8Gb: x4, x8, x16 DDR4 SDRAM
Features
DDR4 SDRAM
MT40A2G4
MT40A1G8
MT40A512M16
Features
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
Options1
VDD = VDDQ = 1.2V ά60mV
VPP6nM6M6
On-die, internal, adjustable VREFDQ generation
1.2V pseudo open-drain I/O
Refresh time of 8192-cycle at TC temperature range:
n 64ms at -40ιC to 85ιC
n 32ms at >85ιC to 95ιC
n 16ms at >95ιC to 105ιC
16 internal banks (x4, x8): 4 groups of 4 banks each
8 internal banks (x16): 2 groups of 4 banks each
8n-bit prefetch architecture
Programmable data strobe preambles
Data strobe preamble training
Command/Address latency (CAL)
Multipurpose register READ and WRITE capability
Write leveling
Self refresh mode
Low-power auto self refresh (LPASR)
Temperature controlled refresh (TCR)
Fine granularity refresh
Self refresh abort
Maximum power saving
Output driver calibration
Nominal, park, and dynamic on-die termination
(ODT)
Data bus inversion (DBI) for data bus
Command/Address (CA) parity
Databus write cyclic redundancy check (CRC)
Per-DRAM addressability
Connectivity test
JEDEC JESD-79-4 compliant
sPPR and hPPR capability
MBIST-PPR support (Die Revision R only)
Marking
s Configuration
2G4
n 2 Gig x 4
1G8
n 1 Gig x 8
512M16
n 512 Meg x 16
s
BALL&"'!PACKAGE0B
FREE nXX
PM
n MMXMMn2EV!
WE
n MMXMMn2EV"$'
SA
n MMXMMn2EV%(*2
s
BALL&"'!PACKAGE0B
FREE nX
HA
n MMXMMn2EV!
JY
n MMXMMn2EV"
LY
n MMXMMn2EV$%(
TB
n MMXMMn2EV*2
s 4IMINGnCYCLETIME
-062E
n 0.625ns @ CL = 22 (DDR4-3200)
-068
n 0.682ns @ CL = 21 (DDR4-2933)
-075
n 0.750ns @ CL = 19 (DDR4-2666)
-075E
n 0.750ns @ CL = 18 (DDR4-2666)
-083
n 0.833ns @ CL = 17 (DDR4-2400)
-083E
n 0.833ns @ CL = 16 (DDR4-2400)
-093E
n 0.937ns @ CL = 15 (DDR4-2133)
-107E
n 1.071ns @ CL = 13 (DDR4-1866)
s Operating temperature
None
n Commercial (0ι ζ TC ζ 95ιC)
IT
n )NDUSTRIALnι ζ TC ζ 95ιC)
AT
n !UTOMOTIVEnι ζ TC ζ 105ιC)
:A, :B, :D, :E,
s Revision
:G, :H, :J, :R
Notes: 1. Not all options listed can be combined to
define an offered product. Use the part
catalog search on http://www.micron.com for
available offerings.
Table 1: Key Timing Parameters
Speed Grade1
Data Rate (MT/s)
Target CL-nRCD-nRP
-062Y
3200
22-22-22
13.75 (13.32)
13.75 (13.32)
13.75 (13.32)
-062E
3200
22-22-22
13.75
13.75
13.75
-068
2933
21-21-21
14.32 (13.75)
14.32 (13.75)
14.32 (13.75)
-075E
2666
18-18-18
13.50
13.50
13.50
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
1
t
AA (ns)
t
RCD (ns)
t
RP (ns)
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
8Gb: x4, x8, x16 DDR4 SDRAM
Features
Table 1: Key Timing Parameters (Continued)
Speed Grade1
Data Rate (MT/s)
Target CL-nRCD-nRP
tAA
-075
2666
19-19-19
14.25 (13.75)
14.25 (13.75)
14.25 (13.75)
-083E
2400
16-16-16
13.32
13.32
13.32
-083
2400
17-17-17
14.16 (13.75)
14.16 (13.75)
14.16 (13.75)
-093E
2133
15-15-15
14.06 (13.50)
14.06 (13.50)
14.06 (13.50)
-093
2133
16-16-16
15.00
15.00
15.00
-107E
1866
13-13-13
13.92 (13.50)
13.92 (13.50)
13.92 (13.50)
(ns)
tRCD
tRP
(ns)
(ns)
Notes: 1. Refer to the Speed Bin Tables for additional details.
Table 2: Addressing
Parameter
Number of bank groups
Bank group address
Bank count per group
Bank address in bank group
Row addressing
Column addressing
Page size1
2048 Meg x 4
1024 Meg x 8
512 Meg x 16
4
4
2
BG[1:0]
BG[1:0]
BG0
4
4
4
BA[1:0]
BA[1:0]
BA[1:0]
128K (A[16:0])
64K (A[15:0])
64K (A[15:0])
1K (A[9:0])
1K (A[9:0])
1K (A[9:0])
512B
1KB
2KB
Notes: 1. Page size is per bank, calculated as follows:
Page size = 2COLBITS έ ORG/8, where COLBIT = the number of column address bits and ORG = the number of DQ bits.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
2
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Features
Figure 1: Order Part Number Example
Example Part Number: MT40A1G8SA-062E:R
Configuration
Package
Revision
Speed
{
MT40A
:
Die Revision
Configuration
2 Gig x 4
2G4
1 Gig x 8
1G8
512 Meg x 16
:A, :B, :D, :G, :E, :H, :J, :R
512M16
Case Temperature
Mark
Commercial
None
Mark
Industrial
IT
78-ball 9.0mm x 13.2mm FBGA
PM
Extended
AT
78-ball 8.0mm x 12.0mm FBGA
WE
78-ball 7.5mm x 11.0mm FBGA
SA
96-ball 9.0mm x 14.0mm FBGA
HA
96-ball 8.0mm x 14.0mm FBGA
JY
96-ball 7.5mm x 13.5mm FBGA
LY
96-ball 7.5mm x 13.0mm FBGA
TB
Package
Speed
Grade
Cycle Time, CAS Latency
-107E
tCK = 1.071ns, CL = 13
tCK = 0.937ns, CL = 15
-093E
-083E
-083
-075E
-075
-068
-062E
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
3
tCK = 0.833ns, CL = 16
tCK = 0.833ns, CL = 17
tCK = 0.750ns, CL = 18
tCK = 0.750ns, CL = 19
tCK = 0.682ns, CL = 21
tCK = 0.625ns, CL = 22
Micron Technology, Inc. reserves the right to change products or specifications without notice.
© 2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Contents
Important Notes and Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
General Notes and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Industrial Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Automotive Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definitions of the Device-Pin Signal Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Definitions of the Bus Signal Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Ball Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
RESET and Initialization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Power-Up and Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
RESET Initialization with Stable Power Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Uncontrolled Power-Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Programming Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Mode Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Burst Length, Type, and Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CAS Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Write Recovery (WR)/READ-to-PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DLL RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Mode Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DLL Enable/DLL Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Output Driver Impedance Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ODT RTT(NOM) Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Additive Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Rx CTLE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Termination Data Strobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Mode Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CAS WRITE Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Low-Power Auto Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Dynamic ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Write Cyclic Redundancy Check Data Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Mode Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Multipurpose Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
WRITE Command Latency When CRC/DM is Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Fine Granularity Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Temperature Sensor Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Per-DRAM Addressability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Gear-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Mode Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Hard Post Package Repair Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Soft Post Package Repair Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
WRITE Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
READ Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
4
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Preamble Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Temperature-Controlled Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Command Address Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Internal VREF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Maximum Power Savings Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
MBIST-PPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Mode Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Data Bus Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CA Parity Persistent Error Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ODT Input Buffer for Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
CA Parity Error Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
CRC Error Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
CA Parity Latency Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Mode Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Data Rate Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
VREFDQ Calibration Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
VREFDQ Calibration Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
VREFDQ Calibration Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
NOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DESELECT Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DLL-Off Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DLL-On/Off Switching Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DLL Switch Sequence from DLL-On to DLL-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DLL-Off to DLL-On Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Input Clock Frequency Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
DRAM Setting for Write Leveling and DRAM TERMINATION Function in that Mode . . . . . . . . . . . . . . . . . . . . . . . 81
Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Write Leveling Mode Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Command Address Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Low-Power Auto Self Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Manual Self Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Multipurpose Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
MPR Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
MPR Readout Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
MPR Readout Serial Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
MPR Readout Parallel Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MPR Readout Staggered Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MPR READ Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
MPR Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MPR WRITE Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MPR REFRESH Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Gear-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Maximum Power-Saving Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Maximum Power-Saving Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Maximum Power-Saving Mode Entry in PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CKE Transition During Maximum Power-Saving Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Maximum Power-Saving Mode Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Command/Address Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Per-DRAM Addressability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
VREFDQ Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
5
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Range and Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
VREFDQ Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
VREFDQ Increment and Decrement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
VREFDQ Target Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Connectivity Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Minimum Terms Definition for Logic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Logic Equations for a x4 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Logic Equations for a x8 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Logic Equations for a x16 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
CT Input Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Excessive Row Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Post Package Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Post Package Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Hard Post Package Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
hPPR Row Repair - Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
H0022OW2EPAIRn72!)NITIATED2%OMMANDS!LLOWED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
H0022OW2EPAIRn72)NITIATED2%OMMANDS./4!LLOWED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
sPPR Row Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
MBIST-PPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
MBIST-PPR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
hPPR/sPPR/MBIST-PPR Support Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
ACTIVATE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PRECHARGE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Temperature-Controlled Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Normal Temperature Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Extended Temperature Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Fine Granularity Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Mode Register and Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
t
REFI and tRFC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Changing Refresh Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Usage with TCR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Self Refresh Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SELF REFRESH Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Self Refresh Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Self Refresh Exit with NOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
0OWER
$OWN#LARIFICATIONSn#ASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Power-Down Entry, Exit Timing with CAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
ODT Input Buffer Disable Mode for Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
CRC Write Data Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
CRC Write Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
WRITE CRC DATA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
DBI_n and CRC Both Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
DM_n and CRC Both Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
DM_n and DBI_n Conflict During Writes with CRC Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CRC and Write Preamble Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CRC Simultaneous Operation Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CRC Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
CRC Combinatorial Logic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Burst Ordering for BL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
CRC Data Bit Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
6
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Enabled With BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
CRC with BC4 Data Bit Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
CRC Equations for x8 Device in BC4 Mode with A2 = 0 and A2 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
CRC Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
CRC Write Data Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Data Bus Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
DBI During a WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
DBI During a READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Programmable Preamble Modes and DQS Postambles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
WRITE Preamble Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
READ Preamble Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
READ Preamble Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
WRITE Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
READ Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Bank Access Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Read Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
2EAD4IMINGn#LOCK
TO
$ATA3TROBE2ELATIONSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
2EAD4IMINGn$ATA3TROBE
TO
$ATA2ELATIONSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
t
LZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
t
RPRE Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
tRPST Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
READ Burst Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
READ Operation Followed by Another READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
READ Operation Followed by WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
READ Operation Followed by PRECHARGE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
READ Operation with Read Data Bus Inversion (DBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
READ Operation with Command/Address Parity (CA Parity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
READ Followed by WRITE with CRC Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
READ Operation with Command/Address Latency (CAL) Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Write Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7RITE4IMINGn#LOCK
TO
$ATA3TROBE2ELATIONSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
t
WPRE Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
t
WPST Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7RITE4IMINGn$ATA3TROBE
TO
$ATA2ELATIONSHIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
WRITE Burst Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
WRITE Operation Followed by Another WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
WRITE Operation Followed by READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
WRITE Operation Followed by PRECHARGE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
WRITE Operation with WRITE DBI Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
WRITE Operation with CA Parity Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
WRITE Operation with Write CRC Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Write Timing Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Data Setup and Hold Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Strobe-to-Strobe and Strobe-to-Clock Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
ZQ CALIBRATION Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
ODT Mode Register and ODT State Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
ODT Read Disable State Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Synchronous ODT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
7
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
ODT Latency and Posted ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
ODT During Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Dynamic ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Asynchronous ODT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Absolute Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
%LECTRICAL#HARACTERISTICSn!#AND$#/PERATING#ONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Supply Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Leakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
VREFCA Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
VREFDQ Supply and Calibration Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
VREFDQ Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT-EASUREMENT,EVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
RESET_n Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Command/Address Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Command, Control, and Address Setup, Hold, and Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Data Receiver Input Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Connectivity Test (CT) Mode Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT-EASUREMENT,EVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Differential Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Single-Ended Requirements for CK Differential Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Slew Rate Definitions for CK Differential Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
CK Differential Input Cross Point Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
DQS Differential Input Signal Definition and Swing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
DQS Differential Input Cross Point Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Slew Rate Definitions for DQS Differential Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
%LECTRICAL#HARACTERISTICSn/VERSHOOTAND5NDERSHOOT3PECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Address, Command, and Control Overshoot and Undershoot Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Clock Overshoot and Undershoot Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Data, Strobe, and Mask Overshoot and Undershoot Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT,EVELS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Single-Ended Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Reference Load for AC Timing and Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Connectivity Test Mode Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER#HARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Connectivity Test Mode Output Driver Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Output Driver Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Output Driver Temperature and Voltage Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Alert Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
ODT Levels and I-V Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
ODT Temperature and Voltage Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
ODT Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
ODT Timing Definitions and Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
DRAM Package Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
IDD, IPP, and IDDQ Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
IDD Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
8
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Current Test Definitions and Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
IDD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
#URRENT3PECIFICATIONSn,IMITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Speed Bin Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Backward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Refresh Parameters By Device Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
AC Electrical Characteristics and AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Electrical Characteristics and AC Timing Parameters: 2666 Through 3200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Clock Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Definition for tCK(AVG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Definition for tCK(ABS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Definition for tCH(AVG) and tCL(AVG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Definition for tJIT(per) and tJIT(per,lck) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Definition for tJIT(cc) and tJIT(cc,lck) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Definition for tERR(nper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Jitter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Converting Time-Based Specifications to Clock-Based Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Options Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
9
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
List of Figures
Figure 1: Order Part Number Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2: 2 Gig x 4 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3: 1 Gig x 8 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4: 512 Meg x 16 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 5: 78-Ball x4, x8 Ball Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6: 96-Ball x16 Ball Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7:
"ALL&"'!nXX0- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 8:
"ALL&"'!nXX7% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 9:
"ALL&"'!nXX3! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 10:
"ALL&"'!nX(! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11:
"ALL&"'!nX*9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 12:
"ALL&"'!nX,9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13:
"ALL&"'!nX4" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14: Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 15: RESET and Initialization Sequence at Power-On Ramping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 16: RESET Procedure at Power Stable Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 17: tMRD Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 18: tMOD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 19: DLL-Off Mode Read Timing Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 20: DLL Switch Sequence from DLL-On to DLL-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 21: DLL Switch Sequence from DLL-Off to DLL-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 22: Write Leveling Concept, Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 23: Write Leveling Concept, Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 24: Write Leveling Sequence (DQS Capturing CK LOW at T1 and CK HIGH at T2) . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 25: Write Leveling Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 26: CAL Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 27: CAL Timing Example (Consecutive CS_n = LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 28: #!,%NABLE4IMINGntMOD_CAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 29: tMOD_CAL, MRS to Valid Command Timing with CAL Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 30: CAL Enabling MRS to Next MRS Command, tMRD_CAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 31: tMRD_CAL, Mode Register Cycle Time With CAL Enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 32: Consecutive READ BL8, CAL3, 1tCK Preamble, Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 33: Consecutive READ BL8, CAL4, 1tCK Preamble, Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 34: Auto Self Refresh Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 35: MPR Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 36: MPR READ Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 37: MPR Back-to-Back READ Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 38: MPR READ-to-WRITE Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 39: MPR WRITE and WRITE-to-READ Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 40: MPR Back-to-Back WRITE Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 41: REFRESH Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 42: READ-to-REFRESH Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 43: WRITE-to-REFRESH Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 44: Clock Mode Change from 1/2 Rate to 1/4 Rate (Initialization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 45: Clock Mode Change After Exiting Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 46: Comparison Between Gear-Down Disable and Gear-Down Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 47: Maximum Power-Saving Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 48: Maximum Power-Saving Mode Entry with PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 49: Maintaining Maximum Power-Saving Mode with CKE Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 50: Maximum Power-Saving Mode Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 51: Command/Address Parity Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
10
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Figure 52: Command/Address Parity During Normal Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 53: Persistent CA Parity Error Checking Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 54: #!0ARITY%RROR#HECKINGn32%!TTEMPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 55: #!0ARITY%RROR#HECKINGn328!TTEMPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 56: #!0ARITY%RROR#HECKINGn0$%0$8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 57: 0ARITY%NTRY4IMING%XAMPLEntMRD_PAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 58: 0ARITY%NTRY4IMING%XAMPLEntMOD_PAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 59: 0ARITY%XIT4IMING%XAMPLEntMRD_PAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 60: 0ARITY%XIT4IMING%XAMPLEntMOD_PAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 61: CA Parity Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 62: PDA Operation Enabled, BL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 63: PDA Operation Enabled, BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 64: MRS PDA Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 65: VREFDQ Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 66: Example of VREF Set Tolerance and Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 67: VREFDQ Timing Diagram for VREF,time Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 68: VREFDQ Training Mode Entry and Exit Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 69: VREF Step: Single Step Size Increment Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 70: VREF Step: Single Step Size Decrement Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 71: VREF Full Step: From VREF,min to VREF,maxCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 72: VREF Full Step: From VREF,max to VREF,minCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 73: VREFDQ Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 74: Connectivity Test Mode Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 75: H00272!n%NTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 76: H00272!n2EPAIRAND%XIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 77: H00272n%NTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 78: H00272n2EPAIRAND%XIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 79: S002n%NTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 80: S002n2EPAIRAND%XIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 81: MBIST-PPR Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 82: tRRD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Figure 83: tFAW Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 84: REFRESH Command Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 85: Postponing REFRESH Commands (Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 86: Pulling In REFRESH Commands (Example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 87: TCR Mode Example1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 88: 4Gb with Fine Granularity Refresh Mode Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 89: OTF REFRESH Command Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 90: Self Refresh Entry/Exit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 91: Self Refresh Entry/Exit Timing with CAL Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 92: Self Refresh Abort. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 93: Self Refresh Exit with NOP Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 94: Active Power-Down Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 95: Power-Down Entry After Read and Read with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 96: Power-Down Entry After Write and Write with Auto Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 97: Power-Down Entry After Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 98: Precharge Power-Down Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 99: REFRESH Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 100: Active Command to Power-Down Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 101: PRECHARGE/PRECHARGE ALL Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 102: MRS Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 103: 0OWER
$OWN%NTRY%XIT#LARIFICATIONSn#ASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 104: Active Power-Down Entry and Exit Timing with CAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
11
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Figure 105: REFRESH Command to Power-Down Entry with CAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 106: ODT Power-Down Entry with ODT Buffer Disable Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 107: ODT Power-Down Exit with ODT Buffer Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 108: CRC Write Data Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 109: CRC Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 110: CA Parity Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 111: 1tCK vs. 2tCK WRITE Preamble Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 112: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 113: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 114: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 115: 1tCK vs. 2tCK READ Preamble Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 116: READ Preamble Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 117: WRITE Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 118: READ Postamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 119: Bank Group x4/x8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 120: READ Burst tCCD_S and tCCD_L Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 121: Write Burst tCCD_S and tCCD_L Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 122: tRRD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 123: tWTR_S Timing (WRITE-to-READ, Different Bank Group, CRC and DM Disabled) . . . . . . . . . . . . . . . . . 190
Figure 124: tWTR_L Timing (WRITE-to-READ, Same Bank Group, CRC and DM Disabled) . . . . . . . . . . . . . . . . . . . . 190
Figure 125: Read Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 126: Clock-to-Data Strobe Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 127: Data Strobe-to-Data Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 128: tLZ and tHZ Method for Calculating Transitions and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 129: tRPRE Method for Calculating Transitions and Endpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 130: tRPST Method for Calculating Transitions and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 131: READ Burst Operation, RL = 11 (AL = 0, CL = 11, BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 132: READ Burst Operation, RL = 21 (AL = 10, CL = 11, BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 133: Consecutive READ (BL8) with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 134: Consecutive READ (BL8) with 2tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 135: Nonconsecutive READ (BL8) with 1tCK Preamble in Same or Different Bank Group . . . . . . . . . . . . . . . 201
Figure 136: Nonconsecutive READ (BL8) with 2tCK Preamble in Same or Different Bank Group . . . . . . . . . . . . . . . 201
Figure 137: READ (BC4) to READ (BC4) with 1tCK Preamble in Different Bank Group. . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 138: READ (BC4) to READ (BC4) with 2tCK Preamble in Different Bank Group. . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 139: READ (BL8) to READ (BC4) OTF with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . 203
Figure 140: READ (BL8) to READ (BC4) OTF with 2tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . 203
Figure 141: READ (BC4) to READ (BL8) OTF with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . 204
Figure 142: READ (BC4) to READ (BL8) OTF with 2tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . 204
Figure 143: READ (BL8) to WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group . . . . . . . . . . . . . . . . 205
Figure 144: READ (BL8) to WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group . . . . . . . . . . . . . . . . 205
Figure 145: READ (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Same or Different Bank Group. . . . . . . 206
Figure 146: READ (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank Group. . . . . . . 206
Figure 147: READ (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Same or Different Bank Group. . . . . 207
Figure 148: READ (BC4) Fixed to WRITE (BC4) Fixed with 2tCK Preamble in Same or Different Bank Group. . . . . 207
Figure 149: READ (BC4) to WRITE (BL8) OTF with 1tCK Preamble in Same or Different Bank Group . . . . . . . . . . . 208
Figure 150: READ (BC4) to WRITE (BL8) OTF with 2tCK Preamble in Same or Different Bank Group . . . . . . . . . . . 208
Figure 151: READ (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Same or Different Bank Group . . . . . . . . . . . 209
Figure 152: READ (BL8) to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank Group . . . . . . . . . . . 209
Figure 153: READ to PRECHARGE with 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 154: READ to PRECHARGE with 2tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 155: READ to PRECHARGE with Additive Latency and 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 156: READ with Auto Precharge and 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Figure 157: READ with Auto Precharge, Additive Latency, and 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
12
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Figure 158: Consecutive READ (BL8) with 1tCK Preamble and DBI in Different Bank Group . . . . . . . . . . . . . . . . . . . 213
Figure 159: Consecutive READ (BL8) with 1tCK Preamble and CA Parity in Different Bank Group . . . . . . . . . . . . . . 213
Figure 160: READ (BL8) to WRITE (BL8) with 1tCK Preamble and CA Parity in Same or Different Bank Group . . . 214
Figure 161: READ (BL8) to WRITE (BL8 or BC4: OTF) with 1tCK Preamble and Write CRC in Same or Different Bank
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 162: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 163: Consecutive READ (BL8) with CAL (3tCK) and 1tCK Preamble in Different Bank Group . . . . . . . . . . . . 216
Figure 164: Consecutive READ (BL8) with CAL (4tCK) and 1tCK Preamble in Different Bank Group . . . . . . . . . . . . 217
Figure 165: Write Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 166: tWPRE Method for Calculating Transitions and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 167: tWPST Method for Calculating Transitions and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 168: Rx Compliance Mask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 169: VCENT_DQ VREFDQ Voltage Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 170: Rx Mask DQ-to-DQS Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 171: Rx Mask DQ-to-DQS DRAM-Based Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Figure 172: Example of Data Input Requirements Without Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 173: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 174: WRITE Burst Operation, WL = 19 (AL = 10, CWL = 9, BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 175: Consecutive WRITE (BL8) with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 176: Consecutive WRITE (BL8) with 2tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 177: Nonconsecutive WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group . . . . . . . . . . . . . . 228
Figure 178: Nonconsecutive WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group . . . . . . . . . . . . . . 228
Figure 179: WRITE (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group. . . . . . . . . . . . . . 229
Figure 180: WRITE (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Different Bank Group. . . . . . . . . . . . . . 229
Figure 181: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Different Bank Group. . . . . . . . . . . . 230
Figure 182: WRITE (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . 230
Figure 183: WRITE (BC4) OTF to WRITE (BL8) with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . 231
Figure 184: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Different Bank Group . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 185: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Same Bank Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Figure 186: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Different Bank Group. . . . . . . . . . . . . . . 232
Figure 187: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Same Bank Group . . . . . . . . . . . . . . . . . . 233
Figure 188: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 tCK Preamble in Different Bank Group . . . . . . . . . . . . 233
Figure 189: WRITE (BC4) Fixed to READ (BC4) Fixed with 1tCK Preamble in Same Bank Group . . . . . . . . . . . . . . . . 234
Figure 190: WRITE (BL8/BC4-OTF) to PRECHARGE with 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 191: WRITE (BC4-Fixed) to PRECHARGE with 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 192: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1tCK Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 193: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Preamble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 194: WRITE (BL8/BC4-OTF) with 1tCK Preamble and DBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 195: WRITE (BC4-Fixed) with 1tCK Preamble and DBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 196: Consecutive Write (BL8) with 1tCK Preamble and CA Parity in Different Bank Group . . . . . . . . . . . . . . 238
Figure 197: Consecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Different Bank
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Figure 198: Consecutive WRITE (BC4-Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank Group.
239
Figure 199: Nonconsecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Different Bank
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Figure 200: Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK Preamble and Write CRC in Same or Different Bank
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 201: WRITE (BL8/BC4-OTF/Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank Group 242
Figure 202: ZQ Calibration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 203: Functional Representation of ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 204: Synchronous ODT Timing with BL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
13
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Figure 205: Synchronous ODT with BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Figure 206: ODT During Reads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 207: Dynamic ODT (1t CK Preamble; CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled) . . . . . . . . . . . . . . . . . 252
Figure 208: Dynamic ODT Overlapped with RTT(NOM) (CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled) . . . . . . . 252
Figure 209: Asynchronous ODT Timings with DLL Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Figure 210: VREFDQ Voltage Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Figure 211: RESET_n Input Slew Rate Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Figure 212: Single-Ended Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Figure 213: DQ Slew Rate Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Figure 214: Rx Mask Relative to tDS/tDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Figure 215: Rx Mask Without Write Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Figure 216: TEN Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Figure 217: CT Type-A Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Figure 218: CT Type-B Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Figure 219: CT Type-C Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Figure 220: CT Type-D Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Figure 221: $IFFERENTIAL!#3WINGANDh4IME%XCEEDING!#
,EVELvtDVAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Figure 222: Single-Ended Requirements for CK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Figure 223: Differential Input Slew Rate Definition for CK_t, CK_c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Figure 224: VIX(CK) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Figure 225: Differential Input Signal Definition for DQS_t, DQS_c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Figure 226: DQS_t, DQS_c Input Peak Voltage Calculation and Range of Exempt non-Monotonic Signaling . . . . 278
Figure 227: VIXDQS Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Figure 228: Differential Input Slew Rate and Input Level Definition for DQS_t, DQS_c . . . . . . . . . . . . . . . . . . . . . . . . 280
Figure 229: ADDR, CMD, CNTL Overshoot and Undershoot Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Figure 230: CK Overshoot and Undershoot Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Figure 231: Data, Strobe, and Mask Overshoot and Undershoot Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Figure 232: Single-ended Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Figure 233: Differential Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Figure 234: Reference Load For AC Timing and Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Figure 235: Connectivity Test Mode Reference Test Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Figure 236: Connectivity Test Mode Output Slew Rate Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Figure 237: Output Driver During Connectivity Test Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Figure 238: Output Driver: Definition of Voltages and Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Figure 239: Alert Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Figure 240: ODT Definition of Voltages and Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Figure 241: ODT Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Figure 242: tADC Definition with Direct ODT Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Figure 243: tADC Definition with Dynamic ODT Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Figure 244: tAOFAS and tAONAS Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Figure 245: Thermal Measurement Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Figure 246: Measurement Setup and Test Load for IDDx, IPPx, and IDDQx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Figure 247: Correlation: Simulated Channel I/O Power to Actual Channel I/O Power . . . . . . . . . . . . . . . . . . . . . . . . . 308
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
14
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
List of Tables
Table 1: Key Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2: Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 3: Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 4: State Diagram Command Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 5: Supply Power-up Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 7: MR0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 8: Burst Type and Burst Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 9: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 10: MR1 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 11: Additive Latency (AL) Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 12: TDQS Function Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 13: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 14: MR2 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 15: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 16: MR3 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 17: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 18: MR4 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 19: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 20: MR5 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 21: Address Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 22: MR6 Register Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 23: 4RUTH4ABLEn#OMMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 24: 4RUTH4ABLEn#+% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 25: MR Settings for Leveling Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 26: DRAM TERMINATION Function in Leveling Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 27: Auto Self Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 28: MR3 Setting for the MPR Access Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 29: DRAM Address to MPR UI Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 30: MPR Page and MPRx Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 31: MPR Readout Serial Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 32: -022EADOUTn0ARALLEL&ORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 33: MPR Readout Staggered Format, x4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 34: -022EADOUT3TAGGERED&ORMATXn#ONSECUTIVE2%!$S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 35: MPR Readout Staggered Format, x8 and x16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 36: Mode Register Setting for CA Parity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 37: VREFDQ Range and Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 38: VREFDQ Settings (VDDQ = 1.2V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 39: Connectivity Mode Pin Description and Switching Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 40: MAC Encoding of MPR Page 3 MPR3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 41: PPR MR0 Guard Key Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 42: DDR4 hPPR Timing Parameters DDR4-1600 through DDR4-3200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 43: sPPR Associated Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 44: PPR MR0 Guard Key Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 45: DDR4 sPPR Timing Parameters DDR4-1600 Through DDR4-3200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 46: MBIST-PPR Timing Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 47: MPR Page3 Configuration for MBIST-PPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 48: DDR4 Repair Mode Support Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 49: Normal tREFI Refresh (TCR Enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 50: MRS Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 51: REFRESH Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
15
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Table 52: tREFI and tRFC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 53: Power-Down Entry Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 54: CRC Error Detection Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 55: CRC Data Mapping for x4 Devices, BL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 56: CRC Data Mapping for x8 Devices, BL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 57: CRC Data Mapping for x16 Devices, BL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 58: CRC Data Mapping for x4 Devices, BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 59: CRC Data Mapping for x8 Devices, BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 60: CRC Data Mapping for x16 Devices, BC4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 61: DBI vs. DM vs. TDQS Function Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 62: DBI Write, DQ Frame Format (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 63: DBI Write, DQ Frame Format (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 64: DBI Read, DQ Frame Format (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 65: DBI Read, DQ Frame Format (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 66: DM vs. TDQS vs. DBI Function Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 67: Data Mask, DQ Frame Format (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 68: Data Mask, DQ Frame Format (x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 69: CWL Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 70: DDR4 Bank Group Timing Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 71: Read-to-Write and Write-to-Read Command Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 72: Termination State Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 73: Read Termination Disable Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 74: ODT Latency at DDR4-1600/-1866/-2133/-2400/-2666/-3200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Table 75: Dynamic ODT Latencies and Timing (1tCK Preamble Mode and CRC Disabled). . . . . . . . . . . . . . . . . . . . . 251
Table 76: Dynamic ODT Latencies and Timing with Preamble Mode and CRC Mode Matrix. . . . . . . . . . . . . . . . . . . 252
Table 77: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 78: Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 79: Recommended Supply Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Table 80: VDD Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Table 81: Leakages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Table 82: VREFDQ Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Table 83: VREFDQ Range and Levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Table 84: RESET_n Input Levels (CMOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Table 85: Command and Address Input Levels: DDR4-1600 Through DDR4-2400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Table 86: Command and Address Input Levels: DDR4-2666. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 87: Command and Address Input Levels: DDR4-2933 and DDR4-3200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 88: Single-Ended Input Slew Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 89: #OMMANDAND!DDRESS3ETUPAND(OLD6ALUES2EFERENCEDn!#$#
"ASED . . . . . . . . . . . . . . . . . . . . . . . . 263
Table 90: Derating Values for tIS/t)(n!#$#
"ASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Table 91: Derating Values for tIS/t)(n!#$#
"ASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Table 92: DQ Input Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Table 93: Rx Mask and tDS/tDH without Write Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Table 94: TEN Input Levels (CMOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Table 95: CT Type-A Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Table 96: CT Type-B Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Table 97: CT Type-C Input Levels (CMOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Table 98: CT Type-D Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Table 99: Differential Input Swing Requirements for CK_t, CK_c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Table 100: Minimum Time AC Time tDVAC for CK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Table 101: Single-Ended Requirements for CK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Table 102: CK Differential Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Table 103: Cross Point Voltage For CK Differential Input Signals at DDR4-1600 through DDR4-2400 . . . . . . . . . . . 276
Table 104: Cross Point Voltage For CK Differential Input Signals at DDR4-2666 through DDR4-3200 . . . . . . . . . . . 276
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
16
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Table 105: DDR4-1600 through DDR4-2400 Differential Input Swing Requirements for DQS_t, DQS_c . . . . . . . . . 277
Table 106: DDR4-2633 through DDR4-3200 Differential Input Swing Requirements for DQS_t, DQS_c . . . . . . . . . 277
Table 107: Cross Point Voltage For Differential Input Signals DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Table 108: DQS Differential Input Slew Rate Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Table 109: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c . . . 280
Table 110: DDR4-2666 through DDR4-3200 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c . . . 281
Table 111: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Table 112: CK Overshoot and Undershoot/ Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Table 113: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Table 114: Single-Ended Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Table 115: Single-Ended Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Table 116: Single-Ended Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Table 117: Differential Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Table 118: Differential Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Table 119: Differential Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Table 120: Connectivity Test Mode Output Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Table 121: Connectivity Test Mode Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Table 122: Output Driver Electrical Characteristics During Connectivity Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Table 123: Strong Mode (34?) Output Driver Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Table 124: Weak Mode (48?) Output Driver Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Table 125: Output Driver Sensitivity Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Table 126: Output Driver Voltage and Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Table 127: Alert Driver Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Table 128: ODT DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Table 129: ODT Sensitivity Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Table 130: ODT Voltage and Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Table 131: ODT Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Table 132: Reference Settings for ODT Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Table 133: DRAM Package Electrical Specifications for x4 and x8 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Table 134: DRAM Package Electrical Specifications for x16 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Table 135: Pad Input/Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Table 136: Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Table 137: Basic IDD, IPP, and IDDQ Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Table 138: IDD0 and IPP0 Measurement-Loop Pattern1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Table 139: IDD1-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Table 140: IDD2N, IDD3N, and IPP3P-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Table 141: IDD2NT-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Table 142: IDD4R-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Table 143: IDD4W-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Table 144: IDD4Wc-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Table 145: IDD5R-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Table 146: IDD7-EASUREMENTn,OOP0ATTERN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Table 147: Timings used for IDD, IPP, and IDDQ-EASUREMENTn,OOP0ATTERNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Table 148: IDD, IPP, and IDDQ Current Limits; Die Rev. A (0 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Table 149: IDD, IPP, and IDDQ Current Limits; Die Rev. B (0 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Table 150: IDD, IPP, and IDDQ Current Limits; Die Rev. D (0 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Table 151: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Table 152: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40 ? TC ? 105C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Table 153: IDD, IPP, and IDDQ Current Limits; Die Rev. G (0 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Table 154: IDD, IPP, and IDDQ Current Limits; Die Rev. H (0 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Table 155: IDD, IPP, and IDDQ Current Limits; Die Rev. J (-40 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Table 156: IDD, IPP, and IDDQ Current Limits; Die Rev. R (-40 ? TC ? 85C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Table 157: Backward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
17
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Table 158: DDR4-1600 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Table 159: DDR4-1866 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Table 160: DDR4-2133 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Table 161: DDR4-2400 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Table 162: DDR4-2666 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Table 163: DDR4-2933 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Table 164: DDR4-3200 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
Table 165: Refresh Parameters by Device Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Table 166: Electrical Characteristics and AC Timing Parameters: DDR4-1600 through DDR4-2400 . . . . . . . . . . . . . 361
Table 167: Electrical Characteristics and AC Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Table 168: /PTIONSn3PEED"ASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Table 169: /PTIONSn7IDTH"ASED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
18
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Important Notes and Warnings
Important Notes and Warnings
Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document,
including without limitation specifications and product descriptions. This document supersedes and replaces all
information supplied prior to the publication hereof. You may not rely on any information set forth in this document
if you obtain the product described herein from any unauthorized distributor or other source not authorized by
Micron.
Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims,
costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of
product liability, personal injury, death, or property damage resulting directly or indirectly from any use of
non-automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and
conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron
products are not designed or intended for use in automotive applications unless specifically designated by Micron
as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to
indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys'
fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage
resulting from any use of non-automotive-grade products in automotive applications.
Critical Applications. Products are not authorized for use in applications in which failure of the Micron component
could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical
Applications"). Customer must protect against death, personal injury, and severe property and environmental
damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron
component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs,
damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product
liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its
subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron
product.
Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems,
applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT
FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE
WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR
PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in
customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component.
Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential
damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach
of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
19
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
General Notes and Description
General Notes and Description
Description
The DDR4 SDRAM is a high-speed dynamic random-access memory internally configured as an
eight-bank DRAM for the x16 configuration and as a 16-bank DRAM for the x4 and x8 configurations.
The DDR4 SDRAM uses an 8n-prefetch architecture to achieve high-speed operation. The 8n-prefetch
architecture is combined with an interface designed to transfer two data words per clock cycle at the
I/O pins.
A single READ or WRITE operation for the DDR4 SDRAM consists of a single 8n-bit wide, four-clock
data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data
transfers at the I/O pins.
Industrial Temperature
An industrial temperature (IT) device option requires that the case temperature not exceed below
nιC or above 95ιC. JEDEC specifications require the refresh rate to double when TC exceeds 85ιC;
this also requires use of the high-temperature self refresh option. Additionally, ODT resistance and the
input/output impedance must be derated when operating outside of the commercial temperature
range, when TCISBETWEENnιC and 0ιC.
Automotive Temperature
The automotive temperature (AT) device option requires that the case temperature not exceed below
nιC or above 105ιC. The specifications require the refresh rate to 2X when TC exceeds 85ιC; 4X when
TC exceeds 95ιC. Additionally, ODT resistance and the input/output impedance must be derated when
operating temperature Tc tMOD (MIN) + DODTLon + tADC
s DLL = Disable, then tWLDQSEN > tMOD (MIN) + tAONAS
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
82
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Write Leveling
Write Leveling Mode Exit
Write leveling mode should be exited as follows:
1. After the last rising strobe edge (see ~T0), stop driving the strobe signals (see ~Tc0). Note that from
this point on, DQ pins are in undefined driving mode and will remain undefined, until tMOD after
the respective MR command (Te1).
2. Drive ODT pin LOW (tIS must be satisfied) and continue registering LOW (see Tb0).
3. After RTT is switched off, disable write leveling mode via the MRS command (see Tc2).
4. After tMOD is satisfied (Te1), any valid command can be registered. (MR commands can be issued
after tMRD [Td1]).
Figure 25: Write Leveling Exit
CK_c
CK_t
Command
T0
T1
T2
DES
DES
DES
Ta0
Tb0
DES
DES
Tc0
Tc1
Tc2
DES
DES
DES
Td0
DES
Td1
Valid
Te0
DES
Te1
Valid
tMRD
MR1
Address
Valid
tIS
Valid
tMOD
ODT
tADC
ODTL (OFF)
RTT(DQS_t)
RTT(DQS_c)
RTT(Park)
tADC
DQS_t,
DQS_c
RTT(DQ)
DQ1
(MIN)
RTT(NON)
(MAX)
tWLO
result = 1
Undefined Driving Mode
Transitioning
Time Break
Don’t Care
Notes: 1. The DQ result = 1 between Ta0 and Tc0 is a result of the DQS signals capturing CK_t HIGH just after the T0 state.
