameters relevant to the on-die termination control in dynamic ODT mode. The dynamic ODT feature is not supported in DLL-off mode. An MRS command must be used to set RTT(WR) to disable dynamic ODT externally (MR2[11:9] = 000). Table 73: Dynamic ODT Latencies and Timing (1tCK Preamble Mode and CRC Disabled) Name and Description Abbr. Defined from Defined to 1600/1866/ 2133/2400 2666 2933/3200 Unit ODT latency for change from RTT(Park)/ RTT(NOM) to RTT(WR) Change RTT ODTLc Registering exnw ternal WRITE strength from command RTT(Park)/ RTT(NOM) to RTT(WR) ODTLcnw = WL - 2 tCK ODT latency for change from RTT(WR) to RTT(Park)/RTT(NOM) (BC = 4) Change RTT ODTLc Registering exwn4 ternal WRITE strength from command RTT(WR) to RTT(Park)/ RTT(NOM) ODTLcwn4 = 4 + ODTLcnw tCK ODT latency for change from RTT(WR) to RTT(Park)/RTT(NOM) (BL = 8) Change RTT ODTLc Registering exwn8 ternal WRITE strength from command RTT(NOM) to RTT(WR) ODTLcwn8 = 6 + ODTLcnw tCK (AVG) CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 258 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Dynamic ODT Table 73: Dynamic ODT Latencies and Timing (1tCK Preamble Mode and CRC Disabled) (Continued) Name and Description Abbr. Defined from RTT change skew tADC 1600/1866/ 2133/2400 Defined to ODTLcnw ODTLcwn RTT valid 2666 tADC 2933/3200 tADC (MIN) = 0.30 tADC (MAX) = 0.70 Unit tADC tCK (MIN) = 0.26 (AVG) tADC (MAX) = 0.74 (MIN) = 0.28 tADC (MAX) = 0.72 Table 74: Dynamic ODT Latencies and Timing with Preamble Mode and CRC Mode Matrix 1tCK Parameter 2tCK Parameter Symbol CRC Off CRC On CRC Off CRC On Unit ODTLcnw1 WL - 2 WL - 2 WL - 3 WL - 3 tCK ODTLcwn4 ODTLcnw + 4 ODTLcnw + 7 ODTLcnw + 5 ODTLcnw + 8 ODTLcwn8 ODTLcnw + 6 ODTLcnw + 7 ODTLcnw + 7 ODTLcnw + 8 1. ODTLcnw = WL - 2 (1tCK preamble) or WL - 3 (2tCK preamble). Note: Figure 203: Dynamic ODT (1t CK Preamble; CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled) T0 T1 T2 T5 T6 T7 T8 T9 T10 T11 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 diff_CK Command WR ODT DODTLon = WL - 2 DODTLoff = WL - 2 tADC tADC (MAX) RTT(Park) RTT tADC (MAX) RTT(Park) RTT(WR) tADC tADC (MIN) (MIN) tADC tADC (MAX) RTT(NOM) (MIN) (MAX) RTT(Park) tADC (MIN) ODTLcnw ODTLcwn Transitioning Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. ODTLcnw = WL - 2 (1tCK preamble) or WL - 3 (2tCK preamble). 2. If BC4, then ODTLcwn = WL + 4 if CRC disabled or WL + 5 if CRC enabled; If BL8, then ODTLcwn = WL + 6 if CRC disabled or WL + 7 if CRC enabled. 259 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Dynamic ODT Figure 204: Dynamic ODT Overlapped with RTT(NOM) (CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled) T0 T1 T2 T5 T6 T7 T9 T10 T11 T12 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 diff_CK Command WR ODT ODTLcnw ODTLcwn8 tADC RTT tADC (MAX) RTT_NOM tADC (MAX) RTT_WR tADC RTT_NOM tADC (MIN) (MIN) (MAX) RTT_PARK tADC (MIN) DODTLoff = CWL -2 Note: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Behavior with WR command issued while ODT is registered HIGH. 260 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Asynchronous ODT Mode Asynchronous ODT Mode Asynchronous ODT mode is selected when the DRAM runs in DLL-off mode. In asynchronous ODT timing mode, the internal ODT command is not delayed by either additive latency (AL) or the parity latency (PL) relative to the external ODT signal (RTT(NOM)). In asynchronous ODT mode, two timing parameters apply: tAONAS (MIN/MAX), and tAOFAS (MIN/MAX). RTT(NOM) Turn-on Time • Minimum RTT(NOM) turn-on time (tAONAS [MIN]) is when the device termination circuit leaves RTT(Park) and ODT resistance begins to turn on. • Maximum RTT(NOM) turn-on time (tAONAS [MAX]) is when the ODT resistance has reached RTT(NOM). • tAONAS (MIN) and tAONAS (MAX) are measured from ODT being sampled HIGH. RTT(NOM) Turn-off Time • Minimum RTT(NOM) turn-off time (tAOFAS [MIN]) is when the device's termination circuit starts to leave RTT(NOM). • Maximum RTT(NOM) turn-off time (tAOFAS [MAX]) is when the on-die termination has reached RTT(Park). • tAOFAS (MIN) and tAOFAS (MAX) are measured from ODT being sampled LOW. Figure 205: Asynchronous ODT Timings with DLL Off T0 T1 T2 T3 T4 T5 T6 Ti Ti + 1 Ti + 2 Ti + 3 Ti + 4 Ti + 5 Ti + 6 Ta Tb diff_CK CKE tIH tIS tIH tIS ODT tAONAS RTT (MAX) tAONAS RTT(Park) (MIN) RTT(NOM) tAONAS (MIN) tAONAS (MAX) Transitioning CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 261 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Specifications Electrical Specifications Absolute Ratings Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Although "unlimited" row accesses to the same row is allowed within the refresh period; excessive row accesses to the same row over a long term can result in degraded operation. Table 75: Absolute Maximum Ratings Symbol Parameter Min Max Unit Notes V 1 VDD Voltage on VDD pin relative to VSS –0.4 1.5 VDDQ Voltage on VDDQ pin relative to VSS –0.4 1.5 V 1 VPP Voltage on VPP pin relative to VSS –0.4 3.0 V 3 VIN, VOUT Voltage on any pin relative to VSS –0.4 1.5 V Storage temperature –55 150 °C TSTG 2 1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be greater than 0.6 × VDDQ. When VDD and VDDQ are 85 105 °C 2 Notes: 1. The normal temperature range specifies the temperatures at which all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0°C to 85°C under all operating conditions for the commercial offering; The industrial and automotive temperature offerings allow the case temperature to go below 0°C to -40°C. 2. Some applications require operation of the commercial, industrial, and automotive temperature DRAMs in the extended temperature range (between 85°C and 105°C case temperature). Full specifications are supported in this range, but the following additional conditions apply: • Refer to tREFI and tRFC parameters table for tREFI requirements when operating above 85°C • If SELF REFRESH operation is required in the extended temperature range, it is mandatory to use either the manual self refresh mode with extended temperature range ca- CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 262 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Operating Conditions pability (MR2[6] = 0 and MR2 [7] = 1) or enable the optional auto self refresh mode (MR2 [6] = 1 and MR2 [7] = 1). Electrical Characteristics – AC and DC Operating Conditions Supply Operating Conditions Table 77: Recommended Supply Operating Conditions Rating Symbol Parameter Min Typ Max VDD Supply voltage 1.14 1.2 VDDQ Supply voltage for output 1.14 1.2 Wordline supply voltage 2.375 2.5 VPP Notes: Unit Notes 1.26 V 1, 2, 3, 4, 5 1.26 V 1, 2, 6 2.750 V 7 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. 3. VDD slew rate between 300mV and 80% of VDD,min shall be between 0.004 V/ms and 600 V/ms, 20 MHz band-limited measurement. 4. VDD ramp time from 300mV to VDD,min shall be no longer than 200ms. 5. A stable valid VDD level is a set DC level (0 Hz to 250 KHz) and must be no less than VDD,min and no greater than VDD,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is final. AC noise of ±60mV (greater than 250 KHz) is allowed on VDD provided the noise doesn't alter VDD to less than VDD,min or greater than VDD,max. 6. A stable valid VDDQ level is a set DC level (0 Hz to 250 KHz) and must be no less than VDDQ,min and no greater than VDDQ,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is final. AC noise of ±60mV (greater than 250 KHz) is allowed on VDDQ provided the noise doesn't alter VDDQ to less than VDDQ,min or greater than VDDQ,max. 7. A stable valid VPP level is a set DC level (0 Hz to 250 KHz) and must be no less than VPP,min and no greater than VPP,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed again after the new set DC level is final. AC noise of ±120mV (greater than 250 KHz) is allowed on VPP provided the noise doesn't alter VPP to less than VPP,min or greater than VPP,max. Table 78: VDD Slew Rate Symbol Min Max Unit Notes VDD_sl 0.004 600 V/ms 1, 2 VDD_on – 200 ms 3 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Measurement made between 300mV and 80% VDD (minimum level). 2. The DC bandwidth is limited to 20 MHz. 3. Maximum time to ramp VDD from 300 mV to VDD minimum. 263 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Operating Conditions Leakages Table 79: Leakages Condition Symbol Min Max Unit Notes Input leakage (excluding ZQ and TEN) IIN –2 2 μA 1 ZQ leakage IZQ –50 10 μA 1 TEN leakage ITEN –6 10 μA 1, 2 VREFCA leakage IVREFCA –2 2 μA 3 Output leakage: VOUT = VDDQ IOZpd – 10 μA 4 Output leakage: VOUT = VSSQ IOZpu –50 – μA 4, 5 Notes: 1. 2. 3. 4. 5. Input under test 0V < VIN < 1.1V. Additional leakage due to weak pull-down. VREFCA = VDD/2, VDD at valid level after initialization. DQs are disabled. ODT is disabled with the ODT input HIGH. VREFCA Supply VREFCA is to be supplied to the DRAM and equal to V DD/2. The V REFCA is a reference supply input and therefore does not draw biasing current. The DC-tolerance limits and AC-noise limits for the reference voltages V REFCA are illustrated in the figure below. The figure shows a valid reference voltage V REF(t) as a function of time (VREF stands for V REFCA). V REF(DC) is the linear average of V REF(t) over a very long period of time (1 second). This average has to meet the MIN/MAX requirements. Furthermore, V REF(t) may temporarily deviate from V REF(DC) by no more than ±1% V DD for the AC-noise limit. Figure 206: VREFDQ Voltage Range Voltage VDD VREF(t) VREF AC-noise VREF(DC) MAX VREF(DC) VDD/2 VREF(DC) MIN VSS Time CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 264 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Operating Conditions The voltage levels for setup and hold time measurements are dependent on V REF. V REF is understood as V REF(DC), as defined in the above figure. This clarifies that DC-variations of V REF affect the absolute voltage a signal has to reach to achieve a valid HIGH or LOW level, and therefore, the time to which setup and hold is measured. System timing and voltage budgets need to account for V REF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V REF AC-noise. Timing and voltage effects due to AC-noise on V REF up to the specified limit (±1% of V DD) are included in DRAM timings and their associated deratings. VREFDQ Supply and Calibration Ranges The device internally generates its own V REFDQ. DRAM internal V REFDQ specification parameters: voltage range, step size, V REF step time, V REF full step time, and V REF valid level are used to help provide estimated values for the internal V REFDQ and are not pass/fail limits. The voltage operating range specifies the minimum required range for DDR4 SDRAM devices. The minimum range is defined by V REFDQ,min and V REFDQ,max. A calibration sequence should be performed by the DRAM controller to adjust V REFDQ and optimize the timing and voltage margin of the DRAM data input receivers. Table 80: VREFDQ Specification Parameter Symbol Min Typ Max Unit Notes Range 1 VREFDQ operating points VREFDQ R1 60% – 92% VDDQ 1, 2 Range 2 VREFDQ operating points VREFDQ R2 45% – 77% VDDQ 1, 2 VREF,step 0.5% 0.65% 0.8% VDDQ 3 VREF,set_tol –1.625% 0% 1.625% VDDQ 4, 5, 6 –0.15% 0% 0.15% VDDQ 4, 7, 8 VREF step size VREF set tolerance VREF step time VREF valid tolerance Notes: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN VREF,time – – 150 ns 9, 10, 11 VREF_val_tol –0.15% 0% 0.15% VDDQ 12 VREF(DC) voltage is referenced to VDDQ(DC). VDDQ(DC) is 1.2V. DRAM range 1 or range 2 is set by the MRS6[6]6. VREF step size increment/decrement range. VREF at DC level. VREF,new = VREF,old ±n × VREF,step; n = number of steps. If increment, use “+,” if decrement, use “-.” For n >4, the minimum value of VREF setting tolerance = VREF,new - 1.625% × VDDQ. The maximum value of VREF setting tolerance = VREF,new + 1.625% × VDDQ. Measured by recording the MIN and MAX values of the VREF output over the range, drawing a straight line between those points, and comparing all other VREF output settings to that line. For n ื4, the minimum value of VREF setting tolerance = VREF,new - 0.15% × VDDQ. The maximum value of VREF setting tolerance = VREF,new + 0.15% × VDDQ. Measured by recording the MIN and MAX values of the VREF output across four consecutive steps (n = 4), drawing a straight line between those points, and comparing all VREF output settings to that line. Time from MRS command to increment or decrement one step size for VREF. Time from MRS command to increment or decrement more than one step size up to the full range of VREF. If the VREF monitor is enabled, VREF must be derated by +10ns if DQ bus load is 0pF and an additional +15 ns/pF of DQ bus loading. 265 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Operating Conditions 12. Only applicable for DRAM component-level test/characterization purposes. Not applicable for normal mode of operation. VREF valid qualifies the step times, which will be characterized at the component level. VREFDQ Ranges MR6[6] selects range 1 (60% to 92.5% of V DDQ) or range 2 (45% to 77.5% of V DDQ), and MR6[5:0] sets the V REFDQ level, as listed in the following table. The values in MR6[6:0] will update the V DDQ range and level independent of MR6[7] setting. It is recommended MR6[7] be enabled when changing the settings in MR6[6:0], and it is highly recommended MR6[7] be enabled when changing the settings in MR6[6:0] multiple times during a calibration routine. Table 81: VREFDQ Range and Levels MR6[5:0] MR6[6] 0 = Range 1 MR6[6] 1 = Range 2 MR6[5:0] MR6[6] 0 = Range 1 MR6[6] 1 = Range 2 00 0000 60.00% 45.00% 01 1010 76.90% 61.90% 00 0001 60.65% 45.65% 01 1011 77.55% 62.55% 00 0010 61.30% 46.30% 01 1100 78.20% 63.20% 00 0011 61.95% 46.95% 01 1101 78.85% 63.85% 00 0100 62.60% 47.60% 01 1110 79.50% 64.50% 00 0101 63.25% 48.25% 01 1111 80.15% 65.15% 00 0110 63.90% 48.90% 10 0000 80.80% 65.80% 00 0111 64.55% 49.55% 10 0001 81.45% 66.45% 00 1000 65.20% 50.20% 10 0010 82.10% 67.10% 00 1001 65.85% 50.85% 10 0011 82.75% 67.75% 00 1010 66.50% 51.50% 10 0100 83.40% 68.40% 00 1011 67.15% 52.15% 10 0101 84.05% 69.05% 00 1100 67.80% 52.80% 10 0110 84.70% 69.70% 00 1101 68.45% 53.45% 10 0111 85.35% 70.35% 00 1110 69.10% 54.10% 10 1000 86.00% 71.00% 00 1111 69.75% 54.75% 10 1001 86.65% 71.65% 01 0000 70.40% 55.40% 10 1010 87.30% 72.30% 01 0001 71.05% 56.05% 10 1011 87.95% 72.95% 01 0010 71.70% 56.70% 10 1100 88.60% 73.60% 01 0011 72.35% 57.35% 10 1101 89.25% 74.25% 01 0100 73.00% 58.00% 10 1110 89.90% 74.90% 01 0101 73.65% 58.65% 10 1111 90.55% 75.55% 01 0110 74.30% 59.30% 11 0000 91.20% 76.20% 01 0111 74.95% 59.95% 11 0001 91.85% 76.85% 01 1000 75.60% 60.60% 11 0010 92.50% 77.50% 01 1001 76.25% 61.25% CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 11 0011 to 11 1111 are reserved 266 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels RESET_n Input Levels Table 82: RESET_n Input Levels (CMOS) Parameter Symbol Min Max Unit Note AC input high voltage VIH(AC)_RESET 0.8 × VDD VDD V 1 DC input high voltage VIH(DC)_RESET 0.7 × VDD VDD V 2 DC input low voltage VIL(DC)_RESET VSS 0.3 × VDD V 3 AC input low voltage VIL(AC)_RESET VSS 0.2 × VDD V 4 tR_RESET – 1 μs 5 RESET pulse width after power-up tPW_RESET_S 1 – μs 6, 7 RESET pulse width during power-up tPW_RESET_L 200 – μs 6 Rising time Notes: 1. Overshoot should not exceed the VIN shown in the Absolute Maximum Ratings table. 2. After RESET_n is registered HIGH, the RESET_n level must be maintained above VIH(DC)_RESET, otherwise operation will be uncertain until it is reset by asserting RESET_n signal LOW. 3. After RESET_n is registered LOW, the RESET_n level must be maintained below VIL(DC)_REt SET during PW_RESET, otherwise the DRAM may not be reset. 4. Undershoot should not exceed the VIN shown in the Absolute Maximum Ratings table. 5. Slope reversal (ring-back) during this level transition from LOW to HIGH should be mitigated as much as possible. 6. RESET is destructive to data contents. 7. See RESET Procedure at Power Stable Condition figure. Figure 207: RESET_n Input Slew Rate Definition tPW_RESET VIH(AC)_RESET,min VIH(DC)_RESET,min VIL(DC)_RESET,max VIL(AC)_RESET,max tR_RESET Command/Address Input Levels Table 83: Command and Address Input Levels: DDR4-1600 Through DDR4-2400 Parameter Symbol Min Max Unit Note AC input high voltage VIH(AC) VREF + 100 VDD5 mV 1, 2, 3 DC input high voltage VIH(DC) VREF + 75 VDD mV 1, 2 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 267 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Table 83: Command and Address Input Levels: DDR4-1600 Through DDR4-2400 (Continued) Parameter Symbol Min Max Unit Note DC input low voltage VIL(DC) VSS VREF - 75 mV 1, 2 AC input low voltage VIL(AC) VSS5 VREF - 100 mV 1, 2, 3 VREFFCA(DC) 0.49 × VDD 0.51 × VDD V 4 Reference voltage for CMD/ADDR inputs Notes: 1. 2. 3. 4. For input except RESET_n. VREF = VREFCA(DC). VREF = VREFCA(DC). Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ±1% VDD (for reference: approximately ±12mV). 5. Refer to “Overshoot and Undershoot Specifications.” Table 84: Command and Address Input Levels: DDR4-2666 Parameter Symbol Min Max Unit Note AC input high voltage VIH(AC) VREF + 90 VDD5 mV 1, 2, 3 DC input high voltage VIH(DC) VREF + 65 VDD mV 1, 2 DC input low voltage VIL(DC) VSS VREF - 65 mV 1, 2 AC input low voltage VIL(AC) VSS5 VREF - 90 mV 1, 2, 3 VREFFCA(DC) 0.49 × VDD 0.51 × VDD V 4 Reference voltage for CMD/ADDR inputs Notes: 1. 2. 3. 4. For input except RESET_n. VREF = VREFCA(DC). VREF = VREFCA(DC). Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ±1% VDD (for reference: approximately ±12mV). 5. Refer to “Overshoot and Undershoot Specifications.” Table 85: Command and Address Input Levels: DDR4-2933 and DDR4-3200 Parameter Symbol Min Max Unit Note AC input high voltage VIH(AC) VREF + 90 VDD5 mV 1, 2, 3 DC input high voltage VIH(DC) VREF + 65 VDD mV 1, 2 DC input low voltage VIL(DC) VSS VREF - 65 mV 1, 2 AC input low voltage VIL(AC) VSS5 VREF - 90 mV 1, 2, 3 VREFFCA(DC) 0.49 × VDD 0.51 × VDD V 4 Reference voltage for CMD/ADDR inputs Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. 2. 3. 4. For input except RESET_n. VREF = VREFCA(DC). VREF = VREFCA(DC). Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ±1% VDD (for reference: approximately ±12mV). 5. Refer to “Overshoot and Undershoot Specifications.” 268 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Table 86: Single-Ended Input Slew Rates Parameter Single-ended input slew rate – CA Notes: 1. 2. 3. 4. Symbol Min Max Unit Note SRCA 1.0 7.0 V/ns 1, 2, 3, 4 For input except RESET_n. VREF = VREFCA(DC). tIS/tIH timings assume SR CA = 1V/ns. Measured between VIH(AC) and VIL(AC) for falling edges and between VIL(AC) and VIH(AC) for rising edges Figure 208: Single-Ended Input Slew Rate Definition TRse TFse VIH(AC) VIH(DC) VREFCA VIL(DC) VIL(AC) Command, Control, and Address Setup, Hold, and Derating The total tIS (setup time) and tIH (hold time) required is calculated to account for slew rate variation by adding the data sheet tIS (base) values, the V IL(AC)/VIH(AC) points, and tIH (base) values, the V t t IL(DC)/VIH(DC) points; to the ˂ IS and ˂ IH derating values, respectively. The base values are derived with single-end signals at 1V/ns and differential clock at 2 V/ns. Example: tIS (total setup time) = tIS (base) + ˂tIS. For a valid transition, the input signal has to remain above/below V IH(AC)/VIL(AC) for the time defined by tVAC. Although the total setup time for slow slew rates might be negative (for example, a valid input signal will not have reached V IH(AC)/VIL(AC) at the time of the rising clock transition), a valid input signal is still required to complete the transition and to reach VIH(AC)/VIL(AC). For slew rates that fall between the values listed in derating tables, the derating values may be obtained by linear interpolation. Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V IL(DC)max and the first crossing of V IH(AC)min that does not ring back below V IH(DC)min . Setup (tIS) nominal slew rate for a falling signal is defined as the slew CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 269 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels rate between the last crossing of V IH(DC)min and the first crossing of V IL(AC)max that does not ring back above V IL(DC)max. Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V IL(DC)max and the first crossing of V IH(AC)min that does not ring back below V IH(DC)min. Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V IH(DC)min and the first crossing of V IL(AC)minthat does not ring back above V IL(DC)max. Table 87: Command and Address Setup and Hold Values Referenced – AC/DC-Based Symbol tIS(base, 1600 1866 2133 2400 2666 2933 3200 Unit Reference 115 100 80 62 – – – ps VIH(AC)/VIL(AC) AC100) tIH(base, DC75) 140 125 105 87 – – – ps VIH(DC)/VIL(DC) tIS(base, AC90) – – – – 55 48 40 ps VIH(AC)/VIL(AC) tIH(base, DC65) tIS/tIH(Vref) – – – – 80 73 65 ps VIH(DC)/VIL(DC) 215 200 180 162 145 138 130 ps VIH(DC)/VIL(DC) Table 88: Derating Values for tIS/tIH – AC100DC75-Based ˂tIS with AC100 Threshold, ˂tIH with DC75 Threshold Derating (ps) – AC/DC-Based CMD/ ADDR Slew Rate V/ns CK, CK# Differential Slew Rate ˂tIS ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH ˂tIH ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH 7.0 76 54 76 55 77 56 79 58 82 60 86 64 94 73 111 89 6.0 73 53 74 53 75 54 77 56 79 58 83 63 92 71 108 88 5.0 70 50 71 51 72 52 74 54 76 56 80 60 88 68 105 85 4.0 65 46 66 47 67 48 69 50 71 52 75 56 83 65 100 81 3.0 57 40 57 41 58 42 60 44 63 46 67 50 75 58 92 75 2.0 40 28 41 28 42 29 44 31 46 33 50 38 58 46 75 63 1.5 23 15 24 16 25 17 27 19 29 21 33 25 42 33 58 50 1.0 –10 –10 –9 –9 –8 –8 –6 –6 –4 –4 0 0 8 8 25 25 0.9 –17 –14 –16 –14 –15 –13 –13 –10 –11 –8 –7 –4 1 4 18 21 0.8 –26 –19 –25 –19 –24 –18 –22 –16 –20 –14 –16 –9 –7 –1 9 16 0.7 –37 –26 –36 –25 –35 –24 –33 –22 –31 –20 –27 –16 –18 –8 –2 9 0.6 –52 –35 –51 –34 –50 –33 –48 –31 –46 –29 –42 –25 –33 –17 –17 0 0.5 –73 –48 –72 –47 –71 –46 –69 –44 –67 –42 –63 –38 –54 –29 –38 –13 0.4 –104 –66 –103 –66 –102 –65 –100 –63 –98 –60 –94 –56 –85 –48 –69 –31 10.0 V/ns CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 8.0 V/ns 6.0 V/ns 4.0 V/ns 270 3.0 V/ns 2.0 V/ns 1.5 V/ns 1.0 V/ns Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Table 89: Derating Values for tIS/tIH – AC90/DC65-Based ˂tIS with AC90 Threshold, ˂tIH with DC65 Threshold Derating (ps) – AC/DC-Based CMD/ ADDR Slew Rate V/ns CK, CK# Differential Slew Rate ˂tIS ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH ˂tIH ˂tIH ˂tIS ˂tIH ˂tIS ˂tIH 7.0 68 47 69 47 70 48 72 50 73 52 77 56 85 63 100 78 6.0 66 45 67 46 68 47 69 49 71 50 75 54 83 62 98 77 5.0 63 43 64 44 65 45 66 46 68 48 72 52 80 60 95 75 4.0 59 40 59 40 60 41 62 43 64 45 68 49 75 56 90 71 3.0 51 34 52 35 53 36 54 38 56 40 60 43 68 51 83 66 2.0 36 24 37 24 38 25 39 27 41 29 45 33 53 40 68 55 1.5 21 13 22 13 23 14 24 16 26 18 30 22 38 29 53 44 1.0 –9 –9 –8 –8 –8 –8 –6 –6 –4 –4 0 0 8 8 23 23 0.9 –15 –13 –15 –12 –14 –11 –12 –9 –10 –7 –6 –4 1 4 16 19 0.8 –23 –17 –23 –17 –22 –16 –20 –14 –18 –12 –14 –8 –7 –1 8 14 0.7 –34 –23 –33 –22 –32 –21 –30 –20 –28 –18 –25 –14 –17 –6 –2 9 0.6 –47 –31 –47 –30 –46 –29 –44 –27 –42 –25 –38 –22 –31 –14 –16 1 0.5 –67 –42 –66 –41 –65 –40 –63 –38 –61 –36 –58 –33 –50 –25 –35 –10 0.4 –95 –58 –95 –57 –94 –56 –92 –54 –90 –53 –86 –49 –79 –41 –64 –26 10.0 V/ns 8.0 V/ns 6.0 V/ns 4.0 V/ns 3.0 V/ns 2.0 V/ns 1.5 V/ns 1.0 V/ns Data Receiver Input Requirements The following parameters apply to the data receiver Rx MASK operation detailed in the Write Timing section, Data Strobe-to-Data Relationship. The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in the figure below. A LOW-to-HIGH transition time, tr1, is measured from 0.5 × V diVW,max below V CENTDQ,midpoint to the last transition through 0.5 × V diVW,max above V CENTDQ,midpoint; tr2 is measured from the last transition through 0.5 × V diVW,max above V CENTDQ,midpoint to the first transition through the 0.5 × VIHL(AC)min above V CENTDQ,midpoint. The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in the figure below. A HIGH-to-LOW transition time, tf1, is measured from 0.5 × V diVW,max above V CENTDQ,midpoint to the last transition through 0.5 × V diVW,max below V CENTDQ,midpoint; tf2 is measured from the last transition through 0.5 × V diVW,max below V CENTDQ,midpoint to the first transition through the 0.5 × VIHL(AC)min below V CENTDQ,midpoint. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 271 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Figure 209: DQ Slew Rate Definitions VCENTDQ,midpoint 0.5 × VdiVW,max VdiVW,max 0.5 × VIHL(AC)min 0.5 × VIHL(AC)min tr1 tf1 0.5 × VdiVW,max Rx Mask VCENTDQ,midpoint 0.5 × VdiVW,max VdiVW,max 0.5 × VIHL(AC)min 0.5 × VdiVW,max Rx Mask 0.5 × VIHL(AC)min VIHL(AC)min VIHL(AC)min tr2 tf2 Notes: 1. 2. 3. 4. Rising edge slew rate equation srr1 = VdiVW,max/(tr1). Rising edge slew rate equation srr2 = (VIHL(AC)min - VdiVW,max )/(2 × tr2). Falling edge slew rate equation srf1 = VdiVW,max/(tf1). Falling edge slew rate equation srf2 = (VIHL(AC)min - VdiVW,max )/(2 × tf2). Table 90: DQ Input Receiver Specifications Note 1 applies to the entire table DDR4-1600, 1866, 2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Parameter Symbol Min Max Min Max Min Max Min Max Min Max Unit Not es VIN Rx mask input peak-to-peak VdiVW – 136 – 130 – 120 – 115 – 110 mV 2, 3 DQ Rx input timing window TdiVW – 0.2 – 0.2 – 0.22 – 0.23 – 0.23 UI 2, 3 DQ AC input swing peak-topeak VIHL(AC) 186 – 160 – 150 – 145 – 140 – mV 4, 5 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 272 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Table 90: DQ Input Receiver Specifications (Continued) Note 1 applies to the entire table DDR4-1600, 1866, 2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Parameter Symbol Min Max Min Max Min Max Min Max Min Max Unit Not es DQ input pulse width TdiPW 0.58 – 0.58 – 0.58 – 0.58 – 0.58 – UI 6 DQS-to-DQ Rx mask offset tDQS2D –0.17 0.17 –0.17 0.17 –0.19 0.19 –0.22 0.22 –0.22 0.22 UI 7 DQ-to-DQ Rx mask offset tDQ2DQ – 0.1 – 0.1 – 0.105 – 0.115 – 0.125 UI 8 srr1, srf1 Input slew rate over VdiVW if tCK ุ 0.937ns 1 9 1 9 1 9 1 9 1 9 V/ns 9 Input slew rate over VdiVW if 0.937ns > tCK ุ 0.625ns srr1, srf1 – – 1.25 9 1.25 9 1.25 9 1.25 9 V/ns 9 Rising input slew rate over 1/2 VIHL(AC) srr2 0.2 × srr1 9 0.2 × srr1 9 0.2 × srr1 9 0.2 × srr1 9 0.2 × srr1 9 V/ns 10 Falling input slew rate over 1/2 VIHL(AC) srf2 0.2 × srf1 9 0.2 × srf1 9 0.2 × srf1 9 0.2 × srf1 9 0.2 × srf1 9 V/ns 10 Q Notes: 1. All Rx mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW (MIN), VdiVW,max, and minimum slew rate limits, then either TdiVW (MIN) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated. 2. Data Rx mask voltage and timing total input valid window where VdiVW is centered around VCENTDQ,midpoint after VREFDQ training is completed. The data Rx mask is applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER =1e- 16 when the Rx mask is not violated. 3. Defined over the DQ internal VREF range 1. 4. Overshoot and undershoot specifications apply. 5. DQ input pulse signal swing into the receiver must meet or exceed VIHL(AC)min. VIHL(AC)min is to be achieved on an UI basis when a rising and falling edge occur in the same UI (a valid TdiPW). 6. DQ minimum input pulse width defined at the VCENTDQ,midpoint. 7. DQS-to-DQ Rx mask offset is skew between DQS and DQ within a nibble (x4) or word (x8, x16 [for x16, the upper and lower bytes are treated as separate x8s]) at the SDRAM balls over process, voltage, and temperature. 8. DQ-to-DQ Rx mask offset is skew between DQs within a nibble (x4) or word (x8, x16) at the SDRAM balls for a given component over process, voltage, and temperature. 9. Input slew rate over VdiVW mask centered at VCENTDQ,midpoint. Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7V/ns of each other. 10. Input slew rate between VdiVW mask edge and VIHL(AC)min points. The following figure shows the Rx mask relationship to the input timing specifications relative to system tDS and tDH. The classical definition for tDS/tDH required a DQ rising CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 273 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels and falling edges to not violate tDS and tDH relative to the DQS strobe at any time; however, with the Rx mask tDS and tDH can shift relative to the DQS strobe provided the input pulse width specification is satisfied and the Rx mask is not violated. Figure 210: Rx Mask Relative to tDS/tDH TdiPW VIH(DC) VdiVW 0.5 × VdiVW VCENTDQ,pin mean Rx Mask 0.5 × VdiVW VIL(DC) tf1 tr1 TdiVW tDS tDH = Greater of 0.5 × TdiVW or 0.5 × (TdiPW + VdiVW/tf1) = Greater of 0.5 × TdiVW or 0.5 × (TdiPW + VdiVW/tr1) DQS_c DQS_t The following figure and table show an example of the worst case Rx mask required if the DQS and DQ pins do not have DRAM controller to DRAM write DQ training. The figure and table show that without DRAM write DQ training, the Rx mask would increase from 0.2UI to essentially 0.54UI. This would also be the minimum tDS and tDH required as well. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 274 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Figure 211: Rx Mask Without Write Training TdiVW + 2 × tDQS2DQ VdiVW VIH(DC) 0.5 × VdiVW Rx Mask VCENTDQ,midpoint 0.5 × VdiVW VIL(DC) tDS tDH 0.5 × TdiVW + tDQS2DQ 0.5 × TdiVW + tDQS2DQ DQS_c DQS_t Table 91: Rx Mask and tDS/tDH without Write Training Rx Mask with Write Train (ps) DDR4 VIHL(AC) (mV) TdiPW (UI) VdiVW (mV) TdiVW (UI) tDQS2DQ tDQ2DQ (UI) (UI) 1600 186 0.58 136 0.2 ±0.17 0.1 125 1866 186 0.58 136 0.2 ±0.17 0.1 107.1 289 2133 186 0.58 136 0.2 ±0.17 0.1 94 253 2400 160 0.58 130 0.2 ±0.17 0.1 83.3 225 2666 150 0.58 120 0.22 ±0.19 0.105 82.5 225 2933 145 0.58 115 0.23 ±0.22 0.115 78.4 228 3200 140 0.58 110 0.23 ±0.22 0.125 71.8 209 Note: tDS + tDH (ps) 338 1. VIHL(AC), VdiVW, and VILH(DC) referenced to VCENTDQ,midpoint. Connectivity Test (CT) Mode Input Levels Table 92: TEN Input Levels (CMOS) Parameter Symbol Min Max Unit Note TEN AC input high voltage VIH(AC)_TEN 0.8 × VDD VDD V 1 TEN DC input high voltage VIH(DC)_TEN 0.7 × VDD VDD V TEN DC input low voltage VIL(DC)_TEN VSS 0.3 × VDD V TEN AC input low voltage VIL(AC)_TEN VSS 0.2 × VDD V tF_TEN – 10 ns TEN falling time CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 275 2 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Table 92: TEN Input Levels (CMOS) (Continued) Parameter TEN rising time Symbol Min Max Unit tR_TEN – 10 ns Note 1. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table. 2. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table. Notes: Figure 212: TEN Input Slew Rate Definition VIH(AC)_TENmin VIH(DC)_TENmin VIL(DC)_TENmin VIL(AC)_TENmin tF_TEN tR_TEN Table 93: CT Type-A Input Levels Parameter Symbol Min Max Unit Note CTipA AC input high voltage VIH(AC) VREF + 200 VDD11 V 2, 3 CTipA DC input high voltage VIH(DC) VREF + 150 VDD V 2, 3 CTipA DC input low voltage VIL(DC) VSS VREF - 150 V 2, 3 1 VIL(AC) VSS1 VREF - 200 V 2, 3 CTipA falling time tF_CTipA – 5 ns 2 CTipA rising time tR_CTipA – 5 ns 2 CTipA AC input low voltage Notes: 1. Refer to Overshoot and Undershoot Specifications. 2. CT Type-A inputs: CS_n, BG[1:0], BA[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14, CAS_n/A15, RAS_n/A16, A17, CKE, ACT_n, ODT, CLK_t, CLK_C, PAR. 3. VREFCA = 0.5 × VDD. Figure 213: CT Type-A Input Slew Rate Definition VIH(AC)_CTipAmin VIH(DC)_CTipAmin VREFCA VIL(DC)_CTipAmax VIL(AC)_CTipAmax tR_CTipA tF_CTipA CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 276 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Table 94: CT Type-B Input Levels Parameter Symbol Min Max Unit Note CTipB AC input high voltage VIH(AC) VREF + 300 VDD11 V 2, 3 CTipB DC input high voltage VIH(DC) VREF + 200 VDD V 2, 3 CTipB DC input low voltage VIL(DC) VSS VREF - 200 V 2, 3 1 VIL(AC) VSS1 VREF - 300 V 2, 3 CTipB falling time tF_CTipB – 5 ns 2 CTipB rising time tR_CTipB – 5 ns 2 CTipB AC input low voltage Notes: 1. Refer to Overshoot and Undershoot Specifications. 2. CT Type-B inputs: DML_n/DBIL_n, DMU_n/DBIU_n and DM_n/DBI_n. 3. VREFDQ should be 0.5 × VDD Figure 214: CT Type-B Input Slew Rate Definition VIH(AC)_CTipBmin VIH(DC)_CTipBmin VREFDQ VIL(DC)_CTipBmax VIL(AC)_CTipBmax tF_CTipB tR_CTipB Table 95: CT Type-C Input Levels (CMOS) Parameter Symbol Min Max Unit Note 1 V 2 CTipC AC input high voltage VIH(AC)_CTipC 0.8 × VDD VDD CTipC DC input high voltage VIH(DC)_CTipC 0.7 × VDD VDD V 2 CTipC DC input low voltage VIL(DC)_CTipC VSS 0.3 × VDD V 2 CTipC AC input low voltage VIL(AC)_CTipC VSS1 0.2 × VDD V 2 CTipC falling time tF_CTipC – 10 ns 2 CTipC rising time tR_CTipC – 10 ns 2 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Refer to Overshoot and Undershoot Specifications. 2. CT Type-C inputs: Alert_n. 277 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Single-Ended Input Measurement Levels Figure 215: CT Type-C Input Slew Rate Definition VIH(AC)_TENmin VIH(DC)_TENmin VIL(DC)_TENmin VIL(AC)_TENmin tF_TEN tR_TEN Table 96: CT Type-D Input Levels Parameter Symbol Min Max Unit Note CTipD AC input high voltage VIH(AC)_CTipD 0.8 × VDD VDD V 4 CTipD DC input high voltage VIH(DC)_CTipD 0.7 × VDD VDD V 2 CTipD DC input low voltage VIL(DC)_CTipD VSS 0.3 × VDD V 1 CTipD AC input low voltage VIL(AC)_CTipD VSS 0.2 × VDD V 5 tR_RESET – 1 μs 3 RESET pulse width - after power-up tPW_RESET_S 1 – μs RESET pulse width - during power-up tPW_RESET_L 200 – μs Rising time Notes: 1. After RESET_n is registered LOW, the RESET_n level must be maintained below VIL(DC)_REt SET during PW_RESET, otherwise, the DRAM may not be reset. 2. After RESET_n is registered HIGH, the RESET_n level must be maintained above VIH(DC)_RESET, otherwise, operation will be uncertain until it is reset by asserting RESET_n signal LOW. 3. Slope reversal (ring-back) during this level transition from LOW to HIGH should be mitigated as much as possible. 4. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table. 5. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table. 6. CT Type-D inputs: RESET_n; same requirements as in normal mode. Figure 216: CT Type-D Input Slew Rate Definition tPW_RESET VIH(AC)_RESETmin VIH(DC)_RESETmin VIL(DC)_RESETmax VIL(AC)_RESETmax tR_RESET CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 278 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Measurement Levels Electrical Characteristics – AC and DC Differential Input Measurement Levels Differential Inputs Figure 217: Differential AC Swing and “Time Exceeding AC-Level” tDVAC tDVAC VIH,diff(AC)min VIH,diff,min CK_t, CK_c 0.0 VIL,diff,max VIL,diff(AC)max tDVAC Half cycle Notes: 1. Differential signal rising edge from VIL,diff,max to VIH,diff(AC)min must be monotonic slope. 2. Differential signal falling edge from IH,diff,min to VIL,diff(AC)max must be monotonic slope. Table 97: Differential Input Swing Requirements for CK_t, CK_c DDR4-2400 / 2666 Parameter Symbol DDR4-1600 / 1866 / 2133 Min Max Min Max Min Max Min Max Unit Note s Differential input high VIHdiff 150 Note 3 135 Note 3 125 Note 3 110 Note 3 mV 1 Differential input low VILdiff Note 3 –150 Note 3 -135 Note 3 -125 Note 3 -110 mV 1 Differential input high (AC) VIH- 2× (VIH(AC) - VREF) Note 3 2× (VIH(AC) - VREF) Note 3 2× (VIH(AC) - VREF) Note 3 2× (VIH(AC) - VREF) Note 3 V 2 diff(AC) CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 279 DDR4-2933 DDR4-3200 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Measurement Levels Table 97: Differential Input Swing Requirements for CK_t, CK_c (Continued) Parameter Differential input low (AC) Symbol DDR4-1600 / 1866 / 2133 DDR4-2400 / 2666 Min Min VIL- Note 3 diff(AC) Notes: Max Max DDR4-2933 Min Max DDR4-3200 Min Max Unit Note s V 2 Note 3 2× Note 3 2× Note 3 2× 2× (VIL(AC) (VIL(AC) (VIL(AC) (VIL(AC) VREF) VREF) VREF) VREF) 1. Used to define a differential signal slew-rate. 2. For CK_t, CK_c use VIH(AC) and VIL(AC) of ADD/CMD and VREFCA. 3. These values are not defined; however, the differential signals (CK_t, CK_c) need to be within the respective limits, VIH(DC)max and VIL(DC)min for single-ended signals as well as the limitations for overshoot and undershoot. Table 98: Minimum Time AC Time tDVAC for CK tDVAC Note: (ps) at |VIH,diff(AC) to VIL,diff(AC)| Slew Rate (V/ns) 200mV TBDmV >4.0 120 TBD 4.0 115 TBD 3.0 110 TBD 2.0 105 TBD 1.9 100 TBD 1.6 95 TBD 1.4 90 TBD 1.2 85 TBD 1.0 80 TBD VDD/2 + 145mV N/A 120mV VDD/2 + 100mV ื VSEH ื VDD/2 + 145mV N/A (VSEH - VDD/2) - 25mV VDD/2 - 145mV ื VSEL ื VDD/2 - 100mV –(VDD/2 - VSEL) + 25mV N/A VSEL < VDD/2 - 145mV –120mV N/A Table 102: Cross Point Voltage For CK Differential Input Signals at DDR4-2666 through DDR4-3200 DDR4-2666, 2933, 3200 Parameter Differential input cross point voltage relative to VDD/2 for CK_t, CK_c Sym Input Level Min Max VIX(CK) VSEH > VDD/2 + 145mV N/A 110mV VDD/2 + 90mV ื VSEH ื VDD/2 + 145mV N/A (VSEH - VDD/2) - 30mV VDD/2 - 145mV ื VSEL ื VDD/2 - 90mV –(VDD/2 - VSEL) + 30mV N/A VSEL < VDD/2 - 145mV –110mV N/A DQS Differential Input Signal Definition and Swing Requirements DQS_t, DQS_c: Differential Input Voltage Figure 221: Differential Input Signal Definition for DQS_t, DQS_c VIH,diff,peak Half cycle 0.0V Half cycle VIL,diff,peak Table 103: DDR4-1600 through DDR4-2400 Differential Input Swing Requirements for DQS_t, DQS_c DDR4-1600, 1866, 2133 Parameter Peak differential input high voltage CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN DDR4-2400 Symbol Min Max Min Max Unit Notes VIH,diff,peak 186 VDDQ 160 VDDQ mV 1,2 283 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Measurement Levels Table 103: DDR4-1600 through DDR4-2400 Differential Input Swing Requirements for DQS_t, DQS_c (Continued) DDR4-1600, 1866, 2133 Parameter Peak differential input low voltage DDR4-2400 Symbol Min Max Min Max Unit Notes VIL,diff,peak VSSQ –186 VSSQ –160 mV 1,2 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits. 2. Minimum value point is used to determine differential signal slew-rate. Notes: Table 104: DDR4-2633 through DDR4-3200 Differential Input Swing Requirements for DQS_t, DQS_c Parameter DDR4-2666 DDR4-2933 DDR4-3200 Symbol Min Max Min Max Min Max Unit Notes Peak differential input high voltage VIH,diff,peak 150 VDDQ 145 VDDQ 140 VDDQ mV 1,2 Peak differential input low voltage VIL,diff,peak VSSQ –150 VSSQ –145 VSSQ –140 mV 1,2 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits. 2. Minimum value point is used to determine differential signal slew-rate. Notes: The peak voltage of the DQS signals are calculated using the following equations: VIH,dif,Peak voltage = MAX(ft) VIL,dif,Peak voltage = MIN(ft) (ft) = DQS_t, DQS_c. The MAX(f(t)) or MIN(f(t)) used to determine the midpoint from which to reference the ±35% window of the exempt non-monotonic signaling shall be the smallest peak voltage observed in all UIs. DQS_t, DQS_c: Single-Ended Input Voltages Figure 222: DQS_t, DQS_c Input Peak Voltage Calculation and Range of Exempt non-Monotonic Signaling CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN DQS_t +35% +50% MIN(ft) MAX(ft) –35% –50% DQS_c 284 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Measurement Levels DQS Differential Input Cross Point Voltage To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) must meet V IX_DQS,ratio in the table below. The differential input cross point voltage V IX_DQS (VIX_DQS_FR and V IX_DQS_RF) is measured from the actual cross point of DQS_t, DQS_c relative to the V DQS,mid of the DQS_t and DQS_c signals. VDQS,mid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by V DQS_trans. V DQS_trans is the difference between the lowest horizontal tangent above V DQS,mid of the transitioning DQS signals and the highest horizontal tangent below V DQS,mid of the transitioning DQS signals. A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within ±35% of the midpoint of either V IH.DIFF.Peak voltage (DQS_t rising) or V IL.DIFF.Peak voltage (DQS_c rising), as shown in the figure below. A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived from its negative slope to zero slope transition (point A in the figure below), and a ring-back’s horizontal tangent is derived from its positive slope to zero slope transition (point B in the figure below) and is not a valid horizontal tangent; a rising transition’s horizontal tangent is derived from its positive slope to zero slope transition (point C in the figure below), and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in the figure below) and is not a valid horizontal tangent. Figure 223: VIXDQS Definition Lowest horizontal tanget above VDQS,mid of the transitioning signals VIX_DQS,FR VIX_DQS,RF VDQS,mid VIX_DQS,FR VIX_DQS,RF B VDQS_trans D VDQS_trans/2 DQS_t, DQS_c: Single-Ended Input Voltages C DQS_t DQS_c A Highest horizontal tanget below VDQS,mid of the transitioning signals VSSQ Table 105: Cross Point Voltage For Differential Input Signals DQS DDR4-1600, 1866, 2133, 2400, 2666, 2933, 3200 Parameter DQS_t and DQS_c crossing relative to the midpoint of the DQS_t and DQS_c signal swings CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Symbol Min Max Unit Notes VIX_DQS,ratio – 25 % 1, 2 285 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Measurement Levels Table 105: Cross Point Voltage For Differential Input Signals DQS (Continued) DDR4-1600, 1866, 2133, 2400, 2666, 2933, 3200 Parameter VDQS,mid to Vcent(midpoint) offset Symbol Min Max Unit Notes VDQS,mid_to_Vcent – Note 3 mV 2 1. VIX_DQS,ratio is DQS VIX crossing (VIX_DQS,FR or VIX_DQS,RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above VDQS,midd of the transitioning DQS signals and the highest horizontal tangent below VDQS,mid of the transitioning DQS signals. 2. VDQS,mid will be similar to the VREFDQ internal setting value (Vcent(midpoint) offset) obtained during VREF Training if the DQS and DQs drivers and paths are matched. 3. The maximum limit shall not exceed the smaller of VIH,diff,DQS minimum limit or 50mV. Notes: Slew Rate Definitions for DQS Differential Input Signals Table 106: DQS Differential Input Slew Rate Definition Measured Description From To Defined by Differential input slew rate for rising edge V IL,diff,DQS V IH,diff,DQS |VIH,diff,DQS - VIL,diff,DQS_˂TRdiff Differential input slew rate for falling edge V IH,diff,DQS V IL,diff,DQS |VIHdiffDQS - VIL,diff,DQS_˂TFdiff 1. The differential signal DQS_t, DQS_c must be monotonic between these thresholds. Note: DQS_t, DQS_c: Differential Input Voltage Figure 224: Differential Input Slew Rate and Input Level Definition for DQS_t, DQS_c VIH,diff,peak VIH,diff,DQS 0.0V VIL,diff,DQS TRdiff TFdiff VIL,diff,peak Table 107: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c DDR4-1600, 1866, 2133 Parameter DDR4-2400 Symbol Min Max Min Max Unit Notes Peak differential input high voltage VIH,diff,peak 186 VDDQ 160 VDDQ mV 1 Differential input high voltage VIH,diff,DQS 136 – 130 – mV 2, 3 Differential input low voltage VIL,diff,DQS – –136 – –130 mV 2, 3 CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 286 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Differential Input Measurement Levels Table 107: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c (Continued) DDR4-1600, 1866, 2133 Parameter Peak differential input low voltage DQS differential input slew rate Notes: DDR4-2400 Symbol Min Max Min Max Unit Notes VIL,diff,peak VSSQ –186 VSSQ –160 mV 1 SRIdiff 3.0 18 3.0 18 V/ns 4, 5 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits. 2. Differential signal rising edge from VIL,diff,DQS to VIH,diff,DQS must be monotonic slope. 3. Differential signal falling edge from VIH,diff,DQS to VIL,diff,DQS must be monotonic slope. 4. Differential input slew rate for rising edge from VIL,diff,DQS to VIH,diff,DQS is defined by | VIL,diff,min - VIH,diff,max_˂TRdiff. 5. Differential input slew rate for falling edge from VIH,diff,DQS to VIL,diff,DQS is defined by | VIL,diff,min - VIH,diff,max_˂TFdiff. Table 108: DDR4-2666 through DDR4-3200 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c DDR4-2666 Parameter DDR4-2933 DDR4-3200 Symbol Min Max Min Max Min Max Unit Notes Peak differential input high voltage VIH,diff,peak 150 VDDQ 145 VDDQ 140 VDDQ mV 1 Differential input high voltage VIH,diff,DQS 130 – 115 – 110 – mV 2, 3 Differential input low voltage VIL,diff,DQS – –130 – –115 – –110 mV 2, 3 Peak differential input low voltage VIL,diff,peak VSSQ –150 VSSQ –145 VSSQ –140 mV 1 DQS differential input slew rate SRIdiff 2.5 18 2.5 18 2.5 18 V/ns 4, 5 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot and undershoot limits. 2. Differential signal rising edge from VIL,diff,DQS to VIH,diff,DQS must be monotonic slope. 3. Differential signal falling edge from VIH,diff,DQS to VIL,diff,DQS must be monotonic slope. 4. Differential input slew rate for rising edge from VIL,diff,DQS to VIH,diff,DQS is defined by | VIL,diff,min - VIH,diff,max_˂TRdiff. 5. Differential input slew rate for falling edge from VIH,diff,DQS to VIL,diff,DQS is defined by | VIL,diff,min - VIH,diff,max_˂TFdiff. 