2. See previous figure for specific tWLO timing.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
83
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command Address Latency
Command Address Latency
DDR4 supports the command address latency (CAL) function as a power savings feature. This feature
can be enabled or disabled via the MRS setting. CAL timing is defined as the delay in clock cycles (tCAL)
between a CS_n registered LOW and its corresponding registered command and address. The value of
CAL in clocks must be programmed into the mode register (see MR1 Register Definition table) and is
based on the tCAL(ns)/tCK(ns) rounding algorithms found in the Converting Time-Based Specifications to Clock-Based Requirements section.
Figure 26: CAL Timing Definition
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CS_n
CMD/ADDR
tCAL
CAL gives the DRAM time to enable the command and address receivers before a command is issued.
After the command and the address are latched, the receivers can be disabled if CS_n returns to HIGH.
For consecutive commands, the DRAM will keep the command and address input receivers enabled
for the duration of the command sequence.
Figure 27: CAL Timing Example (Consecutive CS_n = LOW)
1
2
3
4
5
6
7
8
9
10
11
12
CLK
CS_n
CMD/ADDR
When the CAL mode is enabled, additional time is required for the MRS command to complete. The
earliest the next valid command can be issued is tMOD_CAL, which should be equal to tMOD + tCAL.
The two following figures are examples.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
84
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command Address Latency
Figure 28: #!,%NABLE4IMINGntMOD_CAL
T0
T1
Ta0
Ta1
Ta2
Ta3
Ta4
Tb0
Tb1
Tb2
Tb3
Command
Valid
MRS
DES
DES
DES
DES
DES
DES
DES
Valid
Valid
Address
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
CS_n
tCAL
tMOD_CAL
Settings
Old settings
Updating settings
New settings
Time Break
Don’t Care
Note: 1. CAL mode is enabled at T1.
Figure 29: tMOD_CAL, MRS to Valid Command Timing with CAL Enabled
T0
T1
Ta0
Ta1
Ta2
Tb0
Tb1
Tb2
Tc0
Tc1
Tc2
Valid
DES
DES
MRS
DES
DES
DES
DES
DES
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
Command
tCAL
Address
Valid
Valid
tCAL
Valid
Valid
Valid
Valid
Valid
Valid
CS_n
tMOD_CAL
Settings
Old settings
Updating settings
New settings
Time Break
Don’t Care
Note: 1. MRS at Ta1 may or may not modify CAL, tMOD_CAL is computed based on new tCAL setting if modified.
When the CAL mode is enabled or being enabled, the earliest the next MRS command can be issued is
t
MRD_CAL is equal to tMOD + tCAL. The two following figures are examples.
Figure 30: CAL Enabling MRS to Next MRS Command, tMRD_CAL
T0
T1
Ta0
Ta1
Ta2
Ta3
Ta4
Tb0
Valid
MRS
DES
DES
DES
DES
DES
DES
Tb1
Tb2
Tb3
DES
MRS
DES
Valid
Valid
Valid
CK_c
CK_t
Command
tCAL
Address
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CS_n
tMRD_CAL
Settings
Old settings
Updating settings
Updating settings
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
85
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command Address Latency
Note: 1. Command address latency mode is enabled at T1.
Figure 31: tMRD_CAL, Mode Register Cycle Time With CAL Enabled
T0
T1
Ta0
Ta1
Ta2
Tb0
Tb1
Tb2
Tc0
Tc1
Tc2
DES
DES
MRS
DES
DES
DES
DES
DES
MRS
DES
Valid
Valid
Valid
Valid
CK_c
CK_t
Command
Valid
t CAL
Address
Valid
t CAL
Valid
Valid
Valid
Valid
Valid
Valid
CS_n
t MRD_CAL
Settings
Old settings
Updating settings
New settings
Time Break
Don’t Care
Note: 1. MRS at Ta1 may or may not modify CAL, tMRD_CAL is computed based on new tCAL setting if modified.
CAL Examples: Consecutive READ BL8 with two different CALs and 1tCK preamble in different bank
group shown in the following figures.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
86
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Figure 32: Consecutive READ BL8, CAL3, 1tCK Preamble, Different Bank Group
T0
T1
T2
T3
DES
READ
T4
T5
T6
T7
T13
T14
T15
DES
DES
READ
DES
DES
DES
T16
T17
T18
T19
T20
DES
DES
T21
T22
CK_c
CK_t
CS_n
t
DES
Command
t
CAL = 3
CAL = 3
DES
DES
DES
DES
DES
t
CCD_S = 4
Bank Group
Address
Address
BG a
BG b
Bank,
Col n
Bank,
Col b
tRPRE
tRPST
(1nCK)
DQS_t, DQS_c
DQ
DOUT
n
RL = 11
DOUT
n+1
DOUT
n+2
DOUT
n+4
DOUT
n+3
DOUT
n+5
DOUT
n+6
DOUT
n+7
DOUT
b
DOUT
b+7
DOUT
b+2
DOUT
b+3
DOUT
b+4
DOUT
b+5
DOUT
b+6
DOUT
b+7
RL = 11
Transitioning Data
Notes: 1.
2.
3.
4.
5.
6.
Don’t Care
BL = 8, AL = 0, CL = 11, CAL = 3, Preamble = 1tCK.
DOUT n = data-out from column n; DOUT b = data-out from column b.
DES commands are shown for ease of illustration, other commands may be valid at these times.
BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ command at T3 and T7.
CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable.
Enabling CAL mode does not impact ODT control timings. ODT control timings should be maintained with the same timing relationship relative
to the command/address bus as when CAL is disabled.
Figure 33: Consecutive READ BL8, CAL4, 1tCK Preamble, Different Bank Group
87
T0
T1
T2
T3
T4
T5
DES
DES
READ
DES
T6
T7
T8
T14
T15
T16
T17
T18
T19
DES
DES
READ
DES
DES
DES
DES
DES
DES
T20
T21
T22
T23
DES
DES
DES
CK_c
CK_t
CS_n
t
Command
DES
CAL = 4
CAL = 4
t
CCD_S = 4
Bank Group
Address
BG a
BG b
Address
Bank,
Col n
Bank,
Col b
t RPRE
DES
t RPST
(1nCK)
DQS_t, DQS_c
DQ
DOUT
n
RL = 11
DOUT
n+1
DOUT
n+2
DOUT
n+3
DOUT
n+4
DOUT
n+5
DOUT
n+6
DOUT
n+7
DOUT
b
DOUT
b+7
DOUT
b+2
DOUT
b+3
DOUT
b+4
DOUT
b+5
DOUT
b+6
DOUT
b+7
RL = 11
Transitioning Data
Notes: 1.
2.
3.
4.
5.
6.
Don’t Care
BL = 8, AL = 0, CL = 11, CAL = 4, Preamble = 1tCK.
DOUT n = data-out from column n; DOUT b = data-out from column b.
DES commands are shown for ease of illustration, other commands may be valid at these times.
BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ command at T4 and T8.
CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable.
Enabling CAL mode does not impact ODT control timings. ODT control timings should be maintained with the same timing relationship relative
to the command/address bus as when CAL is disabled.
8Gb: x4, x8, x16 DDR4 SDRAM
Command Address Latency
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
t
8Gb: x4, x8, x16 DDR4 SDRAM
Low-Power Auto Self Refresh Mode
Low-Power Auto Self Refresh Mode
An auto self refresh mode is provided for application ease. Auto self refresh mode is enabled by setting
MR2[6] = 1 and MR2[7] = 1. The device will manage self refresh entry over the supported temperature
range of the DRAM. In this mode, the device will change its self refresh rate as the DRAM operating
temperature changes, going lower at low temperatures and higher at high temperatures.
Manual Self Refresh Mode
If auto self refresh mode is not enabled, the low-power auto self refresh mode register must be manually programmed to one of the three self refresh operating modes. This mode provides the flexibility to
select a fixed self refresh operating mode at the entry of the self refresh, according to the system
memory temperature conditions. The user is responsible for maintaining the required memory
temperature condition for the mode selected during the SELF REFRESH operation. The user may
change the selected mode after exiting self refresh and before entering the next self refresh. If the
temperature condition is exceeded for the mode selected, there is a risk to data retention resulting in
loss of data.
Table 27: Auto Self Refresh Mode
MR2[7] MR2[6]
Low-Power
Auto Self Refresh
Mode
SELF REFRESH Operation
0
0
Normal
1
0
Extended
temperature
Variable or fixed high self refresh rate optimizes data retention to support the
extended temperature range.
-40ιC to 105ιC
0
1
Reduced
temperature
Variable or fixed self refresh rate or any
other DRAM power consumption reduction
control for the reduced temperature range.
User is required to ensure 45ιC DRAM TCASE
(MAX) is not exceeded to avoid any risk of
data loss.
-40ιC to 45ιC
1
1
Auto self refresh
Auto self refresh mode enabled. Self refresh
power consumption and data retention are
optimized for any given operating temperature condition.
All of the above
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Variable or fixed normal self refresh rate
maintains data retention at the normal operating temperature. User is required to ensure
that 85ιC DRAM TCASE (MAX) is not exceeded
to avoid any risk of data loss.
Operating Temperature
Range for Self Refresh Mode
(DRAM TCASE)
88
-40ιC to 85ιC
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Low-Power Auto Self Refresh Mode
Figure 34: Auto Self Refresh Ranges
IDD6
2x refresh rate
1x refresh rate
Extended
temperature
range
1/2x refresh rate
Reduced
temperature
range
-40°C
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Normal
temperature
range
85°C
45°C
89
105°C
Tc
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Multipurpose Register
The MULTIPURPOSE REGISTER (MPR) function, MPR access mode, is used to write/read specialized
data to/from the DRAM. The MPR consists of four logical pages, MPR Page 0 through MPR Page 3, with
each page having four 8-bit registers, MPR0 through MPR3. Page 0 can be read by any of three readout
modes (serial, parallel, or staggered) while Pages 1, 2, and 3 can be read by only the serial readout
mode. Page 3 is for DRAM vendor use only. MPR mode enable and page selection is done with MRS
commands. Data bus inversion (DBI) is not allowed during MPR READ operation.
Once the MPR access mode is enabled (MR3[2] = 1), only the following commands are allowed: MRS,
RD, RDA WR, WRA, DES, REF, and RESET; RDA/WRA have the same functionality as RD/WR which
means the auto precharge part of RDA/WRA is ignored. Power-down mode and SELF REFRESH
command are not allowed during MPR enable mode. No other command can be issued within tRFC
after a REF command has been issued; 1x refresh (only) is to be used during MPR access mode. While
in MPR access mode, MPR read or write sequences must be completed prior to a REFRESH command.
Figure 35: MPR Block Diagram
Memory core
(all banks precharged)
Four multipurpose registers (pages),
each with four 8-bit registers:
MR3 [2] = 1
Data patterns (RD/WR)
Error log (RD)
Mode registers (RD)
flow
data
PR
M
DRAM manufacture only (RD)
DQ,s DM_n/DBI_n, DQS_t, DQS_c
Table 28: MR3 Setting for the MPR Access Mode
Address
Operation Mode
A[12:11]
MPR data read format
A2
MPR access
A[1:0]
MPR page selection
Description
00 = Serial ........... 01 = Parallel
10 = Staggered .... 11 = Reserved
0 = Standard operation (MPR not enabled)
1 = MPR data flow enabled
00 = Page 0 .... 01 = Page 1
10 = Page 2 .... 11 = Page 3
Table 29: DRAM Address to MPR UI Translation
MPR Location
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]
$2!-ADDRESSn!x
A7
A6
A5
A4
A3
A2
A1
A0
-025)n5)x
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
90
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Table 30: MPR Page and MPRx Definitions
Address
MPR Location
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]
Note
Read/
Write
(default
value
listed)
-020AGEn2EADOR7RITE$ATA0ATTERNS
BA[1:0]
00 = MPR0
0
1
0
1
0
1
0
1
01 = MPR1
0
0
1
1
0
0
1
1
10 = MPR2
0
0
0
0
1
1
1
1
11 = MPR3
0
0
0
0
0
0
0
0
A6
A5
A4
A3
A2
A1
A0
A13
A12
A11
A10
A9
A8
BG1
BG0
BA1
BA0
A17
RAS_n/A
16
C2
C1
C0
-020AGEn2EAD
ONLY%RROR,OG
BA[1:0]
00 = MPR0
01 = MPR1
A7
CAS_n/A WE_n/A
15
14
10 = MPR2
PAR
11 = MPR3
CRC
error
status
ACT_n
CA parity error status CA
parity latency: [5] = MR5[2],
[4] = MR5[1], [3] = MR5[0]
Readonly
-020AGEn2EAD
ONLY-232EADOUT
BA[1:0]
00 = MPR0
hPPR
support
sPPR
RTT(WR) Temperature sen- CRC write
enable
support MR2[11]
sor status2
MR2[12]
RTT(WR) MR2[10:9]
01 = MPR1
VREFDQ trainging range MR6[6]VREFDQ training value: [6:1] =
MR6[5:0]
Geardown
enable
MR3[3]
10 = MPR2CAS latency: [7:3] = MR0[6:4,2,12]
11 = MPR3RTT(NOM): [7:5] = MR1[10:8]
Readonly
CAS write latency [2:0] =
MR2[5:3]
RTT(Park): [4:2] = MR5[8:6]
RON: [1:0] =
MR1[2:1]
-020AGEn2EAD
ONLY2ESTRICTEDEXCEPTFOR-02;=
BA[1:0]
00 = MPR0
DC
DC
DC
DC
DC
DC
DC
DC
01 = MPR1
DC
DC
DC
DC
DC
DC
DC
DC
10 = MPR2
DC
DC
DC
DC
DC
DC
DC
DC
11 = MPR3
MBIST-P
PR Support
MAC
MAC
MAC
MAC
DCMBIST-PPR
Transparency
Readonly
Notes: 1. DC = "Don't Care"
2. MPR[4:3] 00 = Sub 1X refresh; MPR[4:3] 01 = 1X refresh; MPR[4:3] 10 = 2X refresh; MPR[4:3] 11 = Reserved
MPR Reads
MPR reads are supported using BL8 and BC4 modes. Burst length on-the-fly is not supported for MPR
reads. Data bus inversion (DBI) is not allowed during MPR READ operation; the device will ignore the
Read DBI enable setting in MR5 [12] when in MPR mode. READ commands for BC4 are supported with
a starting column address of A[2:0] = 000 or 100. After power-up, the content of MPR Page 0 has the
default values, which are defined in . MPR page 0 can be rewritten via an MPR WRITE command. The
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
91
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
device maintains the default values unless it is rewritten by the DRAM controller. If the DRAM
controller does overwrite the default values (Page 0 only), the device will maintain the new values
unless re-initialized or there is power loss.
Timing in MPR mode:
s Reads (back-to-back) from Page 0 may use tCCD_S or tCCD_L timing between READ commands
s Reads (back-to-back) from Pages 1, 2, or 3 may not use tCCD_S timing between READ commands;
t
CCD_L must be used for timing between READ commands
The following steps are required to use the MPR to read out the contents of a mode register (MPR Page
x, MPRy).
1. The DLL must be locked if enabled.
2. Precharge all; wait until tRP is satisfied.
3. MRS command to MR3[2] = 1 (Enable MPR data flow), MR3[12:11] = MPR read format, and MR3[1:0]
MPR page.
a) MR3[12:11] MPR read format:
i) 00 = Serial read format
ii) 01 = Parallel read format
iii) 10 = staggered read format
iv) 11 = RFU
b) MR3[1:0] MPR page:
i) 00 = MPR Page 0
ii) 01 = MPR Page 1
iii) 10 = MPR Page 2
iv) 11 = MPR Page 3
4. tMRD and tMOD must be satisfied.
5. Redirect all subsequent READ commands to specific MPRx location.
6. Issue RD or RDA command.
a) BA1 and BA0 indicate MPRx location:
i) 00 = MPR0
ii) 01 = MPR1
iii) 10 = MPR2
iv) 11 = MPR3
b) A12/BC = 0 or 1; BL8 or BC4 fixed-only, BC4 OTF not supported.
i) If BL = 8 and MR0 A[1:0] = 01, A12/BC must be set to 1 during MPR READ commands.
c) A2 = burst-type dependant:
i) BL8: A2 = 0 with burst order fixed at 0, 1, 2, 3, 4, 5, 6, 7
ii) BL8: A2 = 1 not allowed
iii) BC4: A2 = 0 with burst order fixed at 0, 1, 2, 3, T, T, T, T
iv) BC4: A2 = 1 with burst order fixed at 4, 5, 6, 7, T, T, T, T
d) A[1:0] = 00, data burst is fixed nibble start at 00.
e) 2EMAININGADDRESSINPUTSINCLUDING!AND"'AND"'ARE$ONT#ARE
7. After RL = AL + CL, DRAM bursts data from MPRx location; MPR readout format determined by
MR3[A12,11,1,0].
8. Steps 5 through 7 may be repeated to read additional MPRx locations.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
92
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
9. After the last MPRx READ burst, tMPRR must be satisfied prior to exiting.
10.Issue MRS command to exit MPR mode; MR3[2] = 0.
11.After the tMOD sequence is completed, the DRAM is ready for normal operation from the core (such
as ACT).
MPR Readout Format
The MPR read data format can be set to three different settings: serial, parallel, and staggered.
MPR Readout Serial Format
The serial format is required when enabling the MPR function to read out the contents of an MRx,
temperature sensor status, and the command address parity error frame. However, data bus calibration locations (four 8-bit registers) can be programmed to read out any of the three formats. The DRAM
is required to drive associated strobes with the read data similar to normal operation (such as using
MRS preamble settings).
Serial format implies that the same pattern is returned on all DQ lanes, as shown the table below, which
uses values programmed into the MPR via [7:0] as 0111 1111.
Table 31: MPR Readout Serial Format
Serial
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
DQ0
0
1
1
1
1
1
1
1
DQ1
0
1
1
1
1
1
1
1
DQ2
0
1
1
1
1
1
1
1
DQ3
0
1
1
1
1
1
1
1
DQ0
0
1
1
1
1
1
1
1
DQ1
0
1
1
1
1
1
1
1
DQ2
0
1
1
1
1
1
1
1
DQ3
0
1
1
1
1
1
1
1
DQ4
0
1
1
1
1
1
1
1
DQ5
0
1
1
1
1
1
1
1
DQ6
0
1
1
1
1
1
1
1
DQ7
0
1
1
1
1
1
1
1
DQ0
0
1
1
1
1
1
1
1
DQ1
0
1
1
1
1
1
1
1
DQ2
0
1
1
1
1
1
1
1
DQ3
0
1
1
1
1
1
1
1
DQ4
0
1
1
1
1
1
1
1
DQ5
0
1
1
1
1
1
1
1
DQ6
0
1
1
1
1
1
1
1
DQ7
0
1
1
1
1
1
1
1
x4 Device
x8 Device
x16 Device
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
93
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Table 31: MPR Readout Serial Format (Continued)
Serial
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
DQ8
0
1
1
1
1
1
1
1
DQ9
0
1
1
1
1
1
1
1
DQ10
0
1
1
1
1
1
1
1
DQ11
0
1
1
1
1
1
1
1
DQ12
0
1
1
1
1
1
1
1
DQ13
0
1
1
1
1
1
1
1
DQ14
0
1
1
1
1
1
1
1
DQ15
0
1
1
1
1
1
1
1
MPR Readout Parallel Format
Parallel format implies that the MPR data is returned in the first data UI and then repeated in the
remaining UIs of the burst, as shown in the table below. Data pattern location 0 is the only location
used for the parallel format. RD/RDA from data pattern locations 1, 2, and 3 are not allowed with
parallel data return mode. In this example, the pattern programmed in the data pattern location 0 is
0111 1111. The x4 configuration only outputs the first four bits (0111 in this example). For the x16
configuration, the same pattern is repeated on both the upper and lower bytes.
Table 32: -022EADOUTn0ARALLEL&ORMAT
Parallel
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
DQ0
0
0
0
0
0
0
0
0
DQ1
1
1
1
1
1
1
1
1
DQ2
1
1
1
1
1
1
1
1
DQ3
1
1
1
1
1
1
1
1
DQ0
0
0
0
0
0
0
0
0
DQ1
1
1
1
1
1
1
1
1
DQ2
1
1
1
1
1
1
1
1
DQ3
1
1
1
1
1
1
1
1
DQ4
1
1
1
1
1
1
1
1
DQ5
1
1
1
1
1
1
1
1
DQ6
1
1
1
1
1
1
1
1
DQ7
1
1
1
1
1
1
1
1
DQ0
0
0
0
0
0
0
0
0
DQ1
1
1
1
1
1
1
1
1
DQ2
1
1
1
1
1
1
1
1
DQ3
1
1
1
1
1
1
1
1
DQ4
1
1
1
1
1
1
1
1
x4 Device
x8 Device
x16 Device
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
94
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Table 32: -022EADOUTn0ARALLEL&ORMAT
Parallel
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
DQ5
1
1
1
1
1
1
1
1
DQ6
1
1
1
1
1
1
1
1
DQ7
1
1
1
1
1
1
1
1
DQ8
0
0
0
0
0
0
0
0
DQ9
1
1
1
1
1
1
1
1
DQ10
1
1
1
1
1
1
1
1
DQ11
1
1
1
1
1
1
1
1
DQ12
1
1
1
1
1
1
1
1
DQ13
1
1
1
1
1
1
1
1
DQ14
1
1
1
1
1
1
1
1
DQ15
1
1
1
1
1
1
1
1
MPR Readout Staggered Format
Staggered format of data return is defined as the staggering of the MPR data across the lanes. In this
mode, an RD/RDA command is issued to a specific data pattern location and then the data is returned
on the DQ from each of the different data pattern locations. For the x4 configuration, an RD/RDA to
data pattern location 0 will result in data from location 0 being driven on DQ0, data from location 1
being driven on DQ1, data from location 2 being driven on DQ2, and so on, as shown below. Similarly,
an RD/RDA command to data pattern location 1 will result in data from location 1 being driven on
DQ0, data from location 2 being driven on DQ1, data from location 3 being driven on DQ2, and so on.
Examples of different starting locations are also shown.
Table 33: MPR Readout Staggered Format, x4
x4 READ MPR0 Command
x4 READ MPR1 Command
x4 READ MPR2 Command x4 READ MPR3 Command
Stagger
UI[7:0]
Stagger
UI[7:0]
Stagger
UI[7:0]
Stagger
UI[7:0]
DQ0
MPR0
DQ0
MPR1
DQ0
MPR2
DQ0
MPR3
DQ1
MPR1
DQ1
MPR2
DQ1
MPR3
DQ1
MPR0
DQ2
MPR2
DQ2
MPR3
DQ2
MPR0
DQ2
MPR1
DQ3
MPR3
DQ3
MPR0
DQ3
MPR1
DQ3
MPR2
It is expected that the DRAM can respond to back-to-back RD/RDA commands to the MPR for all DDR4
frequencies so that a sequence (such as the one that follows) can be created on the data bus with no
bubbles or clocks between read data. In this case, the system memory controller issues a sequence of
RD(MPR0), RD(MPR1), RD(MPR2), RD(MPR3), RD(MPR0), RD(MPR1), RD(MPR2), and RD(MPR3).
Table 34: -022EADOUT3TAGGERED&ORMATXn#ONSECUTIVE2%!$S
Stagger
UI[7:0]
UI[15:8]
UI[23:16]
UI[31:24]
UI[39:32]
UI[47:40]
UI[55:48]
UI[63:56]
DQ0
MPR0
MPR1
MPR2
MPR3
MPR0
MPR1
MPR2
MPR3
DQ1
MPR1
MPR2
MPR3
MPR0
MPR1
MPR2
MPR3
MPR0
DQ2
MPR2
MPR3
MPR0
MPR1
MPR2
MPR3
MPR0
MPR1
DQ3
MPR3
MPR0
MPR1
MPR2
MPR3
MPR0
MPR1
MPR2
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
95
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
For the x8 configuration, the same pattern is repeated on the lower nibble as on the upper nibble.
READs to other MPR data pattern locations follow the same format as the x4 case. A read example to
MPR0 for x8 and x16 configurations is shown below.
Table 35: MPR Readout Staggered Format, x8 and x16
x8 READ MPR0 Command
x16 READ MPR0 Command
x16 READ MPR0 Command
Stagger
UI[7:0]
Stagger
UI[7:0]
Stagger
UI[7:0]
DQ0
MPR0
DQ0
MPR0
DQ8
MPR0
DQ1
MPR1
DQ1
MPR1
DQ9
MPR1
DQ2
MPR2
DQ2
MPR2
DQ10
MPR2
DQ3
MPR3
DQ3
MPR3
DQ11
MPR3
DQ4
MPR0
DQ4
MPR0
DQ12
MPR0
DQ5
MPR1
DQ5
MPR1
DQ13
MPR1
DQ6
MPR2
DQ6
MPR2
DQ14
MPR2
DQ7
MPR3
DQ7
MPR3
DQ15
MPR3
MPR READ Waveforms
The following waveforms show MPR read accesses.
Figure 36: MPR READ Timing
T0
Ta0
Ta1
Tb0
Tc0
Tc1
Tc2
Tc3
Td0
Td1
DES
READ
DES
DES
DES
DES
DES
DES
Te0
Tf0
Tf1
Valid 4
DES
Valid
Valid
CK_c
CK_t
MPE Enable
Command
MRS1
PREA
tRP
Address
Valid
MPE Disable
Valid
Valid
MRS3
tMPRR
tMOD
Add2
Valid
Valid
Valid
Valid
Valid
Valid
tMOD
Valid
CKE
PL5 + AL + CL
DQS_t,
DQS_c
DQ
UI0
UI1
UI2
UI5
UI6
UI7
Time Break
Don’t Care
Notes: 1. tCCD_S = 4tCK, Read Preamble = 1tCK.
2. Address setting:
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)
BA1 and BA0 indicate the MPR location
!ANDOTHERADDRESSPINSARE$ONT#AREINCLUDING"'AND"'!IS$ONT#AREWHEN-2!;=
or 10 and must be 1b when MR0 A[1:0] = 01
3. Multipurpose registers read/write disable (MR3 A2 = 0).
4. Continue with regular DRAM command.
5. Parity latency (PL) is added to data output delay when CA parity latency mode is enabled.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
96
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Figure 37: MPR Back-to-Back READ Timing
T0
T1
T2
DES
READ
DES
T3
T4
T5
T6
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Ta8
Ta9
Ta10
DES
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
Command
tCCD_S1
Address
Add2
Valid
Valid
Add2
CKE
PL3 + AL + CL
DQS_t,
DQS_c
DQ
UI0
UI1
UI2
UI3
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
UI0
UI1
UI2
UI3
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
DQS_t,
DQS_c
DQ
Time Break
Don’t Care
Notes: 1. tCCD_S = 4tCK, Read Preamble = 1tCK.
2. Address setting:
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7; for BC = 4, burst order is fixed at 0, 1, 2, 3, T, T, T, T)
BA1 and BA0 indicate the MPR location
!ANDOTHERADDRESSPINSARE$ONT#AREINCLUDING"'AND"'!IS$ONT#AREWHEN-2!;=
or 10 and must be 1b when MR0 A[1:0] = 01
3. Parity latency (PL) is added to data output delay when CA parity latency mode is enabled.
Figure 38: MPR READ-to-WRITE Timing
T0
T1
T2
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
Tb0
Tb1
Tb2
WRITE
DES
DES
Add2
Valid
Valid
CK_c
CK_t
Command
tMPRR
Address
Add1
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CKE
PL3 + AL + CL
DQS_t,
DQS_c
DQ
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
Time Break
Don’t Care
Notes: 1. Address setting:
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)
BA1 and BA0 indicate the MPR location
!ANDOTHERADDRESSPINSARE$ONT#AREINCLUDING"'AND"'!IS$ONT#AREWHEN-2!;=
and must be 1b when MR0 A[1:0] = 01
2. Address setting:
BA1 and BA0 indicate the MPR location
A[7:0] = data for MPR
BA1 and BA0 indicate the MPR location
!ANDOTHERADDRESSPINSARE$ONT#ARE
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
97
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
3. Parity latency (PL) is added to data output delay when CA parity latency mode is enabled.
MPR Writes
MPR access mode allows 8-bit writes to the MPR Page 0 using the address bus A[7:0]. Data bus inversion (DBI) is not allowed during MPR WRITE operation. The DRAM will maintain the new written
values unless re-initialized or there is power loss.
The following steps are required to use the MPR to write to mode register MPR Page 0.
1. The DLL must be locked if enabled.
2. Precharge all; wait until tRP is satisfied.
3. MRS command to MR3[2] = 1 (enable MPR data flow) and MR3[1:0] = 00 (MPR Page 0); writes to 01,
10, and 11 are not allowed.
4. tMRD and tMOD must be satisfied.
5. Redirect all subsequent WRITE commands to specific MPRx location.
6. Issue WR or WRA command:
a) BA1 and BA0 indicate MPRx location
i) 00 = MPR0
ii) 01 = MPR1
iii) 10 = MPR2
iv) 11 = MPR3
b) A[7:0] = data for MPR Page 0, mapped A[7:0] to UI[7:0].
c) 2EMAININGADDRESSINPUTSINCLUDING!AND"'AND"'ARE$ONT#ARE
7. tWR_MPR must be satisfied to complete MPR WRITE.
8. Steps 5 through 7 may be repeated to write additional MPRx locations.
9. After the last MPRx WRITE, tMPRR must be satisfied prior to exiting.
10.Issue MRS command to exit MPR mode; MR3[2] = 0.
11.When the tMOD sequence is completed, the DRAM is ready for normal operation from the core
(such as ACT).
MPR WRITE Waveforms
The following waveforms show MPR write accesses.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
98
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Figure 39: MPR WRITE and WRITE-to-READ Timing
T0
Ta0
Ta1
Tb0
Tc0
Tc1
Tc2
Td0
Td1
Td2
Td3
Td4
Td5
DES
WRITE
DES
DES
READ
DES
DES
DES
DES
DES
DES
Valid
Add
Valid
Valid
Valid
Add2
Valid
Valid
CK_c
CK_t
MPR Enable
Command
MRS1
PREA
tRP
Address
Valid
tMOD
Valid
tWR_MPR
Valid
Add2
Valid
CKE
PL3 + AL + CL
DQS_t,
DQS_c
DQ
UI0
UI1
UI2
UI3
UI4
UI5
UI6
Time Break
UI7
Don’t Care
Notes: 1. Multipurpose registers read/write enable (MR3 A2 = 1).
2. Address setting:
BA1 and BA0 indicate the MPR location
!ANDOTHERADDRESSPINSARE$ONT#ARE
3. Parity latency (PL) is added to data output delay when CA parity latency mode is enabled.
Figure 40: MPR Back-to-Back WRITE Timing
T0
T1
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Ta8
Ta9
Ta10
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
Valid
Valid
Add
Valid
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
Command
tWR_MPR
Address
Add1
Valid
Valid
Add1
CKE
DQS_t,
DQS_c
DQ
Time Break
Don’t Care
Note: 1. Address setting:
BA1 and BA0 indicate the MPR location
A[7:0] = data for MPR
!ANDOTHERADDRESSPINSARE$ONT#ARE
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
99
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
MPR REFRESH Waveforms
The following waveforms show MPR accesses interaction with refreshes.
Figure 41: REFRESH Timing
T0
Ta0
Ta1
Tb0
Tb1
Tb2
Tb3
DES
REF2
DES
DES
DES
Tb4
Tc0
Tc1
Tc2
Tc3
Tc4
DES
DES
DES
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
MPR Enable
Command
MRS1
PREA
tRP
Address
Valid
tMOD
Valid
tRFC
Valid
Valid
Valid
Valid
Valid
Time Break
Don’t Care
Notes: 1. Multipurpose registers read/write enable (MR3 A2 = 1). Redirect all subsequent read and writes to MPR locations.
2. 1x refresh is only allowed when MPR mode is enabled.
Figure 42: READ-to-REFRESH Timing
T0
T1
T2
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Ta8
Ta9
Command
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
REF2
DES
DES
Address
Add1
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
CKE
PL + AL + CL
tRFC
(4 + 1) Clocks
BL = 8
DQS_t, DQS_c
DQ
UI0
UI1
UI2
UI3
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
BC = 4
DQS_t, DQS_c
DQ
Time Break
Don’t Care
Notes: 1. Address setting:
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)
BA1 and BA0 indicate the MPR location
!ANDOTHERADDRESSPINSARE$ONT#AREINCLUDING"'AND"'!IS$ONT#AREWHEN-2!;=
or 10, and must be 1b when MR0 A[1:0] = 01
2. 1x refresh is only allowed when MPR mode is enabled.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
100
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Multipurpose Register
Figure 43: WRITE-to-REFRESH Timing
T0
T1
WRITE
DES
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
DES
DES
REF2
DES
DES
DES
Ta6
Ta7
Ta8
Ta9
Ta10
DES
DES
DES
DES
DES
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
Command
tWR_MPR
Address
Add1
Valid
Valid
tRFC
Valid
Valid
Valid
Valid
Valid
CKE
DQS_t,
DQS_c
DQ
Time Break
Don’t Care
Notes: 1. Address setting:
BA1 and BA0 indicate the MPR location
A[7:0] = data for MPR
!ANDOTHERADDRESSPINSARE$ONT#ARE
2. 1x refresh is only allowed when MPR mode is enabled.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
101
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Gear-Down Mode
Gear-Down Mode
The DDR4 SDRAM defaults in 1/2 rate (1N) clock mode and uses a low-frequency MRS command (the
MRS command has relaxed setup and hold) followed by a sync pulse (first CS pulse after MRS setting)
to align the proper clock edge for operating the control lines CS_n, CKE, and ODT when in 1/4 rate (2N)
mode. Gear-down mode is only supported at DDR4-2666 and faster. For operation in 1/2 rate mode,
neither an MRS command or a sync pulse is required. Gear-down mode may only be entered during
initialization or self refresh exit and may only be exited during self refresh exit. CAL mode and CA parity
mode must be disabled prior to gear-down mode entry. The two modes may be enabled after tSYNC_GEAR and tCMD_GEAR periods have been satisfied. The general sequence for operation in 1/4 rate
during initialization is as follows:
1. The device defaults to a 1N mode internal clock at power-up/reset.
2. Assertion of reset.
3. Assertion of CKE enables the DRAM.
4. MRS is accessed with a low-frequency N έ tCK gear-down MRS command. (NtCK static MRS
command is qualified by 1N CS_n. )
5. The memory controller will send a 1N sync pulse with a low-frequency N έ tCK NOP command.
t
SYNC_GEAR is an even number of clocks. The sync pulse is on an even edge clock boundary from
the MRS command.
6. Initialization sequence, including the expiration of tDLLK and tZQinit, starts in 2N mode after
t
CMD_GEAR from 1N sync pulse.
The device resets to 1N gear-down mode after entering self refresh. The general sequence for operation
in gear-down after self refresh exit is as follows:
1. MRS is set to 1, via MR3[3], with a low-frequency N έ tCK gear-down MRS command.
a) The NtCK static MRS command is qualified by 1N CS_n, which meets tXS or tXS_ABORT.
b) Only a REFRESH command may be issued to the DRAM before the NtCK static MRS command.
2. The DRAM controller sends a 1N sync pulse with a low-frequency N έ tCK NOP command.
a) tSYNC_GEAR is an even number of clocks.
b) The sync pulse is on even edge clock boundary from the MRS command.
3. A valid command not requiring locked DLL is available in 2N mode after tCMD_GEAR from the 1N
sync pulse.
a) A valid command requiring locked DLL is available in 2N mode after tXSDLL or tDLLK from the
1N sync pulse.
4. If operation is in 1N mode after self refresh exit, N έ tCK MRS command or sync pulse is not required
during self refresh exit. The minimum exit delay to the first valid command is tXS, or tXS_ABORT.
The DRAM may be changed from 2N to 1N by entering self refresh mode, which will reset to 1N mode.
Changing from 2N to by any other means can result in loss of data and make operation of the DRAM
uncertain.
When operating in 2N gear-down mode, the following MR settings apply:
s CAS latency (MR0[6:4,2]): Even number of clocks
s Write recovery and read to precharge (MR0[11:9]): Even number of clocks
s Additive latency (MR1[4:3]): CL - 2
s CAS WRITE latency (MR2 A[5:3]): Even number of clocks
s CS to command/address latency mode (MR4[8:6]): Even number of clocks
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
102
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Gear-Down Mode
s CA parity latency mode (MR5[2:0]): Even number of clocks
Figure 44: Clock Mode Change from 1/2 Rate to 1/4 Rate (Initialization)
TdkN + Neven2
TdkN1
CK_c
CK_t
tCKSRX
DRAM
internal CLK
RESET_n
CKE
tCMD_GEAR
tSYNC_GEAR
tXPR_GEAR
1N sync pulse
2N mode
CS_n
tGEAR_setup
Command
tGEAR_hold
tGEAR_setup
MRS
tGEAR_hold
NOP
Valid
Configure DRAM
to 1/4 rate
Time Break
Don’t Care
Notes: 1. After tSYNC_GEAR from GEAR-DOWN command, internal clock rate is changed at TdkN.
2. After tSYNC_GEAR + tCMD_GEAR from GEAR-DOWN command, both internal clock rate and command cycle are
changed at TdkN + Neven.
Figure 45: Clock Mode Change After Exiting Self Refresh
TdkN + Neven2
TdkN1
L
CK_c
CK_t
DRAM
internal CLK
CKE
tCMD_GEAR
tSYNC_GEAR
tXPR_GEAR
1N sync pulse
2N mode
CS_n
tGEAR_setup
Command
tGEAR_hold
tGEAR_setup
MRS
tGEAR_hold
NOP
Configure DRAM
to 1/4 rate
Valid
Time Break
Don’t Care
Notes: 1. After tSYNC_GEAR from GEAR-DOWN command, internal clock rate is changed at TdkN.