287 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – Overshoot and Undershoot Specifications Electrical Characteristics – Overshoot and Undershoot Specifications Address, Command, and Control Overshoot and Undershoot Specifications Table 109: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications DDR41600 Description DDR41866 DDR42133 DDR42400 DDR42666 DDR4- DDR42933 3200 Unit Address and control pins (A[17:0], BG[1:0], BA[1:0], CS_n, RAS_n, CAS_n, WE_n, CKE, ODT, C2-0) Area A: Maximum peak amplitude above VDD absolute MAX 0.06 0.06 0.06 0.06 0.06 0.06 0.06 V Area B: Amplitude allowed between VDD and VDD absolute MAX 0.24 0.24 0.24 0.24 0.24 0.24 0.24 V Area C: Maximum peak amplitude allowed for undershoot below VSS 0.30 0.30 0.30 0.30 0.30 0.30 0.30 V Area A maximum overshoot area per 1tCK 0.0083 0.0071 0.0062 0.0055 0.0055 0.0055 0.0055 V/ns 1tCK 0.2550 0.2185 0.1914 0.1699 0.1699 0.1699 0.1699 V/ns 0.2644 0.2265 0.1984 0.1762 0.1762 0.1762 0.1762 V/ns Area B maximum overshoot area per Area C maximum undershoot area per 1tCK Figure 225: ADDR, CMD, CNTL Overshoot and Undershoot Definition Absolute MAX overshoot Volts (V) VDD absolute MAX VDD A Overshoot area above VDD absolute MAX B Overshoot area below VDD absolute MAX and above VDD MAX 1tCK VSS C CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 288 Undershoot area below VSS Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – Overshoot and Undershoot Specifications Clock Overshoot and Undershoot Specifications Table 110: CK Overshoot and Undershoot/ Specifications DDR41600 DDR41866 DDR42133 DDR42400 DDR42666 Area A: Maximum peak amplitude above VDD absolute MAX 0.06 0.06 0.06 0.06 0.06 0.06 0.06 V Area B: Amplitude allowed between VDD and VDD absolute MAX 0.24 0.24 0.24 0.24 0.24 0.24 0.24 V Area C: Maximum peak amplitude allowed for undershoot below VSS 0.30 0.30 0.30 0.30 0.30 0.30 0.30 V Area A maximum overshoot area per 1UI 0.0038 0.0032 0.0028 0.0025 0.0025 0.0025 0.0025 V/ns Area B maximum overshoot area per 1UI 0.1125 0.0964 0.0844 0.0750 0.0750 0.0750 0.0750 V/ns Area C maximum undershoot area per 1UI 0.1144 0.0980 0.0858 0.0762 0.0762 0.0762 0.0762 V/ns Description DDR4- DDR42933 3200 Unit CLK_t, CLK_n Figure 226: CK Overshoot and Undershoot Definition Absolute MAX overshoot Volts (V) VDD absolute MAX A Overshoot area above VDD absolute MAX B Overshoot area below VDD absolute MAX and above VDD MAX VDD 1UI VSS C CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 289 Undershoot area below VSS Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Measurement Levels Data, Strobe, and Mask Overshoot and Undershoot Specifications Table 111: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications DDR41600 Description DDR41866 DDR42133 DDR42400 DDR42666 DDR4- DDR42933 3200 Unit DQS_t, DQS_n, LDQS_t, LDQS_n, UDQS_t, UDQS_n, DQ[0:15], DM/DBI, UDM/UDBI, LDM/LDBI, Area A: Maximum peak amplitude above VDDQ absolute MAX 0.16 0.16 0.16 0.16 0.16 0.16 0.16 V Area B: Amplitude allowed between VDDQ and VDDQ absolute MAX 0.24 0.24 0.24 0.24 0.24 0.24 0.24 V Area C: Maximum peak amplitude allowed for undershoot below VSSQ 0.30 0.30 0.30 0.30 0.30 0.30 0.30 V Area D: Maximum peak amplitude below VSSQ absolute MIN 0.10 0.10 0.10 0.10 0.10 0.10 0.10 V Area A maximum overshoot area per 1UI 0.0150 0.0129 0.0113 0.0100 0.0100 0.0100 0.0100 V/ns Area B maximum overshoot area per 1UI 0.1050 0.0900 0.0788 0.0700 0.0700 0.0700 0.0700 V/ns Area C maximum undershoot area per 1UI 0.1050 0.0900 0.0788 0.0700 0.0700 0.0700 0.0700 V/ns Area D maximum undershoot area per 1UI 0.0150 0.0129 0.0113 0.0100 0.0100 0.0100 0.0100 V/ns Figure 227: Data, Strobe, and Mask Overshoot and Undershoot Definition Absolute MAX overshoot Volts (V) VDDQ absolute MAX A Overshoot area above VDDQ absolute MAX B Overshoot area below VDDQ absolute MAX and above VDDQ MAX VDDQ 1UI VSSQ C VSSQ absolute MIN Undershoot area below VSSQ MIN and above VSSQ absolute MIN D Undershoot area below VSSQ absolute MIN Absolute MAX undershoot Electrical Characteristics – AC and DC Output Measurement Levels Single-Ended Outputs Table 112: Single-Ended Output Levels Parameter Symbol DDR4-1600 to DDR4-3200 Unit DC output high measurement level (for IV curve linearity) VOH(DC) 1.1 × VDDQ V DC output mid measurement level (for IV curve linearity) VOM(DC) 0.8 × VDDQ V DC output low measurement level (for IV curve linearity) VOL(DC) 0.5 × VDDQ V AC output high measurement level (for output slew rate) VOH(AC) (0.7 + 0.15) × VDDQ V CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 290 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Measurement Levels Table 112: Single-Ended Output Levels (Continued) Parameter AC output low measurement level (for output slew rate) Symbol DDR4-1600 to DDR4-3200 Unit VOL(AC) (0.7 - 0.15) × VDDQ V 1. The swing of ±0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50˖ to VTT = VDDQ. Note: Using the same reference load used for timing measurements, output slew rate for falling and rising edges is defined and measured between V OL(AC) and V OH(AC) for singleended signals. Table 113: Single-Ended Output Slew Rate Definition Measured Description From To Defined by Single-ended output slew rate for rising edge VOL(AC) VOH(AC) [VOH(AC) - VOL(AC)@˂TRse Single-ended output slew rate for falling edge VOH(AC) VOL(AC) [VOH(AC) - VOL(AC)@˂TFse Figure 228: Single-ended Output Slew Rate Definition TRse Single-Ended Output Voltage (DQ) VOH(AC) VOL(AC) TFse CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 291 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Measurement Levels Table 114: Single-Ended Output Slew Rate For RON = RZQ/7 DDR4-1600/ 1866 / 2133 / 2400 Parameter DDR4-2666 DDR4-2933 / 3200 Symbol Min Max Min Max Min Max Unit SRQse 4 9 4 9 4 9 V/ns Single-ended output slew rate 1. SR = slew rate; Q = query output; se = single-ended signals. 2. In two cases a maximum slew rate of 12V/ns applies for a single DQ signal within a byte lane: Notes: • Case 1 is defined for a single DQ signal within a byte lane that is switching into a certain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane are static (they stay at either HIGH or LOW). • Case 2 is defined for a single DQ signal within a byte lane that is switching into a certain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane are switching into the opposite direction (from LOW-toHIGH or HIGH-to-LOW, respectively). For the remaining DQ signal switching into the opposite direction, the standard maximum limit of 9 V/ns applies. Differential Outputs Table 115: Differential Output Levels Parameter Symbol DDR4-1600 to DDR4-3200 Unit AC differential output high measurement level (for output slew rate) VOH,diff(AC) 0.3 × VDDQ V AC differential output low measurement level (for output slew rate) VOL,diff(AC) –0.3 × VDDQ V Note: 1. The swing of ±0.3 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of 50˖ to VTT = VDDQ at each differential output. Using the same reference load used for timing measurements, output slew rate for falling and rising edges is defined and measured between V OL,diff(AC) and V OH,diff(AC) for differential signals. Table 116: Differential Output Slew Rate Definition Measured Description From To Defined by Differential output slew rate for rising edge VOL,diff(AC) VOH,diff(AC) [VOH,diff(AC) - VOL,diff(AC)@˂TRdiff Differential output slew rate for falling edge VOH,diff(AC) VOL,diff(AC) [VOH,diff(AC) - VOL,diff(AC)@˂TFdiff CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 292 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Measurement Levels Figure 229: Differential Output Slew Rate Definition Differential Input Voltage (DQS_t, DQS_c) TRdiff VOH,diff(AC) VOL,diff(AC) TFdiff Table 117: Differential Output Slew Rate For RON = RZQ/7 DDR4-1600 / 1866 / 2133 / 2400 Parameter Differential output slew rate Note: DDR4-2666 DDR4-2933 / 3200 Symbol Min Max Min Max Min Max Unit SRQdiff 8 18 8 18 8 18 V/ns 1. SR = slew rate; Q = query output; diff = differential signals. Reference Load for AC Timing and Output Slew Rate The effective reference load of 50˖ to V TT = V DDQ and driver impedance of RZQ/7 for each output was used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. RON nominal of DQ, DQS_t and DQS_c drivers uses 34 ohms to specify the relevant AC timing parameter values of the device. The maximum DC high level of output signal = 1.0 × V DDQ, the minimum DC low level of output signal = { 34 /( 34 + 50 ) } × V DDQ = 0.4 × VDDQ. The nominal reference level of an output signal can be approximated by the following: The center of maximum DC high and minimum DC low = { ( 1 + 0.4 ) / 2 } × V DDQ = 0.7 × VDDQ. The actual reference level of output signal might vary with driver R ON and reference load tolerances. Thus, the actual reference level or midpoint of an output signal is at the widest part of the output signal’s eye. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 293 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Measurement Levels Figure 230: Reference Load For AC Timing and Output Slew Rate VDDQ VTT = VDDQ DQ, DQS_t, DQS_c, DM, TDQS_t, TDQS_c CK_t, CK_c DUT RTT = 50ȍ VSSQ Timing reference point Connectivity Test Mode Output Levels Table 118: Connectivity Test Mode Output Levels Parameter Symbol DDR4-1600 to DDR4-3200 Unit DC output high measurement level (for IV curve linearity) VOH(DC) 1.1 × VDDQ V DC output mid measurement level (for IV curve linearity) VOM(DC) 0.8 × VDDQ V DC output low measurement level (for IV curve linearity) VOL(DC) 0.5 × VDDQ V DC output below measurement level (for IV curve linearity) VOB(DC) 0.2 × VDDQ V AC output high measurement level (for output slew rate) VOH(AC) VTT + (0.1 × VDDQ) V AC output low measurement level (for output slew rate) VOL(AC) VTT - (0.1 × VDDQ) V Note: 1. Driver impedance of RZQ/7 and an effective test load of 50˖ to VTT = VDDQ. Figure 231: Connectivity Test Mode Reference Test Load VDDQ CT_Inputs DUT DQ, DQS_t, DQS_c, LDQS_t, LDQS_c, UDQS_t, UDQS_c, DM, LDM, HDM, TDQS_t, TDQS_c 0.5 × VDDQ RTT = 50 ȍ VSSQ Timing reference point CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 294 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Driver Characteristics Figure 232: Connectivity Test Mode Output Slew Rate Definition VOH(AC) VTT 0.5 x VDD VOL(AC) TFoutput_CT TRoutput_CT Table 119: Connectivity Test Mode Output Slew Rate DDR4-1600 / 1866 / 2133 / 2400 Parameter DDR4-2666 DDR4-2933 / 3200 Symbol Min Max Min Max Min Max Unit Output signal falling time TF_output_CT – 10 – 10 – 10 ns/V Output signal rising time TR_output_CT – 10 – 10 – 10 ns/V Electrical Characteristics – AC and DC Output Driver Characteristics Connectivity Test Mode Output Driver Electrical Characteristics The DDR4 driver supports special values during connectivity test mode. These R ON values are referenced in this section. A functional representation of the output buffer is shown in the figure below. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 295 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Driver Characteristics Figure 233: Output Driver During Connectivity Test Mode Chip in drive mode Output driver VDDQ IPU_CT To other circuitry like RCV, ... RONPU_CT DQ RONPD_CT IPD_CT IOUT VOUT VSSQ The output driver impedance, RON, is determined by the value of the external reference resistor RZQ as follows: RON = RZQ/7. This targets 34˖ with nominal RZQ ˖; however, connectivity test mode uses uncalibrated drivers and only a maximum target is defined. Mismatch between pull up and pull down is undefined. The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows: RONPu_CT when RONPd_CT is off: 52138B&7  9''49287 ,287 RONPD_CT when RONPU_CT is off: 5213'B&7  CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 9287 ,287 296 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Driver Characteristics Table 120: Output Driver Electrical Characteristics During Connectivity Test Mode Assumes RZQ ˖; ZQ calibration not required RON,nom_CT Resistor RONPD_CT ˖ RONPU_CT VOUT Min Nom Max Unit VOB(DC) = 0.2 × VDDQ N/A N/A 1.9 RZQ/7 VOL(DC) = 0.5 × VDDQ N/A N/A 2.0 RZQ/7 VOM(DC) = 0.8 × VDDQ N/A N/A 2.2 RZQ/7 VOH(DC) = 1.1 × VDDQ N/A N/A 2.5 RZQ/7 VOB(DC) = 0.2 × VDDQ N/A N/A 1.9 RZQ/7 VOL(DC) = 0.5 × VDDQ N/A N/A 2.0 RZQ/7 VOM(DC) = 0.8 × VDDQ N/A N/A 2.2 RZQ/7 VOH(DC) = 1.1 × VDDQ N/A N/A 2.5 RZQ/7 Output Driver Electrical Characteristics The DDR4 driver supports two RON values. These R ON values are referred to as strong mode (low RON˖) and weak mode (high RON˖). A functional representation of the output buffer is shown in the figure below. Figure 234: Output Driver: Definition of Voltages and Currents Chip in drive mode Output driver VDDQ IPU To other circuitry like RCV, ... RONPU DQ IOUT RONPD VOUT IPD VSSQ The output driver impedance, RON, is determined by the value of the external reference resistor RZQ as follows: RON(34) = RZQ/7, or RON(48) = RZQ/5. This provides either a nominal 34.3˖±10% or 48˖±10% with nominal RZQ ˖ The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows: RONPu when RONPd is off: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 297 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Driver Characteristics RONPU = VDDQ - VOUT IOUT RONPD when RONPU is off: RONPD = VOUT IOUT Table 121: Strong Mode (34˖ ˖) Output Driver Electrical Characteristics Assumes RZQ ˖; Entire operating temperature range after proper ZQ calibration RON,nom Resistor VOUT Min Nom RON34PD ˖ RON34PU Max Unit Notes VOL(DC) = 0.5 × VDDQ 0.73 1.00 1.10 RZQ/7 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.83 1.00 1.10 RZQ/7 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.83 1.00 1.25 RZQ/7 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.90 1.00 1.25 RZQ/7 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.90 1.00 1.10 RZQ/7 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.80 1.00 1.10 RZQ/7 1, 2, 3 Mismatch between pull-up and pulldown, MMPUPD VOM(DC) = 0.8 × VDDQ 10 – 23 % 1, 2, 3, 4, 6, 7 Mismatch between DQ to DQ within byte variation pull-up, MMPUdd VOM(DC) = 0.8 × VDDQ – – 10 % 1, 2, 3, 4, 5 Mismatch between DQ to DQ within byte variation pull-down, MMPDdd VOM(DC) = 0.8 × VDDQ - – 10 % 1, 2, 3, 4, 6, 7 Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS. 3. Micron recommends calibrating pull-down and pull-up output driver impedances at 0.8 × VDDQ. Other calibration schemes may be used to achieve the linearity specification shown above; for example, calibration at 0.5 × VDDQ and 1.1 VDDQ. 4. DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c (characterized). 5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD: Measure both RONPU and RONPD at 0.8 × VDDQ separately; RON,nom is the nominal RON value: MMPUPD = RONPU - RONPD RON,nom × 100 6. RON variance range ratio to RON nominal value in a given component, including DQS_t and DQS_c: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 298 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Driver Characteristics MMPUDD = MMPDDD = RONPU,max - RONPU,min RON,nom RONPD,max - RONPD,min RON,nom × 100 × 100 7. The lower and upper bytes of a x16 are each treated on a per byte basis. 8. The minimum values are derated by 9% when the device operates between –40°C and 0°C (TC). Table 122: Weak Mode (48˖ ˖) Output Driver Electrical Characteristics Assumes RZQ ˖; Entire operating temperature range after proper ZQ calibration RON,nom Resistor VOUT Min Nom ˖ Max Unit Notes VOL(DC) = 0.5 × VDDQ 0.73 1.00 1.10 RZQ/5 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.83 1.00 1.10 RZQ/5 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.83 1.00 1.25 RZQ/5 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.90 1.00 1.25 RZQ/5 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.90 1.00 1.10 RZQ/5 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.80 1.00 1.10 RZQ/5 1, 2, 3 Mismatch between pull-up and pull-down, MMPUPD VOM(DC) = 0.8 × VDDQ 10 – 23 % 1, 2, 3, 4, 6, 7 Mismatch between DQ to DQ within byte variation pull-up, MMPUdd VOM(DC) = 0.8 × VDDQ – – 10 % 1, 2, 3, 4, 5 Mismatch between DQ to DQ within byte variation pull-down, MMPDdd VOM(DC) = 0.8 × VDDQ – – 10 % 1, 2, 3, 4, 6, 7 RON48PD RON48PU Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity. 2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS. 3. Micron recommends calibrating pull-down and pull-up output driver impedances at 0.8 × VDDQ. Other calibration schemes may be used to achieve the linearity specification shown above; for example, calibration at 0.5 × VDDQ and 1.1 VDDQ. 4. DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c (characterized). 