2. After tSYNC_GEAR + tCMD_GEAR from GEAR-DOWN command, both internal clock rate and command cycle are
changed at TdkN + Neven.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
103
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Figure 46: Comparison Between Gear-Down Disable and Gear-Down Enable
T0
T1
T2
T3
T15
T16
T17
T18
T19
T30
T31
T32
T33
T34
T35
T36
T37
T38
DES
DES
DES
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
AL = 0 (geardown = disable)
Command
ACT
DO
n
DQ
tRCD
= 16
AL = CL - 1 (geardown = disable)
Command
ACT
READ
DO
n+ 1
DO
n+ 2
DO
n+ 3
DO
n+ 4
DO
n+ 5
DO
n+ 6
DO
n+ 7
RL =CL= 16 (AL = 0)
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DO
n
DQ
DES
DO
n+ 1
DO
n+ 2
DES
DO
n+ 3
DO
n+ 4
DES
DO
n+ 5
DO
n+ 6
DES
DO
n+ 7
RL = AL + CL = 31 (AL = CL - 1 = 15)
READ
Command
ACT
READ
DES
DES
DES
DES
DO
n
DQ
DES
DO
n+ 1
DO
n+ 2
DO
n+ 3
DO
n+ 4
DES
DO
n+ 5
DO
n+ 6
DES
DO
n+ 7
AL + CL = RL = 30 (AL = CL - 2 = 14)
Time Break
Transitioning Data
Don’t Care
104
8Gb: x4, x8, x16 DDR4 SDRAM
Gear-Down Mode
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Maximum Power-Saving Mode
Maximum Power-Saving Mode
Maximum power-saving mode provides the lowest power mode where data retention is not required.
When the device is in the maximum power-saving mode, it does not maintain data retention or
respond to any external command, except the MAXIMUM POWER SAVING MODE EXIT command
ANDDURINGTHEASSERTIONOF2%3%4?NSIGNAL,/74HISMODEISMORELIKEAhHIBERNATEMODEvTHANA
typical power-saving mode. The intent is to be able to park the DRAM at a very low-power state; the
device can be switched to an active state via the per-DRAM addressability (PDA) mode.
Maximum Power-Saving Mode Entry
Maximum power-saving mode is entered through an MRS command. For devices with shared
control/address signals, a single DRAM device can be entered into the maximum power-saving mode
using the per-DRAM addressability MRS command. Large CS_n hold time to CKE upon the mode exit
could cause DRAM malfunction; as a result, CA parity, CAL, and gear-down modes must be disabled
prior to the maximum power-saving mode entry MRS command.
The MRS command may use both address and DQ information, as defined in the Per-DRAM Addressability section. As illustrated in the figure below, after tMPED from the mode entry MRS command, the
DRAM is not responsive to any input signals except CKE, CS_n, and RESET_n. All other inputs are
disabled (external input signals may become High-Z). The system will provide a valid clock until
t
CKMPE expires, at which time clock inputs (CK) should be disabled (external clock signals may
become High-Z).
Figure 47: Maximum Power-Saving Mode Entry
Ta0
Ta1
Ta2
Tb0
Tb1
Tb3
Tc0
Tc1
Tc2
Tc3
Tc4
Tc5
Tc6
Tc7
Tc8
Tc9
Tc10
Tc11
CK_c
CK_t
tCKMPE
MR4[A1=1]
MPSM Enable)
Command
DES
MRS
DES
DES
DES
tMPED
Address
Valid
CS_n
CKE
CKE LOW makes CS_n a care; CKE LOW followed by CS_n LOW followed by CKE HIGH exits mode
RESET_n
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
105
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Maximum Power-Saving Mode
Maximum Power-Saving Mode Entry in PDA
The sequence and timing required for the maximum power-saving mode with the per-DRAM addressability enabled is illustrated in the figure below.
Figure 48: Maximum Power-Saving Mode Entry with PDA
Ta0
Ta1
Ta2
Tb0
Tb1
Tb3
Tb4
Tb5
Tb6
Tb7
Tb8
Tb9
Tc0
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
Tc1
Tc2
Td0
Td1
Td2
CK_c
CK_t
MR4[A1 = 1]
MPSM Enable)
Command
DES
MRS
DES
tCKMPE
CS_n
CKE
tMPED
AL + CWL
DQS_t
DQS_c
tPDA_S
tPDA_H
DQ0
RESET_n
Time Break
Don’t Care
CKE Transition During Maximum Power-Saving Mode
The following figure shows how to maintain maximum power-saving mode even though the CKE input
may toggle. To prevent the device from exiting the mode, CS_n should be HIGH at the CKE
LOW-to-HIGH edge, with appropriate setup (tMPX_S) and hold (tMPX_H) timings.
Figure 49: Maintaining Maximum Power-Saving Mode with CKE Transition
CLK
CMD
CS_n
tMPX_S
tMPX_HH
CKE
RESET_n
Don’t Care
Maximum Power-Saving Mode Exit
To exit the maximum power-saving mode, CS_n should be LOW at the CKE LOW-to-HIGH transition,
with appropriate setup (tMPX_S) and hold (tMPX_LH) timings, as shown in the figure below. Because
the clock receivers (CK_t, CK_c) are disabled during this mode, CS_n = LOW is captured by the rising
edge of the CKE signal. If the CS_n signal level is detected LOW, the DRAM clears the maximum
power-saving mode MRS bit and begins the exit procedure from this mode. The external clock must be
restarted and be stable by tCKMPX before the device can exit the maximum power-saving mode.
During the exit time (tXMP), only NOP and DES commands are allowed: NOP during tMPX_LH and
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
106
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Maximum Power-Saving Mode
DES the remainder of tXMP. After tXMP expires, valid commands not requiring a locked DLL are
allowed; after tXMP_DLL expires, valid commands requiring a locked DLL are allowed.
Figure 50: Maximum Power-Saving Mode Exit
Ta0
Ta1
Ta2
Ta3
Tb1
Tb0
Tb2
Tb3
Tc0
NOP
NOP
NOP
Tc1
Tc2
Tc4
Td0
Td1
Td2
Td3
Te0
Te1
NOP
NOP
DES
DES
DES
DES
Valid
DES
DES
CK_c
CK_t
tCKMPX
Command
tMPX_LH
CS_n
tMPX_S
CKE
tXMP
tXMP_DLL
RESET_n
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
107
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
Command/Address Parity
Command/address (CA) parity takes the CA parity signal (PAR) input carrying the parity bit for the
generated address and commands signals and matches it to the internally generated parity from the
captured address and commands signals. CA parity is supported in the DLL enabled state only; if the
DLL is disabled, CA parity is not supported.
Figure 51: Command/Address Parity Operation
DRAM Controller
DRAM
CMD/ADDR
Even parity
GEN
CMD/ADDR
Even parity
GEN
CMD/ADDR
Even parity bit
Even parity bit
Compare
parity
bit
CA parity is disabled or enabled via an MRS command. If CA parity is enabled by programming a
non-zero value to CA parity latency in the MR, the DRAM will ensure that there is no parity error before
executing commands. There is an additional delay required for executing the commands versus when
parity is disabled. The delay is programmed in the MR when CA parity is enabled (parity latency) and
applied to all commands which are registered by CS_n (rising edge of CK_t and falling CS_n). The
command is held for the time of the parity latency (PL) before it is executed inside the device. The
command captured by the input clock has an internal delay before executing and is determined with
PL. ALERT_n will go active when the DRAM detects a CA parity error.
CA parity covers ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, the address bus including bank address
and bank group bits, and C[2:0] on 3DS devices; the control signals CKE, ODT, and CS_n are not
covered. For example, for a 4Gb x4 monolithic device, parity is computed across BG[1:0], BA[1:0],
A16/RAS_n, A15/CAS_n, A14/ WE_n, A[13:0], and ACT_n. The DRAM treats any unused address pins
internally as zeros; for example, if a common die has stacked pins but the device is used in a monolithic
application, then the address pins used for stacking and not connected are treated internally as zeros.
The convention for parity is even parity; for example, valid parity is defined as an even number of ones
across the inputs used for parity computation combined with the parity signal. In other words, the
parity bit is chosen so that the total number of ones in the transmitted signal, including the parity bit,
is even.
If a DRAM device detects a CA parity error in any command qualified by CS_n, it will perform the
following steps:
1. Ignore the erroneous command. Commands in the MAX NnCK window (tPAR_UNKNOWN) prior to
the erroneous command are not guaranteed to be executed. When a READ command in this NnCK
window is not executed, the device does not activate DQS outputs. If WRITE CRC is enabled and a
WRITE CRC occurs during the tPAR_UNKNOWN window, the WRITE CRC Error Status Bit located
at MR5[3] may or may not get set. When CA Parity and WRITE CRC are both enabled and a CA Parity
occurs, the WRITE CRC Error Status Bit should be reset.
2. Log the error by storing the erroneous command and address bits in the MPR error log.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
108
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
3. Set the parity error status bit in the mode register to 1. The parity error status bit must be set before
the ALERT_n signal is released by the DRAM (that is, tPAR_ALERT_ON + tPAR_ALERT_PW (MIN)).
4. Assert the ALERT_n signal to the host (ALERT_n is active LOW) within tPAR_ALERT_ON time.
5. Wait for all in-progress commands to complete. These commands were received tPAR_UNKOWN
before the erroneous command.
6. Wait for tRAS (MIN) before closing all the open pages. The DRAM is not executing any commands
during the window defined by (tPAR_ALERT_ON + tPAR_ALERT_PW).
7. After tPAR_ALERT_PW (MIN) has been satisfied, the device may de-assert ALERT_n.
a) When the device is returned to a known precharged state, ALERT_n is allowed to be de-asserted.
8. After (tPAR_ALERT_PW (MAX)) the DRAM is ready to accept commands for normal operation.
Parity latency will be in effect; however, parity checking will not resume until the memory controller
has cleared the parity error status bit by writing a zero. The DRAM will execute any erroneous
commands until the bit is cleared; unless persistent mode is enabled.
s It is possible that the device might have ignored a REFRESH command during tPAR_ALERT_PW or
the REFRESH command is the first erroneous frame, so it is recommended that extra REFRESH
cycles be issued, as needed.
s The parity error status bit may be read anytime after tPAR_ALERT_ON + tPAR_ALERT_PW to determine which DRAM had the error. The device maintains the error log for the first erroneous command
until the parity error status bit is reset to a zero or a second CA parity occurs prior to resetting.
The mode register for the CA parity error is defined as follows: CA parity latency bits are write only, the
parity error status bit is read/write, and error logs are read-only bits. The DRAM controller can only
program the parity error status bit to zero. If the DRAM controller illegally attempts to write a 1 to the
parity error status bit, the DRAM can not be certain that parity will be checked; the DRAM may opt to
block the DRAM controller from writing a 1 to the parity error status bit.
The device supports persistent parity error mode. This mode is enabled by setting MR5[9] = 1; when
enabled, CA parity resumes checking after the ALERT_n is de-asserted, even if the parity error status
bit remains a 1. If multiple errors occur before the error status bit is cleared the error log in MPR Page
SHOULDBETREATEDAS$ONT#ARE)NPERSISTENTPARITYERRORMODETHE!,%24?NPULSEWILLBEASSERTED
and de-asserted by the DRAM as defined with the MIN and MAX value tPAR_ALERT_PW. The DRAM
controller must issue DESELECT commands once it detects the ALERT_n signal, this response time is
defined as tPAR_ALERT_RSP. The following figures capture the flow of events on the CA bus and the
ALERT_n signal.
Table 36: Mode Register Setting for CA Parity
CA Parity Latency
MR5[2:0]1
Applicable Speed Bin
000 = Disabled
N/A
001 = 4 clocks
1600, 1866, 2133
010 = 5 clocks
2400, 2666
011 = 6 clocks
2933, 3200
100 = 8 clocks
RFU
101 = Reserved
RFU
110 = Reserved
RFU
111 = Reserved
RFU
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Parity Error Status Parity Persistent Mode
MR5 [4] 0 = Clear
MR5 [4] 1 = Error
109
MR5 [9] 0 = DisabledMR5 [9] 1 = Enabled
Erroneous CA
Frame
C[2:0], ACT_n, BG1,
BG0, BA[1:0], PAR,
A17, A16/RAS_n,
A15/CAS_n,
A14/WE_n, A[13:0]
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
Notes: 1. Parity latency is applied to all commands.
2. Parity latency can be changed only from a CA parity disabled state; for example, a direct change from PL = 3 to PL
= 4 is not allowed. The correct sequence is PL = 3 to disabled to PL = 4.
3. Parity latency is applied to WRITE and READ latency. WRITE latency = AL + CWL + PL. READ latency = AL + CL + PL.
Figure 52: Command/Address Parity During Normal Operation
T0
T1
Valid 2
Valid 2
Ta0
Ta1
Ta2
Tb0
Tc0
Tc1
Td0
Valid 2
Error
Valid
Valid
Valid
DES2
DES2
Te0
Te1
Valid 3
Valid 3
CK_c
CK_t
Command/
Address
tRP
t > 2nCK
tPAR_UNKNOWN 2
tPAR_ALERT_ON
tPAR_ALERT_PW 1
ALERT_n
Valid 2
DES2
Command execution unknown
Error
Valid
Command not executed
Valid 3
Don’t Care
Time Break
Command executed
Notes: 1. DRAM is emptying queues. Precharge all and parity checking are off until parity error status bit is cleared.
2. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The
DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
If WRITE CRC is enabled and a WRITE CRC occurs during the tPAR_UNKNOWN window, the WRITE CRC Error Status
Bit located at MR5[3] may or may not get set.
3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking is off until parity
error status bit is cleared.
Figure 53: Persistent CA Parity Error Checking Operation
CK_c
T0
T1
Valid 2
Valid 2
Ta0
Ta1
Ta2
Tb0
Valid 2
Error
Valid
Valid
Tc0
Tc1
Td0
Te0
Valid
DES
DES
DES
Te1
CK_t
Command/
Address
tPAR_ALERT_RSP
tPAR_UNKNOWN 2
tPAR_ALERT_ON
t > 2nCK
Valid 3
tRP
tPAR_ALERT_PW 1
ALERT_n
Valid 2
DES
Command execution unknown
Error
Valid
Command not executed
Valid 3
Don’t Care
Command executed
Time Break
Notes: 1. DRAM is emptying queues. Precharge all and parity check re-enable finished by tPAR_ALERT_PW.
2. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The
DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
If WRITE CRC is enabled and a WRITE CRC occurs during the tPAR_UNKNOWN window, the WRITE CRC Error Status
Bit located at MR5[3] may or may not get set
3. Normal operation with parity latency and parity checking (CA parity persistent error mode enabled).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
110
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
Figure 54: #!0ARITY%RROR#HECKINGn32%!TTEMPT
T1
T0
CK_c
Ta0
Tb0
Ta1
Tb1
Tc0
Td1
Td0
Tc1
Td2
Td3
Te0
Te1
DES5
Valid 3
CK_t
tCPDED
Command/
Address
DES1, 5
tXP
+ PL
DES1
Error2
DES6
tIS
+ PL
DES6
tIS
CKE
tRP
t > 2nCK
tIH
Note 4
tPAR_ALERT_ON
tPAR_ALERT_PW 1
ALERT_n
DES1, 5
DES6
Error2
DES1
Valid 3
DES5
Command execution unknown
Command not executed
Don’t Care
Command executed
Time Break
Notes: 1. Only DESELECT command is allowed.
2. SELF REFRESH command error. The DRAM masks the intended SRE command and enters precharge power-down.
3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking is off until the
parity error status bit cleared.
4. The controller cannot disable the clock until it has been capable of detecting a possible CA parity error.
5. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The
DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
6. Only a DESELECT command is allowed; CKE may go HIGH prior to Tc2 as long as DES commands are issued.
Figure 55: #!0ARITY%RROR#HECKINGn328!TTEMPT
T0
Ta0
SRX1
DES
Ta1
Tb0
Tb1
Tc0
Tc1
Tc2
Td0
Td1
Te0
Tf0
Error2
Valid 2
Valid 2
Valid 2
DES2, 3
DES2, 3
Valid 2, 4, 5
Valid 2, 4, 6
Valid 2, 4, 7
CK_c
CK_t
Command/
Address
DES
t > 2nCK
tIS
tRP
CKE
tPAR_UNKNOWN
tPAR_ALERT_ON
tPAR_ALERT_PW
ALERT_n
tXS_FAST 8
tXS
tXSDLL
SRX1
DES
Error
Valid
Valid 4,5,6,7
Valid 3, 5
Command execution unknown
Command not executed
Time Break
Don’t Care
Command executed
Notes: 1. Self refresh abort = disable: MR4 [9] = 0.
2. Input commands are bounded by tXSDLL, tXS, tXS_ABORT, and tXS_FAST timing.
3. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The
DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
4. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking off until parity
error status bit cleared.
5. Only an MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or ZQCL command is
allowed.
6. Valid commands not requiring a locked DLL.
7. Valid commands requiring a locked DLL.
8. This figure shows the case from which the error occurred after tXS_FAST. An error may also occur after tXS_ABORT
and tXS.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
111
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
Figure 56: #!0ARITY%RROR#HECKINGn0$%0$8
T1
T0
CK_c
Ta0
Tb0
Ta1
Tb1
Tc0
Td1
Td0
Tc1
Td2
Td3
Te0
Te1
DES4
Valid 3
CK_t
tCPDED
Command/
Address
DES1
Error2
tXP
+ PL
DES1
DES5
tIS
+ PL
DES5
tIS
CKE
t > 2nCK
tIH
tRP
tPAR_ALERT_PW 1
tPAR_ALERT_ON
ALERT_n
DES4
DES5
Command execution unknown
Error2
DES1
Command not executed
Valid 3
Don’t Care
Command executed
Time Break
Notes: 1. Only DESELECT command is allowed.
2. Error could be precharge or activate.
3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity checking is off until parity
error status bit cleared.
4. Command execution is unknown; the corresponding DRAM internal state change may or may not occur. The
DRAM controller should consider both cases and make sure that the command sequence meets the specifications.
5. Only a DESELECT command is allowed; CKE may go HIGH prior to Td2 as long as DES commands are issued.
Figure 57: 0ARITY%NTRY4IMING%XAMPLEntMRD_PAR
Ta0
Ta1
Ta2
Tb0
Tb1
Tb2
DES
MRS
DES
DES
MRS
DES
CK_c
CK_t
Command
Parity latency
PL = 0
Updating setting
PL = N
tMRD_PAR
Enable
parity
Don’t Care
Time Break
Note: 1.
tMRD_PAR
= tMOD + N; where N is the programmed parity latency.
Figure 58: 0ARITY%NTRY4IMING%XAMPLEntMOD_PAR
Ta0
Ta1
Ta2
Tb0
Tb1
Tb2
DES
MRS
DES
DES
Valid
DES
CK_c
CK_t
Command
Parity latency
PL = 0
Updating setting
PL = N
tMOD_PAR
Enable
parity
Time Break
Note: 1.
Don’t Care
t
MOD_PAR = tMOD + N; where N is the programmed parity latency.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
112
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
Figure 59: 0ARITY%XIT4IMING%XAMPLEntMRD_PAR
Ta0
Ta1
Ta2
Tb0
Tb1
Tb2
DES
MRS
DES
DES
MRS
DES
CK_c
CK_t
Command
Parity latency
PL = N
Updating setting
tMRD_PAR
Disable
parity
Time Break
Note: 1.
Don’t Care
t
MRD_PAR = tMOD + N; where N is the programmed parity latency.
Figure 60: 0ARITY%XIT4IMING%XAMPLEntMOD_PAR
Ta0
Ta1
Ta2
Tb0
Tb1
Tb2
DES
MRS
DES
DES
Valid
DES
CK_c
CK_t
Command
Parity latency
PL = N
Updating setting
tMOD_PAR
Disable
parity
Time Break
Note: 1.
Don’t Care
t
MOD_PAR = tMOD + N; where N is the programmed parity latency.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
113
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Figure 61: CA Parity Flow Diagram
CA
process start
MR5[2:0] set parity latency (PL)
MR5[4] set parity error status to 0
MR5[9] enable/disable persistent mode
CA
latched in
Yes
CA parity
enabled
Persistent
mode
enabled
Yes
CA parity
error
No
No
No
MR5[4] = 0
@ ADDR/CMD
latched
No
Yes
Yes
CA parity
error
Good CA
processed
Yes
Ignore
bad CMD
Command
execution
unknown
No
Good CA
processed
Ignore
bad CMD
Command
execution
unknown
ALERT_n LOW
44 to 144 CKs
MR5[4] = 0 Yes
@ ADDR/CMD
latched
Log error/
set parity status
No
Yes
CA error
ALERT_n LOW
44 to 144 CKs
Log error/
set parity status
Internal
precharge all
Internal
precharge all
ALERT_n HIGH
ALERT_n HIGH
Command
execution
unknown
No
114
Good CA
processed
Operation ready?
Command
execution
unknown
Normal operation ready
MR5[4] reset to 0 if desired
Normal operation ready
MR5[4] reset to 0 if desired
8Gb: x4, x8, x16 DDR4 SDRAM
Command/Address Parity
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
Normal
operation ready
Bad CA
processed
8Gb: x4, x8, x16 DDR4 SDRAM
Per-DRAM Addressability
Per-DRAM Addressability
DDR4 allows programmability of a single, specific DRAM on a rank. As an example, this feature can be
used to program different ODT or VREF values on each DRAM on a given rank. Because per-DRAM
addressability (PDA) mode may be used to program optimal VREF for the DRAM, the data set up for first
DQ0 transfer or the hold time for the last DQ0 transfer cannot be guaranteed. The DRAM may sample
DQ0 on either the first falling or second rising DQS transfer edge. This supports a common implementation between BC4 and BL8 modes on the DRAM. The DRAM controller is required to drive DQ0 to a
stable LOW or HIGH state during the length of the data transfer for BC4 and BL8 cases. Note, both fixed
and on-the-fly (OTF) modes are supported for BC4 and BL8 during PDA mode.
1. Before entering PDA mode, write leveling is required.
n BL8 or BC4 may be used.
2. Before entering PDA mode, the following MR settings are possible:
n RTT(Park) MR5 A[8:6] = Enable
n RTT(NOM) MR1 A[10:8] = Enable
3. Enable PDA mode using MR3 [4] = 1. (The default programed value of MR3[4] = 0.)
4. In PDA mode, all MRS commands are qualified with DQ0. The device captures DQ0 by using DQS
signals. If the value on DQ0 is LOW, the DRAM executes the MRS command. If the value on DQ0 is
HIGH, the DRAM ignores the MRS command. The controller can choose to drive all the DQ bits.
5. Program the desired DRAM and mode registers using the MRS command and DQ0.
6. In PDA mode, only MRS commands are allowed.
7. The MODE REGISTER SET command cycle time in PDA mode, AL + CWL + BL/2 - 0.5tCK +
t
MRD_PDA + PL, is required to complete the WRITE operation to the mode register and is the
minimum time required between two MRS commands.
8. Remove the device from PDA mode by setting MR3[4] = 0. (This command requires DQ0 = 0.)
Note: Removing the device from PDA mode will require programming the entire MR3 when the MRS
command is issued. This may impact some PDA values programmed within a rank as the EXIT
command is sent to the rank. To avoid such a case, the PDA enable/disable control bit is located in a
mode register that does not have any PDA mode controls.
In PDA mode, the device captures DQ0 using DQS signals the same as in a normal WRITE operation;
however, dynamic ODT is not supported. Extra care is required for the ODT setting. If RTT(NOM) MR1
[10:8] = enable, device data termination needs to be controlled by the ODT pin, and applies the same
timing parameters (defined below).
Symbol
Parameter
DODTLon
Direct ODT turnon latency
DODTLoff
Direct ODT turn off latency
t
RTT change timing skew
t
Asynchronous RTT(NOM) turn-on delay
t
Asynchronous RTT(NOM) turn-off delay
ADC
AONAS
AOFAS
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
115
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Per-DRAM Addressability
Figure 62: PDA Operation Enabled, BL8
CK_c
CK_t
MR3 A4 = 1
(PDA enable)
MRS
MRS
t MOD
MRS
t MRD_PDA
CWL+AL+PL
DQS_t
DQS_c
DQ0
t PDA_S
t PDA_H
DODTLoff = WL-3
ODT
DODTLon = WL-3
RTT
RTT(Park)
RTT(NOM)
RTT(Park)
Note: 1. RTT(Park) = Enable; RTT(NOM) = Enable; WRITE preamble set = 2tCK; and DLL = On.
Figure 63: PDA Operation Enabled, BC4
CK_c
CK_t
MR3 A4 = 1
(PDA enable)
MRS
MRS
MRS
tMOD
tMRD_PDA
CWL+AL+PL
DQS_t
DQS_c
DQ0
tPDA_S
tPDA_H
DODTLoff = WL-3
ODT
DODTLon = WL-3
RTT
RTT(Park)
RTT(NOM)
RTT(Park)
Note: 1. RTT(Park) = Enable; RTT(NOM) = Enable; WRITE preamble set = 2tCK; and DLL = On.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
116
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Per-DRAM Addressability
Figure 64: MRS PDA Exit
CK_c
CK_t
MR3 A4 = 0
(PDA disable)
MRS
Valid
CWL+AL+PL
t MOD_PDA
DQS_t
DQS_c
DQ0
t PDA_S
t PDA_H
DODTLoff = WL - 3
ODT
DODTLon = WL - 3
RTT
RTT(Park)
RTT(NOM)
RTT(Park)
Note: 1. RTT(Park) = Enable; RTT(NOM) = Enable; WRITE preamble set = 2tCK; and DLL = On.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
117
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
VREFDQ Calibration
The VREFDQ level, which is used by the DRAM DQ input receivers, is internally generated. The DRAM
VREFDQ does not have a default value upon power-up and must be set to the desired value, usually via
VREFDQ calibration mode. If PDA or PPR modes (hPPR or sPPR) are used prior to VREFDQ calibration,
VREFDQ should initially be set at the midpoint between the VDD,max, and the LOW as determined by the
driver and ODT termination selected with wide voltage swing on the input levels and setup and hold
times of approximately 0.75UI. The memory controller is responsible for VREFDQ calibration to determine the best internal VREFDQ level. The VREFDQ calibration is enabled/disabled via MR6[7], MR6[6]
selects Range 1 (60% to 92.5% of VDDQ) or Range 2 (45% to 77.5% of VDDQ), and an MRS protocol using
MR6[5:0] to adjust the VREFDQ level up and down. MR6[6:0] bits can be altered using the MRS
command if MR6[7] is enabled. The DRAM controller will likely use a series of writes and reads in
conjunction with VREFDQ adjustments to obtain the best VREFDQ, which in turn optimizes the data eye.
The internal VREFDQ specification parameters are voltage range, step size, VREF step time, VREF full step
time, and VREF valid level. The voltage operating range specifies the minimum required VREF setting
range for DDR4 SDRAM devices. The minimum range is defined by VREFDQ,min and VREFDQ,max. As
noted, a calibration sequence, determined by the DRAM controller, should be performed to adjust
VREFDQand optimize the timing and voltage margin of the DRAM data input receivers. The internal
VREFDQ voltage value may not be exactly within the voltage range setting coupled with the VREF set
tolerance; the device must be calibrated to the correct internal VREFDQ voltage.
Figure 65: VREFDQ Voltage Range
VDDQ
VREF,max
VREF
range
VREF,min
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
118
VSWING small
System variance
VSWING large
Total range
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
VREFDQ Range and Levels
Table 37: VREFDQ Range and Levels
MR6[5:0]
Range 1 MR6[6] 0
Range 2 MR6[6] 1
MR6[5:0]
Range 1 MR6[6] 0
Range 2 MR6[6] 1
00 0000
60.00%
45.00%
01 1010
76.90%
61.90%
00 0001
60.65%
45.65%
01 1011
77.55%
62.55%
00 0010
61.30%
46.30%
01 1100
78.20%
63.20%
00 0011
61.95%
46.95%
01 1101
78.85%
63.85%
00 0100
62.60%
47.60%
01 1110
79.50%
64.50%
00 0101
63.25%
48.25%
01 1111
80.15%
65.15%
00 0110
63.90%
48.90%
10 0000
80.80%
65.80%
00 0111
64.55%
49.55%
10 0001
81.45%
66.45%
00 1000
65.20%
50.20%
10 0010
82.10%
67.10%
00 1001
65.85%
50.85%
10 0011
82.75%
67.75%
00 1010
66.50%
51.50%
10 0100
83.40%
68.40%
00 1011
67.15%
52.15%
10 0101
84.05%
69.05%
00 1100
67.80%
52.80%
10 0110
84.70%
69.70%
00 1101
68.45%
53.45%
10 0111
85.35%
70.35%
00 1110
69.10%
54.10%
10 1000
86.00%
71.00%
00 1111
69.75%
54.75%
10 1001
86.65%
71.65%
01 0000
70.40%
55.40%
10 1010
87.30%
72.30%
01 0001
71.05%
56.05%
10 1011
87.95%
72.95%
01 0010
71.70%
56.70%
10 1100
88.60%
73.60%
01 0011
72.35%
57.35%
10 1101
89.25%
74.25%
01 0100
73.00%
58.00%
10 1110
89.90%
74.90%
01 0101
73.65%
58.65%
10 1111
90.55%
75.55%
01 0110
74.30%
59.30%
11 0000
91.20%
76.20%
01 0111
74.95%
59.95%
11 0001
91.85%
76.85%
01 1000
75.60%
60.60%
11 0010
92.50%
77.50%
01 1001
76.25%
61.25%
11 0011 to 11 1111 = Reserved
VREFDQ Step Size
The VREF step size is defined as the step size between adjacent steps. VREF step size ranges from 0.5%
VDDQ to 0.8% VDDQ. However, for a given design, the device has one value for VREF step size that falls
within the range.
The VREF set tolerance is the variation in the VREF voltage from the ideal setting. This accounts for accumulated error over multiple steps. There are two ranges for VREF set tolerance uncertainty. The range
of VREF set tolerance uncertainty is a function of number of steps n.
The VREF set tolerance is measured with respect to the ideal line, which is based on the MIN and MAX
VREF value endpoints for a specified range. The internal VREFDQ voltage value may not be exactly within
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
119
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
the voltage range setting coupled with the VREF set tolerance; the device must be calibrated to the
correct internal VREFDQ voltage.
Figure 66: Example of VREF Set Tolerance and Step Size
Actual VREF
output
Straight line
(endpoint fit)
VREF
VREF set
tolerance
VREF set
tolerance
VREF
step size
Digital Code
Note: 1. Maximum case shown.
VREFDQ Increment and Decrement Timing
The VREF increment/decrement step times are defined by VREF,time. VREF,time is defined from t0 to t1,
where t1 is referenced to the VREF voltage at the final DC level within the VREF valid tolerance
(VREF,val_tol). The VREF valid level is defined by VREF,val tolerance to qualify the step time t1. This parameter is used to insure an adequate RC time constant behavior of the voltage level change after any VREF
increment/decrement adjustment.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
120
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
Figure 67: VREFDQ Timing Diagram for VREF,time Parameter
CK_c
CK_t
MRS
Command
VREF setting
adjustment
DQ VREF
Old VREF setting
Updating VREF setting
New VREF setting
VREF_time
t0
t1
Don’t Care
Note: 1. t0 is referenced to the MRS command clock
t1 is referenced to VREF,tol
VREFDQ calibration mode is entered via an MRS command, setting MR6[7] to 1 (0 disables VREFDQ calibration mode) and setting MR6[6] to either 0 or 1 to select the desired range (MR6[5:0] are "Don't
Care"). After VREFDQ calibration mode has been entered, VREFDQ calibration mode legal commands
may be issued once tVREFDQE has been satisfied. Legal commands for VREFDQ calibration mode are
ACT, WR, WRA, RD, RDA, PRE, DES, and MRS to set VREFDQ values, and MRS to exit VREFDQ calibration
mode. Also, after VREFDQCALIBRATIONMODEHASBEENENTEREDhDUMMYv72)4%COMMANDSAREALLOWED
prior to adjusting the VREFDQ value the first time VREFDQ calibration is performed after initialization.
Setting VREFDQ values requires MR6[7] be set to 1 and MR6[6] be unchanged from the initial range
selection; MR6[5:0] may be set to the desired VREFDQ values. If MR6[7] is set to 0, MR6[6:0] are not
written. VREF,time-short or VREF,time-long must be satisfied after each MR6 command to set VREFDQ value
before the internal VREFDQ value is valid.
If PDA mode is used in conjunction with VREFDQ calibration, the PDA mode requirement that only MRS
commands are allowed while PDA mode is enabled is not waived. That is, the only VREFDQ calibration
mode legal commands noted above that may be used are the MRS commands: MRS to set VREFDQ
values and MRS to exit VREFDQ calibration mode.
The last MR6[6:0] setting written to MR6 prior to exiting VREFDQ calibration mode is the range and
value used for the internal VREFDQ setting. VREFDQ calibration mode may be exited when the DRAM is
in idle state. After the MRS command to exit VREFDQ calibration mode has been issued, DES must be
issued until tVREFDQX has been satisfied where any legal command may then be issued. VREFDQ
setting should be updated if the die temperature changes too much from the calibration temperature.
The following are typical script when applying the above rules for VREFDQ calibration routine when
performing VREFDQ calibration in Range 1:
s MR6[7:6]10 [5:0]XXXXXXX.
n Subsequent legal commands while in VREFDQ calibration mode: ACT, WR, WRA, RD, RDA, PRE,
DES, and MRS (to set VREFDQ values and exit VREFDQ calibration mode).
s All subsequent VREFDQ calibration MR setting commands are MR6[7:6]10 [5:0]VVVVVV.
n "VVVVVV" are desired settings for VREFDQ.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
121
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
s Issue ACT/WR/RD looking for pass/fail to determine VCENT (midpoint) as needed.
s To exit VREFDQ calibration, the last two VREFDQ calibration MR commands are:
n MR6[7:6]10 [5:0]VVVVVV* where VVVVVV* = desired value for VREFDQ.
n MR6[7]0 [6:0]XXXXXXX to exit VREFDQ calibration mode.
The following are typical script when applying the above rules for VREFDQ calibration routine when
performing VREFDQ calibration in Range 2:
s MR6[7:6]11 [5:0]XXXXXXX.
n Subsequent legal commands while in VREFDQ calibration mode: ACT, WR, WRA, RD, RDA, PRE,
DES, and MRS (to set VREFDQ values and exit VREFDQ calibration mode).
s All subsequent VREFDQ calibration MR setting commands are MR6[7:6]11 [5:0]VVVVVV.
n "VVVVVV" are desired settings for VREFDQ.
s Issue ACT/WR/RD looking for pass/fail to determine VCENT (midpoint) as needed.
s To exit VREFDQ calibration, the last two VREFDQ calibration MR commands are:
n MR6[7:6]11 [5:0]VVVVVV* where VVVVVV* = desired value for VREFDQ.
n MR6[7]0 [6:0]XXXXXXX to exit VREFDQ calibration mode.
Note: Range may only be set or changed when entering VREFDQ calibration mode; changing range
while in or exiting VREFDQ calibration mode is illegal.
Figure 68: VREFDQ Training Mode Entry and Exit Timing Diagram
T0
T1
Ta0
Ta1
Tb0
Tb1
Tc0
Tc1
DES
MRS
DES
CMD
DES
CMD
DES
MRS1,2
Td0
Td1
Td2
DES
WR
DES
CK_c
CK_t
Command
tVREFDQE
VREFDQ training on
tVREFDQX
New VREFDQ
value or write
New VREFDQ
value or write
VREFDQ training off
Don’t Care
Notes: 1. New VREFDQ values are not allowed with an MRS command during calibration mode entry.
2. Depending on the step size of the latest programmed VREF value, VREF must be satisfied before disabling VREFDQ
training mode.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
122
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
Figure 69: VREF Step: Single Step Size Increment Case
VREF
Voltage
VREF
(VDDQ(DC))
VREF,val_tol
Step size
t1
Time
Figure 70: VREF Step: Single Step Size Decrement Case
VREF
Voltage
t1
Step size
VREF,val_tol
VREF
(VDDQ(DC))
Time
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
123
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
Figure 71: VREF Full Step: From VREF,min to VREF,maxCase
VREF
Voltage
VREF,max
VREF,val_tol
Full range
step
VREF
(VDDQ(DC))
t1
VREF,min
Time
Figure 72: VREF Full Step: From VREF,max to VREF,minCase
VREF
Voltage
VREF,max
Full range
step
t1
VREF,val_tol
VREF,min
VREF
(VDDQ(DC))
Time
VREFDQ Target Settings
The VREFDQ initial settings are largely dependant on the ODT termination settings. The table below
shows all of the possible initial settings available for VREFDQ training; it is unlikely the lower ODT
settings would be used in most cases.
Table 38: VREFDQ Settings (VDDQ = 1.2V)
RON
34 ohm
ODT
6Xn6IN LOW (mV)
VREFDQ (mv)
VREFDQ (%VDDQ)
34 ohm
600
900
75%
40 ohm
550
875
73%
48 ohm
500
850
71%
60 ohm
435
815
68%
80 ohm
360
780
65%
120 ohm
265
732
61%
240 ohm
150
675
56%
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
124
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
VREFDQ Calibration
Table 38: VREFDQ Settings (VDDQ = 1.2V)
RON
48 ohm
ODT
6Xn6IN LOW (mV)
VREFDQ (mv)
VREFDQ (%VDDQ)
34 ohm
700
950
79%
40 ohm
655
925
77%
48 ohm
600
900
75%
60 ohm
535
865
72%
80 ohm
450
825
69%
120 ohm
345
770
64%
240 ohm
200
700
58%
Figure 73: VREFDQ Equivalent Circuit
VDDQ
VDDQ
ODT
RXer
Vx
VREFDQ
(internal)
RON
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
125
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Connectivity Test Mode
Connectivity Test Mode
Connectivity test (CT) mode is similar to boundary scan testing but is designed to significantly speed
up the testing of electrical continuity of pin interconnections between the device and the memory
controller on the PC boards. Designed to work seamlessly with any boundary scan device, CT mode is
supported in all έ4, έ8, and έ16 non-3DS devices (JEDEC states CT mode for έ4 and έ8 is not required
on 4Gb and is an optional feature on 8Gb and above). 3DS devices do not support CT mode and the
TEN pin should be considered RFU maintained LOW at all times.
Contrary to other conventional shift-register-based test modes, where test patterns are shifted in and
out of the memory devices serially during each clock, the CT mode allows test patterns to be entered
on the test input pins in parallel and the test results to be extracted from the test output pins of the
device in parallel. These two functions are also performed at the same time, significantly increasing the
speed of the connectivity check. When placed in CT mode, the device appears as an asynchronous
device to the external controlling agent. After the input test pattern is applied, the connectivity test
results are available for extraction in parallel at the test output pins after a fixed propagation delay
time.
Note: A reset of the device is required after exiting CT mode (see RESET and Initialization Procedure).