5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD: Measure both RONPU and RONPD at 0.8 × VDDQ separately; RON,nom is the nominal RON value: MMPUPD = RONPU - RONPD × 100 RON,nom 6. RON variance range ratio to RON nominal value in a given component, including DQS_t and DQS_c: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 299 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – AC and DC Output Driver Characteristics MMPUDD = MMPDDD = RONPU,max - RONPU,min RON,nom RONPD,max - RONPD,min RON,nom × 100 × 100 7. The lower and upper bytes of a x16 are each treated on a per byte basis. 8. The minimum values are derated by 9% when the device operates between –40°C and 0°C (TC). Output Driver Temperature and Voltage Sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to the equations and tables below. ˂T = T - T(@calibration); ˂V = V DDQ - V DDQ(@ calibration); V DD = V DDQ Table 123: Output Driver Sensitivity Definitions Symbol Min Max Unit RONPU@ VOH(DC) 0.6 - dRONdTH × |˂T| - dRONdVH × |˂V| 1.1 _ dRONdTH × |˂T| + dRONdVH × |˂V| RZQ/6 RON@ VOM(DC) 0.9 - dRONdTM × |˂T| - dRONdVM × |˂V| 1.1 + dRONdTM × |˂T| + dRONdVM × |˂V| RZQ/6 RONPD@ VOL(DC) 0.6 - dRONdTL × |˂T| - dRONdVL × |˂V| 1.1 + dRONdTL × |˂T| + dRONdVL × |˂V| RZQ/6 Table 124: Output Driver Voltage and Temperature Sensitivity Voltage and Temperature Range Symbol Min Max Unit dRONdTM 0 1.5 %/°C dRONdVM 0 0.15 %/mV dRONdTL 0 1.5 %/°C dRONdVL 0 0.15 %/mV dRONdTH 0 1.5 %/°C dRONdVM 0 0.15 %/mV Alert Driver A functional representation of the alert output buffer is shown in the figure below. Output driver impedance, RON, is defined as follows. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 300 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – On-Die Termination Characteristics Figure 235: Alert Driver Alert driver '5$0 Alert RONPD IOUT IPD VOUT VSSQ RONPD when RONPU is off: VOUT RONPD = IOUT Table 125: Alert Driver Voltage RON,nom Register N/A RONPD Note: VOUT Min Nom Max Unit VOL(DC) = 0.1 × VDDQ 0.3 N/A 1.2 RZQ/7 VOM(DC) = 0.8 × VDDQ 0.4 N/A 1.2 RZQ/7 VOH(DC) = 1.1 × VDDQ 0.4 N/A 1.4 RZQ/7 1. VDDQ voltage is at VDDQ(DC). Electrical Characteristics – On-Die Termination Characteristics ODT Levels and I-V Characteristics On-die termination (ODT) effective resistance settings are defined and can be selected by any or all of the following options: • MR1[10:8] (RTT(NOM)): Disable, 240 ohms, 120 ohms, 80 ohms, 60 ohms, 48 ohms, 40 ohms, and 34 ohms. • MR2[11:9] (RTT(WR)): Disable, 240 ohms,120 ohms, and 80 ohms. • MR5[8:6] (RTT(Park)): Disable, 240 ohms, 120 ohms, 80 ohms, 60 ohms, 48 ohms, 40 ohms, and 34 ohms. ODT is applied to the following inputs: • x4: DQ, DM_n, DQS_t, and DQS_c inputs. • x8: DQ, DM_n, DQS_t, DQS_c, TDQS_t, and TDQS_c inputs. • x16: DQ, LDM_n, UDM_n, LDQS_t, LDQS_c, UDQS_t, and UDQS_c inputs. A functional representation of ODT is shown in the figure below. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 301 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – On-Die Termination Characteristics Figure 236: ODT Definition of Voltages and Currents Chip in termination mode ODT To other circuitry like RCV, ... VDDQ RTT DQ IOUT VOUT VSSQ Table 126: ODT DC Characteristics RTT VOUT Min Nom Max Unit Notes 240 ohm VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ 1, 2, 3 120 ohm 80 ohm 60 ohm 48 ohm 40 ohm 34 ohm DQ-to-DQ mismatch within byte VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ/2 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ/2 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ/2 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ/3 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ/3 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ/3 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ/4 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ/4 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ/4 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ/5 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ/5 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ/5 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ/6 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ/6 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ/6 1, 2, 3 VOL(DC) = 0.5 × VDDQ 0.9 1 1.25 RZQ/7 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0.9 1 1.1 RZQ/7 1, 2, 3 VOH(DC) = 1.1 × VDDQ 0.8 1 1.1 RZQ/7 1, 2, 3 VOM(DC) = 0.8 × VDDQ 0 – 10 % 1, 2, 4, 5, 6 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. The tolerance limits are specified after calibration to 240 ohm ±1% resistor with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibration, see ODT Temperature and Voltage Sensitivity. 302 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – On-Die Termination Characteristics 2. Micron recommends calibrating pull-up ODT resistors at 0.8 × VDDQ. Other calibration schemes may be used to achieve the linearity specification shown here. 3. The tolerance limits are specified under the condition that VDDQ = VDD and VSSQ = VSS. 4. The DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c. 5. RTT variance range ratio to RTT nominal value in a given component, including DQS_t and DQS_c. DQ-to-DQ mismatch = RTT(MAX) - RTT(MIN) RTT(NOM) × 100 6. DQ-to-DQ mismatch for a x16 device is treated as two separate bytes. 7. For IT, AT, and UT devices, the minimum values are derated by 9% when the device operates between –40°C and 0°C (TC). ODT Temperature and Voltage Sensitivity If temperature and/or voltage change after calibration, the tolerance limits widen according to the following equations and tables. ˂T = T - T(@ calibration); ˂V = V DDQ - V DDQ(@ calibration); V DD = V DDQ Table 127: ODT Sensitivity Definitions Parameter Min Max Unit RTT@ 0.9 - dRTTdT × |˂T| - dRTTdV × |˂V| 1.6 + dRTTdTH × |˂T| + dRTTdVH × |˂V| RZQ/n Table 128: ODT Voltage and Temperature Sensitivity Parameter Min Max Unit dRTTdT 0 1.5 %/°C dRTTdV 0 0.15 %/mV ODT Timing Definitions The reference load for ODT timings is different than the reference load used for timing measurements. Figure 237: ODT Timing Reference Load VDDQ DQ, DQS_t, DQS_c, DM, TDQS_t, TDQS_c CK_t, CK_c DUT VSSQ RTT = 50ȍ VTT = VSSQ Timing reference point CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 303 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – On-Die Termination Characteristics ODT Timing Definitions Definitions for tADC, tAONAS, and tAOFAS are provided in the Table 129 (page 304) and shown in Figure 238 (page 305) and Figure 240 (page 306). Measurement reference settings are provided in the subsequent Table 130 (page 304). The tADC for the dynamic ODT case and read disable ODT cases are represented by tADC of Direct ODT Control case. Table 129: ODT Timing Definitions Parameter tADC Begin Point Definition End Point Definition Figure Rising edge of CK_t, CK_c defined by the end point of DODTLoff Extrapolated point at VRTT,nom Figure 238 (page 305) Rising edge of CK_t, CK_c defined by the end point of DODTLon Extrapolated point at VSSQ Figure 238 (page 305) Rising edge of CK_t, CK_c defined by the end point of ODTLcnw Extrapolated point at VRTT,nom Figure 239 (page 305) Rising edge of CK_t, CK_c defined by the end point of ODTLcwn4 or ODTLcwn8 Extrapolated point at VSSQ Figure 239 (page 305) tAONAS Rising edge of CK_t, CK_c with ODT being first registered HIGH Extrapolated point at VSSQ Figure 240 (page 306) tAOFAS Rising edge of CK_t, CK_c with ODT being first registered LOW Extrapolated point at VRTT,nom Figure 240 (page 306) Table 130: Reference Settings for ODT Timing Measurements Measure Parameter RTT(Park) RTT(NOM) RTT(WR) VSW1 VSW2 Note tADC Disable RZQ ˖ – 0.20V 0.40V 1, 2, 4 – RZQ ˖ High-Z 0.20V 0.40V 1, 3, 5 tAONAS Disable RZQ ˖ – 0.20V 0.40V 1, 2, 6 tAOFAS Disable RZQ ˖ – 0.20V 0.40V 1, 2, 6 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. MR settings are as follows: MR1 has A10 = 1, A9 = 1, A8 = 1 for RTT(NOM) setting; MR5 has A8 = 0, A7 = 0, A6 = 0 for RTT(Park) setting; and MR2 has A11 = 0, A10 = 1, A9 = 1 for RTT(WR) setting. 2. ODT state change is controlled by ODT pin. 3. ODT state change is controlled by a WRITE command. 4. Refer to Figure 238 (page 305). 5. Refer to Figure 239 (page 305). 6. Refer to Figure 240 (page 306). 304 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – On-Die Termination Characteristics Figure 238: tADC Definition with Direct ODT Control DODTLoff Begin point: Rising edge of CK_t, CK_c defined by the end point of DODTLoff DODTLon Begin point: Rising edge of CK_t, CK_c defined by the end point of DODTLon CK_c CK_t tADC VRTT,nom tADC End point: Extrapolated point at VRTT,nom VRTT,nom Vsw2 DQ, DM DQS_t, DQS_c TDQS_t, TDQS_c Vsw1 VSSQ VSSQ End point: Extrapolated point at VSSQ Figure 239: tADC Definition with Dynamic ODT Control ODTLcnw Begin point: Rising edge of CK_t, CK_c defined by the end point of ODTLcnw ODTLcnw4/8 Begin point: Rising edge of CK_t, CK_c defined by the end point of ODTLcnw4 or ODTLcnw8 CK_c CK_t tADC VRTT,nom tADC End point: Extrapolated point at VRTT,nom Vsw2 DQ, DM DQS_t, DQS_c TDQS_t, TDQS_c CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN VRTT,nom Vsw1 VSSQ 305 VSSQ End point: Extrapolated point at VSSQ Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Electrical Characteristics – On-Die Termination Characteristics Figure 240: tAOFAS and tAONAS Definitions Rising edge of CK_t, CK_c with ODT being first registered LOW Rising edge of CK_t, CK_c with ODT being first registered HIGH CK_c CK_t tAOFAS VRTT,nom tAONAS End point: Extrapolated point at VRTT_NOM Vsw2 DQ, DM DQS_t, DQS_c TDQS_t, TDQS_c CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN VRTT,nom Vsw1 VSSQ 306 VSSQ End point: Extrapolated point at VSSQ Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM DRAM Package Electrical Specifications DRAM Package Electrical Specifications Table 131: DRAM Package Electrical Specifications for x4 and x8 Devices 1600/1866/2133/ 2400/2666 Parameter Input/ output DQS_t, DQS_c Input CTRL pins Input CMD ADD pins CK_t, CK_c 2933 3200 Symbol Min Max Min Max Min Max Unit Notes ZIO 45 85 48 85 48 85 ohm 1, 2, 4 TdIO 14 42 14 40 14 40 ps 1, 3, 4 Lpkg LIO – 3.3 – 3.3 – 3.3 nH 10 Cpkg CIO – 0.78 – 0.78 – 0.78 pF 11 Zpkg Package delay ZIO DQS 45 85 48 85 48 85 ohm 1, 2 Package delay TdIO DQS 14 42 14 40 14 40 ps 1, 3 Delta Zpkg DZIO DQS – 10 – 10 – 10 ohm 1, 2, 6 Delta delay DTdIO DQS – 5 – 5 – 5 ps 1, 3, 6 Zpkg Lpkg LIO DQS – 3.3 – 3.3 – 3.3 nH 10 Cpkg CIO DQS – 0.78 – 0.78 – 0.78 pF 11 Zpkg ZI CTRL 50 90 50 90 50 90 ohm 1, 2, 8 TdI CTRL 14 42 14 40 14 40 ps 1, 3, 8 Package delay Lpkg LI CTRL – 3.4 – 3.4 – 3.4 nH 10 Cpkg CI CTRL – 0.7 – 0.7 – 0.7 pF 11 Zpkg ZI ADD CMD 50 90 50 90 50 90 ohm 1, 2, 7 TdI ADD CMD 14 45 14 40 14 40 ps 1, 3, 7 Package delay Lpkg LI ADD CMD – 3.6 – 3.6 – 3.6 nH 10 Cpkg CI ADD CMD – 0.74 – 0.74 – 0.74 pF 11 Zpkg ZCK 50 90 50 90 50 90 ohm 1, 2 TdCK 14 42 14 42 14 42 ps 1, 3 Delta Zpkg DZDCK – 10 – 10 – 10 ohm 1, 2, 5 Delta delay DTdDCK – 5 – 5 – 5 ps 1, 3, 5 Lpkg LI CLK – 3.4 – 3.4 – 3.4 nH 10 Cpkg CI CLK – 0.7 – 0.7 – 0.7 pF 11 Package delay ZQ Zpkg ZO ZQ – 100 – 100 – 100 ohm 1, 2 ZQ delay TdO ZQ 20 90 20 90 20 90 ps 1, 3 ALERT Zpkg ZO ALERT 40 100 40 100 40 100 ohm 1, 2 ALERT delay TdO ALERT 20 55 20 55 20 55 ps 1, 3 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The package parasitic (L and C) are validated using package only samples. The capacitance is measured with VDD, VDDQ, VSS, and VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS, and VSSQ shorted and all other signal pins shorted at the die, not pin, side. 2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg). 307 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM DRAM Package Electrical Specifications 3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg). 4. ZIO and TdIO apply to DQ, DM, TDQS_t and TDQS_c. 5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td). 6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td). 7. ZI ADD CMD and TdI ADD CMD apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, WE_n, ACT_n, and PAR. 8. ZI CTRL and TdI CTRL apply to ODT, CS_n, and CKE. 9. Package implementations will meet specification if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown. 10. It is assumed that Lpkg can be approximated as Lpkg = ZO × Td. 11. It is assumed that Cpkg can be approximated as Cpkg = Td/ZO. Table 132: DRAM Package Electrical Specifications for x16 Devices 1600/1866/2133/ 2400/2666 Parameter Input/ output LDQS_t/ LDQS_c/ UDQS_t/ UDQS_c LDQS_t/ LDQS_c, UDQS_t/ UDQS_c, Input CTRL pins Input CMD ADD pins CK_t, CK_c Zpkg 2933 3200 Symbol Min Max Min Max Min Max Unit Notes ZIO 45 85 45 85 45 85 ohm 1, 2, 4 TdIO 14 45 14 45 14 45 ps 1, 3, 4 Lpkg LIO – 3.4 – 3.4 – 3.4 nH 11 Cpkg CIO – 0.82 – 0.82 – 0.82 pF 11 Zpkg ZIO DQS 45 85 45 85 45 85 ohm 1, 2 Package delay TdIO DQS 14 45 14 45 14 45 ps 1, 3 Lpkg LIO DQS – 3.4 – 3.4 – 3.4 nH 11 Cpkg CIO DQS – 0.82 – 0.82 – 0.82 pF 11 Delta Zpkg DZIO DQS – 10.5 – 10.5 – 10.5 ohm 1, 2, 6 Delta delay DTdIO DQS – 5 – 5 – 5 ps 1, 3, 6 Package delay Zpkg ZI CTRL 50 90 50 90 50 90 ohm 1, 2, 8 TdI CTRL 14 42 14 42 14 42 ps 1, 3, 8 Lpkg LI CTRL – 3.4 – 3.4 – 3.4 nH 11 Cpkg CI CTRL – 0.7 – 0.7 – 0.7 pF 11 Package delay ZI ADD CMD 50 90 50 90 50 90 ohm 1, 2, 7 TdI ADD CMD 14 52 14 52 14 52 ps 1, 3, 7 Lpkg LI ADD CMD – 3.9 – 3.9 – 3.9 nH 11 Cpkg CI ADD CMD – 0.86 – 0.86 – 0.86 pF 11 Zpkg Package delay ZCK 50 90 50 90 50 90 ohm 1, 2 TdCK 14 42 14 42 14 42 ps 1, 3 Delta Zpkg DZDCK – 10.5 – 10.5 – 10.5 ohm 1, 2, 5 Delta delay DTdDCK – 5 – 5 – 5 ps 1, 3, 5 Zpkg Package delay CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 308 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM DRAM Package Electrical Specifications Table 132: DRAM Package Electrical Specifications for x16 Devices (Continued) 1600/1866/2133/ 2400/2666 Parameter Input CLK 2933 3200 Symbol Min Max Min Max Min Max Unit Notes Lpkg LI CLK – 3.4 – 3.4 – 3.4 nH 11 Cpkg CI CLK – 0.7 – 0.7 – 0.7 pF 11 ZQ Zpkg ZO ZQ – 100 – 100 – 100 ohm 1, 2 ZQ delay TdO ZQ 20 90 20 90 20 90 ps 1, 3 ALERT Zpkg ZO ALERT 40 100 40 100 40 100 ohm 1, 2 ALERT delay TdO ALERT 20 55 20 55 20 55 ps 1, 3 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The package parasitic (L and C) are validated using package only samples. The capacitance is measured with VDD, VDDQ, VSS, and VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS, and VSSQ shorted and all other signal pins shorted at the die, not pin, side. 2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg). 3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg). 4. ZIO and TdIO apply to DQ, DM, TDQS_t and TDQS_c. 5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td). 6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for delay (Td). 7. ZI ADD CMD and TdI ADD CMD apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, WE_n, ACT_n, and PAR. 8. ZI CTRL and TdI CTRL apply to ODT, CS_n, and CKE. 9. Package implementations will meet specification if the Zpkg and package delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values shown. 