Pin Mapping
Only digital pins can be tested using the CT mode. For the purposes of a connectivity check, all the pins
used for digital logic in the device are classified as one of the following types:
s Test enable (TEN): When asserted HIGH, this pin causes the device to enter CT mode. In CT mode,
the normal memory function inside the device is bypassed and the I/O pins appear as a set of test
input and output pins to the external controlling agent. Additionally, the device will set the internal
VREFDQ to VDDQ έ 0.5 during CT mode (this is the only time the DRAM takes direct control over
setting the internal VREFDQ). The TEN pin is dedicated to the connectivity check function and will not
be used during normal device operation.
s Chip select (CS_n): When asserted LOW, this pin enables the test output pins in the device. When
de-asserted, these output pins will be High-Z. The CS_n pin in the device serves as the CS_n pin in
CT mode.
s Test input: A group of pins used during normal device operation designated as test input pins. These
pins are used to enter the test pattern in CT mode.
s Test output: A group of pins used during normal device operation designated as test output pins.
These pins are used for extraction of the connectivity test results in CT mode.
s RESET_n: This pin must be fixed high level during CT mode, as in normal function.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
126
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Connectivity Test Mode
Table 39: Connectivity Mode Pin Description and Switching Levels
CT Mode
Pins
Pin Name During Normal Memory Operation
Switching Level
Test enable
TEN
CMOS (20%/80% VDD)
Chip select
CS_n
VREFCA ά200mV
3
A
BA[1:0], BG[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14,
CAS_n/A15, RAS_n/A16, A17, CKE, ACT_n, ODT, CLK_t, CLK_c, PAR
VREFCA ά200mV
3
B
LDM_n/LDBI_n, UDM_n/UDBI_n; DM_n/DBI_n
VREFDQ ά200mV
4
Test
input
Test
output
Notes
1, 2
C ALERT_n
CMOS (20%/80% VDD)
2, 5
D RESET_n
CMOS (20%/80% VDD)
2
VTT ά100mV
6
DQ[15:0], UDQS_t, UDQS_c, LDQS_t, LDQS_c; DQS_t, DQS_c
Notes: 1. TEN: Connectivity test mode is active when TEN is HIGH and inactive when TEN is LOW. TEN must be LOW during
normal operation.
2. CMOS is a rail-to-rail signal with DC HIGH at 80% and DC LOW at 20% of VDD (960mV for DC HIGH and 240mV for
DC LOW.)
3. VREFCA should be VDD/2.
4. VREFDQ should be VDDQ/2.
5. ALERT_n switching level is not a final setting.
6. VTT should be set to VDD/2.
Minimum Terms Definition for Logic Equations
The test input and output pins are related by the following equations, where INV denotes a logical
inversion operation and XOR a logical exclusive OR operation:
MT0 = XOR (A1, A6, PAR)
MT1 = XOR (A8, ALERT_n, A9)
MT2 = XOR (A2, A5, A13) or XOR (A2, A5, A13, A17)
MT3 = XOR (A0, A7, A11)
MT4 = XOR (CK_c, ODT, CAS_n/A15)
MT5 = XOR (CKE, RAS_n/A16, A10/AP)
MT6 = XOR (ACT_n, A4, BA1)
MT7 = έ16: XOR (DMU_n/DBIU_n, DML_n/DBIL_n, CK_t)
= x8: XOR (BG1, DML_n/DBIL_n, CK_t)
= x4: XOR (BG1, CK_t)
MT8 = XOR (WE_n/A14, A12 / BC, BA0)
MT9 = XOR (BG0, A3, RESET_n and TEN)
Logic Equations for a x4 Device
DQ0 = XOR (MT0, MT1)
DQ1 = XOR (MT2, MT3)
DQ2 = XOR (MT4, MT5)
DQ3 = XOR (MT6, MT7)
DQS_t = MT8
DQS_c = MT9
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
127
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Connectivity Test Mode
Logic Equations for a x8 Device
DQ0 = MT0
DQ1 = MT1
DQ2 = MT2
DQ3 = MT3
DQ4 = MT4
DQ5 = MT5
DQ6 = MT6
DQ7 = MT7
DQS_t = MT8
DQS_c = MT9
Logic Equations for a x16 Device
DQ0 = MT0
DQ1 = MT1
DQ2 = MT2
DQ3 = MT3
DQ4 = MT4
DQ5 = MT5
DQ6 = MT6
DQ7 = MT7
DQ8 = INV DQ0
DQ9 = INV DQ1
DQ10 = INV DQ2
DQ11 = INV DQ3
DQ12 = INV DQ4
DQ13 = INV DQ5
DQ14 = INV DQ6
DQ15 = INV DQ7
LDQS_t = MT8
LDQS_c = MT9
UDQS_t = INV LDQS_t
UDQS_c = INV LDQS_c
CT Input Timing Requirements
Prior to the assertion of the TEN pin, all voltage supplies, including VREFCA, must be valid and stable
and RESET_n registered high prior to entering CT mode. Upon the assertion of the TEN pin HIGH with
RESET_n, CKE, and CS_n held HIGH; CLK_t, CLK_c, and CKE signals become test inputs within
tCTECT_Valid. The remaining CT inputs become valid tCT_Enable after TEN goes HIGH when CS_n
allows input to begin sampling, provided inputs were valid for at least tCT_Valid. While in CT mode,
refresh activities in the memory arrays are not allowed; they are initiated either externally (auto
refresh) or internally (self refresh).
The TEN pin may be asserted after the DRAM has completed power-on. After the DRAM is initialized
and VREFDQ is calibrated, CT mode may no longer be used. The TEN pin may be de-asserted at any time
in CT mode. Upon exiting CT mode, the states and the integrity of the original content of the memory
array are unknown. A full reset of the memory device is required.
After CT mode has been entered, the output signals will be stable within tCT_Valid after the test inputs
have been applied as long as TEN is maintained HIGH and CS_n is maintained LOW.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
128
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Connectivity Test Mode
Figure 74: Connectivity Test Mode Entry
Ta
Tb
Tc
Td
CK_t
Valid input
CK_c
tCKSRX
tCT_IS
tIS
T = 10ns
Valid input
tCT_IS
CKE
Valid input
Valid input
tCTCKE_Valid
T = 200μs
T = 500μs
RESET_n
tCT_IS
TEN
tCTCKE_Valid>10ns
tCT_Enable
tCT_IS >0ns
CS_n
tCT_IS
CT Inputs
Valid input
Valid input
tCT_Valid
tCT_Valid
tCT_Valid
CT Outputs
Valid
Valid
Don’t Care
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
129
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Excessive Row Activation
Excessive Row Activation
Rows can be accessed a limited number of times within a certain time period before adjacent rows
require refresh. The maximum activate count (MAC) is the maximum number of activates that a single
row can sustain within a time interval of equal to or less than the maximum activate window (tMAW)
before the adjacent rows need to be refreshed, regardless of how the activates are distributed over
t
MAW.
Micron's DDR4 devices automatically perform a type of TRR mode in the background and provide an
MPR Page 3 MPR3[3:0] of 1000, indicating there is no restriction to the number of ACTIVATE
commands to a given row in a refresh period provided DRAM timing specifications are not violated.
However, specific attempts to by-pass TRR may result in data disturb.
Table 40: MAC Encoding of MPR Page 3 MPR3
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]
MAC
Comments
x
x
x
x
0
0
0
0
Untested
The device has not been tested for MAC.
x
x
x
x
0
0
0
1
t
x
x
x
x
0
0
1
0
t
x
x
x
x
0
0
1
1
t
x
x
x
x
0
1
0
0
t
x
x
x
x
0
1
0
1
t
x
x
x
x
0
1
1
0
x
x
x
x
0
1
1
1
x
x
x
x
1
0
0
0
Unlimited
x
x
x
x
1
0
0
1
Reserved
x
x
x
x
:
:
:
:
Reserved
x
x
x
x
1
1
1
1
Reserved
MAC = 700K
MAC = 600K
MAC = 500K
MAC = 400K
MAC = 300K
Reserved
t
MAC = 200K
There is no restriction to the number of ACTIVATE commands to a given row in a refresh period provided DRAM
timing specifications are not violated.
Notes: 1. MAC encoding in MPR Page 3 MPR3.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
130
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Post Package Repair
Post Package Repair
Post Package Repair
JEDEC defines two modes of Post Package Repair (PPR): soft Post Package Repair (sPPR) and hard Post
Package Repair (hPPR). sPPR is non-persistent so the repair row maybe altered; that is, sPPR is NOT a
permanent repair and even though it will repair a row, the repair can be reversed, reassigned via
another sPPR, or made permanent via hPPR. Hard Post Package Repair is persistent so once the repair
row is assigned for a hPPR address, further PPR commands to a previous hPPR section should not be
performed, that is, hPPR is a permanent repair; once repaired, it cannot be reversed. The controller
provides the failing row address in the hPPR/sPPR sequence to the device to perform the row repair.
hPPR Mode and sPPR Mode may not be enabled at the same time.
JEDEC states hPPR is optional for 4Gb and sPPR is optional for 4Gb and 8Gb parts however Micron 4Gb
and 8Gb DDR4 DRAMs should have both sPPR and hPPR support. The hPPR support is identified via
an MPR read from MPR Page 2, MPR0[7] and sPPR support is identified via an MPR read from MPR
Page 2, MPR0[6].
The JEDEC minimum support requirement for DDR4 PPR (hPPR or sPPR) is to provide one row of
repair per bank group (BG), x4/x8 have 4 BG and x16 has 2 BG; this is a total of 4 repair rows available
on x4/x8 and 2 repair rows available on x16. Micron PPR support exceeds the JEDEC minimum requirements; Micron DDR4 DRAMs have at least one row of repair for each bank which is essentially 4 row
repairs per BG for a total of 16 repair rows for x4 and x8 and 8 repair rows for x16; a 4x increase in repair
rows.
JEDEC requires the user to have all sPPR row repair addresses reset and cleared prior to enabling hPPR
Mode. Micron DDR4 PPR does not have this restriction, the existing sPPR row repair addresses are not
required to be cleared prior to entering hPPR mode. Each bank in a BG is PPR independent: sPPR or
hPPR issued to a bank will not alter a sPPR row repair existing in a different bank.
sPPR followed by sPPR to same bank
When PPR is issued to a bank for the first time and is a sPPR command, the repair row will be a sPPR.
When a subsequent sPPR is issued to the same bank, the previous sPPR repair row will be cleared and
used for the subsequent sPPR address as the sPPR operation is non-persistent.
sPPR followed by hPPR to same bank
When a PPR is issued to a bank for the first time and is a sPPR command, the repair row will be a sPPR.
When a subsequent hPPR is issued to the same bank, the initial sPPR repair row will be cleared and
used for the hPPR address1. If a further subsequent PPR (hPPR or sPPR) is issued to the same bank, the
further subsequent PPR ( hPPR or sPPR) repair row will not clear or overwrite the previous hPPR
address as the hPPR operation is persistent.
hPPR followed by hPPR or sPPR to same bank
When a PPR is issued to a bank for the first time and is a hPPR command, the repair row will be a hPPR.
When a subsequent PPR (hPPR or sPPR) is issued to the same bank, the subsequent PPR ( hPPR or
sPPR) repair row will not clear or overwrite the initial hPPR address as the initial hPPR is persistent.
Note: Newer Micron DDR4 designs may not guarantee that an sPPR followed by an hPPR to the same
bank will result the same repair row being used. Contact factory for more information.
Hard Post Package Repair
All banks must be precharged and idle. DBI and CRC modes must be disabled. Both sPPR and hPPR
must be disabled. sPPR is disabled with MR4[5] = 0. hPPR is disabled with MR4[13] = 0, which is the
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
131
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Hard Post Package Repair
normal state, and hPPR is enabled with MR4 [13]= 1, which is the hPPR enabled state. There are two
forms of hPPR mode. Both forms of hPPR have the same entry requirement as defined in the sections
below. The first command sequence uses a WRA command and supports data retention with a
REFRESH operation except for the bank containing the row that is being repaired; JEDEC has relaxed
this requirement and allows BA[0] to be a Don't Care regarding the banks which are not required to
maintain data a REFRESH operation during hPPR. The second command sequence uses a WR
command (a REFRESH operation can't be performed in this command sequence). The second
command sequence doesn't support data retention for the target DRAM.
hPPR Row Repair - Entry
As stated above, all banks must be precharged and idle. DBI and CRC modes must be disabled, and all
timings must be followed as shown in the timing diagram that follows.
All other commands except those listed in the following sequences are illegal.
1. Issue MR4[13] 1 to enter hPPR mode enable.
a) All DQ are driven HIGH.
2. Issue four consecutive guard key commands (shown in the table below) to MR0 with each command
separated by tMOD. The PPR guard key settings are the same whether performing sPPR or hPPR
mode.
a) Any interruption of the key sequence by other commands, such as ACT, WR, RD, PRE, REF, ZQ,
and NOP, are not allowed.
b) If the guard key bits are not entered in the required order or interrupted with other MR
commands, hPPR will not be enabled, and the programming cycle will result in a NOP.
c) When the hPPR entry sequence is interrupted and followed by ACT and WR commands, these
commands will be conducted as normal DRAM commands.
d) JEDEC allows A6:0 to be Don't Care on 4Gb and 8Gb devices from a supplier perspective and the
user should rely on vendor datasheet.
Table 41: PPR MR0 Guard Key Settings
MR0
BG1:0
BA1:0
A17:12
A11
A10
A9
A8
A7
A6:0
First guard key
0
0
xxxxxx
1
1
0
0
1
1111111
Second guard key
0
0
xxxxxx
0
1
1
1
1
1111111
Third Guard key
0
0
xxxxxx
1
0
1
1
1
1111111
Fourth guard key
0
0
xxxxxx
0
0
1
1
1
1111111
H0022OW2EPAIRn72!)NITIATED2%OMMANDS!LLOWED
1. Issue an ACT command with failing BG and BA with the row address to be repaired.
2. Issue a WRA command with BG and BA of failing row address.
a) The address must be at valid levels, but the address is Don't Care.
3. All DQ of the target DRAM should be driven LOW for 4nCK (bit 0 through bit 7) after WL (WL = CWL
+ AL + PL) in order for hPPR to initiate repair.
a) Repair will be initiated to the target DRAM only if all DQ during bit 0 through bit 7 are LOW. The
bank under repair does not get the REFRESH command applied to it.
b) Repair will not be initiated to the target DRAM if any DQ during bit 0 through bit 7 is HIGH.
i) JEDEC states: All DQs of target DRAM should be LOW for 4tCK. If HIGH is driven to all DQs of
a DRAM consecutively for equal to or longer than 2tCK, then DRAM does not conduct hPPR
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
132
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Hard Post Package Repair
and retains data if REF command is properly issued; if all DQs are neither LOW for 4tCK nor
HIGH for equal to or longer than 2tCK, then hPPR mode execution is unknown.
c) DQS should function normally.
4. REF command may be issued anytime after the WRA command followed by WL + 4nCK + tWR + tRP.
a) Multiple REF commands are issued at a rate of tREFI or tREFI/2, however back-to-back REF
commands must be separated by at least tREFI/4 when the DRAM is in hPPR mode.
b) All banks except the bank under repair will perform refresh.
5. Issue PRE after tPGM time so that the device can repair the target row during tPGM time.
a) Wait tPGM_Exit after PRE to allow the device to recognize the repaired target row address.
6. Issue MR4[13] 0 command to hPPR mode disable.
a) Wait tPGMPST for hPPR mode exit to complete.
b) After tPGMPST has expired, any valid command may be issued.
The entire sequence from hPPR mode enable through hPPR mode disable may be repeated if more
than one repair is to be done.
After completing hPPR mode, MR0 must be re-programmed to a prehPPR mode state if the device is to
be accessed.
After hPPR mode has been exited, the DRAM controller can confirm if the target row was repaired
correctly by writing data into the target row and reading it back.
Figure 75: H00272!n%NTRY
T0
T1
Ta0
Ta1
Tb0
Tb1
Tc0
Tc1
Td0
CMD
MRS4
DES
MRS0
DES
MRS0
DES
MRS0
DES
MRS0
BG
Valid
N/A
00
N/A
00
N/A
00
N/A
00
Td1
Te0
Tf0
Tg0
DES
ACT
WRA
DES
N/A
BGf
BGf
N/A
CK_c
CK_t
BA
Valid
N/A
00
N/A
00
N/A
00
N/A
00
N/A
BAf
BAf
N/A
ADDR
Valid
(A13=1)
N/A
1st Key
N/A
2nd Key
N/A
3rd Key
N/A
4th Key
N/A
Valid
Valid
N/A
CKE
DQS_t
DQS_c
DQs1
All Banks
Precharged
and idle state
Normal
Mode
t MOD
t MOD
t MOD
t MOD
t MOD
hPPR Entry
1st Guard Key Validate
2nd Guard Key Validate
3rd Guard Key Validate
4th Guard Key Validate
t RCD
hPPR Repair
Don’t Care
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
133
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Hard Post Package Repair
Figure 76: H00272!n2EPAIRAND%XIT
Te0
Tf0
CMD
ACT
BG
BGf
BA
ADDR
CK_c
Tg0
Tg1
Th0
Th1
Tj0
Tj1
Tj2
WRA
DES
DES
DES
BGf
N/A
N/A
N/A
BAf
BAf
N/A
N/A
Valid
Valid
N/A
N/A
Tk0
DES
DES
REF/DES
REF/DES
PRE
N/A
N/A
N/A
N/A
Valid
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Tk1
Tm0
Tm1
Tn0
REF/DES
MRSx
DES
Valid
N/A
Valid
N/A
Valid
Valid
N/A
Valid
N/A
Valid
Valid
N/A
Valid
(A13 = 0)
N/A
Valid
CK_t
CKE
WL = CWL+AL+PL
tWR +tRP + 1nCK
4nCK
DQS_t
DQS_c
DQs1
bit 0
All Banks
Precharged
and idle state
bit 1
bit 6
bit 7
tPGM
tRCD
hPPR Repair
tPGM_Exit
hPPR Repair
hPPR Repair
hPPR Recognition
tPGMPST
Normal
mode
hPPR Exit
Don’t Care
H0022OW2EPAIRn72)NITIATED2%OMMANDS./4!LLOWED
1. Issue an ACT command with failing BG and BA with the row address to be repaired.
2. Issue a WR command with BG and BA of failing row address.
a) The address must be at valid levels, but the address is Don't Care.
3. All DQ of the target DRAM should be driven LOW for 4nCK (bit 0 through bit 7) after WL (WL = CWL
+ AL + PL) in order for hPPR to initiate repair.
a) Repair will be initiated to the target DRAM only if all DQ during bit 0 through bit 7 are LOW.
b) Repair will not be initiated to the target DRAM if any DQ during bit 0 through bit 7 is HIGH.
i) JEDEC states: All DQs of target DRAM should be LOW for 4tCK. If HIGH is driven to all DQs of
a DRAM consecutively for equal to or longer than 2tCK, then DRAM does not conduct hPPR
and retains data if REF command is properly issued; if all DQs are neither LOW for 4tCK nor
HIGH for equal to or longer than 2tCK, then hPPR mode execution is unknown.
c) DQS should function normally.
4. REF commands may NOT be issued at anytime while in PPT mode.
5. Issue PRE after tPGM time so that the device can repair the target row during tPGM time.
a) Wait tPGM_Exit after PRE to allow the device to recognize the repaired target row address.
6. Issue MR4[13] 0 command to hPPR mode disable.
a) Wait tPGMPST for hPPR mode exit to complete.
b) After tPGMPST has expired, any valid command may be issued.
The entire sequence from hPPR mode enable through hPPR mode disable may be repeated if more
than one repair is to be done.
After completing hPPR mode, MR0 must be re-programmed to a prehPPR mode state if the device is to
be accessed.
After hPPR mode has been exited, the DRAM controller can confirm if the target row was repaired
correctly by writing data into the target row and reading it back.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
134
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
sPPR Row Repair
Figure 77: H00272n%NTRY
T0
T1
Ta0
Ta1
Tb0
Tb1
Tc0
Tc1
Td0
CMD
MRS4
DES
MRS0
DES
MRS0
DES
MRS0
DES
MRS0
BG
Valid
N/A
00
N/A
00
N/A
00
N/A
00
Td1
Te0
Tf0
Tg0
DES
ACT
WR
DES
N/A
BGf
BGf
N/A
CK_c
CK_t
BA
Valid
N/A
00
N/A
00
N/A
00
N/A
00
N/A
BAf
BAf
N/A
ADDR
Valid
(A13 = 1)
N/A
1st Key
N/A
2nd Key
N/A
3rd Key
N/A
4th Key
N/A
Valid
Valid
N/A
CKE
WL = CWL +
DQS_t
DQS_c
DQs1
Normal
Mode
t RCD
t MOD
t MOD
t MOD
t MOD
t MOD
hPPR Entry
1st Guard Key Validate
2nd Guard Key Validate
3rd Guard Key Validate
4th Guard Key Validate
All Banks
Precharged
and idle state
hPPR Repair
Don’t Care
Figure 78: H00272n2EPAIRAND%XIT
Te0
Tf0
CMD
ACT
BG
BGf
BA
ADDR
CK_c
Tg0
Tg1
Th0
Th1
Tj0
Tj1
Tj2
WR
DES
DES
DES
BGf
N/A
N/A
N/A
BAf
BAf
N/A
N/A
Valid
Valid
N/A
N/A
Tk0
DES
DES
DES
DES
PRE
N/A
N/A
N/A
N/A
Valid
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Tk1
Tm0
Tm1
Tn0
DES
MRSx
DES
Valid
N/A
Valid
N/A
Valid
Valid
N/A
Valid
N/A
Valid
Valid
N/A
Valid
(A13 = 0)
N/A
Valid
CK_t
CKE
WL = CWL + AL + PL
4nCK
DQS_t
DQS_c
DQs1
bit 0
All Banks
Precharged
and idle state
bit 1
bit 6
bit 7
tPGM
tRCD
hPPR Repair
tPGM_Exit
hPPR Repair
tPGMPST
hPPR Recognition
hPPR Repair
Normal
mode
hPPR Exit
Don’t Care
Table 42: DDR4 hPPR Timing Parameters DDR4-1600 through DDR4-3200
Parameter
Symbol
hPPR programming time
t
PGM
Min
Max
Unit
έ4, έ8
1000
n
ms
έ16
2000
n
ms
hPPR precharge exit time
t
15
n
ns
hPPR exit time
t
50
n
ρs
PGM_Exit
PGMPST
sPPR Row Repair
Soft post package repair (sPPR) is a way to quickly, but temporarily, repair a row element in a bank on
a DRAM device, where hPPR takes longer but permanently repairs a row element. sPPR mode is
entered in a similar fashion as hPPR, sPPR uses MR4[5] while hPPR uses MR4[13]. sPPR is disabled with
MR4[5] = 0, which is the normal state, and sPPR is enabled with MR4[5] = 1, which is the sPPR enabled
state.
sPPR requires the same guard key sequence as hPPR to qualify the MR4 PPR entry. After sPPR entry, an
ACT command will capture the target bank and target row, herein seed row, where the row repair will
be made. After tRCD time, a WR command is used to select the individual DRAM, through the DQ bits,
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
135
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
sPPR Row Repair
to transfer the repair address into an internal register in the DRAM. After a write recovery time and PRE
command, the sPPR mode can be exited and normal operation can resume.
The DRAM will retain the soft repair information as long as VDD remains within the operating region
unless rewritten by a subsequent sPPR entry to the same bank. If DRAM power is removed or the DRAM
is reset, the soft repair will revert to the unrepaired state. hPPR and sPPR should not be enabled at the
same time; Micron sPPR does not have to be disabled and cleared prior to entering hPPR mode, but
sPPR must be disabled and cleared prior to entering MBIST-PPR mode.
With sPPR, Micron DDR4 can repair one row per bank. When a subsequent sPPR request is made to the
same bank, the subsequently issued sPPR address will replace the previous sPPR address. When the
hPPR resource for a bank is used up, the bank should be assumed to not have available resources for
sPPR. If a repair sequence is issued to a bank with no repair resource available, the DRAM will ignore
the programming sequence.
The bank receiving sPPR change is expected to retain memory array data in all rows except for the seed
row and its associated row addresses. If the data in the memory array in the bank under sPPR repair is
NOTREQUIREDTOBERETAINEDTHENTHEHANDLINGOFTHESEEDROWSASSOCIATEDROWADDRESSESISNOTOF
interest and can be ignored. If the data in the memory array is required to be retained in the bank under
sPPR mode, then prior to executing the sPPR mode, the seed row and its associated row addresses
should be backed up and subsequently restored after sPPR has been completed. sPPR associated seed
row addresses are specified in the Table below; BA0 is not required by Micron DRAMs however it is
JEDEC reserved.
Table 43: sPPR Associated Rows
sPPR Associated Row Address
BA0*
A17
A16
A15
A14
A13
A1
A0
All banks must be precharged and idle. DBI and CRC modes must be disabled, and all sPPR timings
must be followed as shown in the timing diagram that follows.
All other commands except those listed in the following sequences are illegal.
1. Issue MR4[5] 1 to enter sPPR mode enable.
a) All DQ are driven HIGH.
2. Issue four consecutive guard key commands (shown in the table below) to MR0 with each command
separated by tMOD. Please note that JEDEC recently added the four guard key entry used for hPPR
to sPPR entry; early DRAMs may not require four guard key entry code. A prudent controller design
should accommodate either option in case an earlier DRAM is used.
a) Any interruption of the key sequence by other commands, such as ACT, WR, RD, PRE, REF, ZQ,
and NOP, are not allowed.
b) If the guard key bits are not entered in the required order or interrupted with other MR
commands, sPPR will not be enabled, and the programming cycle will result in a NOP.
c) When the sPPR entry sequence is interrupted and followed by ACT and WR commands, these
commands will be conducted as normal DRAM commands.
d) JEDEC allows A6:0 to be "Don't Care" on 4Gb and 8Gb devices from a supplier perspective and
the user should rely on vendor datasheet.
Table 44: PPR MR0 Guard Key Settings
MR0
BG1:0
BA1:0
A17:12
A11
A10
A9
A8
A7
A6:0
First guard key
0
0
xxxxxx
1
1
0
0
1
1111111
Second guard key
0
0
xxxxxx
0
1
1
1
1
1111111
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
136
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
sPPR Row Repair
Table 44: PPR MR0 Guard Key Settings (Continued)
MR0
BG1:0
BA1:0
A17:12
A11
A10
A9
A8
A7
A6:0
Third guard key
0
0
xxxxxx
1
0
1
1
1
1111111
Fourth guard key
0
0
xxxxxx
0
0
1
1
1
1111111
3. After tMOD, issue an ACT command with failing BG and BA with the row address to be repaired.
4. After tRCD, issue a WR command with BG and BA of failing row address.
a) The address must be at valid levels, but the address is a "Don't Care."
5. All DQ of the target DRAM should be driven LOW for 4nCK (bit 0 through bit 7) after WL (WL = CWL
+ AL + PL) in order for sPPR to initiate repair.
a) Repair will be initiated to the target DRAM only if all DQ during bit 0 through bit 7 are LOW.
b) Repair will not be initiated to the target DRAM if any DQ during bit 0 through bit 7 is HIGH.
i) JEDEC states: All DQs of target DRAM should be LOW for 4tCK. If HIGH is driven to all DQs of
a DRAM consecutively for equal to or longer than the first 2tCK, then DRAM does not conduct
hPPR and retains data if REF command is properly issued; if all DQs are neither LOW for 4tCK
nor HIGH for equal to or longer than the first 2tCK, then hPPR mode execution is unknown.
c) DQS should function normally.
6. REF command may NOT be issued at anytime while in sPPR mode.
7. Issue PRE after tWR time so that the device can repair the target row during tWR time.
a) Wait tPGM_Exit_s after PRE to allow the device to recognize the repaired target row address.
8. Issue MR4[5] 0 command to sPPR mode disable.
a) Wait tPGMPST_s for sPPR mode exit to complete.
b) After tPGMPST_s has expired, any valid command may be issued.
The entire sequence from sPPR mode enable through sPPR mode disable may be repeated if more than
one repair is to be done.
After sPPR mode has been exited, the DRAM controller can confirm if the target row was repaired
correctly by writing data into the target row and reading it back.
Figure 79: S002n%NTRY
T0
T1
Ta0
Ta1
Tb0
Tb1
Tc0
Tc1
Td0
CMD
MRS4
DES
MRS0
DES
MRS0
DES
MRS0
DES
MRS0
BG
Valid
N/A
00
N/A
00
N/A
00
N/A
00
Td1
Te0
Tf0
DES
ACT
WR
N/A
BGf
Tg0
CK_c
CK_t
BGf
DES
N/A
BA
Valid
N/A
00
N/A
00
N/A
00
N/A
00
N/A
BAf
BAf
N/A
ADDR
Valid
(A5=1)
N/A
1st Key
N/A
2nd Key
N/A
3rd Key
N/A
4th Key
N/A
Valid
Valid
N/A
CKE
DQS_t
DQS_c
DQs1
All Banks
Precharged
and idle state
Normal
Mode
t MOD
t MOD
t MOD
t MOD
t MOD
sPPR Entry
1st Guard Key Validate
2nd Guard Key Validate
3rd Guard Key Validate
4th Guard Key Validate
t RCD
sPPR Repair
Don’t Care
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
137
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
MBIST-PPR
Figure 80: S002n2EPAIRAND%XIT
Te0
Tf0
CMD
ACT
BG
BGf
BA
ADDR
CK_c
Tg0
Tg1
Th0
Th1
Tj0
Tj1
Tj2
Tk0
WR
DES
DES
DES
DES
DES
DES
DES
PRE
BGf
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Valid
BAf
BAf
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Valid
Valid
Valid
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Valid
Tk1
Tm0
Tm1
Tn0
DES
MRS4
DES
Valid
N/A
Valid
N/A
Valid
N/A
Valid
N/A
Valid
N/A
Valid
(A5=0)
N/A
Valid
CK_t
CKE
WL = CWL + AL + PL
tWR
4nCK
DQS_t
DQS_c
DQs1
bit 0
All Banks
Precharged
and idle state
bit 1
bit 6
bit 7
tPGM_s
tRCD
sPPR Repair
sPPR Repair
tPGM_Exit_s
sPPR Repair
sPPR Recognition
sPPR Repair
tPGMPST_s
Normal
Mode
sPPR Exit
Don’t Care
Table 45: DDR4 sPPR Timing Parameters DDR4-1600 Through DDR4-3200
Parameter
Symbol
sPPR programming time
tPGM_s
sPPR precharge exit time
tPGM_Exit_s
sPPR exit time
t
PGMPST_s
Min
tRCD(MIN)+
Max
Unit
n
ns
20
n
ns
MOD
n
ns
WL + 4nCK +
t
tWR(MIN)
MBIST-PPR
DDR4 devices can support optional memory built-in self-test post-package repair (MBIST-PPR) to
help with hard failures such as single-bit or multi-bit failures in a single device so that weak cells can
be scanned and repaired during the initialization phase. The DRAM will use vendor-specific patterns
to investigate the status of all cell arrays and automatically perform PPR for weak bits during this operation. This operation introduces proactive, automated PPR by the DRAM, and it is recommended to be
DONEFORAVERYFIRSTBOOT
UPATLEAST!FTERTHATITISATTHECONTROLLERSDISCRETIONWHETHERTOACTIVATE
MBIST. MBIST mode can only be entered from the all banks idle state. The DLL is required to be
enabled and locked prior to MBIST-PPR execution.
MBIST-PPR resources are separated from normal hPPR/sPPR resources. MBIST-PPR resources are
typically used for initial scan and repair, and hPPR/sPPR resources must still satisfy the number of
repair elements, one per BG, specified in the DDR4 Bank Group Timing Examples 1. Once the
MBIST-PPR is completed, the DRAM will update the status flag in MPR3[7] of MPR page 3. Detailed
status is described in the MPR Page and MPRx Definitions .
The test time of MBIST-PPR will not exceed 10 seconds for all mono-die DRAM densities. For DDP
devices, test time will be 20 seconds.
The controller is required to inject an MRS command to enter this operation. The controller sets
MR4:A0 to 1, followed by MR0 commands for the guard key. Then the DRAM enters MBIST-PPR operation. The ALERT_n signal notifies the host of the status of this operation. When the controller sets
MR4:A0 to 1, followed by the MR0 guard key sequence, the DRAM drives ALERT_n to 0. Once the
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
138
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
MBIST-PPR
MBIST-PPR is completed, the DRAM drives ALERT_n to 1 to notify the controller that this operation is
completed. DRAM data will not be guaranteed after the MBIST-PPR operation.
Table 46: MBIST-PPR Timing Parameter
Value
Parameter
tSELFHEAL
Min
Max
Unit
Monolithic
n
10
s
DDP
n
20
MBIST-PPR Procedure
The following sequences are required for MBIST-PPR and are shown in the figure below.
1. The DRAM needs to finalize initialization, MR training, and ZQ calibration prior to entering
MBIST-PPR.
2. Four consecutive guard key commands must be issued to MR0, with each command separated by
t
MOD. The PPR guard key settings are the same whether performing sPPR, hPPR, or MBIST-PPR
mode.
3. Anytime after Tk in the Read Termination Disable Window 15, the host must set MR4:A0 to 1,
followed by subsequent MR0 guard key sequences (which is identical to typical hPPR/sPPR guard
key sequences and specified in Table 73) to start MBIST-PPR operation, and the DRAM drives the
ALERT_n signal to 0.
4. During MBIST-PPR mode, only DESELECT commands are allowed.
5. The ODT pin must be driven LOW during MBIST-PPR to satisfy DODTLoff from time Tb0 until Tc2.
The DRAM may or may not provide RTT_PARK termination during MBIST-PPR regardless of
whether RTT_PARK is enabled in MR5.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
139
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
MBIST-PPR
Figure 81: MBIST-PPR Sequence
T0
T1
Ta0
Ta1
Tb0
Tb1
Tb2
CMD
MRS4
DES
MRS0
DES
DES
Valid
DES
BG
Valid
N/A
00
N/A
N/A
Valid
N/A
BA
Valid
N/A
00
N/A
N/A
Valid
N/A
ADDR
Valid
(A0=1)
N/A
4th Key
N/A
N/A
Valid
N/A
CK_c
CK_t
CKE
t IS
ALERT_N
5 x t MOD
Follow Guard Key Entry Sequence
All Banks
Precharged
and idle state
Normal
Mode
t SELFHEAL
MBIST-PPR Entry
MBIST-PPR
Normal
Normal
Operation
Operation
Table 47: MPR Page3 Configuration for MBIST-PPR
Address
MPR Location
[7]
[6]
[5]
[4]
[3]
[2]
[1]
[0]
Note
BA[1:0]
00 = MPR0
DC
DC
DC
DC
DC
DC
DC
DC
01 = MPR1
DC
DC
DC
DC
DC
DC
DC
DC
Readonly
10 = MPR2
DC
DC
DC
DC
DC
DC
DC
DC
11 = MPR3
MBISTPPR
Support
DC
MBIST-PPR
Transparency
MAC
MAC
MAC
MAC
MPR Location
Address Bit
Function
11 = MPR3
7
MBIST-PPR Support
Data
Notes
0: Don't Support
1: Support
00B: MBIST-PPR hasn't run since init OR no fails found
during most recent MBIST-PPR
11 = MPR3
5:4
MBIST-PPR
Transparency
1
1, 2
01B: Repaired all found fails during most recent run
1
10B: Unrepairable fails found during most recent run
1
11B: MBIST-PPR should be run again
1, 3
Notes: 1. MPR bits are cleared either by a power-up sequence or re-initialization by RESET_n signal
2. The host should track whether MBIST-PPR has run since INIT. If MBIST-PPR is performed and it finds no fails, this
transparency state will remain set to 00B
3. This state does not imply that MBIST-PPR is required to run again. This implies that additional repairable fails were
found during the most recent MBIST-PPR beyond what could be repaired in the tSELFHEAL window.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
140
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
hPPR/sPPR/MBIST-PPR Support Identifier
hPPR/sPPR/MBIST-PPR Support Identifier
Table 48: DDR4 Repair Mode Support Identifier
MPR Page 2
MPR0
MPR Page 3
A6
A5
A4
A3
A2
A1
A0
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
hPPR1
sPPR2
RTT_WR
A7
A6
A5
A4
A3
A2
A1
A0
UI0
UI1
UI2
UI3
UI4
UI5
UI6
UI7
MAC
MAC
MAC
MAC
MBIST-PPR
Support3
MPR3
Notes: 1.
2.
3.
4.
A7
Temp sensor
Don't Care MBIST-PPR Transparency
RTT_WR
CRC
0 = hPPR mode is not available, 1 = hPPR mode is available.
0 = sPPR mode is not available, 1 = sPPR mode is available.
0 = MBIST-PPR mode is not available, 1 = MBIST-PPR mode is available.
Gray shaded areas are for reference only.
ACTIVATE Command
The ACTIVATE command is used to open (activate) a row in a particular bank for subsequent access.
The values on the BG[1:0] inputs select the bank group, the BA[1:0] inputs select the bank within the
bank group, and the address provided on inputs A[17:0] selects the row within the bank. This row
remains active (open) for accesses until a PRECHARGE command is issued to that bank. A
PRECHARGE command must be issued before opening a different row in the same bank.
Bank-to-bank command timing for ACTIVATE commands uses two different timing parameters,
depending on whether the banks are in the same or different bank group. tRRD_S (short) is used for
timing between banks located in different bank groups. tRRD_L (long) is used for timing between
banks located in the same bank group. Another timing restriction for consecutive ACTIVATE
commands [issued at tRRD (MIN)] is tFAW (four activate window). Because there is a maximum of four
banks in a bank group, the tFAW parameter applies across different bank groups (five ACTIVATE
commands issued at tRRD_L (MIN) to the same bank group would be limited by tRC).
Figure 82: tRRD Timing
CK_c
CK_t
Command
T0
T1
ACT
DES
T2
T3
T4
T5
T6
DES
DES
ACT
DES
DES
T8
T9
T10
T11
DES
DES
DES
ACT
DES
tRRD_L
tRRD_S
Bank
Group
(BG)
T7
BG a
BG b
BG b
Bank
Bank c
Bank c
Bank d
Address
Row n
Row n
Row n
Don’t Care
tRRD_S; ACTIVATE-to-ACTIVATE command period (short); applies to consecutive ACTIVATE commands to different
bank groups (that is, T0 and T4).
2. tRRD_L; ACTIVATE-to-ACTIVATE command period (long); applies to consecutive ACTIVATE commands to the
different banks in the same bank group (that is, T4 and T10).
Notes: 1.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
141
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
PRECHARGE Command
Figure 83: tFAW Timing
T0
CK_c
CK_t
Command
ACT
Ta0
Valid
ACT
tRRD
Tb0
Valid
ACT
tRRD
Valid
Tc0
Tc1
Tc2
ACT
Valid
Valid
tRRD
Valid
Td0
Td1
ACT
NOP
tFAW
Bank
Group
(BG)
Valid
Valid
Valid
Valid
Valid
Bank
Valid
Valid
Valid
Valid
Valid
Address
Valid
Valid
Valid
Valid
Valid
Don’t Care
Note: 1.
Time Break
t
FAW; four activate windows.
PRECHARGE Command
The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in
all banks. The bank(s) will be available for a subsequent row activation for a specified time (tRP) after
the PRECHARGE command is issued. An exception to this is the case of concurrent auto precharge,
where a READ or WRITE command to a different bank is allowed as long as it does not interrupt the
data transfer in the current bank and does not violate any other timing parameters.
After a bank is precharged, it is in the idle state and must be activated prior to any READ or WRITE
commands being issued to that bank. A PRECHARGE command is allowed if there is no open row in
that bank (idle state) or if the previously open row is already in the process of precharging. However,
the precharge period will be determined by the last PRECHARGE command issued to the bank.
The auto precharge feature is engaged when a READ or WRITE command is issued with A10 HIGH. The
auto precharge feature uses the RAS lockout circuit to internally delay the PRECHARGE operation until
the ARRAY RESTORE operation has completed. The RAS lockout circuit feature allows the
PRECHARGE operation to be partially or completely hidden during burst READ cycles when the auto
precharge feature is engaged. The PRECHARGE operation will not begin until after the last data of the
burst write sequence is properly stored in the memory array.
REFRESH Command
The REFRESH command (REF) is used during normal operation of the device. This command is
nonpersistent, so it must be issued each time a refresh is required. The device requires REFRESH cycles
at an average periodic interval of tREFI. When CS_n, RAS_n/A16, and CAS_n/A15 are held LOW and
WE_n/A14 HIGH at the rising edge of the clock, the device enters a REFRESH cycle. All banks of the
SDRAM must be precharged and idle for a minimum of the precharge time, tRP (MIN), before the
REFRESH command can be applied. The refresh addressing is generated by the internal DRAM refresh
CONTROLLER4HISMAKESTHEADDRESSBITSh$ONT#AREvDURINGA2%&2%3(COMMAND!NINTERNALADDRESS
counter supplies the addresses during the REFRESH cycle. No control of the external address bus is
required once this cycle has started. When the REFRESH cycle has completed, all banks of the SDRAM
will be in the precharged (idle) state. A delay between the REFRESH command and the next valid
command, except DES, must be greater than or equal to the minimum REFRESH cycle time tRFC
(MIN), as shown in .
NOTE: The tRFC timing parameter depends on memory density.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
142
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
REFRESH Command
In general, a REFRESH command needs to be issued to the device regularly every tREFI interval. To
allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh interval is provided for postponing and pulling-in the REFRESH command. A limited
number REFRESH commands can be postponed depending on refresh mode: a maximum of 8
REFRESH commands can be postponed when the device is in 1X refresh mode; a maximum of 16
REFRESH commands can be postponed when the device is in 2X refresh mode; and a maximum of 32
REFRESH commands can be postponed when the device is in 4X refresh mode.
When 8 consecutive REFRESH commands are postponed, the resulting maximum interval between the
surrounding REFRESH commands is limited to 9 έ tREFI (see ). For both the 2X and 4X refresh modes,
the maximum interval between surrounding REFRESH commands allowed is limited to 17 έ tREFI2
and 33 έ tREFI4, respectively.
A limited number REFRESH commands can be pulled-in as well. A maximum of 8 additional REFRESH
COMMANDSCANBEISSUEDINADVANCEORhPULLED
INvIN8REFRESHMODEAMAXIMUMOFADDITIONAL
REFRESH commands can be issued when in advance in 2X refresh mode, and a maximum of 32 additional REFRESH commands can be issued in advance when in 4X refresh mode. Each of these
REFRESH commands reduces the number of regular REFRESH commands required later by one. The
resulting maximum interval between two surrounding REFRESH commands is limited to 9 έ tREFI ( ),
17 έ tRFEI2, or 33 έ tREFI4. At any given time, a maximum of 16 REF commands can be issued within 2
έ tREFI, 32 REF2 commands can be issued within 4 έ tREFI2, and 64 REF4 commands can be issued
within 8 έ tREFI4 (larger densities are limited by tRFC1, tRFC2, and tRFC4, respectively, which must
still be met).
Figure 84: REFRESH Command Timing
CK_c
T0
T1
REF
DES
Ta0
Ta1
Tb0
Tb1
Tb2
Tb3
Valid
Valid
Valid
Valid
Tc0
Tc1
Tc2
Tc3
REF
Valid
Valid
Valid
CK_t
Command
DES
REF
tRFC
DES
tRFC
DES
Valid
(MIN)
tREFI
(MAX 9 × tREFI)
DRAM must be idle
DRAM must be idle
Time Break
Don’t Care
Notes: 1. Only DES commands are allowed after a REFRESH command is registered until tRFC (MIN) expires.
2. Time interval between two REFRESH commands may be extended to a maximum of 9 έ tREFI.
Figure 85: Postponing REFRESH Commands (Example)
tREFI
9 × tREFI
t
tRFC
8 REF-Commands postponed
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
143
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
REFRESH Command
Figure 86: Pulling In REFRESH Commands (Example)
9 × tREFI
tREFI
t
tRFC
8 REF-Commands pulled-in
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
144
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Temperature-Controlled Refresh Mode
Temperature-Controlled Refresh Mode
During normal operation, temperature-controlled refresh (TCR) mode disabled, the device must have
a REFRESH command issued once every tREFI, except for what is allowed by posting (see REFRESH
Command section). This means a REFRESH command must be issued once every 7.8ρs if TC is less
than or equal to 85ιC, once every 3.9ρs if TC is greater than 85ιC, once every 1.95ρs if TC is greater than
95ιC, regardless of which Temperature Mode is selected (MR4[2]). TCR mode is disabled by setting
MR4[3] = 0 while TCR mode is enabled by setting MR4[3] = 1. When TCR mode is enabled (MR4[3] = 1),
the Temperature Mode must be selected where MR4[2] = 0 enables the Normal Temperature Mode
while MR4[2] = 1 enables the Extended Temperature Mode.
When TCR mode is enabled, the device will register the externally supplied REFRESH command and
adjust the internal refresh period to be longer than tREFI of the normal temperature range, when
allowed, by skipping REFRESH commands with the proper gear ratio. TCR mode has two Temperature
Modes to select between the normal temperature range and the extended temperature range; the
correct Temperature Mode must be selected so the internal control operates correctly. The DRAM
must have the correct refresh rate applied externally; the internal refresh rate is determined by the
DRAM based upon the temperature.
Normal Temperature Mode
REFRESH commands should be issued to the device with the refresh period equal to tREFI of normal
temperature range (-40ιC to 85ιC). The system must guarantee that the TC does not exceed 85ιC when
t
REFI of the normal temperature range is used. The device may adjust the internal refresh period to be
longer than tREFI of the normal temperature range by skipping external REFRESH commands with the
proper gear ratio when TC is below 85ιC. The internal refresh period is automatically adjusted inside
the DRAM, and the DRAM controller does not need to provide any additional control.
Extended Temperature Mode
REFRESH commands should be issued to the device with the refresh period equal to tREFI of extended
temperature range (85ιC to 95ιC, or 95ιC to 105ιC) . The system must guarantee that the TC does not
exceed 95ιC, or 105ιC. Even though the external refresh supports the extended temperature range, the
device may adjust its internal refresh period to be equal to or longer than tREFI of the normal temperature range (-40ιC to 85ιC) by skipping external REFRESH commands with the proper gear ratio when
TC is equal to or below 85ιC. The internal refresh period is automatically adjusted inside the DRAM,
and the DRAM controller does not need to provide any additional control.
Table 49: Normal tREFI Refresh (TCR Enabled)
Normal Temperature Mode
Extended Temperature Mode
Temperature
External Refresh
Period
Internal Refresh
Period
External Refresh
Period
Internal Refresh
Period
TC ζ 85ιC
7.8ρs
η7.8ρs
3.9ρs1
η7.8ρs
85ιC < TC ζ 95ιC
3.9ρs
95ιC < TC ζ 105ιC
1.95ρs
Notes: 1. If the external refresh period is slower than 3.9ρs, the device will refresh internally at too slow of a refresh rate
and will violate refresh specifications.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
145
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Temperature-Controlled Refresh Mode
Figure 87: TCR Mode Example1
Controller
External
tREFI
3.9μs
REFRESH
REFRESH
85°C < TC 95°C
TC 85°C
REFRESH
REFRESH
Internal
tREFI
3.9μs
REFRESH
Internal
tREFI
7.8μs
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
REFRESH
Controller issues REFRESH
commands at extended
temperature rate
External REFRESH
commands are not
ignored
At least every other
external REFRESH
ignored
REFRESH
Note: 1. TCR enabled with Extended Temperature Mode selected.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
146
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Fine Granularity Refresh Mode
Fine Granularity Refresh Mode
Mode Register and Command Truth Table
The REFRESH cycle time (tRFC) and the average refresh interval (tREFI) can be programmed by the
MRS command. The appropriate setting in the mode register will set a single set of REFRESH cycle
times and average refresh interval for the device (fixed mode), or allow the dynamic selection of one of
two sets of REFRESH cycle times and average refresh interval for the device (on-the-fly mode [OTF]).
OTF mode must be enabled by MRS before any OTF REFRESH command can be issued.
Table 50: MRS Definition
MR3[
8]
MR3[7]
MR3[6]
Refresh Rate Mode
0
0
0
Normal mode (fixed 1x)
0
0
1
Fixed 2x
0
1
0
Fixed 4x
0
1
1
Reserved
1
0
0
Reserved
1
0
1
On-the-fly 1x/2x
1
1
0
On-the-fly 1x/4x
1
1
1
Reserved
There are two types of OTF modes (1x/2x and 1x/4x modes) that are selectable by programming the
appropriate values into the mode register MR3 [8:6]. When either of the two OTF modes is selected, the
device evaluates the BG0 bit when a REFRESH command is issued, and depending on the status of BG0,
it dynamically switches its internal refresh configuration between 1x and 2x (or 1x and 4x) modes, and
then executes the corresponding REFRESH operation.
Table 51: REFRESH Command Truth Table
RAS_n/A CAS_n/A
15
14
WE_n/
A13
BG1
BG0
A10/
AP
A[9:0],
A[12:11],
A[20:16]
MR3[8:6
]
Refresh
CS_n
ACT_n
Fixed rate
L
H
L
L
H
V
V
V
V
0vv
OTF: 1x
L
H
L
L
H
V
L
V
V
1vv
OTF: 2x
L
H
L
L
H
V
H
V
V
101
OTF: 4x
L
H
L
L
H
V
H
V
V
110
t
REFI and tRFC Parameters
The default refresh rate mode is fixed 1x mode where REFRESH commands should be issued with the
normal rate; that is, tREFI1 = tREFI(base) (for TC ζ 85ιC), and the duration of each REFRESH command
is the normal REFRESH cycle time (tRFC1). In 2x mode (either fixed 2x or OTF 2x mode), REFRESH
commands should be issued to the device at the double frequency (tREFI2 = tREFI(base)/2) of the
normal refresh rate. In 4x mode, the REFRESH command rate should be quadrupled (tREFI4 =
t
REFI(base)/4). Per each mode and command type, the tRFC parameter has different values as defined
in the following table.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
147
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Fine Granularity Refresh Mode
For discussion purposes, the REFRESH command that should be issued at the normal refresh rate and
has the normal REFRESH cycle duration may be referred to as an REF1x command. The REFRESH
command that should be issued at the double frequency (tREFI2 = tREFI(base)/2) may be referred to
as a REF2x command. Finally, the REFRESH command that should be issued at the quadruple rate
(tREFI4 = tREFI(base)/4) may be referred to as a REF4x command.
In the fixed 1x refresh rate mode, only REF1x commands are permitted. In the fixed 2x refresh rate
mode, only REF2x commands are permitted. In the fixed 4x refresh rate mode, only REF4x commands
are permitted. When the on-the-fly 1x/2x refresh rate mode is enabled, both REF1x and REF2x
commands are permitted. When the OTF 1x/4x refresh rate mode is enabled, both REF1x and REF4x
commands are permitted.
Table 52: tREFI and tRFC Parameters
Refresh
Mode
Parameter
t
REFI (base)
1x mode
tREFI1
-40ιC ζ TC ζ 85ιC
REFI2
REFI4
t
RFC4
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Units
7.8
ρs
tREFI(base)
tREFI(base)
tREFI(base)
tREFI(base)
ρs
REFI(base)/2
t
t
t
ρs
95ιC ζ TC ζ 105ιC
t
t
t
t
REFI(base)/4
ρs
350
ns
REFI(base)/2
REFI(base)/4
REFI(base)/2
REFI(base)/4
160
REFI(base)/2
REFI(base)/4
260
350
-40ιC ζ TC ζ 85ιC
t
t
t
t
ρs
85ιC ζ TC ζ 95ιC
t
t
t
t
REFI(base)/4
ρs
95ιC ζ TC ζ 105ιC
tREFI(base)/8
tREFI(base)/8
tREFI(base)/8
tREFI(base)/8
ρs
110
160
260
260
ns
REFI(base)/4
REFI(base)/2
REFI(base)/4
RFC2
t
16Gb
7.8
REFI(base)/2
t
4x mode
8Gb
7.8
t
RFC1
t
4Gb
7.8
85ιC ζ TC ζ 95ιC
t
2x mode
2Gb
REFI(base)/2
REFI(base)/4
REFI(base)/2
REFI(base)/4
-40ιC ζ TC ζ 85ιC
t
t
t
t
ρs
85ιC ζ TC ζ 95ιC
t
t
t
t
ρs
95ιC ζ TC ζ 105ιC
t
t
t
t
REFI(base)/1
6
ρs
160
ns
REFI(base)/4
REFI(base)/8
REFI(base)/1
6
90
148
REFI(base)/4
REFI(base)/8
REFI(base)/1
6
110
REFI(base)/4
REFI(base)/8
REFI(base)/1
6
160
REFI(base)/8
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
Extended Temperature Operation – -40°C to 105°C
Normal Temperature Operation – -40°C to 85°C
2x Mode
(-40°C to 85°C)
4x Mode
(-40°C to 85°C)
1x Mode
(-40°C to 105°C)
2x Mode
(-40°C to 105°C)
4x Mode
(-40°C to 105°C)
REF@260ns
REF@160ns
REF@110ns
REF@260ns
REF@160ns
REF@110ns
5μ
FI
5μ
s
Rt E
97
0.
=
s
s
0.
=
μs
s
Rt E
FI
95
1.
=
5μ
FI
Rt E
REF@260ns
REF@160ns
s
5μ
REF@110ns
REF@110ns
=
μs
5μ
97
0.
=
s
FI
9μ
5μ
=
FI
5μ
s
Rt E
95
1.
=
97
FI
REF@110ns
REF@260ns
REF@160ns
5μ
REF@110ns
REF@110ns
97
REF@160ns
=
FI
μs
5μ
97
0.
=
FI
5μ
s
Rt E
=
s
97
REF@160ns
5μ
REF@260ns
REF@110ns
97
REF@110ns
=
FI
μs
5μ
s
Rt E
95
1.
=
97
s
5μ
3.
Rt E
FI
9μ
s
=
Rt E
0.
FI
REF@110ns
=
97
REF@110ns
=
0.
REF@160ns
FI
5μ
s
Rt E
95
1.
97
0.
=
FI
REF@110ns
Rt E
FI
=
Rt E
Rt E
FI
=
1.
95
μs
Rt E
FI
REF@110ns
μs
Rt E
FI
=
3.
9μ
s
Rt E
FI
=
1.
95
μs
0.
REF@160ns
s
Rt E
Rt E
FI
FI
=
Rt E
0.
FI
=
FI
Rt E
5μ
1.
Rt E
95
FI
μs
=
0.
97
FI
μs
95
1.
s
8μ
7.
REF@110ns
REF@260ns
REF@160ns
REF@110ns
REF@260ns
REF@160ns
REF@110ns
8Gb: x4, x8, x16 DDR4 SDRAM
Fine Granularity Refresh Mode
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
=
s
Rt E
95
1.
=
FI
Rt E
s
9μ
3.
REF@110ns
REF@160ns
Rt E
FI
REF@110ns
Rt E
REF@110ns
=
=
3.
9μ
s
Rt E
FI
=
1.
149
95
μs
0.
REF@260ns
s
Rt E
FI
=
0.
Rt E
Rt E
FI
=
1.
95
μs
0.
97
FI
Rt E
s
Rt E
3.
REF@110ns
REF@160ns
μs
Rt E
FI
REF@110ns
s
Rt E
FI
95
1.
=
Rt E
FI
REF@110ns
=
=
3.
9μ
s
Rt E
FI
=
1.
95
Rt E
μs
FI
0.
97
REF@160ns
=
7.
8μ
s
Rt E
FI
=
0.
97
FI
REF@110ns
Rt E
FI
=
1.
95
μs
97
REF@110ns
REF@160ns
Rt E
5μ
=
Rt E
3.
FI
9μ
s
9μ
3.
=
FI
REF@110ns
Rt E
0.
97
=
μs
95
1.
=
FI
REF@110ns
Rt E
FI
=
1.
95
μs
s
1x Mode
(-40°C to 85°C)
Rt E
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Figure 88: 4Gb with Fine Granularity Refresh Mode Example
8Gb: x4, x8, x16 DDR4 SDRAM
Fine Granularity Refresh Mode
Changing Refresh Rate
If the refresh rate is changed by either MRS or OTF. New tREFI and tRFC parameters will be applied
from the moment of the rate change. When the REF1x command is issued to the DRAM, tREF1 and
t
RFC1 are applied from the time that the command was issued; when the REF2x command is issued,
tREF2 and tRFC2 should be satisfied.
Figure 89: OTF REFRESH Command Timing
CK_c
CK_t
Command
DES
REF1
DES
DES
tRFC1
DES
Valid
Valid
REF2
DES
tRFC2
(MIN)
tREFI1
DES
Valid
DES
REF2
DES
(MIN)
tREFI2
Don’t Care
The following conditions must be satisfied before the refresh rate can be changed. Otherwise, data
retention cannot be guaranteed.
s In the fixed 2x refresh rate mode or the OTF 1x/2x refresh mode, an even number of REF2x
commands must be issued because the last change of the refresh rate mode with an MRS command
before the refresh rate can be changed by another MRS command.
s In the OTF1x/2x refresh rate mode, an even number of REF2x commands must be issued between
any two REF1x commands.
s In the fixed 4x refresh rate mode or the OTF 1x/4x refresh mode, a multiple-of-four number of REF4x
commands must be issued because the last change of the refresh rate with an MRS command before
the refresh rate can be changed by another MRS command.
s In the OTF1x/4x refresh rate mode, a multiple-of-four number of REF4x commands must be issued
between any two REF1x commands.
There are no special restrictions for the fixed 1x refresh rate mode. Switching between fixed and OTF
modes keeping the same rate is not regarded as a refresh rate change.
Usage with TCR Mode
If the temperature controlled refresh mode is enabled, only the normal mode (fixed 1x mode, MR3[8:6]
= 000) is allowed. If any other refresh mode than the normal mode is selected, the temperature
controlled refresh mode must be disabled.
Self Refresh Entry and Exit
The device can enter self refresh mode anytime in 1x, 2x, and 4x mode without any restriction on the
number of REFRESH commands that have been issued during the mode before the self refresh entry.
However, upon self refresh exit, extra REFRESH command(s) may be required, depending on the
condition of the self refresh entry.
The conditions and requirements for the extra REFRESH command(s) are defined as follows:
s In the fixed 2x refresh rate mode or the enable-OTF 1x/2x refresh rate mode, it is recommended there
be an even number of REF2x commands before entry into self refresh after the last self refresh exit,
REF1x command, or MRS command that set the refresh mode. If this condition is met, no additional
REFRESH commands are required upon self refresh exit. In the case that this condition is not met,
either one extra REF1x command or two extra REF2x commands must be issued upon self refresh
exit. These extra REFRESH commands are not counted toward the computation of the average
refresh interval (tREFI).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
150
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Fine Granularity Refresh Mode
s In the fixed 4x refresh rate mode or the enable-OTF 1x/4x refresh rate mode, it is recommended there
be a multiple-of-four number of REF4x commands before entry into self refresh after the last self
refresh exit, REF1x command, or MRS command that set the refresh mode. If this condition is met,
no additional refresh commands are required upon self refresh exit. When this condition is not met,
either one extra REF1x command or four extra REF4x commands must be issued upon self refresh
exit. These extra REFRESH commands are not counted toward the computation of the average
refresh interval (tREFI).
There are no special restrictions on the fixed 1x refresh rate mode.
This section does not change the requirement regarding postponed REFRESH commands. The
requirement for the additional REFRESH command(s) described above is independent of the requirement for the postponed REFRESH commands.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
151
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
SELF REFRESH Operation
SELF REFRESH Operation
The SELF REFRESH command can be used to retain data in the device, even if the rest of the system is
powered down. When in self refresh mode, the device retains data without external clocking. The
device has a built-in timer to accommodate SELF REFRESH operation. The SELF REFRESH command
is defined by having CS_n, RAS_n, CAS_n, and CKE held LOW with WE_n and ACT_n HIGH at the rising
edge of the clock.
Before issuing the SELF REFRESH ENTRY command, the device must be idle with all banks in the
precharge state and tRP satisfied. Idle state is defined as: All banks are closed (tRP, tDAL, and so on,
satisfied), no data bursts are in progress, CKE is HIGH, and all timings from previous operations are
satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, and so on). After the SELF REFRESH ENTRY
command is registered, CKE must be held LOW to keep the device in self refresh mode. The DRAM
automatically disables ODT termination, regardless of the ODT pin, when it enters self refresh mode
and automatically enables ODT upon exiting self refresh. During normal operation (DLL_on), the DLL
is automatically disabled upon entering self refresh and is automatically enabled (including a DLL
reset) upon exiting self refresh.
When the device has entered self refresh mode, all of the external control signals, except CKE and
2%3%4?NAREh$ONT#AREv&ORPROPER3%,&2%&2%3(OPERATIONALLPOWERSUPPLYANDREFERENCEPINS
(VDD, VDDQ, VSS, VSSQ, VPP, and VREFCA) must be at valid levels. The DRAM internal VREFDQ generator
circuitry may remain on or be turned off depending on the MR6 bit 7 setting. If the internal VREFDQ
circuit is on in self refresh, the first WRITE operation or first write-leveling activity may occur after tXS
time after self refresh exit. If the DRAM internal VREFDQ circuitry is turned off in self refresh, it ensures
that the VREFDQ generator circuitry is powered up and stable within the tXSDLL period when the DRAM
exits the self refresh state. The first WRITE operation or first write-leveling activity may not occur
earlier than tXSDLL after exiting self refresh. The device initiates a minimum of one REFRESH
command internally within the tCKE period once it enters self refresh mode.
The clock is internally disabled during a SELF REFRESH operation to save power. The minimum time
that the device must remain in self refresh mode is tCKESR/tCKESR_PAR. The user may change the
external clock frequency or halt the external clock tCKSRE/tCKSRE_PAR after self refresh entry is registered; however, the clock must be restarted and tCKSRX must be stable before the device can exit SELF
REFRESH operation.
The procedure for exiting self refresh requires a sequence of events. First, the clock must be stable prior
to CKE going back HIGH. Once a SELF REFRESH EXIT command (SRX, combination of CKE going
HIGH and DESELECT on the command bus) is registered, the following timing delay must be satisfied:
Commands that do not require locked DLL:
s tXS = ACT, PRE, PREA, REF, SRE, and PDE.
s tXS_FAST = ZQCL, ZQCS, and MRS commands. For an MRS command, only DRAM CL, WR/RTP
register, and DLL reset in MR0; RTT(NOM) register in MR1; the CWL and RTT(WR) registers in MR2; and
gear-down mode register in MR3; WRITE and READ preamble registers in MR4; RTT(PARK) register in
MR5; Data rate and VREFDQ calibration value registers in MR6 may be accessed provided the DRAM
is not in per-DRAM mode. Access to other DRAM mode registers must satisfy tXS timing. WRITE
commands (WR, WRS4, WRS8, WRA, WRAS4, and WRAS8) that require synchronous ODT and
dynamic ODT controlled by the WRITE command require a locked DLL.
Commands that require locked DLL in the normal operating range:
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
152
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
SELF REFRESH Operation
s t83$,,n2$2$32$32$!2$!3AND2$!3UNLIKE$$27272372372!72!3
and WRAS8 because synchronous ODT is required).
Depending on the system environment and the amount of time spent in self refresh, ZQ CALIBRATION
commands may be required to compensate for the voltage and temperature drift described in the ZQ
CALIBRATION Commands section. To issue ZQ CALIBRATION commands, applicable timing requirements must be satisfied (see the ZQ Calibration Timing figure).
CKE must remain HIGH for the entire self refresh exit period tXSDLL for proper operation except for
self refresh re-entry. Upon exit from self refresh, the device can be put back into self refresh mode or
power-down mode after waiting at least tXS period and issuing one REFRESH command (refresh
period of tRFC). The DESELECT command must be registered on each positive clock edge during the
self refresh exit interval tXS. ODT must be turned off during tXSDLL.
The use of self refresh mode introduces the possibility that an internally timed refresh event can be
missed when CKE is raised for exit from self refresh mode. Upon exit from self refresh, the device
requires a minimum of one extra REFRESH command before it is put back into self refresh mode.
Figure 90: Self Refresh Entry/Exit Timing
T0
T1
Ta0
Tb0
Tc0
Td0
Td1
Te0
Tf0
Tg0
Valid
Valid
Valid
CK_c
CK_t
tCKSRX
tCKSRE/tCKSRE_PAR
tIS
tCPDED
CKE
tCKESR/tCKESR_PAR
Valid
ODT
tXS_FAST
Command
DES
SRE
SRX
DES
ADDR
Valid 1
Valid 2
Valid 3
Valid
Valid
Valid
tXS
tRP
tXSDLL
Enter Self Refresh
Exit Self Refresh
Don’t Care
Time Break
Notes: 1. Only MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or ZQCL commands are
allowed.
2. Valid commands not requiring a locked DLL.
3. Valid commands requiring a locked DLL.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
153
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
SELF REFRESH Operation
Figure 91: Self Refresh Entry/Exit Timing with CAL Mode
T0
T1
T3
T4
T7
T8
T11
Ta0
Ta7
Ta8
Ta9
Ta10 Tb0
Tb1
DES
DES
DES
Tb3
CK_c
CK_t
t
t
CKSRE
CKSRX
CS_n
Note 2
Command
w/o CS_n
DES
DES
ADDR
SRE
DES
DES
SRX
Note 3
DES
Valid
Valid
t
CAL
Valid
t
t
CPDED
XS_FAST
t
CAL
CKE
Don’t Care
Notes: 1. tCAL = 3nCK, tCPDED = 4nCK, tCKSRE/tCKSRE_PAR = 8nCK, tCKSRX = 8nCK, tXS_FAST = tREFC4 (MIN) + 10ns.
2. CS_n = HIGH, ACT_n = "Don't Care," RAS_n/A16 = "Don't Care," CAS_n/A15 = "Don't Care," WE_n/A14 = "Don't
Care."
3. Only MRS (limited to those described in the SELF REFRESH Operations section), ZQCS, or ZQCL commands are
allowed.
4. The figure only displays tXS_FAST timing, but tCAL must also be added to any tXS and tXSDLL associated commands
during CAL mode.
Self Refresh Abort
The exit timing from self refresh exit to the first valid command not requiring a locked DLL is tXS. The
value of tXS is (tRFC1 + 10ns). This delay allows any refreshes started by the device time to complete.
t
RFC continues to grow with higher density devices, so tXS will grow as well. An MRS bit enables the self
refresh abort mode. If the bit is disabled, the controller uses tXS timings (location MR4, bit 9). If the bit
is enabled, the device aborts any ongoing refresh and does not increment the refresh counter. The
controller can issue a valid command not requiring a locked DLL after a delay of tXS_ABORT. Upon exit
from self refresh, the device requires a minimum of one extra REFRESH command before it is put back
into self refresh mode. This requirement remains the same irrespective of the setting of the MRS bit for
self refresh abort.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
154
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
SELF REFRESH Operation
Figure 92: Self Refresh Abort
T0
T1
Ta0
Tb0
Tc0
Td0
Td1
Te0
Tf0
Tg0
Valid
Valid
Valid
CK_c
CK_t
tCKSRX
tCKSRE/tCKSRE_PAR
tIS
tCPDED
CKE
tCKESR/tCKESR_PAR
ODT
Valid
tXS_FAST
Command
DES
SRE
SRX
DES
ADDR
Valid 1
Valid 2
Valid 3
Valid
Valid
Valid
tXS_ABORT
tRP
tXSDLL
Enter Self Refresh
Exit Self Refresh
Don’t Care
Time Break
Notes: 1. Only MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or ZQCL commands are
allowed.
2. Valid commands not requiring a locked DLL with self refresh abort mode enabled in the mode register.
3. Valid commands requiring a locked DLL.
Self Refresh Exit with NOP Command
Exiting self refresh mode using the NO OPERATION command (NOP) is allowed under a specific
system application. This special use of NOP allows for a common command/address bus between
active DRAM devices and DRAM(s) in maximum power saving mode. Self refresh mode may exit with
NOP commands provided:
s The device entered self refresh mode with CA parity, CAL, and gear-down disabled.
s tMPX_S and tMPX_LH are satisfied.
s NOP commands are only issued during tMPX_LH window.
No other command is allowed during the tMPX_LH window after an SELF REFRESH EXIT (SRX)
command is issued.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
155
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
SELF REFRESH Operation
Figure 93: Self Refresh Exit with NOP Command
Ta0
Ta1
Ta2
Ta3
Tb0
Tb1
Tb2
Tb3
Tc0
Tc1
Tc2
Tc3
Tc4
Td0
Td1
Td2
Td3
Te0
Te1
CK_c
CK_t
t
CKSRX
CKE
ODT
Valid
t
t
MPX_S
MPX_LH
CS_n
Note 1, 2
Note 3
Command
SRX
NOP
NOP
NOP
NOP
ADDR
Valid
Valid
Valid
Valid
Valid
DES
DES
DES
DES
DES
Valid
Valid
t
t
DES
Valid
Valid
XS
XS + t XSDLL
Don’t Care
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
156
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Power-Down Mode
Power-down is synchronously entered when CKE is registered LOW (along with a DESELECT
command). CKE is not allowed to go LOW when the following operations are in progress: MRS
command, MPR operations, ZQCAL operations, DLL locking, or READ/WRITE operations. CKE is
allowed to go LOW while any other operations, such as ROW ACTIVATION, PRECHARGE or auto
precharge, or REFRESH, are in progress, but the power-down IDD specification will not be applied until
those operations are complete. The timing diagrams that follow illustrate power-down entry and exit.
For the fastest power-down exit timing, the DLL should be in a locked state when power-down is
entered. If the DLL is not locked during power-down entry, the DLL must be reset after exiting
power-down mode for proper READ operation and synchronous ODT operation. DRAM design
provides all AC and DC timing and voltage specification as well as proper DLL operation with any CKE
intensive operations as long as the controller complies with DRAM specifications.
During power-down, if all banks are closed after any in-progress commands are completed, the device
will be in precharge power-down mode; if any bank is open after in-progress commands are
completed, the device will be in active power-down mode.
Entering power-down deactivates the input and output buffers, excluding CK, CKE, and RESET_n. In
power-down mode, DRAM ODT input buffer deactivation is based on Mode Register 5, bit 5 (MR5[5]).
If it is configured to 0b, the ODT input buffer remains on and the ODT input signal must be at valid
logic level. If it is configured to 1b, the ODT input buffer is deactivated and the DRAM ODT input signal
may be floating and the device does not provide RTT(NOM) termination. Note that the device continues
to provide RTT(Park) termination if it is enabled in MR5[8:6]. To protect internal delay on the CKE line
to block the input signals, multiple DES commands are needed during the CKE switch off and on
cycle(s); this timing period is defined as tCPDED. CKE LOW will result in deactivation of command and
address receivers after tCPDED has expired.
Table 53: Power-Down Entry Definitions
DRAM Status
DLL
Power-Down
Exit
Active
(a bank or more open)
On
Fast
Precharged
(all banks precharged)
On
Fast
Relevant Parameters
t
XP to any valid command.
t
XP to any valid command.
The DLL is kept enabled during precharge power-down or active power-down. In power-down mode,
CKE is LOW, RESET_n is HIGH, and a stable clock signal must be maintained at the inputs of the
device. ODT should be in a valid state, but all other input signals are "Don't Care." (If RESET_n goes
LOW during power-down, the device will be out of power-down mode and in the reset state.) CKE LOW
must be maintained until tCKE has been satisfied. Power-down duration is limited by 9 έ tREFI.
The power-down state is synchronously exited when CKE is registered HIGH (along with DES
command). CKE HIGH must be maintained until tCKE has been satisfied. The ODT input signal must
be at a valid level when the device exits from power-down mode, independent of MR1 bit [10:8] if
RTT(NOM) is enabled in the mode register. If RTT(NOM) is disabled, the ODT input signal may remain
floating. A valid, executable command can be applied with power-down exit latency, tXP, after CKE
goes HIGH. Power-down exit latency is defined in the AC Specifications table.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
157
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 94: Active Power-Down Entry and Exit
T0
T1
T2
Valid
DES
DES
Ta0
Ta1
Tb0
Tb1
Tc0
CK_c
CK_t
Command
DES
DES
DES
Valid
Valid
Valid
tPD
tIS
tIH
CKE
tIH
tCKE
tIS
ODT (ODT buffer enabled - MR5[5] = 0)2
Refer to ODT Power-Down Entry/Exit
with ODT Buffer Disable Mode figures
ODT (ODT buffer disabled - MR5[5] = 1)3
Address
Valid
Valid
tCPDED
tXP
Enter
power-down
mode
Exit
power-down
mode
Time Break
Don’t Care
Notes: 1. Valid commands at T0 are ACT, DES, or PRE with one bank remaining open after completion of the PRECHARGE
command.
2. ODT pin driven to a valid state; MR5[5] = 0 (normal setting).
3. ODT pin drive/float timing requirements for the ODT input buffer disable option (for additional power savings
during active power-down) is described in the section for ODT Input Buffer Disable Mode for Power-Down;
MR5[5] = 1.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
158
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 95: Power-Down Entry After Read and Read with Auto Precharge
CK_c
T0
T1
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
RD or
RDA
DES
DES
DES
DES
DES
DES
DES
DES
Ta7
Ta8
Tb0
Tb1
DES
DES
Valid
CK_t
Command
DES
tIS
tCPDED
Valid
CKE
Valid
Address
Valid
RL = AL + CL
tPD
DQS_t, DQS_c
DQ BL8
DI
b
DI
b+1
DI
b+2
DI
b+3
DQ BC4
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
tRDPDEN
Power-Down
entry
Transitioning Data
Don’t Care
Time Break
Note: 1. DI n (or b) = data-in from column n (or b).
Figure 96: Power-Down Entry After Write and Write with Auto Precharge
CK_c
T0
T1
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Tb0
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
Tb1
Tb2
Tc0
Tc1
DES
DES
Valid
CK_t
Command
DES
tIS
tCPDED
Valid
CKE
Address
Bank,
Col n
Valid
A10
WL = AL + CWL
tPD
WR
DQS_t, DQS_c
DQ BL8
DI
b
DI
b+1
DI
b+2
DI
b+3
DQ BC4
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
Start internal
precharge
tWRAPDEN
Power-Down
entry
Transitioning Data
Time Break
Don’t Care
Notes: 1. DI n (or b) = data-in from column n (or b).
2. Valid commands at T0 are ACT, DES, or PRE with one bank remaining open after completion of the PRECHARGE
command.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
159
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 97: Power-Down Entry After Write
CK_c
T0
T1
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Tb0
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
Tb1
Tb2
Tc0
Tc1
DES
DES
Valid
CK_t
Command
DES
tIS
tCPDED
Valid
CKE
Address
Bank,
Col n
Valid
A10
WL = AL + CWL
tPD
tWR
DQS_t, DQS_c
DQ BL8
DI
b
DI
b+1
DI
b+2
DI
b+3
DQ BC4
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
tWRPDEN
Power-Down
entry
Transitioning Data
Time Break
Don’t Care
Note: 1. DI n (or b) = data-in from column n (or b).
Figure 98: Precharge Power-Down Entry and Exit
T0
T1
T2
Ta0
Ta1
Tb0
Tb1
Tc0
DES
DES
DES
DES
DES
DES
Valid
Valid
Valid
CK_c
CK_t
Command
tCPDED
tCKE
tIS
tIH
CKE
tIS
tPD
Enter
power-down
mode
tXP
Exit
power-down
mode
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
160
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 99: REFRESH Command to Power-Down Entry
T0
T1
T2
Ta0
Tb0
Tb1
REF
DES
DES
DES
DES
CK_c
CK_t
Command
Address
Valid
tCPDED
tIS
tPD
tCKE
CKE
Valid
tREFPDEN
Time Break
Don’t Care
Figure 100: Active Command to Power-Down Entry
T0
T1
T2
Ta0
Tb0
Tb1
ACT
DES
DES
DES
DES
CK_c
CK_t
Command
Address
Valid
tCPDED
tIS
tPD
tCKE
CKE
Valid
tACTPDEN
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
161
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 101: PRECHARGE/PRECHARGE ALL Command to Power-Down Entry
T0
T1
T2
Ta0
Tb0
Tb1
PRE or
PREA
DES
DES
DES
Valid
CK_c
CK_t
Command
Address
Valid
tCPDED
tIS
tPD
tCKE
CKE
tPREPDEN
Time Break
Don’t Care
Figure 102: MRS Command to Power-Down Entry
T0
T1
Ta0
Ta1
Command
MRS
DES
DES
DES
Address
Valid
Tb0
Tb1
CK_c
CK_t
DES
tCPDED
tIS
tPD
tCKE
CKE
Valid
tMRSPDEN
Time Break
Don’t Care
0OWER
$OWN#LARIFICATIONSn#ASE
When CKE is registered LOW for power-down entry, tPD (MIN) must be satisfied before CKE can be
registered HIGH for power-down exit. The minimum value of parameter tPD (MIN) is equal to the
minimum value of parameter tCKE (MIN) as shown in the Timing Parameters by Speed Bin table. A
detailed example of Case 1 follows.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
162
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 103: 0OWER
$OWN%NTRY%XIT#LARIFICATIONSn#ASE
T0
T1
T2
Ta0
Valid
DES
DES
Ta1
Tb0
Tb1
Tb2
CK_c
CK_t
Command
DES
DES
DES
DES
tPD
tPD
tIH
tIS
tIS
CKE
tIS
tIH
Address
tCKE
Valid
tCPDED
tCPDED
Enter
power-down
mode
Exit
power-down
mode
Enter
power-down
mode
Time Break
Don’t Care
Power-Down Entry, Exit Timing with CAL
Command/Address latency is used and additional timing restrictions are required when entering
power-down, as noted in the following figures.