10. It is assumed that Lpkg can be approximated as Lpkg = ZO × Td. 11. It is assumed that Cpkg can be approximated as Cpkg = Td/ZO. 309 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM DRAM Package Electrical Specifications Table 133: Pad Input/Output Capacitance DDR4-1600, 1866, 2133 DDR4-2400, 2666 DDR4-2933 DDR4-3200 Symbol Min Max Min Max Min Max Min Max Unit Notes Input/output capacitance: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c CIO 0.55 1.4 0.55 1.15 0.55 1.00 0.55 1.00 pF 1, 2, 3 Input capacitance: CK_t and CK_c CCK 0.2 0.8 0.2 0.7 0.2 0.7 0.15 0.7 pF 2, 3 Input capacitance delta: CK_t and CK_c CDCK - 0.05 - 0.05 - 0.05 - 0.05 pF 2, 3, 6 Input/output capacitance delta: DQS_t and DQS_c CDDQS - 0.05 - 0.05 - 0.05 - 0.05 pF 2, 3, 5 Input capacitance: CTRL, ADD, CMD input-only pins CI 0.2 0.8 0.2 0.7 0.2 0.6 0.15 0.55 pF 2, 3, 4 Input capacitance delta: All CTRL input-only pins CDI_CTRL –0.1 0.1 –0.1 0.1 –0.1 0.1 –0.1 0.1 pF 2, 3, 8, 9 Input capacitance delta: All ADD/CMD input-only pins CDI_ADD_CM –0.1 0.1 –0.1 0.1 –0.1 0.1 –0.1 0.1 pF 1, 2, 10, 11 CDIO –0.1 0.1 –0.1 0.1 –0.1 0.1 –0.1 0.1 pF 1, 2, 3, 4 CALERT 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 pF 2, 3 Input/output capacitance: ZQ pin CZQ – 2.3 – 2.3 – 2.3 – 2.3 pF 2, 3, 12 Input/output capacitance: TEN pin CTEN 0.2 2.3 0.2 2.3 0.2 2.3 0.15 2.3 pF 2, 3, 13 Parameter Input/output capacitance delta: DQ, DM, DQS_t, DQS_c, TDQS_t, TDQS_c Input/output capacitance: ALERT pin Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN D 1. Although the DM, TDQS_t, and TDQS_c pins have different functions, the loading matches DQ and DQS. 2. This parameter is not subject to a production test; it is verified by design and characterization and are provided for reference; system signal simulations should not use these values but use the Micron package model. The capacitance, if and when, is measured according to the JEP147 specification, “Procedure for Measuring Input Capacitance Using a Vector Network Analyzer (VNA),” with VDD, VDDQ, VSS, and VSSQ applied and all other pins floating (except the pin under test, CKE, RESET_n and ODT, as necessary). VDD = VDDQ = 1.2V, VBIAS = VDD/2 and on-die termination off. Measured data is rounded using industry standard half-rounded up methodology to the nearest hundredth of the MSB. 3. This parameter applies to monolithic die, obtained by de-embedding the package L and C parasitics. 4. CDIO = CIO(DQ, DM) - 0.5 × (CIO(DQS_t) + CIO(DQS_c)). 5. Absolute value of CIO (DQS_t), CIO (DQS_c) 6. Absolute value of CCK_t, CCK_c 7. CI applies to ODT, CS_n, CKE, A[17:0], BA[1:0], BG[1:0], RAS_n, CAS_n, ACT_n, PAR and WE_n. 8. CDI_CTRL applies to ODT, CS_n, and CKE. 310 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Thermal Characteristics 9. 10. 11. 12. 13. CDI_CTRL = CI(CTRL) - 0.5 × (CI(CLK_t) + CI(CLK_c)). CDI_ADD_CMD applies to A[17:0], BA1:0], BG[1:0], RAS_n, CAS_n, ACT_n, PAR and WE_n. CDI_ADD_CMD = CI(ADD_CMD) - 0.5 × (CI(CLK_t) + CI(CLK_c)). Maximum external load capacitance on ZQ pin: 5pF. Only applicable if TEN pin does not have an internal pull-up. Thermal Characteristics Table 134: Thermal Characteristics Parameter/Condition Value Units Symbol Notes Operating case temperature: Commercial 0 to +85 °C TC 1, 2, 3 0 to +95 °C TC 1, 2, 3, 4 Operating case temperature: Industrial –40 to +85 °C TC 1, 2, 3 –40 to +95 °C TC 1, 2, 3, 4 Operating case temperature: Automotive –40 to +85 °C TC 1, 2, 3 –40 to +105 °C TC 1, 2, 3, 4 5 78-ball “VA” REV B 96-ball “RC” 78-ball “JC” REV E 96-ball “KD” Junction-to-case (TOP) 3.6 °C/W ˆJC Junction-to-board 13.6 °C/W ˆJB Junction-to-case (TOP) 3.5 °C/W ˆJC Junction-to-board 12.7 °C/W ˆJB Junction-to-case (TOP) 4.2 °C/W ˆJC Junction-to-board 13 °C/W ˆJB Junction-to-case (TOP) 4.1 °C/W ˆJC Junction-to-board 12.3 °C/W ˆJB Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 5 5 5 1. MAX operating case temperature. TC is measured in the center of the package. 2. A thermal solution must be designed to ensure the DRAM device does not exceed the maximum TC during operation. 3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during operation. 4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9μs interval refresh rate. 5. The thermal resistance data is based off of a typical number. 311 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Measurement Conditions Figure 241: Thermal Measurement Point TC test point (L/2) L (W/2) W Current Specifications – Measurement Conditions IDD, IPP, and IDDQ Measurement Conditions IDD, IPP, and IDDQ measurement conditions, such as test load and patterns, are defined in this section. • IDD currents (IDD0, IDD1, IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5R, IDD6N, IDD6E, IDD6R, IDD6A, IDD7, and IDD8) are measured as time-averaged currents with all V DD balls of the device under test grouped together. • IPP currents are IPP3N for standby cases (IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD8), IPP0 for active cases (IDD0,IDD1, IDD4R, IDD4W), IPP5R for the distributed refresh case (IDD5R), IPP6x for self refresh cases (IDD6N, IDD6E, IDD6R, IDD6A) and IPP7 for the operating bank interleave read case (IDD7). These have the same definitions as the I DD currents referenced but are measured on the V PP supply. • IDDQ currents are measured as time-averaged currents with V DDQ balls of the device under test grouped together. Micron does not specify IDDQ currents. • IPP and IDDQ currents are not included in IDD currents, IDD and IDDQ currents are not included in IPP currents, and IDD and IPP currents are not included in IDDQ currents. Note: IDDQ values cannot be directly used to calculate the I/O power of the device. They can be used to support correlation of simulated I/O power to actual I/O power. In DRAM module application, IDDQ cannot be measured separately because V DD and V DDQ are using a merged-power layer in the module PCB. The following definitions apply for IDD, IPP and IDDQ measurements. • • • • CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN “0” and “LOW” are defined as V IN ืVIL(AC)max “1” and “HIGH” are defined as V IN ุVIH(AC)min “Midlevel” is defined as inputs V REF = V DD/2 Timings used for IDD, IPP and IDDQ measurement-loop patterns are provided in the Current Test Definition and Patterns section. 312 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Measurement Conditions • Basic IDD, IPP, and IDDQ measurement conditions are described in the Current Test Definition and Patterns section. • Detailed IDD, IPP, and IDDQ measurement-loop patterns are described in the Current Test Definition and Patterns section. • Current measurements are done after properly initializing the device. This includes, but is not limited to, setting: RON = RZQ/7 (34 ohm in MR1); Qoff = 0B (output buffer enabled in MR1); RTT(NOM) = RZQ/6 (40 ohm in MR1); RTT(WR) = RZQ/2 (120 ohm in MR2); RTT(Park) = disabled; TDQS feature disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR3; Gear-down mode disabled in MR3; Read/Write DBI disabled in MR5; DM disabled in MR5 • Define D = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, LOW, LOW, LOW}; apply BG/BA changes when directed. • Define D_n = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, HIGH, HIGH, HIGH}; apply invert of BG/BA changes when directed above. Note: The measurement-loop patterns must be executed at least once before actual current measurements can be taken. Figure 242: Measurement Setup and Test Load for IDDx, IPPx, and IDDQx IDD VDD RESET_n CK_t/CK_c IPP IDDQ VPP VDDQ DDR4 SDRAM CKE CS_n C ACT_n, RAS_n, CAS_n, WE_n A, BG, BA ODT ZQ V DQ DM_n VSSQ SS CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN DQS_t, DQS_c 313 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Measurement Conditions Figure 243: Correlation: Simulated Channel I/O Power to Actual Channel I/O Power Applic ation-s pe c ific memory c ha nne l env ironmen t C hanne l I/O pow er simulation I DD Q tes t loa d I DD Q simulation IDD Q meas ure ment C or relation C orre c tion C hanne l I/O pow er n umber Note: 1. Supported by IDDQ measurement. IDD Definitions Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions Symbol Description IDD0 Operating One Bank Active-Precharge Current (AL = 0) CKE: HIGH; External clock: On; tCK, nRC, nRAS, CL: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between ACT and PRE; Command, address, bank group address, bank address inputs: partially toggling according to the next table; Data I/O: VDDQ; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2, 2, ... (see the IDD0 Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD0 Measurement-Loop Pattern table IPP0 Operating One Bank Active-Precharge IPP Current (AL = 0) Same conditions as IDD0 above IDD1 Operating One Bank Active-Read-Precharge Current (AL = 0) CKE: HIGH; External clock: on; tCK, nRC, nRAS, nRCD, CL: see the previous table; BL: 8;1, 5 AL: 0; CS_n: HIGH between ACT, RD, and PRE; Command, address, bank group address, bank address inputs, Data I/O: partially toggling according to the IDD1 Measurement-Loop Pattern table; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2, 2, ... (see the following table); Output buffer and RTT: enabled in mode registers;2 ODT Signal: stable at 0; Pattern details: see the IDD1 Measurement-Loop Pattern table IDD2N Precharge Standby Current (AL = 0) CKE: HIGH; External clock: On; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address Inputs: partially toggling according to the IDD2N and IDD3N Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and RTT: enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD2N and IDD3N MeasurementLoop Pattern table CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 314 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Measurement Conditions Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions (Continued) Symbol Description IDD2NT Precharge Standby ODT Current CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank gropup address, bank address inputs: partially toggling according to the IDD2NT Measurement-Loop Pattern table; Data I/O: VSSQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and RTT: enabled in mode registers;2 ODT signal: toggling according to the IDD2NT Measurement-Loop Pattern table; Pattern details: see the IDD2NT Measurement-Loop Pattern table IDD2P Precharge Power-Down Current CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0 IDD2Q Precharge Quiet Standby Current CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0 IDD3N Active Standby Current (AL = 0) CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: partially toggling according to the IDD2N and IDD3N Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD2N and IDD3N MeasurementLoop Pattern table IPP3N Active Standby IPP3N Current (AL = 0) Same conditions as IDD3N above IDD3P Active Power-Down Current (AL = 0) CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 1; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0 IDD4R Operating Burst Read Current (AL = 0) CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;15 AL: 0; CS_n: HIGH between RD; Command, address, bank group address, bank address inputs: partially toggling according to the IDD4R Measurement-Loop Pattern table; Data I/O: seamless read data burst with different data between one burst and the next one according to the IDD4R Measurement-Loop Pattern table; DM_n: stable at 1; Bank activity: all banks open, RD commands cycling through banks: 0, 0, 1, 1, 2, 2, ... (see the IDD4R Measurement-Loop Pattern table); Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD4R Measurement-Loop Pattern table IDD4W Operating Burst Write Current (AL = 0) CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between WR; Command, address, bank group address, bank address inputs: partially toggling according to the IDD4W Measurement-Loop Pattern table; Data I/O: seamless write data burst with different data between one burst and the next one according to the IDD4W Measurement-Loop Pattern table; DM: stable at 0; Bank activity: all banks open, WR commands cycling through banks: 0, 0, 1, 1, 2, 2, ... (see IDD4W Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers (see note2); ODT signal: stable at HIGH; Pattern details: see the IDD4W Measurement-Loop Pattern table CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 315 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Measurement Conditions Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions (Continued) Symbol Description IDD5R Distributed Refresh Current (1X REF) CKE: HIGH; External clock: on; tCK, CL, nREFI: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between REF; Command, address, bank group address, bank address inputs: partially toggling according to the IDD5R Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: REF command every nREFI (see the IDD5R Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers2; ODT signal: stable at 0; Pattern details: see the IDD5R Measurement-Loop Pattern table IPP5R Distributed Refresh Current (1X REF) Same conditions as IDD5R above IDD6N Self Refresh Current: Normal Temperature Range TC: 0–85°C; Auto self refresh (ASR): disabled;3 Self refresh temperature range (SRT): normal;4 CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the table above; BL: 8;1 AL: 0; CS_n, command, address, bank group address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: SELF REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel IDD6E Self Refresh Current: Extended Temperature Range 4 TC: 0–95°C; Auto self refresh (ASR): disabled4; Self refresh temperature range (SRT): extended;4 CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8;1 AL: 0; CS_n, command, address, group bank address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel IPP6x Self Refresh IPP Current Same conditions as IDD6E above IDD6R Self Refresh Current: Reduced Temperature Range TC: 0–45°C; Auto self refresh (ASR): disabled; Self refresh temperature range (SRT): reduced;4 CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8;1 AL: 0; CS_n, command, address, bank group address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel IDD7 Operating Bank Interleave Read Current CKE: HIGH; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see the previous table; BL: 8;15 AL: CL 1; CS_n: HIGH between ACT and RDA; Command, address, group bank adress, bank address inputs: partially toggling according to the IDD7 Measurement-Loop Pattern table; Data I/O: read data bursts with different data between one burst and the next one according to the IDD7 Measurement-Loop Pattern table; DM: stable at 1; Bank activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see the IDD7 Measurement-Loop Pattern table; Output buffer and RTT: enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD7 Measurement-Loop Pattern table IPP7 Operating Bank Interleave Read IPP Current Same conditions as IDD7 above IDD8 Maximum Power Down Current Place DRAM in MPSM then CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Burst length: BL8 fixed by MRS: set MR0[1:0] 00. 2. Output buffer enable: set MR1[12] 0 (output buffer enabled); set MR1[2:1] 00 (RON = RZQ/7); RTT(NOM) enable: set MR1[10:8] 011 (RZQ/6); RTT(WR) enable: set MR2[11:9] 001 (RZQ/2), and RTT(Park) enable: set MR5[8:6] 000 (disabled). 3. Auto self refresh (ASR): set MR2[6] 0 to disable or MR2[6] 1 to enable feature. 316 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Measurement Conditions 4. Self refresh temperature range (SRT): set MR2[7] 0 for normal or MR2[7] 1 for extended temperature range. 5. READ burst type: Nibble sequential, set MR0[3] 0. 6. In the dual-rank DDP case, note the following IDD measurement considerations: • For all IDD measurements except IDD6, the unselected rank should be in an IDD2P condition. • For all IPP measurements except IPP6, the unselected rank should be in an IDD3N condition. • For all IDD6/IPP6 measurements, both ranks should be in the same IDD6 condition. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 317 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Current Specifications – Patterns and Test Conditions Current Test Definitions and Patterns Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE CK_t, CK_c Table 136: IDD0 and IPP0 Measurement-Loop Pattern1 Data3 0 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 3, 4 D_n, D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – PRE 0 1 0 ... Repeat pattern 1...4 until nRAS - 1; truncate if necessary Static High Toggling nRAS 1 0 0 0 0 0 0 0 0 0 0 ... Repeat pattern 1...4 until nRC - 1; truncate if necessary 1 1 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead 2 2 × nRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 3 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 4 × nRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 5 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 6 × nRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 7 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 8 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 9 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 10 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 11 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 12 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 13 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 14 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 15 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. 2. 3. 4. – DQS_t, DQS_c are VDDQ. BG1 is a "Don't Care" for x16 devices. DQ signals are VDDQ. For x4 and x8 only. 318 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE CK_c, CK_t, Table 137: IDD1 Measurement – Loop Pattern1 Data3 0 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 3, 4 D_n, D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – RD 0 ... Repeat pattern 1...4 until nRCD - AL - 1; truncate if necessary nRCD - AL ... PRE ... 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 D0 = 00, D1 = FF, D2 = FF, D3 = 00, D4 = FF, D5 = 00, D5 = 00, D7 = FF 1 × nRC + 0 ACT 0 0 0 1 1 0 1 1 0 0 0 0 0 0 – 1 × nRC + 1, 2 D, D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – ... Repeat pattern nRC + 1...4 until 1 × nRC + nRAS - 1; truncate if necessary 1 × nRC +nRCD - AL Static High 0 Repeat pattern 1...4 until nRC - 1; truncate if necessary 1 × nRC + 3, D_n, D_n 4 Toggling 1 Repeat pattern 1...4 until nRAS - 1; truncate if necessary nRAS 1 1 RD ... 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 Repeat pattern 1...4 until nRAS - 1; truncate if necessary 1 × nRC + nRAS ... PRE 0 1 0 1 0 0 1 1 0 0 0 0 Repeat pattern nRC + 1...4 until 2 × nRC - 1; truncate if necessary 2 2 × nRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 3 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 4 × nRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 5 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 6 × nRC Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 7 × nRC Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 9 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 10 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 11 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 12 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 13 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 14 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 15 × nRC Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 16 × nRC Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN D0 = FF, D1 = 00, D2 = 00, D3 = FF, D4 = 00, D5 = FF, D5 = FF, D7 = 00 1. DQS_t, DQS_c are VDDQ when not toggling. 319 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions 2. BG1 is a "Don't Care" for x16 devices. 3. DQ signals are VDDQ except when burst sequence drives each DQ signal by a READ command. 4. For x4 and x8 only. Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE Static High Toggling CK_c, CK_t, Table 138: IDD2N, IDD3N, and IPP3P Measurement – Loop Pattern1 Data3 0 0 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 2 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – 3 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – 1 4–7 Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead 2 8–11 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 12–15 Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 16–19 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 20–23 Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 24–27 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 28–31 Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 32–35 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 36–39 Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 40–43 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 44–47 Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 48–51 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 52–55 Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 56–59 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 60–63 Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. 2. 3. 4. DQS_t, DQS_c are VDDQ. BG1 is a "Don't Care" for x16 devices. DQ signals are VDDQ. For x4 and x8 only. 320 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE Static High Toggling CK_c, CK_t, Table 139: IDD2NT Measurement – Loop Pattern1 Data3 0 0 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 2 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – 3 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – 1 4–7 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 1 instead 2 8–11 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 12–15 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 16–19 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 20–23 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 24–27 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 28–31 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 32–35 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 36–39 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 40–43 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 44–47 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 48–51 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 52–55 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 56–59 Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 60–63 Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. 2. 3. 4. DQS_t, DQS_c are VSSQ. BG1 is a "Don't Care" for x16 devices. DQ signals are VSSQ. For x4 and x8 only. 321 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE CK_c, CK_t, Table 140: IDD4R Measurement – Loop Pattern1 0 0 RD 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2, 3 D_n, D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 4 RD 0 1 1 0 1 0 1 1 0 0 0 7 F 0 5 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6, 7 D_n, D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 Static High Toggling 1 2 8–11 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 12–15 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 16–19 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 20–23 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 24–27 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 28–31 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 32–35 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 36–39 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 40–43 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 44–47 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 48–51 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 52–55 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 56–59 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 60–63 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Data3 D0 = 00, D1 = FF, D2 = FF, D3 = 00, D4 = FF, D5 = 00, D5 = 00, D7 = FF D0 = FF, D1 = 00 D2 = 00, D3 = FF D4 = 00, D5 = FF D5 = FF, D7 = 00 1. DQS_t, DQS_c are VDDQ when not toggling. 2. BG1 is a "Don't Care" for x16 devices. 3. Burst sequence driven on each DQ signal by a READ command. Outside burst operation, DQ signals are VDDQ. 4. For x4 and x8 only. 322 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Cycle Number Command CS_n ACT_n WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,1 1]] A[10]/AP A[9:7] A[6:3] A[2:0] 0 0 WR 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2, 3 D_n, D_n 1 1 1 1 0 1 3 3 0 0 0 7 F 0 4 WR 0 1 1 0 0 1 1 1 0 0 0 7 F 0 Static High Toggling 1 RAS_n/A1 6 CAS_n/A1 5 Sub-Loop CKE CK_c, CK_t, Table 141: IDD4W Measurement – Loop Pattern1 5 D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 6, 7 D_n, D_n 1 1 1 1 0 1 3 3 0 0 0 7 F 0 2 8–11 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 12–15 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 16–19 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 20–23 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 24–27 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 28–31 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 32–35 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 36–39 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 40–43 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 44–47 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 48–51 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 52–55 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 56–59 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 60–63 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Data3 D0 = 00, D1 = FF, D2 = FF, D3 = 00, D4 = FF, D5 = 00, D5 = 00, D7 = FF D0 = FF, D1 = 00 D2 = 00, D3 = FF D4 = 00, D5 = FF D5 = FF, D7 = 00 1. DQS_t, DQS_c are VDDQ when not toggling. 2. BG1 is a "Don't Care" for x16 devices. 3. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are VDDQ. 4. For x4 and x8 only. 323 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]3 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE CK_c, CK_t, Table 142: IDD4Wc Measurement – Loop Pattern1 0 0 WR 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1, 2 D, D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 3, 4 D_n, D_n 1 1 1 1 0 1 3 3 0 0 0 7 F 0 Static High Toggling 1 5 WR 0 1 1 0 0 1 1 1 0 0 0 7 F 0 6, 7 D, D 1 0 0 0 0 1 0 0 0 0 0 0 0 0 8, 9 D_n, D_n 1 1 1 1 0 1 3 3 0 0 0 7 F 0 2 10–14 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 15–19 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 20–24 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 5 25–29 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead 6 30–34 Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 7 35–39 Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead 8 40–44 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4 9 45–49 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4 10 50–54 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4 11 55–59 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4 12 60–64 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4 13 65–69 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4 14 70–74 Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4 15 75–79 Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4 Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Data4 D0 = 00, D1 = FF, D2 = FF, D3 = 00, D4 = FF, D5 = 00, D8 = CRC D0 = FF, D1 = 00, D2 = 00, D3 = FF, D4 = 00, D5 = FF, D5 = FF, D7 = 00 D8 = CRC 1. 2. 3. 4. Pattern provided for reference only. DQS_t, DQS_c are VDDQ when not toggling. BG1 is a "Don't Care" for x16 devices. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are VDDQ. 5. For x4 and x8 only. 324 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE Data3 0 0 REF 0 1 0 0 1 0 0 0 0 0 0 0 0 0 – 1 1 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 2 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 3 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – 4 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – Static High Toggling CK_c, CK_t, Table 143: IDD5R Measurement – Loop Pattern1 2 5–8 Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 1 instead 9–12 Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 2 instead 13–16 Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 3 instead 17–20 Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 1 instead 21–24 Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 2 instead 25–28 Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 3 instead 29–32 Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 0 instead 33–36 Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 0 instead4 37–40 Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 1 instead4 41–44 Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 2 instead4 45–48 Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 3 instead4 49–52 Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 1 instead4 53–56 Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 2 instead4 57–60 Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 3 instead4 61–64 Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 0 instead4 65...nREFI 1 Repeat sub-loop 1; truncate if necessary Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. 2. 3. 4. DQS_t, DQS_c are VDDQ. BG1 is a "Don't Care" for x16 devices. DQ signals are VDDQ. For x4 and x8 only. 325 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions Sub-Loop Cycle Number Command CS_n ACT_n RAS_n/A16 CAS_n/A15 WE_n/A14 ODT BG[1:0]2 BA[1:0] A12/BC_n A[17,13,11]] A[10]/AP A[9:7] A[6:3] A[2:0] CKE CK_t, CK_c Table 144: IDD7 Measurement – Loop Pattern1 Data3 0 0 ACT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 – 1 RDA 0 1 1 0 1 0 0 0 0 0 1 0 0 0 2 D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 – 3 D_n 1 1 1 1 1 0 3 3 0 0 0 7 F 0 – ... Static High Toggling 1 Repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary nRRD ACT 0 0 0 0 0 0 1 1 0 0 0 0 0 0 nRRD+1 RDA 0 1 1 0 1 0 1 1 0 0 1 0 0 0 – ... Repeat pattern 2...3 until 2 × nRRD - 1, if nRRD > 4. Truncate if necessary 2 2 × nRRD Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead 3 3 × nRRD Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead 4 4 × nRRD Repeat pattern 2...3 until nFAW - 1, if nFAW > 4 × nRRD. Truncate if necessary 5 nFAW Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead 6 nFAW + nRRD Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead 7 nFAW + 2 × nRRD Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead 8 nFAW + 3 × nRRD Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead 9 nFAW + 4 × nRRD Repeat sub-loop 4 10 2 × nFAW Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead 11 2 × nFAW + nRRD Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead 12 2 × nFAW + 2 × nRRD Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 13 2 × nFAW + 3 × nRRD Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead 14 2 × nFAW + 4 × nRRD Repeat sub-loop 4 15 3 × nFAW Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 16 3 × nFAW + nRRD Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead 17 3 × nFAW + 2 × nRRD Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 18 3 × nFAW + 3 × nRRD Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead 19 3 × nFAW + 4 × nRRD Repeat sub-loop 4 20 4 × nFAW Repeat pattern 2...3 until nRC - 1, if nRC > 4 × nFAW. Truncate if necessary Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. DQS_t, DQS_c are VDDQ. 2. BG1 is a "Don't Care" for x16 devices. 