Figure 104: Active Power-Down Entry and Exit Timing with CAL
T0
T1
Ta0
Ta1
Ta2
DES
DES
Valid
DES
DES
Tb0
Tb1
Tc0
Tc1
Td0
Td1
Te0
DES
DES
DES
Valid
CK_c
CK_t
CS_n
Command
Address
DES
DES
Valid
t CAL
Valid
tIH
t CPDED
t IS
t XP
t IH
t PD
t CAL
t IS
CKE
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
163
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Power-Down Mode
Figure 105: REFRESH Command to Power-Down Entry with CAL
T0
T1
Ta0
Tb0
Tb1
Tc0
DES
DES
REF
DES
DES
DES
Tc1
Td0
Td1
Te0
Te1
Tf0
DES
DES
DES
Valid
CK_c
CK_t
CS_n
Command
Address
DES
Valid
t CAL
Valid
t CPDED
t REFPDEN
t IS
CKE
t XP
t PD
t IH
t CAL
t IS
tIH
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
164
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
ODT Input Buffer Disable Mode for Power-Down
ODT Input Buffer Disable Mode for Power-Down
DRAM does not provide RTT_NOM termination during power-down when ODT input buffer deactivation mode is enabled in MR5 bit A5.
To account for DRAM internal delay on CKE line to disable the ODT buffer and block the sampled
output, the host controller must continuously drive ODT to either low or high when entering power
down (from tDODTLoff+1 prior to CKE low till tCPDED after CKE low).
The ODT signal is allowed to float after tCPDEDmin has expired. In this mode, RTT_NOM termination
corresponding to sampled ODT at the input when CKE is registered low (and tANPD before that) may
be either RTT_NOM or RTT_PARK. tANPD is equal to (WL-1) and is counted backwards from PDE.
Figure 106: ODT Power-Down Entry with ODT Buffer Disable Mode
diff_CK
CKE
tDODTLoff
tCPDED
+1
(MIN)
Floating
ODT
tADC
DRAM_RTT_sync
(DLL enabled)
CA parity disabled
RTT(NOM)
DRAM_RTT_async
(DLL disabled)
RTT(NOM)
RTT(Park)
tCPDED
DODTLoff
(MIN) + tADC (MAX)
RTT(Park)
tAONAS
(MIN)
tCPDED
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
(MIN)
165
(MIN) + tAOFAS (MAX)
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
ODT Input Buffer Disable Mode for Power-Down
Figure 107: ODT Power-Down Exit with ODT Buffer Disable Mode
diff_CK
CKE
ODT_A
(DLL enabled)
Floating
tADC
tXP
RTT(Park)
DRAM_RTT_A
RTT(NOM)
DODTLon
ODT_B
(DLL disabled)
(MAX)
tADC
(MIN)
Floating
tXP
DRAM_RTT_B
RTT(Park)
tAONAS
RTT(NOM)
(MIN)
tAOFAS
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
(MAX)
166
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
CRC Write Data Feature
CRC Write Data
The CRC write data feature takes the CRC generated data from the DRAM controller and compares it
to the internally CRC generated data and determines whether the two match (no CRC error) or do not
match (CRC error).
Figure 108: CRC Write Data Operation
DRAM
DRAM Controller
Data
CRC
engine
Data
CRC
engine
CRC
Code
Data
CRC Code
CRC Code
Compare
CRC
WRITE CRC DATA Operation
A DRAM controller generates a CRC checksum using a 72-bit CRC tree and forms the write data frames,
as shown in the following CRC data mapping tables for the x4, x8, and x16 configurations. A x4 device
has a CRC tree with 32 input data bits used, and the remaining upper 40 bits D[71:32] being 1s. A x8
device has a CRC tree with 64 input data bits used, and the remaining upper 8 bits dependant upon
whether DM_n/DBI_n is used (1s are sent when not used). A x16 device has two identical CRC trees
each, one for the lower byte and one for the upper byte, with 64 input data bits used by each, and the
remaining upper 8 bits on each byte dependant upon whether DM_n/DBI_n is used (1s are sent when
not used). For a x8 and x16 DRAMs, the DRAM memory controller must send 1s in transfer 9 location
whether or not DM_n/DBI_n is used.
The DRAM checks for an error in a received code word D[71:0] by comparing the received checksum
against the computed checksum and reports errors using the ALERT_n signal if there is a mismatch.
The DRAM can write data to the DRAM core without waiting for the CRC check for full writes when DM
is disabled. If bad data is written to the DRAM core, the DRAM memory controller will try to overwrite
the bad data with good data; this means the DRAM controller is responsible for data coherency when
DM is disabled. However, in the case where both CRC and DM are enabled via MRS (that is, persistent
mode), the DRAM will not write bad data to the core when a CRC error is detected.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
167
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
DBI_n and CRC Both Enabled
The DRAM computes the CRC for received written data D[71:0]. Data is not inverted back based on DBI
before it is used for computing CRC. The data is inverted back based on DBI before it is written to the
DRAM core.
DM_n and CRC Both Enabled
When both DM and write CRC are enabled in the DRAM mode register, the DRAM calculates CRC
before sending the write data into the array. If there is a CRC error, the DRAM blocks the WRITE operation and discards the data. If a CRC error is encountered from a WRITE with auto precharge (WRA),
the DRAM will not block the precharge. The Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK
Preamble and Write CRC in Same or Different Bank Group and the WRITE (BL8/BC4-OTF/Fixed) with
1tCK Preamble and Write CRC in Same or Different BankGroup figures in the WRITE Operation section
show timing differences when DM is enabled.
DM_n and DBI_n Conflict During Writes with CRC Enabled
Both write DBI_n and DM_n can not be enabled at the same time; read DBI_n and DM_n can be
enabled at the same time.
CRC and Write Preamble Restrictions
When write CRC is enabled:
s And 1tCK WRITE preamble mode is enabled, a tCCD_S or tCCD_L of 4 clocks is not allowed.
s And 2tCK WRITE preamble mode is enabled, a tCCD_S or tCCD_L of 6 clocks is not allowed.
CRC Simultaneous Operation Restrictions
When write CRC is enabled, neither MPR writes nor per-DRAM mode is allowed.
CRC Polynomial
The CRC polynomial used by DDR4 is the ATM-8 HEC, X8 + X2 + X1 + 1.
A combinatorial logic block implementation of this 8-bit CRC for 72 bits of data includes 272 two-input
XOR gates contained in eight 6-XOR-gate-deep trees.
The CRC polynomial and combinatorial logic used by DDR4 is the same as used on GDDR5.
The error coverage from the DDR4 polynomial used is shown in the following table.
Table 54: CRC Error Detection Coverage
Error Type
Detection Capability
Random single-bit errors
100%
Random double-bit errors
100%
Random odd count errors
100%
Random multibit UI vertical column error
detection excluding DBI bits
100%
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
168
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
CRC Combinatorial Logic Equations
module CRC8_D72;
// polynomial: (0 1 2 8)
// data width: 72
// convention: the first serial data bit is D[71]
//initial condition all 0 implied
// "^" = XOR
function [7:0]
nextCRC8_D72;
input [71:0] Data;
input [71:0] D;
reg [7:0] CRC;
begin
D = Data;
CRC[0] =
D[69]^D[68]^D[67]^D[66]^D[64]^D[63]^D[60]^D[56]^D[54]^D[53]^D[52]^D[50]^D[49]^D[48]^D[45]
^D[43]^D[40]^D[39]^D[35]^D[34]^D[31]^D[30]^D[28]^D[23]^D[21]^D[19]^D[18]^D[16]^D[14]^D[1
2]^D[8]^D[7]^D[6]^D[0];
CRC[1] =
D[70]^D[66]^D[65]^D[63]^D[61]^D[60]^D[57]^D[56]^D[55]^D[52]^D[51]^D[48]^D[46]^D[45]^D[44]
^D[43]^D[41]^D[39]^D[36]^D[34]^D[32]^D[30]^D[29]^D[28]^D[24]^D[23]^D[22]^D[21]^D[20]^D[1
8]^D[17]^D[16]^D[15]^D[14]^D[13]^D[12]^D[9]^D[6]^D[1]^D[0];
CRC[2] =
D[71]^D[69]^D[68]^D[63]^D[62]^D[61]^D[60]^D[58]^D[57]^D[54]^D[50]^D[48]^D[47]^D[46]^D[44]
^D[43]^D[42]^D[39]^D[37]^D[34]^D[33]^D[29]^D[28]^D[25]^D[24]^D[22]^D[17]^D[15]^D[13]^D[1
2]^D[10]^D[8]^D[6]^D[2]^D[1]^D[0];
CRC[3] =
D[70]^D[69]^D[64]^D[63]^D[62]^D[61]^D[59]^D[58]^D[55]^D[51]^D[49]^D[48]^D[47]^D[45]^D[44]
^D[43]^D[40]^D[38]^D[35]^D[34]^D[30]^D[29]^D[26]^D[25]^D[23]^D[18]^D[16]^D[14]^D[13]^D[1
1]^D[9]^D[7]^D[3]^D[2]^D[1];
CRC[4] =
D[71]^D[70]^D[65]^D[64]^D[63]^D[62]^D[60]^D[59]^D[56]^D[52]^D[50]^D[49]^D[48]^D[46]^D[45]
^D[44]^D[41]^D[39]^D[36]^D[35]^D[31]^D[30]^D[27]^D[26]^D[24]^D[19]^D[17]^D[15]^D[14]^D[1
2]^D[10]^D[8]^D[4]^D[3]^D[2];
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
169
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
CRC[5] =
D[71]^D[66]^D[65]^D[64]^D[63]^D[61]^D[60]^D[57]^D[53]^D[51]^D[50]^D[49]^D[47]^D[46]^D[45]
^D[42]^D[40]^D[37]^D[36]^D[32]^D[31]^D[28]^D[27]^D[25]^D[20]^D[18]^D[16]^D[15]^D[13]^D[1
1]^D[9]^D[5]^D[4]^D[3];
CRC[6] =
D[67]^D[66]^D[65]^D[64]^D[62]^D[61]^D[58]^D[54]^D[52]^D[51]^D[50]^D[48]^D[47]^D[46]^D[43]
^D[41]^D[38]^D[37]^D[33]^D[32]^D[29]^D[28]^D[26]^D[21]^D[19]^D[17]^D[16]^D[14]^D[12]^D[1
0]^D[6]^D[5]^D[4];
CRC[7] =
D[68]^D[67]^D[66]^D[65]^D[63]^D[62]^D[59]^D[55]^D[53]^D[52]^D[51]^D[49]^D[48]^D[47]^D[44]
^D[42]^D[39]^D[38]^D[34]^D[33]^D[30]^D[29]^D[27]^D[22]^D[20]^D[18]^D[17]^D[15]^D[13]^D[1
1]^D[7]^D[6]^D[5];
nextCRC8_D72 = CRC;
Burst Ordering for BL8
DDR4 supports fixed WRITE burst ordering [A2:A1:A0 = 0:0:0] when write CRC is enabled in BL8 (fixed).
CRC Data Bit Mapping
Table 55: CRC Data Mapping for x4 Devices, BL8
Transfer
Function
0
1
2
3
4
5
6
7
8
9
DQ0
D0
D1
D2
D3
D4
D5
D6
D7
CRC0
CRC4
DQ1
D8
D9
D10
D11
D12
D13
D14
D15
CRC1
CRC5
DQ2
D16
D17
D18
D19
D20
D21
D22
D23
CRC2
CRC6
DQ3
D24
D25
D26
D27
D28
D29
D30
D31
CRC3
CRC7
Table 56: CRC Data Mapping for x8 Devices, BL8
Transfer
Function
0
1
2
3
4
5
6
7
8
9
DQ0
D0
D1
D2
D3
D4
D5
D6
D7
CRC0
1
DQ1
D8
D9
D10
D11
D12
D13
D14
D15
CRC1
1
DQ2
D16
D17
D18
D19
D20
D21
D22
D23
CRC2
1
DQ3
D24
D25
D26
D27
D28
D29
D30
D31
CRC3
1
DQ4
D32
D33
D34
D35
D36
D37
D38
D39
CRC4
1
170
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
Table 56: CRC Data Mapping for x8 Devices, BL8 (Continued)
Transfer
Function
0
1
2
3
4
5
6
7
8
9
DQ5
D40
D41
D42
D43
D44
D45
D46
D47
CRC5
1
DQ6
D48
D49
D50
D51
D52
D53
D54
D55
CRC6
1
DQ7
D56
D57
D58
D59
D60
D61
D62
D63
CRC7
1
DM_n/DB
I_n
D64
D65
D66
D67
D68
D69
D70
D71
1
1
A x16 device is treated as two x8 devices; a x16 device will have two identical CRC trees implemented.
CRC[7:0] covers data bits D[71:0], and CRC[15:8] covers data bits D[143:72].
Table 57: CRC Data Mapping for x16 Devices, BL8
Transfer
Function
0
1
2
3
4
5
6
7
8
9
DQ0
D0
D1
D2
D3
D4
D5
D6
D7
CRC0
1
DQ1
D8
D9
D10
D11
D12
D13
D14
D15
CRC1
1
DQ2
D16
D17
D18
D19
D20
D21
D22
D23
CRC2
1
DQ3
D24
D25
D26
D27
D28
D29
D30
D31
CRC3
1
DQ4
D32
D33
D34
D35
D36
D37
D38
D39
CRC4
1
DQ5
D40
D41
D42
D43
D44
D45
D46
D47
CRC5
1
DQ6
D48
D49
D50
D51
D52
D53
D54
D55
CRC6
1
DQ7
D56
D57
D58
D59
D60
D61
D62
D63
CRC7
1
LDM_n/LD
BI_n
D64
D65
D66
D67
D68
D69
D70
D71
1
1
DQ8
D72
D73
D74
D75
D76
D77
D78
D79
CRC8
1
DQ9
D80
D81
D82
D83
D84
D85
D86
D87
CRC9
1
DQ10
D88
D89
D90
D91
D92
D93
D94
D95
CRC10
1
DQ11
D96
D97
D98
D99
D100
D101
D102
D103
CRC11
1
DQ12
D104
D105
D106
D107
D108
D109
D110
D111
CRC12
1
DQ13
D112
D113
D114
D115
D116
D117
D118
D119
CRC13
1
DQ14
D120
D121
D122
D123
D124
D125
D126
D127
CRC14
1
DQ15
D128
D129
D130
D131
D132
D133
D134
D135
CRC15
1
UDM_n/U
DBI_n
D136
D137
D138
D139
D140
D141
D142
D143
1
1
CRC Enabled With BC4
If CRC and BC4 are both enabled, then address bit A2 is used to transfer critical data first for BC4 writes.
CRC with BC4 Data Bit Mapping
For a x4 device, the CRC tree inputs are 16 data bits, and the inputs for the remaining bits are 1.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
171
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
When A2 = 1, data bits D[7:4] are used as inputs for D[3:0], D[15:12] are used as inputs to D[11:8], and
so forth, for the CRC tree.
Table 58: CRC Data Mapping for x4 Devices, BC4
Transfer
Function
0
1
2
3
4
5
6
7
8
9
A2 = 0
DQ0
D0
D1
D2
D3
1
1
1
1
CRC0
CRC4
DQ1
D8
D9
D10
D11
1
1
1
1
CRC1
CRC5
DQ2
D16
D17
D18
D19
1
1
1
1
CRC2
CRC6
DQ3
D24
D25
D26
D27
1
1
1
1
CRC3
CRC7
A2 = 1
DQ0
D4
D5
D6
D7
1
1
1
1
CRC0
CRC4
DQ1
D12
D13
D14
D15
1
1
1
1
CRC1
CRC5
DQ2
D20
D21
D22
D23
1
1
1
1
CRC2
CRC6
DQ3
D28
D29
D30
D31
1
1
1
1
CRC3
CRC7
For a x8 device, the CRC tree inputs are 36 data bits.
When A2 = 0, the input bits D[67:64]) are used if DBI_n or DM_n functions are enabled; if DBI_n and
DM_n are disabled, then D[67:64]) are 1.
When A2 = 1, data bits D[7:4] are used as inputs for D[3:0], D[15:12] are used as inputs to D[11:8], and
so forth, for the CRC tree. The input bits D[71:68]) are used if DBI_n or DM_n functions are enabled; if
DBI_n and DM_n are disabled, then D[71:68]) are 1.
Table 59: CRC Data Mapping for x8 Devices, BC4
Transfer
Function
0
1
2
3
4
5
6
7
8
9
A2 = 0
DQ0
D0
D1
D2
D3
1
1
1
1
CRC0
1
DQ1
D8
D9
D10
D11
1
1
1
1
CRC1
1
DQ2
D16
D17
D18
D19
1
1
1
1
CRC2
1
DQ3
D24
D25
D26
D27
1
1
1
1
CRC3
1
DQ4
D32
D33
D34
D35
1
1
1
1
CRC4
1
DQ5
D40
D41
D42
D43
1
1
1
1
CRC5
1
DQ6
D48
D49
D50
D51
1
1
1
1
CRC6
1
DQ7
D56
D57
D58
D59
1
1
1
1
CRC7
1
DM_n/DBI_n
D64
D65
D66
D67
1
1
1
1
1
1
A2 = 1
DQ0
D4
D5
D6
D7
1
1
1
1
CRC0
1
DQ1
D12
D13
D14
D15
1
1
1
1
CRC1
1
DQ2
D20
D21
D22
D23
1
1
1
1
CRC2
1
DQ3
D28
D29
D30
D31
1
1
1
1
CRC3
1
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
172
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
Table 59: CRC Data Mapping for x8 Devices, BC4 (Continued)
Transfer
Function
0
1
2
3
4
5
6
7
8
9
DQ4
D36
D37
D38
D39
1
1
1
1
CRC4
1
DQ5
D44
D45
D46
D47
1
1
1
1
CRC5
1
DQ6
D52
D53
D54
D55
1
1
1
1
CRC6
1
DQ7
D60
D61
D62
D63
1
1
1
1
CRC7
1
DM_n/DBI_n
D68
D69
D70
D71
1
1
1
1
1
1
There are two identical CRC trees for x16 devices, each have CRC tree inputs of 36 bits.
When A2 = 0, input bits D[67:64] are used if DBI_n or DM_n functions are enabled; if DBI_n and DM_n
are disabled, then D[67:64] are 1s. The input bits D[139:136] are used if DBI_n or DM_n functions are
enabled; if DBI_n and DM_n are disabled, then D[139:136] are 1s.
When A2 = 1, data bits D[7:4] are used as inputs for D[3:0], D[15:12] are used as inputs for D[11:8], and
so forth, for the CRC tree. Input bits D[71:68] are used if DBI_n or DM_n functions are enabled; if DBI_n
and DM_n are disabled, then D[71:68] are 1s. The input bits D[143:140] are used if DBI_n or DM_n
functions are enabled; if DBI_n and DM_n are disabled, then D[143:140] are 1s.
Table 60: CRC Data Mapping for x16 Devices, BC4
Transfer
Function
0
1
2
3
4
5
6
7
8
9
A2 = 0
DQ0
D0
D1
D2
D3
1
1
1
1
CRC0
1
DQ1
D8
D9
D10
D11
1
1
1
1
CRC1
1
DQ2
D16
D17
D18
D19
1
1
1
1
CRC2
1
DQ3
D24
D25
D26
D27
1
1
1
1
CRC3
1
DQ4
D32
D33
D34
D35
1
1
1
1
CRC4
1
DQ5
D40
D41
D42
D43
1
1
1
1
CRC5
1
DQ6
D48
D49
D50
D51
1
1
1
1
CRC6
1
DQ7
D56
D57
D58
D59
1
1
1
1
CRC7
1
LDM_n/LDBI_
n
D64
D65
D66
D67
1
1
1
1
1
1
DQ8
D72
D73
D74
D75
1
1
1
1
CRC8
1
DQ9
D80
D81
D82
D83
1
1
1
1
CRC9
1
DQ10
D88
D89
D90
D91
1
1
1
1
CRC10
1
DQ11
D96
D97
D98
D99
1
1
1
1
CRC11
1
DQ12
D104
D105
D106
D107
1
1
1
1
CRC12
1
DQ13
D112
D113
D114
D115
1
1
1
1
CRC13
1
DQ14
D120
D121
D122
D123
1
1
1
1
CRC14
1
DQ15
D128
D129
D130
D131
1
1
1
1
CRC15
1
UDM_n/UDBI
_n
D136
D137
D138
D139
1
1
1
1
1
1
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
173
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
Table 60: CRC Data Mapping for x16 Devices, BC4 (Continued)
Transfer
Function
0
1
2
3
4
5
6
7
8
9
A2 = 1
DQ0
D4
D5
D6
D7
1
1
1
1
CRC0
1
DQ1
D12
D13
D14
D15
1
1
1
1
CRC1
1
DQ2
D20
D21
D22
D23
1
1
1
1
CRC2
1
DQ3
D28
D29
D30
D31
1
1
1
1
CRC3
1
DQ4
D36
D37
D38
D39
1
1
1
1
CRC4
1
DQ5
D44
D45
D46
D47
1
1
1
1
CRC5
1
DQ6
D52
D53
D54
D55
1
1
1
1
CRC6
1
DQ7
D60
D61
D62
D63
1
1
1
1
CRC7
1
LDM_n/LDBI_
n
D68
D69
D70
D71
1
1
1
1
1
1
DQ8
D76
D77
D78
D79
1
1
1
1
CRC8
1
DQ9
D84
D85
D86
D87
1
1
1
1
CRC9
1
DQ10
D92
D93
D94
D95
1
1
1
1
CRC10
1
DQ11
D100
D101
D102
D103
1
1
1
1
CRC11
1
DQ12
D108
D109
D110
D111
1
1
1
1
CRC12
1
DQ13
D116
D117
D118
D119
1
1
1
1
CRC13
1
DQ14
D124
D125
D126
D127
1
1
1
1
CRC14
1
DQ15
D132
D133
D134
D135
1
1
1
1
CRC15
1
UDM_n/UDBI
_n
D140
D141
D142
D143
1
1
1
1
1
1
CRC Equations for x8 Device in BC4 Mode with A2 = 0 and A2 = 1
The following example is of a CRC tree when x8 is used in BC4 mode (x4 and x16 CRC trees have similar
differences).
CRC[0], A2=0 =
1^1^D[67]^D[66]^D[64]^1^1^D[56]^1^1^1^D[50]^D[49]^D[48]^1^D[43]^D[40]^1^D[35]^D[34]^1^1^1^1^1^
D[19]^D[18]^D[16]^1^1^D[8] ^1^1^ D[0] ;
CRC[0], A2=1=
1^1^D[71]^D[70]^D[68]^1^1^D[60]^1^1^1^D[54]^D[53]^D[52]^1^D[47]^D[44]^1^D[39]^D[38]^1^1^1^1^1^
D[23]^D[22]^D[20]^1^1^D[12]^1^1^D[4] ;
CRC[1], A2=0 =
1^D[66]^D[65]^1^1^1^D[57]^D[56]^1^1^D[51]^D[48]^1^1^1^D[43]^D[41]^1^1^D[34]^D[32]^1^1^1^D[24]^
1^1^1^1^D[18]^D[17]^D[16]^1^1^1^1^D[9] ^1^ D[1]^D[0];
CRC[1], A2=1 =
1^D[70]^D[69]^1^1^1^D[61]^D[60]^1^1^D[55]^D[52]^1^1^1^D[47]^D[45]^1^1^D[38]^D[36]^1^1^1^D[28]^
1^1^1^1^D[22]^D[21]^D[20]^1^1^1^1^D[13]^1^D[5]^D[4];
CRC[2], A2=0=
1^1^1^1^1^1^1^D[58]^D[57]^1^D[50]^D[48]^1^1^1^D[43]^D[42]^1^1^D[34]^D[33]^1^1^D[25]^D[24]^1^D[
17]^1^1^1^D[10]^D[8] ^1^D[2]^D[1]^D[0];
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
174
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
CRC[2], A2=1=
1^1^1^1^1^1^1^D[62]^D[61]^1^D[54]^D[52]^1^1^1^D[47]^D[46]^1^1^D[38]^D[37]^1^1^D[29]^D[28]^1^D[
21]^1^1^1^D[14]^D12]^1^D[6]^D[5]^D[4];
CRC[3], A2=0 =
1^1^D[64]^1^1^1^D[59]^D[58]^1^D[51]^D[49]^D[48]^1^1^1^D[43]^D[40]^1^D[35]^D[34]^1^1^D[26]^D[25]
^1^D[18]^D[16]^1^1^D[11]^D[9] ^1^D[3]^D[2]^D[1];
CRC[3], A2=1 =
1^1^D[68]^1^1^1^D[63]^D[62]^1^D[55]^D[53]^D[52]^1^1^1^D[47]^D[44]^1^D[39]^D[38]^1^1^D[30]^D[29]
^1^D[22]^D[20]^1^1^D[15]^D[13]^1^D[7]^D[6]^D[5];
CRC[4], A2=0 =
1^1^D[65]^D[64]^1^1^1^D[59]^D[56]^1^D[50]^D[49]^D[48]^1^1^1^D[41]^1^1^D[35]^1^1^D[27]^D[26]^D[2
4]^D[19]^D[17]^1^1^1^D[10]^D[8] ^1^D[3]^D[2];
CRC[4], A2=1 =
1^1^D[69]^D[68]^1^1^1^D[63]^D[60]^1^D[54]^D[53]^D[52]^1^1^1^D[45]^1^1^D[39]^1^1^D[31]^D[30]^D[2
8]^D[23]^D[21]^1^1^1^D[14]^D[12]^1^D[7]^D[6];
CRC[5], A2=0 =
1^D[66]^D[65]^D[64]^1^1^1^D[57]^1^D[51]^D[50]^D[49]^1^1^1^D[42]^D[40]^1^1^D[32]^1^1^D[27]^D[25]^1
^D[18]^D[16]^1^1^D[11]^D[9] ^1^1^D[3];
CRC[5], A2=1 =
1^D[70]^D[69]^D[68]^1^1^1^D[61]^1^D[55]^D[54]^D[53]^1^1^1^D[46]^D[44]^1^1^D[36]^1^1^D[31]^D[29]
^1^D[22]^D[20]^1^1^D[15]^D[13]^1^1^D[7];
CRC[6], A2=0 =
D[67]^D[66]^D[65]^D[64]^1^1^D[58]^1^1^D[51]^D[50]^D[48]^1^1^D[43]^D[41]^1^1^D[33]^D[32]^1^1^D[2
6]^1^D[19]^D[17]^D[16]^1^1^D[10]^1^1^1;
CRC[6], A2=1 =
D[71]^D[70]^D[69]^D[68]^1^1^D[62]^1^1^D[55]^D[54]^D[52]^1^1^D[47]^D[45]^1^1^D[37]^D[36]^1^1^D[3
0]^1^D[23]^D[21]^D[20]^1^1^D[14]^1^1^1;
CRC[7], A2=0=
1^D[67]^D[66]^D[65]^1^1^D[59]^1^1^1^D[51]^D[49]^D[48]^1^1^D[42]^1^1^D[34]^D[33]^1^1^D[27]^1^1^
D[18]^D[17]^1^1^D[11]^1^1^1;
CRC[7], A2=1 =
1^D[71]^D[70]^D[69]^1^1^D[63]^1^1^1^D[55]^D[53]^D[52]^1^1^D[46]^1^1^D[38]^D[37]^1^1^D[31]^1^1^
D[22]^D[21]^1^1^D[15]^1^1^1;
CRC Error Handling
The CRC error mechanism shares the same ALERT_n signal as CA parity for reporting write errors to
the DRAM. The controller has two ways to distinguish between CRC errors and CA parity errors: 1)
Read DRAM mode/MPR registers, and 2) Measure time ALERT_n is LOW. To speed up recovery for
CRC errors, CRC errors are only sent back as a "short" pulse; the maximum pulse width is roughly ten
clocks (unlike CA parity where ALERT_n is LOW longer than 45 clocks). The ALERT_n LOW could be
longer than the maximum limit at the controller if there are multiple CRC errors as the ALERT_n signals
are connected by a daisy chain bus. The latency to ALERT_n signal is defined as tCRC_ALERT in the
following figure.
The DRAM will set the error status bit located at MR5[3] to a 1 upon detecting a CRC error, which will
subsequently set the CRC error status flag in the MPR error log HIGH (MPR Page1, MPR3[7]). The CRC
error status bit (and CRC error status flag) remains set at 1 until the DRAM controller clears the CRC
error status bit using an MRS command to set MR5[3] to a 0. The DRAM controller, upon seeing an
error as a pulse width, will retry the write transactions. The controller should consider the worst-case
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
175
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
delay for ALERT_n (during initialization) and backup the transactions accordingly. The DRAM
controller may also be made more intelligent and correlate the write CRC error to a specific rank or a
transaction.
Figure 109: CRC Error Reporting
CK_c
CK_t
DQIN
T0
T1
Dx
T2
Dx+1
Dx+2 Dx+3
T3
Dx+4
T4
Dx+5
Dx+6
T5
Dx+7
CRCy
T6
Ta0
Ta1
Ta2
Ta3
Tb0
Tb1
1
CRC ALERT_PW (MAX)
tCRC_ALERT
ALERT_n
CRC ALERT_PW (MIN)
Transition Data
Don’t Care
Notes: 1. D[71:1] CRC computed by DRAM did not match CRC[7:0] at T5 and started error generating process at T6.
2. CRC ALERT_PW is specified from the point where the DRAM starts to drive the signal LOW to the point where the
DRAM driver releases and the controller starts to pull the signal up.
3. Timing diagram applies to x4, x8, and x16 devices.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
176
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
CRC Write Data Flow Diagram
Figure 110: CA Parity Flow Diagram
DRAM write
process start
MR2 12 enable CRC
MR5 3 set CRC error clear to 0
MR5 10 enable/disable DM
MR3[10:9] WCL if DM enabled
Capture data
CRC
enabled
Persistent
mode
enabled
Yes
DRAM
CRC same as
controller
CRC
Yes
Yes
No
No
Transfer data
internally
Transfer data
internally
Transfer Data
Internally
DRAM
CRC same as
controller
CRC
Yes
CA error
Yes
No
No
No
MR5[3] = 0
at WRITE
ALERT_n LOW
6 to 10 CKs
ALERT_n HIGH
No
MR5[A3] and
PAGE1 MPR3[7]
remain set to 1
Yes
MR5[3] = 0
at WRITE
Set error flag
MR5[A3] = 1
ALERT_n LOW
6 to 10 CKs
Set error status
PAGE1 MPR3[7] = 1
ALERT_n HIGH
No
MR5[A3] and
PAGE1 MPR3[7]
remain set to 1
Yes
Set error flag
MR5[A3] = 1
Set error status
PAGE1 MPR3[7] = 1
177
WRITE burst
completed
WRITE burst
completed
WRITE burst
completed
WRITE burst
completed
WRITE burst
rejected
Bad data not written
MR5 3 reset to 0 if desired
8Gb: x4, x8, x16 DDR4 SDRAM
CRC Write Data Feature
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
Bad data written
MR5 3 reset to 0 if desired
WRITE burst
completed
8Gb: x4, x8, x16 DDR4 SDRAM
Data Bus Inversion
Data Bus Inversion
The DATA BUS INVERSION (DBI) function is supported only for x8 and x16 configurations (it is not
supported on x4 devices). DBI opportunistically inverts data bits, and in conjunction with the DBI_n
I/O, less than half of the DQs will switch LOW for a given DQS strobe edge. The DBI function shares a
common pin with the DATA MASK (DM) and TDQS functions. The DBI function applies to either or
both READ and WRITE operations: Write DBI cannot be enabled at the same time the DM function is
enabled, and DBI is not allowed during MPR READ operation. Valid configurations for TDQS, DM, and
DBI functions are shown below.
Table 61: DBI vs. DM vs. TDQS Function Matrix
Read DBI
Write DBI
Data Mask (DM)
TDQS (x8 only)
Enabled (or Disabled)
MR5[12]=1 (or MR5[12] = 0)
Disabled
MR5[11] = 0
Disabled
MR5[10] = 0
Disabled
MR1[11] = 0
Enabled
MR5[11] = 1
Disabled
MR5[10] = 0
Disabled
MR1[11] = 0
Disabled
MR5[11] = 0
Enabled
MR5[10] = 1
Disabled
MR1[11] = 0
Disabled
MR5[11] = 0
Disabled
MR5[10] = 0
Enabled
MR1[11] = 1
Disabled
MR5[12] = 0
DBI During a WRITE Operation
If DBI_n is sampled LOW on a given byte lane during a WRITE operation, the DRAM inverts write data
received on the DQ inputs prior to writing the internal memory array. If DBI_n is sampled HIGH on a
given byte lane, the DRAM leaves the data received on the DQ inputs noninverted. The write DQ frame
format is shown below for x8 and x16 configurations (the x4 configuration does not support the DBI
function).
Table 62: DBI Write, DQ Frame Format (x8)
Transfer
0
1
2
3
4
5
6
7
DQ[7:0]
Function
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
DM_n or
DBI_n
DM0 or
DBI0
DM1 or
DBI1
DM2 or
DBI2
DM3 or
DBI3
DM4 or
DBI4
DM5 or
DBI5
DM6 or
DBI6
DM7 or
DBI7
Table 63: DBI Write, DQ Frame Format (x16)
Transfer, Lower (L) and Upper(U)
Function
0
1
2
3
4
5
6
7
LByte 0
LByte 1
LByte 2
LByte 3
LByte 4
LByte 5
LByte 6
LByte 7
LDM_n or
LDBI_n
LDM0 or
LDBI0
LDM1 or
LDBI1
LDM2 or
LDBI2
LDM3 or
LDBI3
LDM4 or
LDBI4
LDM5 or
LDBI5
LDM6 or
LDBI6
LDM7 or
LDBI7
DQ[15:8]
UByte 0
UByte 1
UByte 2
UByte 3
UByte 4
UByte 5
UByte 6
UByte 7
UDM0 or
UDBI0
UDM1 or
UDBI1
UDM2 or
UDBI2
UDM3 or
UDBI3
UDM4 or
UDBI4
UDM5 or
UDBI5
UDM6 or
UDBI6
UDM7 or
UDBI7
DQ[7:0]
UDM_n or
UDBI_n
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
178
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Data Bus Inversion
DBI During a READ Operation
If the number of 0 data bits within a given byte lane is greater than four during a READ operation, the
DRAM inverts read data on its DQ outputs and drives the DBI_n pin LOW; otherwise, the DRAM does
not invert the read data and drives the DBI_n pin HIGH. The read DQ frame format is shown below for
x8 and x16 configurations (the x4 configuration does not support the DBI function).
Table 64: DBI Read, DQ Frame Format (x8)
Transfer Byte
Function
DQ[7:0]
DBI_n
0
1
2
3
4
5
6
7
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
DBI0
DBI1
DBI2
DBI3
DBI4
DBI5
DBI6
DBI7
Table 65: DBI Read, DQ Frame Format (x16)
Transfer Byte, Lower (L) and Upper(U)
Function
0
1
2
3
4
5
6
7
DQ[7:0]
LByte 0
LByte 1
LByte 2
LByte 3
LByte 4
LByte 5
LByte 6
LByte 7
LDBI_n
LDBI0
LDBI1
LDBI2
LDBI3
LDBI4
LDBI5
LDBI6
LDBI7
UByte 0
UByte 1
UByte 2
UByte 3
UByte 4
UByte 5
UByte 6
UByte 7
UDBI0
UDBI1
UDBI2
UDBI3
UDBI4
UDBI5
UDBI6
UDBI7
DQ[15:8]
UDBI_n
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
179
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Data Mask
Data Mask
The DATA MASK (DM) function, also described as PARTIAL WRITE, is supported only for x8 and x16
configurations (it is not supported on x4 devices). The DM function shares a common pin with the
DBI_n and TDQS functions. The DM function applies only to WRITE operations and cannot be enabled
at the same time the WRITE DBI function is enabled. The valid configurations for the TDQS, DM, and
DBI functions are shown here.
Table 66: DM vs. TDQS vs. DBI Function Matrix
Data Mask (DM)
TDQS (x8 only)
Write DBI
Read DBI
Enabled
MR5[10] = 1
Disabled
MR1[11] = 0
Disabled
MR5[11] = 0
Enabled or Disabled
MR5[12] = 1 or MR5[12] = 0
Disabled
MR5[10] = 0
Enabled
MR1[11] = 1
Disabled
MR5[11] = 0
Disabled
MR5[12] = 0
Disabled
MR1[11] = 0
Enabled
MR5[11] = 1
Enabled or Disabled
MR5[12] = 1 or MR5[12] = 0
Disabled
MR1[11] = 0
Disabled
MR5[11] = 0
Enabled (or Disabled)
MR5[12] = 1 (or MR5[12] = 0)
When enabled, the DM function applies during a WRITE operation. If DM_n is sampled LOW on a
given byte lane, the DRAM masks the write data received on the DQ inputs. If DM_n is sampled HIGH
on a given byte lane, the DRAM does not mask the data and writes this data into the DRAM core. The
DQ frame format for x8 and x16 configurations is shown below. If both CRC write and DM are enabled
(via MRS), the CRC will be checked and valid prior to the DRAM writing data into the DRAM core. If a
CRC error occurs while the DM feature is enabled, CRC write persistent mode will be enabled and data
will not be written into the DRAM core. In the case of CRC write enabled and DM disabled (via MRS),
that is, CRC write nonpersistent mode, data is written to the DRAM core even if a CRC error occurs.
Table 67: Data Mask, DQ Frame Format (x8)
Transfer
Function
0
1
2
3
4
5
6
7
DQ[7:0]
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
DM_n or
DBI_n
DM0 or
DBI0
DM1 or
DBI1
DM2 or
DBI2
DM3 or
DBI3
DM4 or
DBI4
DM5 or
DBI5
DM6 or
DBI6
DM7 or
DBI7
Table 68: Data Mask, DQ Frame Format (x16)
Transfer, Lower (L) and Upper (U)
Function
0
1
2
3
4
5
6
7
DQ[7:0]
LByte 0
LByte 1
LByte 2
LByte 3
LByte 4
LByte 5
LByte 6
LByte 7
LDM_n or
LDBI_n
LDM0 or
LDBI0
LDM1 or
LDBI1
LDM2 or
LDBI2
LDM3 or
LDBI3
LDM4 or
LDBI4
LDM5 or
LDBI5
LDM6 or
LDBI6
LDM7 or
LDBI7
DQ[15:8]
UByte 0
UByte 1
UByte 2
UByte 3
UByte 4
UByte 5
UByte 6
UByte 7
UDM_n or
UDBI_n
UDM0 or
UDBI0
UDM1 or
UDBI1
UDM2 or
UDBI2
UDM3 or
UDBI3
UDM4 or
UDBI4
UDM5 or
UDBI5
UDM6 or
UDBI6
UDM7 or
UDBI7
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
180
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Programmable Preamble Modes and DQS Postambles
Programmable Preamble Modes and DQS Postambles
The device supports programmable WRITE and READ preamble modes, either the normal 1tCK
preamble mode or special 2tCK preamble mode. The 2tCK preamble mode places special timing
constraints on many operational features as well as being supported for data rates of DDR4-2400 and
faster. The WRITE preamble 1tCK or 2tCK mode can be selected independently from READ preamble
1tCK or 2tCK mode.
READ preamble training is also supported; this mode can be used by the DRAM controller to train or
"read level" the DQS receivers.
There are tCCD restrictions under some circumstances:
s When 2tCK READ preamble mode is enabled, a tCCD_S or tCCD_L of 5 clocks is not allowed.
s When 2tCK WRITE preamble mode is enabled and write CRC is not enabled, a tCCD_S or tCCD_L of
5 clocks is not allowed.
s When 2tCK WRITE preamble mode is enabled and write CRC is enabled, a tCCD_S or tCCD_L of 6
clocks is not allowed.
WRITE Preamble Mode
MR4[12] = 0 selects 1tCK WRITE preamble mode while MR4[12] = 1 selects 2tCK WRITE preamble
mode. Examples are shown in the figures below.
Figure 111: 1tCK vs. 2tCK WRITE Preamble Mode
1tCK Mode
WR
WL
CK_c
CK_t
Preamble
DQS_t,
DQS_c
DQ
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
2tCK Mode
WR
WL
CK_c
CK_t
Preamble
DQS_t,
DQS_c
DQ
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
181
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Programmable Preamble Modes and DQS Postambles
CWL has special considerations when in the 2tCK WRITE preamble mode. The CWL value selected in
MR2[5:3], as seen in table below, requires at least one additional clock when the primary CWL value
and 2tCK WRITE preamble mode are used; no additional clocks are required when the alternate CWL
value and 2tCK WRITE preamble mode are used.
Table 69: CWL Selection
CWL - Primary Choice
CWL - Alternate Choice
Speed Bin
1tCK Preamble
2tCK Preamble
1tCK Preamble
2tCK Preamble
DDR4-1600
9
N/A
11
N/A
DDR4-1866
10
N/A
12
N/A
DDR4-2133
11
N/A
14
N/A
DDR4-2400
12
14
16
16
DDR4-2666
14
16
18
18
DDR4-2933
16
18
20
20
DDR4-3200
16
18
20
20
Note: 1. CWL programmable requirement for MR2[5:3].
When operating in 2tCK WRITE preamble mode, tWTR (command based) and tWR (MR0[11:9]) must
be programmed to a value 1 clock greater than the tWTR and tWR setting normally required for the
applicable speed bin to be JEDEC compliant; however, Micron's DDR4 DRAMs do not require these
additional tWTR and tWR clocks. The CAS_n-to-CAS_n command delay to either a different bank group
(tCCD_S) or the same bank group (tCCD_L) have minimum timing requirements that must be satisfied
between WRITE commands and are stated in the Timing Parameters by Speed Bin tables.
Figure 112: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 4
1tCK Mode
CMD
WRITE
WRITE
CK_c
CK_t
tCCD
=4
WL
DQS_t,
DQS_c
Preamble
D0
DQ
2tCK
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D1
D2
D3
D4
D5
D6
D7
D0
D1
Mode
CMD
WRITE
WRITE
CK_c
CK_t
tCCD
DQS_t,
DQS_c
=4
WL
Preamble
D0
DQ
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
182
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Programmable Preamble Modes and DQS Postambles
Figure 113: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 5
1tCK Mode
CMD
WRITE
WRITE
CK_c
CK_t
tCCD
=5
WL
DQS_t,
DQS_c
Preamble
Preamble
D0
DQ
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
2tCK Mode: tCCD = 5 is not allowed in 2tCK mode.
Note: 1.
t
CCD_S and tCCD_L = 5 tCKs is not allowed when in 2tCK WRITE preamble mode.
Figure 114: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 6
1tCK Mode
CMD
WRITE
WRITE
CK_c
CK_t
tCCD
=6
WL
DQS_t,
DQS_c
Preamble
Preamble
D0
DQ
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D0
D1
D2
D3
2tCK Mode
CMD
WRITE
WRITE
CK_c
CK_t
tCCD
DQS_t,
DQS_c
=6
WL
Preamble
Preamble
D0
DQ
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
183
D1
D2
D3
D4
D5
D6
D7
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Programmable Preamble Modes and DQS Postambles
READ Preamble Mode
MR4[11] = 0 selects 1tCK READ preamble mode and MR4[11] = 1 selects 2tCK READ preamble mode.
Examples are shown in the following figure.
Figure 115: 1tCK vs. 2tCK READ Preamble Mode
1tCK Mode
RD
CL
CK_c
CK_t
Preamble
DQS_t,
DQS_c
DQ
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
2tCK Mode
RD
CL
CK_c
CK_t
Preamble
DQS_t,
DQS_c
DQ
READ Preamble Training
DDR4 supports READ preamble training via MPR reads; that is, READ preamble training is allowed
only when the DRAM is in the MPR access mode. The READ preamble training mode can be used by
the DRAM controller to train or "read level" its DQS receivers. READ preamble training is entered via
an MRS command (MR4[10] = 1 is enabled and MR4[10] = 0 is disabled). After the MRS command is
issued to enable READ preamble training, the DRAM DQS signals are driven to a valid level by the time
t
SDO is satisfied. During this time, the data bus DQ signals are held quiet, that is, driven HIGH. The
DQS_t signal remains driven LOW and the DQS_c signal remains driven HIGH until an MPR Page0
READ command is issued (MPR0 through MPR3 determine which pattern is used), and when CAS
latency (CL) has expired, the DQS signals will toggle normally depending on the burst length setting.
To exit READ preamble training mode, an MRS command must be issued, MR4[10] = 0.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
184
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Programmable Preamble Modes and DQS Postambles
Figure 116: READ Preamble Training
CMD
MRS
MPR RD
tSDO
CL
DQS_t
DQS_c,
DQs (Quiet/Driven HIGH)
D0
D1
D2
D3
D4
D5
D6
D7
WRITE Postamble
Whether the 1tCK or 2tCK WRITE preamble mode is selected, the WRITE postamble remains the same
AT tCK.
Figure 117: WRITE Postamble
1tCK Mode
WR
WL
CK_c
CK_t
Postamble
DQS_t,
DQS_c
D0
DQ
D1
D2
D3
D4
D5
D6
D7
2tCK Mode
WR
WL
CK_c
CK_t
Postamble
DQS_t,
DQS_c
D0
DQ
D1
D2
D3
D4
D5
D6
D7
READ Postamble
Whether the 1tCK or 2tCK READ preamble mode is selected, the READ postamble remains the same at
tCK.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
185
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Programmable Preamble Modes and DQS Postambles
Figure 118: READ Postamble
1tCK Mode
RD
CL
CK_c
CK_t
Postamble
DQS_t,
DQS_c
D0
DQ
D1
D2
D3
D4
D5
D6
D7
2tCK Mode
RD
CL
CK_c
CK_t
Postamble
DQS_t,
DQS_c
DQ
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
D0
186
D1
D2
D3
D4
D5
D6
D7
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Bank Access Operation
Bank Access Operation
DDR4 supports bank grouping: x4/x8 DRAMs have four bank groups (BG[1:0]), and each bank group is
comprised of four subbanks (BA[1:0]); x16 DRAMs have two bank groups (BG[0]), and each bank group
is comprised of four subbanks. Bank accesses to different banks' groups require less time delay
between accesses than bank accesses to within the same bank's group. Bank accesses to different bank
groups require tCCD_S (or short) delay between commands while bank accesses within the same bank
group require tCCD_L (or long) delay between commands.
Figure 119: Bank Group x4/x8 Block Diagram
Bank 3
Bank 2
Bank 1
Bank 0
Memory Array
Bank Group 0
Bank 3
Bank 2
Bank 1
Bank 0
Memory Array
Bank 3
Bank 2
Bank 1
Bank 0
Memory Array
Bank Group 1
Bank Group 2
Bank 3
Bank 2
Bank 1
Bank 0
Memory Array
Bank Group 3
CMD/ADDR
register
CMD/ADDR
Sense amplifiers
Sense amplifiers
Sense amplifiers
Sense amplifiers
Local I/O gating
Local I/O gating
Local I/O gating
Local I/O gating
Global I/O gating
Data I/O
Notes: 1. Bank accesses to different bank groups require tCCD_S.
2. Bank accesses within the same bank group require tCCD_L.
Splitting the banks into bank groups with subbanks improved some bank access timings and
increased others. However, considering DDR4 did not increase the prefetch from 8n to 16n, the penalty
for staying 8n prefetch was significantly mitigated by using bank groups. The table below summarizes
the timings affected (values listed as xnCK or yns means the larger of the two values).
Table 70: DDR4 Bank Group Timing Examples
Parameter
DDR4-1600
DDR4-2133
DDR4-2400
CCD_S
4nCK
4nCK
4nCK
tCCD_L
4nCK or 6.25ns
4nCK or 5.355ns
4nCK or 5ns
t
22$?3+
4nCK or 5ns
4nCK or 3.7ns
4nCK or 3.3ns
t
22$?,+
4nCK or 6ns
4nCK or 5.3ns
4nCK or 4.9ns
t
4nCK or 5ns
4nCK or 3.7ns
4nCK or 3.3ns
4nCK or 6ns
4nCK or 5.3ns
4nCK or 4.9ns
t
RRD_S (1K)
tRRD_L
(1K)
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
187
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Bank Access Operation
Table 70: DDR4 Bank Group Timing Examples (Continued)
Parameter
DDR4-1600
DDR4-2133
DDR4-2400
tRRD_S
4nCK or 6ns
4nCK or 5.3ns
4nCK or 5.3ns
4nCK or 7.5ns
4nCK or 6.4ns
4nCK or 6.4ns
t
2nCK or 2.5ns
2nCK or 2.5ns
2nCK or 2.5ns
t
4nCK or 7.5ns
4nCK or 7.5ns
4nCK or 7.5ns
(2K)
t
RRD_L (2K)
WTR_S
WTR_L
Notes: 1. Refer to Timing Tables for actual specification values, these values are shown for reference only and are not verified for accuracy.
2. Timings with both nCK and ns require both to be satisfied; that is, the larger time of the two cases must be satisfied.
Figure 120: READ Burst tCCD_S and tCCD_L Examples
CK_c
CK_t
Command
T0
T1
READ
DES
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
DES
DES
READ
DES
DES
DES
DES
DES
READ
DES
tCCD_L
tCCD_S
Bank Group
(BG)
BG a
BG b
BG b
Bank
Bank c
Bank c
Bank c
Address
Col n
Col n
Col n
Don’t Care
Notes: 1.
2.
tCCD_S;
CAS_n-to-CAS_n delay (short). Applies to consecutive CAS_n to different bank groups (T0 to T4).
CCD_L; CAS_n-to-CAS_n delay (long). Applies to consecutive CAS_n to the same bank group (T4 to T10).
t
Figure 121: Write Burst tCCD_S and tCCD_L Examples
CK_c
CK_t
Command
T0
T1
WRITE
DES
T2
T3
T4
T5
T6
DES
DES
WRITE
DES
DES
T7
T8
T9
T10
T11
DES
DES
DES
WRITE
DES
tCCD_L
tCCD_S
Bank Group
(BG)
BG a
BG b
BG b
Bank
Bank c
Bank c
Bank c
Coln
Coln
Coln
Address
Don’t Care
Notes: 1.
2.
t
CCD_S; CAS_n-to-CAS_n delay (short). Applies to consecutive CAS_n to different bank groups (T0 to T4).
CCD_L; CAS_n-to-CAS_n delay (long). Applies to consecutive CAS_n to the same bank group (T4 to T10).
t
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
188
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Bank Access Operation
Figure 122: tRRD Timing
CK_c
CK_t
Command
T0
T1
ACT
DES
T2
T3
T4
T5
T6
DES
DES
ACT
DES
DES
T8
T9
T10
T11
DES
DES
DES
ACT
DES
tRRD_L
tRRD_S
Bank
Group
(BG)
T7
BG a
BG b
BG b
Bank
Bank c
Bank c
Bank d
Address
Row n
Row n
Row n
Don’t Care
t
RRD_S; ACTIVATE-to-ACTIVATE command period (short); applies to consecutive ACTIVATE commands to different
bank groups (T0 and T4).
2. tRRD_L; ACTIVATE-to-ACTIVATE command period (long); applies to consecutive ACTIVATE commands to the
different banks in the same bank group (T4 and T10).
Notes: 1.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
189
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Bank Access Operation
Figure 123: tWTR_S Timing (WRITE-to-READ, Different Bank Group, CRC and DM Disabled)
T0
T1
T2
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Tb0
Tb1
WRITE
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
READ
Valid
CK_c
CK_t
Command
tWTR_S
Bank
Group
Bank
BGa
BGb
Bank c
Bank c
Col n
Address
Col n
tWPRE
tWPST
DQS, DQS_c
DI
n
DQ
DI
n+ 1
DI
n+ 2
DI
n+ 3
DI
n+ 4
DI
n+ 5
DI
n+ 6
DI
n+ 7
RL
WL
Time Break
Note: 1.
Transitioning Data
Don’t Care
t
WTR_S: delay from start of internal write transaction to internal READ command to a different bank group.
Figure 124: tWTR_L Timing (WRITE-to-READ, Same Bank Group, CRC and DM Disabled)
T0
T1
T2
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Tb0
Tb1
WRITE
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
READ
Valid
CK_c
CK_t
Command
tWTR_L
Bank
Group
Bank
BGa
BGa
Bank c
Bank c
Col n
Address
Col n
tWPRE
tWPST
DQS, DQS_c
DI
n
DQ
DI
n+ 1
DI
n+ 2
DI
n+ 3
DI
n+ 4
DI
n+ 5
DI
n+ 6
DI
n+ 7
RL
WL
Time Break
Note: 1.
Transitioning Data
Don’t Care
t
WTR_L: delay from start of internal write transaction to internal READ command to the same bank group.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
190
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
READ Operation
Read Timing Definitions
The read timings shown below are applicable in normal operation mode, that is, when the DLL is
enabled and locked.
Note:tDQSQ = both rising/falling edges of DQS; no tAC defined.
Rising data strobe edge parameters:
s tDQSCK (MIN)/(MAX) describes the allowed range for a rising data strobe edge relative to CK.
s tDQSCK is the actual position of a rising strobe edge relative to CK.
s tQSH describes the DQS differential output HIGH time.
s tDQSQ describes the latest valid transition of the associated DQ pins.
s tQH describes the earliest invalid transition of the associated DQ pins.
Falling data strobe edge parameters:
s tQSL describes the DQS differential output LOW time.
s tDQSQ describes the latest valid transition of the associated DQ pins.
s tQH describes the earliest invalid transition of the associated DQ pins.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
191
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 125: Read Timing Definition
CK_c
CK_t
tDQSCK
tDQSCK
tDQSCK
(MIN) tDQSCK (MAX)
MAX
center
tDQSCK
MIN
tDQSCK
(MIN) tDQSCK (MAX)
tDQSCKi
tDQSCKi
Rising strobe
region
window
Rising strobe
region
window
tDQSCKi
tDQSCKi
Rising strobe
region
window
Rising strobe
region
window
tDQSCKi
tDQSCKi
Rising strobe
region
window
Rising strobe
region
window
tDQSCK
tDQSCK
tQSH/DQS_c
tQSH/DQS_t
DQS_c
DQS_t
tQH
tQH
tDQSQ
tDQSQ
Associated
DQ Pins
Table 71: Read-to-Write and Write-to-Read Command Intervals
Access Type
Read-to-Write, minimum
Write-to-Read, minimum
Bank Group
Timing Parameters
Note
Same
CL - CWL + RBL/2 + 1tCK + tWPRE
1, 2
Different
CL - CWL + RBL/2 + 1tCK + tWPRE
1, 2
Same
CWL + WBL/2 + tWTR_L
1, 3
Different
CWL + WBL/2 + tWTR_S
1, 3
Notes: 1. These timings require extended calibrations times tZQinit and tZQCS.
2. RBL: READ burst length associated with READ command, RBL = 8 for fixed 8 and on-the-fly mode 8 and RBL = 4 for
fixed BC4 and on-the-fly mode BC4.
3. WBL: WRITE burst length associated with WRITE command, WBL = 8 for fixed 8 and on-the-fly mode 8 or BC4 and
WBL = 4 for fixed BC4 only.
2EAD4IMINGn#LOCK
TO
$ATA3TROBE2ELATIONSHIP
The clock-to-data strobe relationship shown below is applicable in normal operation mode, that is,
when the DLL is enabled and locked.
Rising data strobe edge parameters:
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
192
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
s tDQSCK (MIN)/(MAX) describes the allowed range for a rising data strobe edge relative to CK.
s tDQSCK is the actual position of a rising strobe edge relative to CK.
s tQSH describes the data strobe high pulse width.
s tHZ(DQS) DQS strobe going to high, nondrive level (shown in the postamble section of the figure
below).
Falling data strobe edge parameters:
s tQSL describes the data strobe low pulse width.
s tLZ(DQS) DQS strobe going to low, initial drive level (shown in the preamble section of the figure
below).
Figure 126: Clock-to-Data Strobe Relationship
RL measured
to this point
CK_t
CK_c
tDQSCK (MIN)
tDQSCK (MIN)
tDQSCK (MIN)
tDQSCK (MIN)
tHZ(DQS) MIN
tLZ(DQS) MIN
DQS_t, DQS_c
Early Strobe
tQSH
tQSL
tQSH
tQSL
tQSH
tQSL
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
tRPRE
Bit 7
tRPST
tDQSCK (MAX)
tDQSCK (MAX)
tDQSCK (MAX)
tDQSCK (MAX)
tLZ(DQS) MAX
DQS_t, DQS_c
Late Strobe
Bit 0
tRPRE
tQSH
Bit 1
tQSL
Bit 2
tQSH
Bit 3
Bit 4
Bit 5
Bit 6
tHZ(DQS) MAX
tRPST
Bit 7
tQSL
Notes: 1. Within a burst, the rising strobe edge will vary within tDQSCKi while at the same voltage and temperature.
However, when the device, voltage, and temperature variations are incorporated, the rising strobe edge variance
window can shift between tDQSCK (MIN) and tDQSCK (MAX).
A timing of this window's right edge (latest) from rising CK_t, CK_c is limited by a device's actual tDQSCK (MAX).
A timing of this window's left inside edge (earliest) from rising CK_t, CK_c is limited by tDQSCK (MIN).
2. Notwithstanding Note 1, a rising strobe edge with tDQSCK (MAX) at T(n) can not be immediately followed by a
rising strobe edge with tDQSCK (MIN) at T(n + 1) because other timing relationships (tQSH, tQSL) exist: if tDQSCK(n
+ 1) < 0: tDQSCK(n) < 1.0 tCK - (tQSH (MIN) + tQSL (MIN)) - |tDQSCK(n + 1) |.
3. The DQS_t, DQS_c differential output HIGH time is defined by tQSH, and the DQS_t, DQS_c differential output LOW
time is defined by tQSL.
4. tLZ(DQS) MIN and tHZ(DQS) MIN are not tied to tDQSCK (MIN) (early strobe case), and tLZ(DQS) MAX and tHZ(DQS)
MAX are not tied to tDQSCK (MAX) (late strobe case).
5. The minimum pulse width of READ preamble is defined by tRPRE (MIN).
6. The maximum READ postamble is bound by tDQSCK (MIN) plus tQSH (MIN) on the left side and tHZDSQ (MAX) on
the right side.
7. The minimum pulse width of READ postamble is defined by tRPST (MIN).
8. The maximum READ preamble is bound by tLZDQS (MIN) on the left side and tDQSCK (MAX) on the right side.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
193
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
2EAD4IMINGn$ATA3TROBE
TO
$ATA2ELATIONSHIP
The data strobe-to-data relationship is shown below and is applied when the DLL is enabled and
locked.
Note:tDQSQ: both rising/falling edges of DQS; no tAC defined.
Rising data strobe edge parameters:
s tDQSQ describes the latest valid transition of the associated DQ pins.
s tQH describes the earliest invalid transition of the associated DQ pins.
Falling data strobe edge parameters:
s tDQSQ describes the latest valid transition of the associated DQ pins.
s tQH describes the earliest invalid transition of the associated DQ pins.
Data valid window parameters:
s tDVWd is the Data Valid Window per device per UI and is derived from [tQH - tDQSQ] of each UI on
a given DRAM
s tDVWp is the Data Valid Window per pin per UI and is derived [tQH - tDQSQ] of each UI on a pin of
a given DRAM
Figure 127: Data Strobe-to-Data Relationship
T0
T1
T2
T9
T10
T11
T12
T13
T14
T15
T16
Command3
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
Address4
Bank,
Col n
CK_c
CK_t
RL = AL + CL
tDQSQ
tRPRE
tDQSQ
(MAX)
(MAX)
tRPST
(1nCK)
DQS_t, DQS_c
tQH
DQ2
(Last data )
DOUT
n
tQH
DOUT
n+1
DOUT
n+2
DOUT
n+3
DOUT
n+4
DOUT
n+5
DOUT
n+6
DOUT
n+7
tDVWp
DQ2
(First data no longer)
DOUT
n+1
DOUT
n
DOUT
n+2
DOUT
n+3
DOUT
n+4
DOUT
n+5
DOUT
n+6
DOUT
n+7
tDVWp
DOUT
n
All DQ collectively
DOUT
n+1
DOUT
n+2
DOUT
n+3
DOUT
n+4
DOUT
n+5
tDVWd
Notes: 1.
2.
3.
4.
5.
DOUT
n+6
DOUT
n+7
tDVWd
Don’t Care
BL = 8, RL = 11 (AL = 0, CL = 1), Premable = 1tCK.
DOUT n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ commands at T0.
Output timings are referenced to VDDQ, and DLL on for locking.
6. tDQSQ defines the skew between DQS to data and does not define DQS to clock.
7. Early data transitions may not always happen at the same DQ. Data transitions of a DQ can vary (either early or
late) within a burst.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
194
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
t
LZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) Calculations
t
HZ and tLZ transitions occur in the same time window as valid data transitions. These parameters are
referenced to a specific voltage level that specifies when the device output is no longer driving
t
HZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS) and tLZ(DQ). The figure below shows a method to
calculate the point when the device is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving
t
LZ(DQS) and tLZ(DQ), by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent. tLZ(DQS), tLZ(DQ), tHZ(DQS), and
t
HZ(DQ) are defined as singled-ended parameters.
Figure 128: tLZ and tHZ Method for Calculating Transitions and Endpoints
tLZ(DQ):
CK_t, CK_c rising crossing at RL
tHZ(DQ)
tHZ(DQ)
with BL8: CK_t, CK_c rising crossing at RL + 4CK
with BC4: CK_t, CK_c rising crossing at RL + 2CK
CK_t
CK_c
Begin point:
Extrapolated point at VDDQ
DQ
tLZ
tHZ
VDDQ
VDDQ
DQ
VSW2
VSW2
0.7 × VDDQ
0.7 × VDDQ
VSW1
VSW1
0.4 × VDDQ
0.4 × VDDQ
Begin point: Extrapolated point (low level)
Notes: 1. Vsw1 = (0.70 - 0.04) έ VDDQ for both tLZ and tHZ.
2. Vsw2 = (0.70 + 0.04) έ VDDQ for both tLZ and tHZ.
3. Extrapolated point (low level) = VDDQ/(50 + 34) έ 34 = 0.4 έ VDDQ
Driver impedance = RZQ/7 = 34ȳ
VTT test load = 50ȳ to VDDQ.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
195
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
t
RPRE Calculation
Figure 129: tRPRE Method for Calculating Transitions and Endpoints
CK_t
VDD /2
CK_c
Single-ended signal provided as background information
VDDQ
DQS_t
0.7 × VDDQ
0.4 × VDDQ
DQS_c
VDDQ
0.7 × VDDQ
0.4 × VDDQ
DQS_t
DQS_t
DQS_c
VDDQ
0.7 × VDDQ
DQS_c
0.4 × VDD
Resulting differential signal relevant for tRPRE specification
0.6 × VDDQ
VSW2
0.3 × VDDQ
VSW1
DQS_t, DQS_c
t
t
t
RPRE ends (t2)
RPRE begins ( 1)
0V
Notes: 1. Vsw1 = (0.3 - 0.04) έ VDDQ.
2. Vsw2 = (0.30 + 0.04) έ VDDQ.
3. DQS_t and DQS_c low level = VDDQ/(50 + 34) έ 34 = 0.4 έ VDDQ
Driver impedance = RZQ/7 = 34ȳ
VTT test load = 50ȳ to VDDQ.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
196
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
t
RPST Calculation
Figure 130: tRPST Method for Calculating Transitions and Endpoints
CK_t
VDD /2
CK_c
Single-ended signal provided as background information
VDDQ
0.7 × VDDQ
0.4 × VDDQ
DQS_t
VDDQ
DQS_c
0.7 × VDDQ
0.4 × VDDQ
DQS_c
VDDQ
0.7 × VDDQ
DQS_t
Resulting differential signal relevant fortRPST specification
tRPST
beginst(1)
0V
VSW2
–0.3 × VDDQ
VSW1
–0.6 × VDDQ
DQS_t, DQS_c
tRPST
ends t(2)
Notes: 1. Vsw1n
έ VDDQ.
2. Vsw2n έ VDDQ.
3. DQS_t and DQS_c low level = VDDQ/(50 + 34) έ 34 = 0.4 έ VDDQ
Driver impedance = RZQ/7 = 34ȳ
VTT test load = 50ȳ to VDDQ.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
197
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
READ Burst Operation
DDR4 READ commands support bursts of BL8 (fixed), BC4 (fixed), and BL8/BC4 on-the-fly (OTF); OTF
uses address A12 to control OTF when OTF is enabled:
s A12 = 0, BC4 (BC4 = burst chop)
s A12 = 1, BL8
READ commands can issue precharge automatically with a READ with auto precharge command
(RDA), and is enabled by A10 HIGH:
s READ command with A10 = 0 (RD) performs standard read, bank remains active after READ burst.
s READ command with A10 = 1 (RDA) performs read with auto precharge, bank goes in to precharge
after READ burst.
Figure 131: READ Burst Operation, RL = 11 (AL = 0, CL = 11, BL8)
T0
T1
T2
Ta0
Ta1
Ta2
Ta3
Ta4
Ta5
Ta6
Ta7
Ta8
Ta9
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
BGa
Address
Bank
col n
tRPRE
tRPST
DQS_t
DQS_c
DO
n
DQ
DO
n+ 1
DO
n+ 2
DO
n+ 3
DO
n+ 4
DO
n+ 5
DO
n+ 6
DO
n+ 7
CL = 11
RL = AL + CL
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, RL = 0, AL = 0, CL = 11, Preamble = 1tCK.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ command at T0.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
198
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 132: READ Burst Operation, RL = 21 (AL = 10, CL = 11, BL8)
T0
T1
Ta0
Ta1
Ta2
Ta3
Tb0
Tb1
Tb2
Tb3
Tb4
Tb5
Tb6
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
BGa
Address
Bank
col n
tRPRE
tRPST
DQS_t
DQS_c
DO
n
DQ
AL = 10
DO
n+ 1
DO
n+ 2
DO
n+ 3
DO
n+ 4
DO
n+ 5
DO
n+ 6
DO
n+ 7
CL = 11
RL = AL + CL
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, RL = 21, AL = (CL - 1), CL = 11, Preamble = 1tCK.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ command at T0.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
199
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
READ Operation Followed by Another READ Operation
Figure 133: Consecutive READ (BL8) with 1tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
b+3
DO
b+4
DO
b+5
DO
b+6
DO
b+7
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, AL = 0, CL = 11, Preamble = 1tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Figure 134: Consecutive READ (BL8) with 2tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
b+3
DO
b+4
DO
b+5
DO
b+6
DO
b+7
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, AL = 0, CL = 11, Preamble = 2tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
200
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 135: Nonconsecutive READ (BL8) with 1tCK Preamble in Same or Different Bank Group
T0
T1
READ
DES
T2
T3
T4
DES
DES
T5
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S/L
=5
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
b+3
DO
b+4
DO
b+5
DO
b+6
DO
b+7
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
Don’t Care
Transitioning Data
BL8, AL = 0, CL = 11, Preamble = 1tCK, tCCD_S/L = 5.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T5.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Figure 136: Nonconsecutive READ (BL8) with 2tCK Preamble in Same or Different Bank Group
T0
T1
READ
DES
T2
T5
T6
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S/L
=6
Bank Group
Address
BGa
BGa or
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
b+3
DO
b+4
DO
b+5
DO
b+6
DO
b+7
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL8, AL = 0, CL = 11, Preamble = 2tCK, tCCD_S/L = 6.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ commands at T0 and T6.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
6 t##$?3,ISNTALLOWEDINtCK preamble mode.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
201
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 137: READ (BC4) to READ (BC4) with 1tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPST
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
b
DO
b+1
DO
b+2
DO
b+3
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, AL = 0, CL = 11, Preamble = 1tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Figure 138: READ (BC4) to READ (BC4) with 2tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
b
DO
b+1
DO
b+2
DO
b+3
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, AL = 0, CL = 11, Preamble = 2tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
202
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 139: READ (BL8) to READ (BC4) OTF with 1tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
t RPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
b+3
RL = 11
Time Break
Transitioning Data
Don’t Care
BL = 8, AL = 0, CL = 11, Preamble = 1tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0. BC4 setting activated by
MR0[1:0] = 01 and A12 = 0 during READ commands at T4.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
Figure 140: READ (BL8) to READ (BC4) OTF with 2tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
b+3
RL = 11
Time Break
Transitioning Data
Don’t Care
BL = 8, AL =0, CL = 11, Preamble = 2tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0. BC4 setting activated by
MR0[1:0] = 01 and A12 = 0 during READ commands at T4.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
203
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 141: READ (BC4) to READ (BL8) OTF with 1tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tCCD_S
Bank Group
Address
Address
=4
BGa
BGb
Bank
Col n
Bank
Col b
tRPST
tRPRE
tRPST
tRPRE
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
b
DO
b+1
DO
b+2
DO
b+3
DO
b+4
DO
b+5
DO
b+6
DO
b+7
RL = 11
Time Break
Transitioning Data
Don’t Care
BL = 8, AL =0, CL = 11, Preamble = 1tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0. BL8 setting activated by
MR0[1:0] = 01 and A12 = 1 during READ commands at T4.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
Figure 142: READ (BC4) to READ (BL8) OTF with 2tCK Preamble in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
Bank Group
Address
Address
=4
BGa
BGb
Bank
Col n
Bank
Col b
tRPST
tRPRE
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
b
DO
b+1
DO
b+2
DO
b+3
DO
b+4
DO
b+5
DO
b+6
DO
b+7
RL = 11
Time Break
Transitioning Data
Don’t Care
BL = 8, AL = 0, CL = 11, Preamble = 2tCK.
DO n (or b) = data-out from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0. BL8 setting activated by
MR0[1:0] = 01 and A12 = 1 during READ commands at T4.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
204
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
READ Operation Followed by WRITE Operation
Figure 143: READ (BL8) to WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T22
CK_c
CK_t
Command
DES
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
tWTR
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tWPST
tWPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = 9
Time Break
Transitioning Data
Don’t Care
BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.
DO n = data-out from column n; DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and
WRITE commands at T8.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Notes: 1.
2.
3.
4.
Figure 144: READ (BL8) to WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
READ to WRITE command delay
= RL +BL/2 - WL + 3 tCK
Bank Group
Address
Address
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
t
t
RPRE
RPST
t
t
WPRE
t
WR
t
WTR
WPST
DQS_t,
DQS_c
RL = 11
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = 10
Time Break
Transitioning Data
Don’t Care
Notes: 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9+1 [see Note 5], AL = 0), WRITE preamble
= 2tCK.
2. DO n = data-out from column n; DI b = data-in from column b.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and
WRITE commands at T8.
5. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting.
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
205
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 145: READ (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Same or Different Bank Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
tWTR
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tWPST
tWPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = 9
Time Break
Transitioning Data
Don’t Care
BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.
DO n = data-out from column n; DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 (OTF) setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and WRITE commands at
T6.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Notes: 1.
2.
3.
4.
Figure 146: READ (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 3 tCK
Bank Group
Address
Address
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tRPST
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
RL = 11
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = 10
Time Break
Transitioning Data
Don’t Care
Notes: 1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble
= 2tCK.
2. DO n = data-out from column n; DI b = data-in from column b.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BC4 (OTF) setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0 and WRITE commands at
T6.
5. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting.
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
206
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 147: READ (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Same or Different Bank
Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T19
T20
DES
DES
CK_c
CK_t
Command
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
tWTR
2 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tWPST
tWPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = 9
Time Break
Transitioning Data
Don’t Care
BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.
DO n = data-out from column n; DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 (fixed) setting activated by MR0[1:0] = 01.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Notes: 1.
2.
3.
4.
5.
Figure 148: READ (BC4) Fixed to WRITE (BC4) Fixed with 2tCK Preamble in Same or Different Bank
Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
READ
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 3 tCK
Bank Group
Address
Address
tWTR
2 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tRPST
tWPST
tWPRE
DQS_t,
DQS_c
RL = 11
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = 10
Time Break
Transitioning Data
Don’t Care
Notes: 1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 9 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble
= 2tCK.
2. DO n = data-out from column n; DI b = data-in from column b.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BC4 (fixed) setting activated by MR0[1:0] = 10.
5. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting.
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
207
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 149: READ (BC4) to WRITE (BL8) OTF with 1tCK Preamble in Same or Different Bank Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T20
CK_c
CK_t
Command
DES
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
tWTR
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPST
tRPRE
tWPST
tWPRE
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
WL = 9
Time Break
Transitioning Data
Don’t Care
BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.
DO n = data-out from column n; DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T6.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Notes: 1.
2.
3.
4.
Figure 150: READ (BC4) to WRITE (BL8) OTF with 2tCK Preamble in Same or Different Bank Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 3 tCK
Bank Group
Address
Address
tWTR
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPST
tRPRE
tWPST
tWPRE
DQS_t,
DQS_c
RL = 11
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
WL = 10
Time Break
Transitioning Data
Don’t Care
Notes: 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble
= 2tCK.
2. DO n = data-out from column n; DI b = data-in from column b.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T6.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
208
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 151: READ (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Same or Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T22
CK_c
CK_t
Command
DES
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
tWTR
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tWPST
tWPRE
tRPST
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = 9
Time Break
Transitioning Data
Don’t Care
BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.
DO n = data-out from column n; DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Notes: 1.
2.
3.
4.
Figure 152: READ (BL8) to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 3 tCK
Bank Group
Address
Address
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tRPST
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
RL = 11
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = 10
Time Break
Transitioning Data
Don’t Care
Notes: 1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note 5], AL = 0), WRITE preamble
= 2tCK.
2. DO n = data-out from column n; DI b = data-in from column b.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
READ Operation Followed by PRECHARGE Operation
The minimum external READ command to PRECHARGE command spacing to the same bank is equal
to AL + tRTP with tRTP being the internal READ command to PRECHARGE command delay. Note that
the minimum ACT to PRE timing, tRAS, must be satisfied as well. The minimum value for the internal
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
209
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
READ command to PRECHARGE command delay is given by tRTP (MIN) = MAX (4 έ nCK, 7.5ns). A new
bank ACTIVATE command may be issued to the same bank if the following two conditions are satisfied
simultaneously:
s The minimum RAS precharge time (tRP [MIN]) has been satisfied from the clock at which the
precharge begins.
s The minimum RAS cycle time (tRC [MIN]) from the previous bank activation has been satisfied.
Figure 153: READ to PRECHARGE with 1tCK Preamble
T0
T1
T2
T3
T6
T7
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
PRE
DES
DES
DES
DES
DES
DES
DES
DES
ACT
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
BGa
or BGb
BGa
Bank a
Col n
Address
BGa
Bank a
(or all)
tRTP
Bank a
Row b
tRP
RL = AL + CL
BC4 Opertaion
DQS_t,
DQS_c
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n
DO
n+1
DO
n+2
DO
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DO
n+4
DO
n+5
DO
n+6
DO
n+7
Time Break
Transitioning Data
Don’t Care
RL = 11 (CL = 11, AL = 0 ), Preamble = 1tCK, tRTP = 6, tRP = 11.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T7) and that tRC (MIN) is satisfied at the next ACTIVATE command time (T18).
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
210
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 154: READ to PRECHARGE with 2tCK Preamble
T0
T1
T2
T3
T6
T7
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
PRE
DES
DES
DES
DES
DES
DES
DES
DES
ACT
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
BGa or
BGb
BGa
Bank a
Col n
Address
BGa
Bank a
(or all)
Bank a
Row b
tRTP
tRP
RL = AL + CL
BC4 Opertaion
DQS_t,
DQS_c
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n
DO
n+1
DO
n+2
DO
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DO
n+4
DO
n+5
DO
n+6
DO
n+7
Time Break
Transitioning Data
Don’t Care
RL = 11 (CL = 11, AL = 0 ), Preamble = 2tCK, tRTP = 6, tRP = 11.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T7) and that tRC (MIN) is satisfied at the next ACTIVATE command time (T18).
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
Figure 155: READ to PRECHARGE with Additive Latency and 1tCK Preamble
T0
T1
T2
T3
T10
T11
T12
T13
T16
T19
T20
T21
T22
T23
T24
T25
T26
T27
DES
READ
DES
DES
DES
DES
DES
DES
PRE
DES
DES
DES
DES
DES
DES
DES
DES
ACT
CK_c
CK_t
Command
Bank Group
Address
BGa or
BGb
BGa
Bank a
Col n
Address
BGa
Bank a
(or all)
AL = CL - 2 = 9
tRTP
Bank a
Row b
tRP
CL = 11
BC4 Opertaion
DQS_t,
DQS_c
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n
DO
n+1
DO
n+2
DO
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DO
n+4
DO
n+5
Time Break
DO
n+6
DO
n+7
Transitioning Data
Don’t Care
RL =20 (CL = 11, AL = CL - 2), Preamble = 1tCK, tRTP = 6, tRP = 11.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T16) and that tRC (MIN) is
satisfied at the next ACTIVATE command time (T27).