3. DQ signals are VDDQ except when burst sequence drives each DQ signal by a READ command. 326 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Patterns and Test Conditions 4. For x4 and x8 only. IDD Specifications 20-20-20 20-20-20 22-22-22 20-20-20 24-24-24 12 12 13 14 14 15 16 16 17 18 18 19 20 20 21 22 20 22 24 CK CWL 9 11 11 10 12 12 11 14 14 16 16 16 18 18 18 14 18 18 16 20 20 CK nRCD 10 11 12 12 13 14 14 15 16 16 17 18 18 19 20 19 20 21 20 22 24 CK nRC 38 39 40 44 45 46 50 51 52 55 56 57 61 62 63 66 67 68 72 74 76 CK nRP 10 11 12 12 13 14 14 15 16 16 17 18 18 19 20 19 20 21 20 22 24 CK nRAS 0.937 0.833 0.75 0.682 22-22-22 18-18-18 11 1.071 21-21-21 18-18-18 10 1.25 19-19-19 16-16-16 CL tCK 17-17-17 16-16-16 Uni t Symbol 15-15-15 DDR4-3200 14-14-14 DDR4-2933 14-14-14 DDR4-2666 13-13-13 DDR4-2400 12-12-12 DDR4-2133 12-12-12 DDR4-1866 11-11-11 DDR4-1600 10-10-10 Table 145: Timings used for IDD, IPP, and IDDQ Measurement – Loop Patterns 0.625 ns 28 32 36 39 43 47 52 CK x41 16 16 16 16 16 16 16 CK x8 20 22 23 26 28 31 34 CK x1 6 28 28 32 36 40 44 48 CK nRRD x4 _S x8 4 4 4 4 4 4 4 CK 4 4 4 4 4 4 4 CK x1 6 5 6 6 7 8 8 9 CK nRRD x4 _L x8 5 5 6 6 7 8 8 CK 5 5 6 6 7 8 8 CK x1 6 6 6 7 8 9 10 11 CK nCCD_S 4 4 4 4 4 4 4 CK nCCD_L 5 5 6 6 7 8 8 CK nWTR_S 2 3 3 3 4 4 4 CK nWTR_L 6 7 8 9 10 11 12 CK nFA W nREFI 6,240 7,283 8,325 9,364 10,400 11,437 12,480 CK nRFC 2Gb 128 150 171 193 214 235 256 CK nRFC 4Gb 208 243 278 313 347 382 416 CK nRFC 8Gb 280 327 374 421 467 514 560 CK nRFC 16Gb 280 327 374 421 467 514 560 CK Note: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. 1KB based x4 use same numbers of clocks for nFAW as the x8. 327 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits Current Specifications – Limits Table 146: IDD and IPP Current Limits; Die Rev. B (-40° ื TC ื 85°C) Symbol Width DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Unit IDD0: One bank ACTIVATE-toPRECHARGE current x4 56 57 58 59 60 mA x8 59 60 61 62 63 mA x16 74 75 76 77 78 mA IPP0: One bank ACTIVATE-toPRECHARGE IPP current x4, x8 4 4 4 4 4 mA x16 5 5 5 5 5 mA IDD1: One bank ACTIVATE-toREAD-to- PRECHARGE current x4 66 67 68 69 70 mA x8 70 71 72 73 74 mA x16 95 96 97 98 99 mA IDD2N: Precharge standby current ALL 48 49 50 51 52 mA IDD2NT: Precharge standby ODT current x4, x8 52 53 54 55 56 mA x16 61 62 63 64 65 mA IDD2P: Precharge powerdown current ALL 43 43 43 43 43 mA IDD2Q: Precharge quiet standby current ALL 47 47 47 47 47 mA IDD3N: Active standby current IPP3N: Active standby IPP current IDD3P: Active power-down current IDD4R: Burst read current IDD4W: Burst write current x4 74 75 76 77 78 mA x8 76 77 78 79 80 mA x16 77 78 79 80 81 mA ALL 3 3 3 3 3 mA x4 65 66 67 68 69 mA x8 66 67 68 69 69 mA x16 68 69 70 71 72 mA x4 138 147 155 164 172 mA x8 162 172 182 192 202 mA x16 242 262 284 305 326 mA x4 135 142 149 157 164 mA x8 150 158 166 175 183 mA x16 209 223 240 257 274 mA IDD5R: Distributed refresh current (1X REF) ALL 81 81 81 81 81 mA IPP5R: Distributed refresh IPP current (1X REF) ALL 5 5 5 5 5 mA IDD6N: Self refresh current; -40–85°C 1 ALL 74 74 74 74 74 mA IDD6E: Self refresh current; -40–95°C 2,4 ALL 129 129 129 129 129 mA CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 328 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits Table 146: IDD and IPP Current Limits; Die Rev. B (-40° ื TC ื 85°C) (Continued) Width DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Unit IDD6R: Self refresh current; -40–45C 3,4 Symbol ALL 26 26 26 26 26 mA IDD6A: Auto self refresh current (25°C)4 ALL 15 15 15 15 15 mA IDD6A: Auto self refresh current (45°C)4 ALL 26 26 26 26 26 mA IDD6A: Auto self refresh current (75°C)4 ALL 73 73 73 73 73 mA IDD6A: Auto self refresh current (95°C)4 ALL 129 129 129 129 129 mA IPP6x: Auto self refresh IPP current; -40–95°C27 ALL 9 9 9 9 9 mA IDD7: Bank interleave read current x4 187 196 208 220 234 mA x8 183 185 190 193 196 mA x16 255 260 260 267 268 mA IPP7: Bank interleave read IPP current x4 11 11 11 11 11 mA x8 10 10 10 10 10 mA x16 11 11 11 11 11 mA IDD8: Maximum power-down current ALL 40 40 40 40 40 mA Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (-40–85°C). 2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (-40–95°C). 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (-40–45°C). 4. IDD6R, IDD6A, and IDD6E values are verified by design and characterization, and may not be subject to production test. 5. When additive latency is enabled for IDD0, current changes by approximately +1%. 6. When additive latency is enabled for IDD1, current changes by approximately +8%. 7. When additive latency is enabled for IDD2N, current changes by approximately +1%. 8. When DLL is disabled for IDD2N, current changes by approximately –6%. 9. When CAL is enabled for IDD2N, current changes by approximately –20%. 10. When gear-down is enabled for IDD2N, current changes by approximately 0%. 11. When CA parity is enabled for IDD2N, current changes by approximately +13%. 12. When additive latency is enabled for IDD3N, current changes by approximately +1%. 13. When additive latency is enabled for IDD4R, current changes by approximately +4%(x4/ x8), +3%(X16). 14. When read DBI is enabled for IDD4R, current changes by approximately -12%(x4/x8), -20%(x16). 15. When additive latency is enabled for IDD4W, current changes by approximately +4%(x4/ x8), +3%(x16). 16. When write DBI is enabled for IDD4W, current changes by approximately 0%. 17. When write CRC is enabled for IDD4W, current changes by approximately -5%. 329 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits 18. 19. 20. 21. 22. 23. 24. When CA parity is enabled for IDD4W, current changes by approximately +12%. When 2X REF is enabled for IDD5R, current changes by approximately 0%. When 4X REF is enabled for IDD5R, current changes by approximately 0%. When 2X REF is enabled for IPP5R, current changes by approximately 0%. When 4X REF is enabled for IPP5R, current changes by approximately 0%. IPP0 test and limit is applicable for IDD0 and IDD1 conditions. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the IPPs for the noted IDD tests. 25. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133. 26. The IDD values must be derated (increased) when operated between 85°C < TC ื 95°C: When TC > 85°C: IDD0 and IDD1 must be derated by 10%; IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N and IDD3P must be derated by 15%; IDD4R, IDD4W and IDD7 must be derated by 4%; IDD5R must be derated by 56%; IPP5R must be derated by 81%; IPP0, IPP3N and IPP7 must be derated by 3%. These values are verified by design and characterization, and may not be subject to production test. 27. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions. Table 147: IDD and IPP Current Limits; Die Rev. E (-40° ื TC ื 85°C) Symbol Width DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Unit IDD0: One bank ACTIVATE-toPRECHARGE current x4 51 52 53 54 55 mA x8 56 57 58 59 60 mA x16 66 67 68 69 70 mA IPP0: One bank ACTIVATE-toPRECHARGE IPP current x4, x8 3 3 3 3 3 mA x16 4 4 4 4 4 mA IDD1: One bank ACTIVATE-toREAD-to- PRECHARGE current x4 62 63 64 65 66 mA x8 67 68 69 70 71 mA x16 80 81 82 83 84 mA IDD2N: Precharge standby current ALL 41 42 43 44 45 mA IDD2NT: Precharge standby ODT current x4, x8 47 48 49 50 51 mA x16 54 55 56 57 58 mA IDD2P: Precharge powerdown current ALL 38 38 38 38 38 mA IDD2Q: Precharge quiet standby current ALL 42 42 42 42 42 mA x4 56 57 58 59 60 mA IDD3N: Active standby current IPP3N: Active standby IPP current IDD3P: Active power-down current CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN x8 57 58 59 60 61 mA x16 58 59 60 61 62 mA ALL 2 2 2 2 2 mA x4 44 45 46 47 48 mA x8 46 47 48 49 50 mA x16 47 48 49 50 51 mA 330 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits Table 147: IDD and IPP Current Limits; Die Rev. E (-40° ื TC ื 85°C) (Continued) Symbol IDD4R: Burst read current IDD4W: Burst write current Width DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2933 DDR4-3200 Unit x4 101 106 112 119 127 mA x8 131 138 146 154 162 mA x16 231 243 263 282 299 mA x4 89 93 97 101 105 mA x8 107 112 117 123 128 mA x16 189 200 213 226 236 mA IDD5R: Distributed refresh current (1X REF) ALL 68 68 68 68 68 mA IPP5R: Distributed refresh IPP current (1X REF) ALL 4 4 4 4 4 mA IDD6N: Self refresh current; -40–85°C 1 ALL 53 53 53 53 53 mA IDD6E: Self refresh current; -40–95°C 2,4 ALL 113 113 113 113 113 mA IDD6R: Self refresh current; -40–45C 3,4 ALL 20 20 20 20 20 mA IDD6A: Auto self refresh current (25°C)4 ALL 11 11 11 11 11 mA IDD6A: Auto self refresh current (45°C)4 ALL 20 20 20 20 20 mA IDD6A: Auto self refresh current (75°C)4 ALL 51 51 51 51 51 mA IDD6A: Auto self refresh current (95°C)4 ALL 113 113 113 113 113 mA IPP6x: Auto self refresh IPP current; -40–95°C27 ALL 6 6 6 6 6 mA IDD7: Bank interleave read current x4 189 191 193 195 197 mA x8 177 179 181 183 185 mA x16 234 240 236 242 245 mA x4 9 9 9 9 9 mA x8 8 8 8 8 8 mA x16 9 9 9 9 9 mA ALL 36 36 36 36 36 mA IPP7: Bank interleave read IPP current IDD8: Maximum power-down current Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation (-40–85°C). 2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation (-40–95°C). 3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation (-40–45°C). 4. IDD6R, IDD6A, and IDD6E values are verified by design and characterization, and may not be subject to production test. 331 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Current Specifications – Limits 5. When additive latency is enabled for IDD0, current changes by approximately +1%. 6. When additive latency is enabled for IDD1, current changes by approximately +3%(x4/x8), + 2%(x16). 7. When additive latency is enabled for IDD2N, current changes by approximately +1%. 8. When DLL is disabled for IDD2N, current changes by approximately -4%. 9. When CAL is enabled for IDD2N, current changes by approximately -18%. 10. When gear-down is enabled for IDD2N, current changes by approximately 0%. 11. When CA parity is enabled for IDD2N, current changes by approximately +8%. 12. When additive latency is enabled for IDD3N, current changes by approximately +1%. 13. When additive latency is enabled for IDD4R, current changes by approximately +4%(x4/ x8), +1%(x16). 14. When read DBI is enabled for IDD4R, current changes by approximately -9%. 15. When additive latency is enabled for IDD4W, current changes by approximately +5%(x4/ x8), +2%(x16). 16. When write DBI is enabled for IDD4W, current changes by approximately +1%. 17. When write CRC is enabled for IDD4W, current changes by approximately -5%(x4/x8), -8% (x16). 18. When CA parity is enabled for IDD4W, current changes by approximately +13%(x4/x8), +6%(x16). 19. When 2X REF is enabled for IDD5R, current changes by approximately 0%. 20. When 4X REF is enabled for IDD5R, current changes by approximately 0%. 21. When 2X REF is enabled for IPP5R, current changes by approximately 0%. 22. When 4X REF is enabled for IPP5R, current changes by approximately 0%. 23. IPP0 test and limit is applicable for IDD0 and IDD1 conditions. 24. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the IPPs for the noted IDD tests. 25. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133. 26. The IDD values must be derated (increased) when operated between 85°C < TC ื 95°C: IDD0 and IDD1must be derated by 10%; IDD2N, IDD2NT, IDD2Q, and IDD3N must be derated by 18%; IDD2P and IDD3P must be derated by 23%; IDD4R and IDD4W must be derated by 6%; IDD5R must be derated by 58%; IDD7, IPP7 and IPP0 must be derated by 3%; IDD8 must be derated by 28%; IPP5R must be derated by 97% 27. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 332 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. 16Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables Speed Bin Tables DDR4 DRAM timing is primarily covered by two types of tables: the Speed Bin tables in this section and the tables found in the Electrical Characteristics and AC Timing Parameters section. The timing parameter tables define the applicable timing specifications based on the speed rating. The Speed Bin tables on the following pages list the tAA, tRCD, tRP, tRAS, and tRC limits of a given speed mark and are applicable to the CL settings in the lower half of the table provided they are applied in the correct clock range, which is noted. Backward Compatibility Although the speed bin tables list the slower data rates, tAA, CL, and CWL, it is difficult to determine whether a faster speed bin supports all of the tAA, CL, and CWL combinations across all the data rates of a slower speed bin. To assist in this process, please refer to the Backward Compatibility table. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 333 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. Note 1 applies to the entire table. Component Speed Bin CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Table 148: Backward Compatibility Speed Bin Supported -125 -125 yes -125E yes2 -125E -107 -107E -093 -093E -083D -083 -083E -075D -075 -075E -068D -068 -068E -062 -062E -062Y yes -107 yes -107E yes2 yes -093 yes yes -093E yes2 yes2 -083D yes yes yes yes2 yes yes yes yes yes2 yes yes yes yes 334 yes -083E yes2 -075D yes -075 yes -075E yes -068D yes yes yes yes -068 yes yes yes yes yes yes yes yes yes -068E yes yes yes yes yes yes yes yes yes -062 yes yes yes yes -062E yes yes yes yes yes -062Y yes yes yes yes yes2 yes yes yes yes yes yes yes yes yes yes yes2 yes yes yes yes yes2 yes yes yes yes yes yes2 yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 16Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. -083 16Gb: x4, x8, x16 DDR4 SDRAM Speed Bin Tables Notes: CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN 1. The backward compatibility table is not meant to guarantee that any new device will be a drop in replacement for an existing part number. Customers should review the operating conditions for any device to determine its suitability for use in their design. 2. This condition exceeds the JEDEC requirement in order to allow additional flexibility for components. However, JEDEC SPD compliance may force modules to only support the JEDEC-defined value. Refer to the SPD documentation for further clarification. 335 Micron Technology, Inc. reserves the right to change products or specifications without notice. ‹ 2018 Micron Technology, Inc. All rights reserved. CCM005-1406124318-10453 16gb_ddr4_dram.pdf - Rev. G 08/2020 EN Table 149: DDR4-1600 Speed Bins and Operating Conditions Notes 1–3 apply to the entire table DDR4-1600 Speed Bin -125E CL-nRCD-nRP -125 11-11-11 Parameter Symbol Internal READ command to first data Internal READ command to first data with read DBI enabled ACTIVATE-to-internal READ or WRITE delay time PRECHARGE command period 12-12-12 Min Max Min tAA Max Unit 13.75 (13.50)4 19.006 15.00 19.006 ns tAA_DBI tAA tAA tAA tAA ns (MIN) + 2nCK (MAX) + 2nCK (MIN) + 2nCK (MAX) + 2nCK tRCD 13.75 (13.50)4 – 15.00 – ns tRP 13.75 (13.50)4 – 15.00 – ns 9 × tREFI 35 9 × tREFI ns – ns Max Unit ACTIVATE-to-PRECHARGE command period tRAS 35 ACTIVATE-to-ACTIVATE or REFRESH command period tRC5 tRAS + – tRP 336 Data Rate Max (MT/s) Equivalent Speed Bin tAAmin(ns): non-DB READ CL: nonDBI READ CL: DBI WRITE CWL 1333 - 13.50 9 11 9 - 10 Max (AVG) 1.500 1.9006 1.9006
MT40A1G16KD-062E:E 价格&库存

很抱歉,暂时无法提供与“MT40A1G16KD-062E:E”相匹配的价格&库存,您可以联系我们找货

免费人工找货