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
211
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 156: READ with Auto Precharge and 1tCK Preamble
T0
T1
T2
T3
T6
T7
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
RDA
DES
DES
DES
PRE
DES
DES
DES
DES
DES
DES
DES
DES
ACT
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
BGa or
BGb
BGa
Bank a
Col n
Address
BGa
Bank a
Col n
Bank a
Row b
tRTP
tRP
RL = AL + CL
BC4 Opertaion
DQS_t,
DQS_c
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n
DO
n+1
DO
n+2
DO
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DO
n+4
DO
n+5
DO
n+6
DO
n+7
Time Break
Transitioning Data
Don’t Care
RL = 11 (CL = 11, AL = 0 ), Preamble = 1tCK, tRTP = 6, tRP = 11.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
t
RTP = 6 setting activated by MR0[A11:9 = 001].
The example assumes that tRC (MIN) is satisfied at the next ACTIVATE command time (T18).
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
5.
6.
Figure 157: READ with Auto Precharge, Additive Latency, and 1tCK Preamble
T0
T1
T2
T3
T10
T11
T12
T13
T16
T19
T20
T21
T22
T23
T24
T25
T26
T27
DES
RDA
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
ACT
CK_c
CK_t
Command
Bank Group
Address
BGa
BGa
Bank a
Col n
Address
Bank a
Row b
AL = CL - 2 = 9
tRTP
tRP
CL = 11
BC4 Opertaion
DQS_t,
DQS_c
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n
DO
n+1
DO
n+2
DO
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DO
n+4
DO
n+5
Time Break
Notes: 1.
2.
3.
4.
5.
6.
DO
n+6
DO
n+7
Transitioning Data
Don’t Care
RL = 20 (CL = 11, AL = CL - 2), Preamble = 1tCK, tRTP = 6, tRP = 11.
DO n = data-out from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
t
RTP = 6 setting activated by MR0[11:9] = 001.
The example assumes that tRC (MIN) is satisfied at the next ACTIVATE command time (T27).
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
212
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
READ Operation with Read Data Bus Inversion (DBI)
Figure 158: Consecutive READ (BL8) with 1tCK Preamble and DBI in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
=4
Bank Group
Address
BGa
BGb
Address
Bank
Col n
Bank
Col b
tRPRE
tRPST
DQS_t,
DQS_c
RL = 11 + 2 (Read DBI adder)
DQ
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
DO
DO
b + 3 b +4 _ b + 5
DO
b+6
DO
b+7
DBI
n
DBI
n+1
DBI
n+2
DBI
n+3
DBI
n+4
DBI
n+5
DBI
n+6
DBI
n+7
DBI
b
DBI
b+1
DBI
b+2
DBI
b+3
DBI
b+6
DBI
b+7
RL = 11 + 2 (Read DBI adder)
DBI_n
Time Break
DBI
DBI
b+4 b+5
Don’t Care
Transitioning Data
BL = 8, AL = 0, CL = 11, Preamble = 1tCK, RL = 11 + 2 (Read DBI adder).
DO n (or b) = data-out from column n (or b); DBI n (or b) = data bus inversion from column n (or b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Enable.
Notes: 1.
2.
3.
4.
5.
READ Operation with Command/Address Parity (CA Parity)
Figure 159: Consecutive READ (BL8) with 1tCK Preamble and CA Parity in Different Bank Group
T0
T1
READ
DES
T2
T3
T4
T7
T8
T13
T14
T15
T16
T17
T18
T19
T20
T21
T20
T21
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
DES
tCCD_S
Bank Group
Address
Address
Parity
=4
BGa
BGb
Bank
Col n
Bank
Col b
tRPRE
tRPST
DQS_t,
DQS_c
RL = 15
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DO
b
DO
b+1
DO
b+2
DO
DO
DO
b + 3 b +4 _ b + 5
DO
b+6
DO
b+7
RL = 15
Time Break
Transitioning Data
Don’t Care
BL = 8, AL = 0, CL = 11, PL = 4, (RL = CL + AL + PL = 15), Preamble = 1tCK.
DO n (or b) = data-out from column n (or b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[A1:A0 = 00] or MR0[A1:A0 = 01] and A12 = 1 during READ commands at T0
and T4.
5. CA parity = Enable, CS to CA latency = Disable, Read DBI = Disable.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
213
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 160: READ (BL8) to WRITE (BL8) with 1tCK Preamble and CA Parity in Same or Different Bank
Group
T0
T1
T7
T8
T9
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T26
CK_c
CK_t
Command
DES
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
Parity
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tRPST
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
RL = 15
DO
n
DQ
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = 13
Time Break
Transitioning Data
Don’t Care
Notes: 1. BL = 8, AL = 0, CL = 11, PL = 4, (RL = CL + AL + PL = 15), READ preamble = 1tCK, CWL = 9, AL = 0, PL = 4, (WL = CL +
AL + PL = 13), WRITE preamble = 1tCK.
2. DO n = data-out from column n, DI b = data-in from column b.
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and
WRITE command at T8.
5. CA parity = Enable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
READ Followed by WRITE with CRC Enabled
Figure 161: READ (BL8) to WRITE (BL8 or BC4: OTF) with 1tCK Preamble and Write CRC in Same or
Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T22
CK_c
CK_t
Command
DES
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
4 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tRPST
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
RL = 11
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DQ x4,
READ: BL = 8,
WRITE: BC = 4 (OTF)
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DQ x8/X16,
READ: BL = 8,
WRITE: BC = 4 (OTF)
DO
n
DO
n+1
DO
n+2
DO
n+3
DO
n+4
DO
n+5
DO
n+6
DO
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DQ x4,
BL = 8
CRC
WL = 9
DQ x8/X16,
BL = 8
Time Break
Transitioning Data
CRC
Don’t Care
Notes: 1. BL = 8 (or BC = 4: OTF for Write), RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE
preamble = 1tCK.
2. DO n = data-out from column n, DI b = data-in from column b.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
214
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
3. DES commands are shown for ease of illustration; other commands may be valid at these times.
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T0 and
WRITE commands at T8.
5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Enable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
215
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 162: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1tCK Preamble and Write CRC in Same or
Different Bank Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
READ
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
READ to WRITE command delay
= RL +BL/2 - WL + 2 tCK
Bank Group
Address
Address
tWTR
2 Clocks
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tRPRE
tWPST
tWPRE
tRPST
DQS_t,
DQS_c
RL = 11
DQ x4,
BC = 4 (Fixed)
DO
n
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DO
n
DO
n+1
DO
n+2
DO
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
CRC
WL = 9
DQ x8/X16,
BC = 4 (Fixed)
Time Break
Transitioning Data
Don’t Care
BC = 4 (Fixed), RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.
DO n = data-out from column n, DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Enable.
Notes: 1.
2.
3.
4.
5.
READ Operation with Command/Address Latency (CAL) Enabled
Figure 163: Consecutive READ (BL8) with CAL (3tCK) and 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T5
T6
T7
T8
T13
T14
T15
T17
T18
T19
T21
T22
T23
DES
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
tCAL
Command
w/o CS_n
DES
tCAL
=3
DES
READ
DES
DES
=3
CS_n
tCCD_S
Bank Group
Address
Address
=4
BGa
BGb
Bank
Col n
Bank
Col b
tRPST
tRPRE
DQS_t,
DQS_c
RL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+5
DI
b+6
DI
b+7
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK.
DI n (or b) = data-in from column n (or b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T3 and T7.
CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Enabling CAL mode does not impact ODT control timings. The same timing relationship relative to the
command/address bus as when CAL is disabled should be maintained.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
216
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
READ Operation
Figure 164: Consecutive READ (BL8) with CAL (4tCK) and 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T5
READ
DES
DES
T6
T7
T8
T14
T15
T16
T18
T19
T21
T22
T23
T24
READ
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
tCAL
Command
w/o CS_n
DES
tCAL
=4
DES
=4
DES
CS_n
tCCD_S
Bank Group
Address
Address
=4
BGa
BGb
Bank
Col n
Bank
Col b
tRPST
tRPRE
DQS_t,
DQS_c
RL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+5
DI
b+6
DI
b+7
RL = 11
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK.
DI n (or b) = data-in from column n (or b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ commands at T3 and T8.
CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
Enabling CAL mode does not impact ODT control timings. The same timing relationship relative to the
command/address bus as when CAL is disabled should be maintained.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
217
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
WRITE Operation
Write Timing Definitions
The write timings shown in the following figures are applicable in normal operation mode, that is,
when the DLL is enabled and locked.
7RITE4IMINGn#LOCK
TO
$ATA3TROBE2ELATIONSHIP
The clock-to-data strobe relationship is shown below and is applicable in normal operation mode, that
is, when the DLL is enabled and locked.
Rising data strobe edge parameters:
s tDQSS (MIN) to tDQSS (MAX) describes the allowed range for a rising data strobe edge relative to CK.
s tDQSS is the actual position of a rising strobe edge relative to CK.
s tDQSH describes the data strobe high pulse width.
s tWPST strobe going to HIGH, nondrive level (shown in the postamble section of the graphic below).
Falling data strobe edge parameters:
s tDQSL describes the data strobe low pulse width.
s tWPRE strobe going to LOW, initial drive level (shown in the preamble section of the graphic below).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
218
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 165: Write Timing Definition
CK_c
CK_t
Command3
T0
T1
T2
T7
T8
T9
T10
WRITE
DES
DES
DES
DES
DES
DES
T11
T12
T13
T14
DES
DES
DES
DES
WL = AL + CWL
Address4
Bank,
Col n
tDQSS tDSH
tDQSS
(MIN)
tDSH
tDSH
tDSH
tWPSTaa
tWPRE(1nCK)
DQS_t, DQS_c
tDQSL
tDQSH
tDQSH
tDQSL
tDQSH
tDQSH
tDQSL
tDQSH
tDQSL
tDSS
DQ2
tDSS
tDSS
DIN
n+ 2
DIN
n
DIN
n+ 3
tDSH
tDQSS
tDQSL
(MIN)
tDSS
DIN
n+ 6
DIN
n+ 4
tDSH
DIN
n+ 7
tDSH
tDSH
tWPST
tWPRE(1nCK)
(nominal)
(MIN)
tDSS
(MIN)
DQS_t, DQS_c
tDQSL
tDQSH
tDQSH
tDQSL
tDQSH
tDQSL
tDQSH
tDQSL
tDQSH
tDQSL
(MIN)
tDSS
DQ2
tDSS
tDSS
DIN
n+ 2
DIN
n
DIN
n+ 3
tDSS
DIN
n+ 4
(MIN)
tDSS
DIN
n+ 6
DIN
n+ 7
tDQSS
tDSH
tDQSS
(MAX)
tDSH
tDSH
tDSH
tWPRE(1nCK)
tWPST
(MIN)
tDQSL
(MIN)
DQS_t, DQS_c
tDQSL
tDQSH
tDQSH
tDQSL
tDQSH
tDQSL
tDQSH
tDQSL
tDQSH
(MIN)
tDSS
tDSS
DIN
n
DQ2
tDSS
DIN
n+ 2
DIN
n+ 3
tDSS
DIN
n+ 4
tDSS
DIN
n+ 6
DIN
n+ 7
DM_n
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, WL = 9 (AL = 0, CWL = 9).
DIN n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
t
DQSS must be met at each rising clock edge.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
219
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
t
WPRE Calculation
Figure 166: tWPRE Method for Calculating Transitions and Endpoints
CK_t
VDD /2
CK_c
Single-ended signal provided as background information
DQS_t
VREFDQ
DQS_c
VREFDQ
DQS_t
DQS_t
DQS_c
VREFDQ
DQS_c
Resulting differential signal relevant for t WPRE specification
VIH,DIFF,Peak
VIH,DIFF,DQS
VSW2
VSW1
DQS_t, DQS_c
0V
t WPRE
begins ( t 1)
t WPRE
ends ( t 2)
Notes: 1. Vsw1 = (0.1) έ VIH,diff,DQS.
2. Vsw2 = (0.9) έ VIH,diff,DQS.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
220
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
t
WPST Calculation
Figure 167: tWPST Method for Calculating Transitions and Endpoints
CK_t
VDD /2
CK_c
Single-ended signal provided as background information
VREFDQ
DQS_t
DQS_c
VREFDQ
DQS_c
VREFDQ
DQS_t
Resulting differential signal relevant for t WPST specification
t WPST
begins ( t 1)
0V
VSW2
VSW1
DQS_t, DQS_c
t WPST
VIL,DIFF,DQS
VIL,DIFF,Peak
ends ( t 2)
Notes: 1. Vsw1 =(0.9) έ VIL,diff,DQS.
2. Vsw2 = (0.1) έ VIL,diff,DQS.
7RITE4IMINGn$ATA3TROBE
TO
$ATA2ELATIONSHIP
The DQ input receiver uses a compliance mask (Rx) for voltage and timing as shown in the figure
below. The receiver mask (Rx mask) defines the area where the input signal must not encroach in order
for the DRAM input receiver to be able to successfully capture a valid input signal. The Rx mask is not
the valid data-eye. TdiVW and VdiVW define the absolute maximum Rx mask.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
221
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 168: Rx Compliance Mask
VDIVW
Rx Mask
VCENTDQ,midpoint
TdiVW
VCENTDQ,midpoint is defined as the midpoint between the largest VREFDQ voltage level and the smallest
VREFDQ voltage level across all DQ pins for a given DRAM. Each DQ pin's VREFDQ is defined by the
center (widest opening) of the cumulative data input eye as depicted in the following figure. This
means a DRAM's level variation is accounted for within the DRAM Rx mask. The DRAM VREFDQ level
will be set by the system to account for RON and ODT settings.
Figure 169: VCENT_DQ VREFDQ Voltage Variation
DQx
DQy
(smallest VREFDQ Level)
DQz
(largest VREFDQ Level)
VCENTDQz
VCENTDQx
VCENTDQ,midpoint
VCENTDQy
VREF variation
(component)
The following figure shows the Rx mask requirements both from a midpoint-to-midpoint reference
(left side) and from an edge-to-edge reference. The intent is not to add any new requirement or specification between the two but rather how to convert the relationship between the two methodologies.
The minimum data-eye shown in the composite view is not actually obtainable due to the minimum
pulse width requirement.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
222
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 170: Rx Mask DQ-to-DQS Timings
DQS, DQs Data-In at DRAM Ball
DQS, DQs Data-In at DRAM Ball
Rx Mask
Rx Mask – Alternative View
DQS_c
DQS_c
DQS_t
DQS_t
VdiVW
DRAMa
DQx–z
Rx Mask
DRAMa
DQx–z
VdiVW
0.5 × TdiVW 0.5 × TdiVW
0.5 × TdiVW 0.5 × TdiVW
Rx Mask
TdiVW
TdiVW
tDQS2DQ
+0.5 × TdiVW
DRAMb
DQy
Rx Mask
VdiVW
Rx Mask
TdiVW
tDQ2DQ
VdiVW
DRAMb
DQz
tDQ2DQ
Rx Mask
DRAMb
DQz
Rx Mask
VdiVW
DRAMb
DQy
VdiVW
tDQS2DQ
TdiVW
tDQ2DQ
tDQ2DQ
Rx Mask
TdiVW
tDQ2DQ
VdiVW
DRAMc
DQy
Rx Mask
DRAMc
DQz
DRAMc
DQy
Rx Mask
TdiVW
VdiVW
Rx Mask
VdiVW
DRAMc
DQz
+0.5 × TdiVW
VdiVW
tDQS2DQ
tDQS2DQ
tDQ2DQ
Notes: 1. DQx represents an optimally centered mask.
DQy represents earliest valid mask.
DQz represents latest valid mask.
2. DRAMa represents a DRAM without any DQS/DQ skews.
DRAMb represents a DRAM with early skews (negative tDQS2DQ).
DRAMc represents a DRAM with delayed skews (positive tDQS2DQ).
3. This figure shows the skew allowed between DRAM-to-DRAM and between DQ-to-DQ for a DRAM. Signals assume
data is center-aligned at DRAM latch.
TdiPW is not shown; composite data-eyes shown would violate TdiPW.
VCENTDQ,midpoint is not shown but is assumed to be midpoint of VdiVW.
The previous figure shows the basic Rx mask requirements. Converting the Rx mask requirements to a
classical DQ-to-DQS relationship is shown in the following figure. It should become apparent that
DRAM write training is required to take full advantage of the Rx mask.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
223
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 171: Rx Mask DQ-to-DQS DRAM-Based Timings
DQS, DQs Data-In at DRAM Ball
DQS, DQs Data-In at DRAM Ball
Rx Mask vs. Composite Data-Eye
Rx Mask vs. UI Data-Eye
DQS_c
DQS_c
DQS_t
tDSx
DRAMa
DQx , y, z
Rx Mask
TdiVW
VdiVW
TdiPW
DRAMa
DQx–z
TdiPW
tDHx
Rx Mask
VdiVW
DQS_t
TdiVW
TdiPW
tDSy
tDHy
DRAMb
DQz
Rx Mask
TdiVW
tDQ2DQ
Rx Mask
tDQ2DQ
TdiVW
VdiVW
DRAMb
DQy
VdiVW
*Skew
TdiPW
tDSz
tDHz
DRAMc
DQz
tDQ2DQ
Rx Mask
Rx Mask
TdiVW
TdiVW
tDQ2DQ
VdiVW
DRAMc
DQy
VdiVW
*Skew
TdiPW
Notes: 1. DQx represents an optimally centered mask.
DQy represents earliest valid mask.
DQz represents latest valid mask.
2. *Skew = tDQS2DQ + 0.5 έ TdiVW
DRAMa represents a DRAM without any DQS/DQ skews.
DRAMb represents a DRAM with the earliest skews (negative tDQS2DQ, tDQSy > *Skew).
DRAMc represents a DRAM with the latest skews (positive tDQS2DQ, tDQHz > *Skew).
t
3. DS/tDH are traditional data-eye setup/hold edges at DC levels.
t
DS and tDH are not specified; tDH and tDS may be any value provided the pulse width and Rx mask limits are not
violated.
t
DH (MIN) > TdiVW + tDS (MIN) + tDQ2DQ.
The DDR4 SDRAM's input receivers are expected to capture the input data with an Rx mask of TdiVW
provided the minimum pulse width is satisfied. The DRAM controller will have to train the data input
buffer to utilize the Rx mask specifications to this maximum benefit. If the DRAM controller does not
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
224
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
train the data input buffers, then the worst case limits have to be used for the Rx mask (TdiVW + 2 έ
t
DQS2DQ), which will generally be the classical minimum (tDS and tDH) and is required as well.
Figure 172: Example of Data Input Requirements Without Training
TdiVW + 2 × tDQS2DQ
VdiVW
VIH(DC)
0.5 × VdiVW
Rx Mask
VCENTDQ,midpoint
0.5 × VdiVW
VIL(DC)
tDS
tDH
0.5 × TdiVW + tDQS2DQ 0.5 × TdiVW + tDQS2DQ
DQS_c
DQS_t
WRITE Burst Operation
The following write timing diagrams are intended to help understand each write parameter's meaning
and are only examples. Each parameter will be defined in detail separately. In these write timing
diagrams, CK and DQS are shown aligned, and DQS and DQ are shown center-aligned for the purpose
of illustration.
DDR4 WRITE command supports bursts of BL8 (fixed), BC4 (fixed), and BL8/BC4 on-the-fly (OTF);
OTF uses address A12 to control OTF when OTF is enabled:
s A12 = 0, BC4 (BC4 = burst chop)
s A12 = 1, BL8
WRITE commands can issue precharge automatically with a WRITE with auto precharge (WRA)
command, which is enabled by A10 HIGH.
s WRITE command with A10 = 0 (WR) performs standard write, bank remains active after WRITE burst
s WRITE command with A10 = 1 (WRA) performs write with auto precharge, bank goes into precharge
after WRITE burst
The DATA MASK (DM) function is supported for the x8 and x16 configurations only (the DM function
is not supported on x4 devices). The DM function shares a common pin with the DBI_n and TDQS
functions. The DM function only applies to WRITE operations and cannot be enabled at the same time
the DBI function is enabled.
s If DM_n is sampled LOW on a given byte lane, the DRAM masks the write data received on the DQ
inputs.
s If DM_n is sampled HIGH on a given byte lane, the DRAM does not mask the data and writes this data
into the DRAM core.
s If CRC write is enabled, then DM enabled (via MRS) will be selected between write CRC nonpersistent mode (DM disabled) and write CRC persistent mode (DM enabled).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
225
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 173: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8)
T0
T1
T2
T7
T8
T9
WRITE
DES
DES
DES
DES
DES
T10
T11
T12
T13
T14
T15
T16
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
BGa
Address
Bank
Col n
DES
tWPST
tWPRE
DQS_t,
DQS_c
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
WL = AL + CWL = 9
Time Break
Notes: 1.
2.
3.
4.
5.
Don’t Care
Transitioning Data
BL8, WL = 0, AL = 0, CWL = 9, Preamble = 1tCK.
DI n = Data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
CA parity = Disable, CS to CA Latency = Disable, Read DBI = Disable.
Figure 174: WRITE Burst Operation, WL = 19 (AL = 10, CWL = 9, BL8)
T0
T1
T2
T9
T10
T11
T17
T18
T19
T20
T21
T22
T23
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
Bank Group
Address
Address
BGa
Bank
Col n
tWPST
tWPRE
DQS_t,
DQS_c
DI
n
DQ
AL = 10
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CWL = 9
WL = AL + CWL = 19
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BL8, WL = 19, AL = 10 (CL - 1), CWL = 9, Preamble = 1tCK.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
226
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
WRITE Operation Followed by Another WRITE Operation
Figure 175: Consecutive WRITE (BL8) with 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S
Bank Group
Address
Address
4 Clocks
=4
BGa
BGb
Bank
Col n
Bank
Col b
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = AL + CWL = 9
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL8, AL = 0, CWL = 9, Preamble = 1tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T17.
Figure 176: Consecutive WRITE (BL8) with 2tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S
Bank Group
Address
Address
4 Clocks
=4
BGa
BGb
Bank
Col n
Bank
Col b
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 10
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = AL + CWL = 10
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T17.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
227
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
7. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting supported in the applicable tCK range, which means CWL = 9 is not allowed
when operating in 2tCK WRITE preamble mode.
Figure 177: Nonconsecutive WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group
T0
T1
T2
T3
T4
T5
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
WRITE
DES
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S/L
Bank Group
Address
Address
4 Clocks
=5
BGa
BGa
or BGb
Bank
Col n
Bank
Col b
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = AL + CWL = 9
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL8, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T5.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T18.
Figure 178: Nonconsecutive WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group
T0
T1
T2
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
WRITE
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S/L
Bank Group
Address
Address
4 Clocks
=6
BGa
BGa
or BGb
Bank
Col n
Bank
Col b
tWPRE
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 10
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = AL + CWL = 10
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 8), Preamble = 2tCK, tCCD_S/L = 6tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T6.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
t##$?3,ISNTALLOWEDINtCK preamble mode.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
228
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T20.
8. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting supported in the applicable tCK range, which means CWL = 9 is not allowed
when operating in 2tCK WRITE preamble mode.
Figure 179: WRITE (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S
Bank Group
Address
Address
4 Clocks
=4
BGa
BGb
Bank
Col n
Bank
Col b
tWPST
tWPRE
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = AL + CWL = 9
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BC4, AL = 0, CWL = 9, Preamble = 1tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T17.
Figure 180: WRITE (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T19
CK_c
CK_t
Command
DES
tWR
tCCD_S
Bank Group
Address
Address
4 Clocks
=4
BGa
BGb
Bank
Col n
Bank
Col b
tWPRE
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 10
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = AL + CWL = 10
Time Break
Notes: 1.
2.
3.
4.
5.
Transitioning Data
Don’t Care
BC4, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
229
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T18.
7. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting supported in the applicable tCK range, which means CWL = 9 is not allowed
when operating in 2tCK WRITE preamble mode.
Figure 181: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S
Bank Group
Address
Address
2 Clocks
=4
BGa
BGb
Bank
Col n
Bank
Col b
tWPST
tWPRE
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = AL + CWL = 9
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Don’t Care
Transitioning Data
BC4, AL = 0, CWL = 9, Preamble = 1tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 (fixed) setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T15.
Figure 182: WRITE (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T19
CK_c
CK_t
Command
DES
t
4 Clocks
t
CCD_S = 4
Bank Group
Address
Address
BGa
BGb
Bank
Col n
Bank
Col b
WR
t
WTR
t
WPST
t
WPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
WL = AL + CWL = 9
Time Break
Notes: 1.
2.
3.
4.
Transitioning Data
Don’t Care
BL = 8/BC = 4, AL = 0, CL = 9, Preamble = 1tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
230
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable.
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T17.
Figure 183: WRITE (BC4) OTF to WRITE (BL8) with 1tCK Preamble in Different Bank Group
T0
T1
T2
T3
T4
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T19
CK_c
CK_t
Command
DES
tWR
tCCD_S
Bank Group
Address
Address
4 Clocks
=4
BGa
BGb
Bank
Col n
Bank
Col b
tWPST
tWPRE
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = AL + CWL = 9
Time Break
Don’t Care
Transitioning Data
BL = 8/BC = 4, AL = 0, CL = 9, Preamble = 1tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T4.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable.
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T17.
Notes: 1.
2.
3.
4.
WRITE Operation Followed by READ Operation
Figure 184: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T24
T25
T26
T27
T28
T29
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
READ
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
4 Clocks
Bank Group
Address
Address
tWTR_S
BGa
=2
BGb
Bank
Col n
Bank
Col b
tWPST
tWPRE
tRPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
RL = AL + CL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
Time Break
Notes: 1.
2.
3.
4.
DI
b+1
DI
b+2
DI
b+3
Transitioning Data
DI
b+4
DI
b+5
DI
b+6
Don’t Care
BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK.
DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0 and READ
command at T15.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
231
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown
at T13.
Figure 185: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Same Bank Group
T0
T1
T7
T8
T9
T10
WRITE
DES
DES
DES
DES
DES
T11
T12
T13
T14
DES
DES
DES
DES
T15
T16
T17
T18
T26
T27
T28
T29
DES
DES
READ
DES
DES
DES
DES
DES
CK_c
CK_t
Command
4 Clocks
Bank Group
Address
Address
tWTR_L
=4
BGa
BGa
Bank
Col n
Bank
Col b
tWPST
tWPRE
tRPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
RL = AL + CL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
Time Break
Transitioning Data
DI
b+1
DI
b+2
Don’t Care
BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK.
DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0 and READ
command at T17.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown
at T13.
Notes: 1.
2.
3.
4.
Figure 186: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
T14
T15
T16
T24
T25
T26
T27
T28
T29
DES
READ
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
4 Clocks
Bank Group
Address
Address
tWTR_S
BGa
=2
BGb
Bank
Col n
Bank
Col b
tWPST
tWPRE
tRPST
tRPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
RL = AL + CL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
Time Break
Notes: 1.
2.
3.
4.
5.
6.
DI
b+1
DI
b+2
DI
b+3
Transitioning Data
Don’t Care
BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK.
DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and READ command at T15.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown
at T13.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
232
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 187: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Same Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
T15
T16
T17
T18
T26
T27
T28
T29
DES
DES
READ
DES
DES
DES
DES
DES
CK_c
CK_t
Command
4 Clocks
Bank Group
Address
Address
tWTR_L
=4
BGa
BGa
Bank
Col n
Bank
Col b
tWPST
tWPRE
tRPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
RL = AL + CL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
DI
b+1
DI
b+2
Don’t Care
BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble = 1tCK.
DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and READ command at T17.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown
at T13.
Figure 188: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 tCK Preamble in Different Bank Group
T0
T1
T7
T8
T9
WRITE
DES
DES
DES
DES
T10
T11
DES
DES
T12
T13
T14
T22
T23
T24
T25
T26
T27
T28
T29
DES
DES
DES
DES
DES
READ
DES
DES
DES
DES
DES
CK_c
CK_t
Command
2 Clocks
Bank Group
Address
Address
tWTR_S
=2
BGa
BGb
Bank
Col n
Bank
Col b
tWPST
tWPRE
tRPST
tRPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
RL = AL + CL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
DI
b+1
DI
b+2
DI
b+3
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1 tCK, WRITE preamble = 1tCK.
DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
The write timing parameter (tWTR_S) is referenced from the first rising clock edge after the last write data shown
at T11.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
233
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 189: WRITE (BC4) Fixed to READ (BC4) Fixed with 1tCK Preamble in Same Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T24
T25
T26
T27
T28
T29
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
READ
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
2 Clocks
Bank Group
Address
Address
tWTR_L
=4
BGa
BGa
Bank
Col n
Bank
Col b
tWPST
tWPRE
tRPST
tRPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
RL = AL + CL = 11
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
b
Time Break
Notes: 1.
2.
3.
4.
5.
6.
DI
b+1
DI
b+2
DI
b+3
Transitioning Data
Don’t Care
BC = 4, WL = 9 (CWL = 9, AL = 0), C L = 11, READ preamble = 1tCK, WRITE preamble = 1tCK.
DI b = data-in from column b.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable, Write CRC = Disable.
The write timing parameter (tWTR_L) is referenced from the first rising clock edge after the last write data shown
at T11.
WRITE Operation Followed by PRECHARGE Operation
The minimum external WRITE command to PRECHARGE command spacing is equal to WL (AL +
CWL) plus either 4tCK (BL8/BC4-OTF) or 2tCK (BC4-fixed) plus tWR. The minimum ACT to PRE timing,
t
RAS, must be satisfied as well.
Figure 190: WRITE (BL8/BC4-OTF) to PRECHARGE with 1tCK Preamble
T0
T1
T2
WRITE
DES
DES
T3
T4
T7
T8
T9
T10
DES
DES
DES
DES
DES
DES
T11
T12
T13
T14
T22
DES
DES
DES
DES
DES
T23
T24
T25
DES
DES
PRE
T26
CK_c
CK_t
Command
WL = AL + CWL = 9
tWR
4 Clocks
BGa, Bank b
Col n
DES
tRP
= 12
BGa, Bank b
(or all)
Address
BC4 (OTF) Opertaion
DQS_t,
DQS_c
DQ
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n
DI
n+1
DI
n+2
DI
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DI
n+4
DI
n+5
DI
n+6
DI
n+7
Time Break
Notes: 1.
2.
3.
4.
Transitioning Data
Don’t Care
BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8 setting activated by
MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
234
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.
6. The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T13.
t
WR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.
Figure 191: WRITE (BC4-Fixed) to PRECHARGE with 1tCK Preamble
T0
T1
T2
WRITE
DES
DES
T3
T4
T7
T8
T9
DES
DES
DES
DES
DES
T10
T11
T12
T13
DES
DES
DES
DES
T14
T22
T23
DES
DES
PRE
T24
T25
T26
DES
DES
DES
CK_c
CK_t
Command
WL = AL + CWL = 9
tWR
2 Clocks
tRP
= 12
BGa, Bank b
Col n
BGa, Bank b
(or all)
Address
BC4 (Fixed) Opertaion
DQS_t,
DQS_c
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.
The write recovery time ( tWR) is referenced from the first rising clock edge after the last write data shown at T11.
t
WR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.
Figure 192: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1tCK Preamble
T0
T1
T2
WRITE
DES
DES
T3
T4
T7
T8
T9
T10
DES
DES
DES
DES
DES
DES
T11
T12
T13
T14
T22
DES
DES
DES
DES
DES
T23
T24
T25
DES
DES
DES
T26
CK_c
CK_t
Command
WL = AL + CWL = 9
tWR
4 Clocks
DES
tRP
= 12
BGa, Bank b
Col n
Address
BC4 (OTF) Opertaion
DQS_t,
DQS_c
DQ
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n
DI
n+1
DI
n+2
DI
n+3
BL8 Opertaion
DQS_t,
DQS_c
DQ
DI
n+4
DI
n+5
DI
n+6
DI
n+7
Time Break
Transitioning Data
Don’t Care
BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.
BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.
6. The write recovery time ( tWR) is referenced from the first rising clock edge after the last write data shown at T13.
tWR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
235
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 193: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Preamble
T0
T1
T2
WRITE
DES
DES
T3
T4
T7
T8
T9
DES
DES
DES
DES
DES
T10
T11
T12
T13
DES
DES
DES
DES
T14
T22
T23
T24
DES
DES
DES
DES
T25
T26
DES
DES
CK_c
CK_t
Command
WL = AL + CWL = 9
tWR
2 Clocks
tRP
= 12
BGa, Bank b
Col n
Address
BC4 (Fixed) Opertaion
DQS_t,
DQS_c
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.
The write recovery time (tWR) is referenced from the first rising clock edge after the last write data shown at T11.
t
WR specifies the last burst WRITE cycle until the PRECHARGE command can be issued to the same bank.
WRITE Operation with WRITE DBI Enabled
Figure 194: WRITE (BL8/BC4-OTF) with 1tCK Preamble and DBI
T0
T1
T2
WRITE
DES
DES
T3
T4
T5
T6
T7
T8
T9
T10
DES
DES
DES
DES
DES
DES
DES
DES
T11
T12
T13
T14
DES
DES
DES
DES
T15
T16
T17
DES
DES
DES
CK_c
CK_t
Command
WL = AL + CWL = 9
tWR
4 Clocks
tWTR
Address
BGa
Address
Bank,
Col n
BC4 (OTF) Opertaion
DQS_t,
DQS_c
DQ
DI
n
DI
n+1
DI
n+2
DI
n+3
DBI_n
DI
n
DI
n+1
DI
n+2
DI
n+3
DQ
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DBI_n
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
BL8 Opertaion
DQS_t,
DQS_c
Transitioning Data
Don’t Care
BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.
BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disabled.
Notes: 1.
2.
3.
4.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
236
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
6. The write recovery time (tWR_DBI) is referenced from the first rising clock edge after the last write data shown at
T13.
Figure 195: WRITE (BC4-Fixed) with 1tCK Preamble and DBI
T0
T1
T2
WRITE
DES
DES
T3
T4
T5
T6
T7
T8
T9
DES
DES
DES
DES
DES
DES
DES
T10
T11
T12
T13
T14
DES
DES
DES
DES
DES
T15
T16
T17
DES
DES
DES
CK_c
CK_t
Command
WL = AL + CWL = 9
tWR
2 Clocks
tWTR
Address
BGa
Address
Bank,
Col n
BC4 (Fixed) Opertaion
DQS_t,
DQS_c
DQ
DI
n
DI
n+1
DI
n+2
DI
n+3
DBI_n
DI
n
DI
n+1
DI
n+2
DI
n+3
Transitioning Data
Notes: 1.
2.
3.
4.
5.
Don’t Care
BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10.
CA parity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disabled.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
237
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
WRITE Operation with CA Parity Enabled
Figure 196: Consecutive Write (BL8) with 1tCK Preamble and CA Parity in Different Bank Group
T0
T1
T2
T3
T4
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
WRITE
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S
Bank Group
Address
4 Clocks
=4
BGa
BGb
Address
Bank
Col n
Bank
Col b
Parity
Valid
Valid
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = PL + AL + CWL = 13
DI
n
DQ
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
WL = PL + AL + CWL = 13
Time Break
Notes: 1.
2.
3.
4.
5.
6.
Transitioning Data
Don’t Care
BL = 8, WL = 9 (CWL = 13, AL = 0 ), Preamble = 1tCK.
DI n = data-in from column n.
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T4.
CA parity = Enable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T21.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
238
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
WRITE Operation with Write CRC Enabled
Figure 197: Consecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or
Different Bank Group
T0
T1
T2
T3
T4
T5
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
WRITE
DES
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T19
CK_c
CK_t
Command
DES
tWR
tCCD_S/L
Bank Group
Address
Address
4 Clocks
=5
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DQ x4,
BC = 4 (OTF)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x8/X16,
BC = 4 (OTF)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x4,
BL = 8
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
CRC
WL = AL + CWL = 9
DQ x8/X16,
BL = 8
CRC
Time Break
Notes: 1.
2.
3.
4.
5.
6.
7.
CRC
Transitioning Data
Don’t Care
BL8/BC4-OTF, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T5.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T5.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T18.
Figure 198: Consecutive WRITE (BC4-Fixed) with 1tCK Preamble and Write CRC in Same or Different
Bank Group
T0
T1
T2
T3
T4
T5
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
WRITE
DES
DES
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T18
T19
DES
DES
CK_c
CK_t
Command
tWR
tCCD_S/L
Bank Group
Address
Address
2 Clocks
=5
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DQ x4,
BC = 4 (Fixed)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
CRC
WL = AL + CWL = 9
DQ x8/X16,
BC = 4 (Fixed)
Time Break
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
239
Transitioning Data
Don’t Care
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Notes: 1.
2.
3.
4.
5.
6.
BC4-fixed, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BC4 setting activated by MR0[1:0] = 10 during WRITE commands at T0 and T5.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T16.
Figure 199: Nonconsecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or
Different Bank Group
T0
T1
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
WRITE
DES
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T20
CK_c
CK_t
Command
DES
t WR
t CCD_S/L
4 Clocks
=6
Bank Group
Address
BGa
BGa or
BGb
Address
Bank
Col n
Bank
Col b
t WTR
t WPST
t WPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DQ x4,
BC = 4 (OTF)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x8/X16,
BC = 4 (OTF)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x4,
BL = 8
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
CRC
WL = AL + CWL = 9
DQ x8/X16,
BL = 8
CRC
Time Break
Notes: 1.
2.
3.
4.
5.
6.
7.
Transitioning Data
CRC
Don’t Care
BL8/BC4-OTF, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 6tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T6.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T6.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable.
The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T19.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
240
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 200: Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK Preamble and Write CRC in Same or
Different Bank Group
T0
T1
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
WRITE
DES
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T22
CK_c
CK_t
Command
DES
tWR
tCCD_S/L
Bank Group
Address
Address
4 Clocks
=7
BGa
BGa or
BGb
Bank
Col n
Bank
Col b
tWPRE
tWTR
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 10
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DQ x4,
BC = 4 (OTF)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x8/X16,
BC = 4 (OTF)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x4,
BL = 8
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
DI
b+4
DI
b+5
DI
b+6
DI
b+7
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
DI
b
DI
b+1
DI
b+2
DI
b+3
CRC
CRC
WL = AL + CWL = 10
DQ x8/X16,
BL = 8
CRC
Time Break
Transitioning Data
CRC
Don’t Care
BL8/BC4-OTF, AL = 0, CWL = 9 + 1 = 10 (see Note 9), Preamble = 2tCK, tCCD_S/L = 7tCK (see Note 7).
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and T7.
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and T7.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Disable.
tCCD_S/L = 6tCK is not allowed in 2tCK preamble mode if minimum tCCD_S/L allowed in 1tCK preamble mode would
have been 6 clocks.
8. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from the first rising clock edge
after the last write data shown at T21.
9. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a value at least 1 clock
greater than the lowest CWL setting supported in the applicable tCK range. That means CWL = 9 is not allowed
when operating in 2tCK WRITE preamble mode.
Notes: 1.
2.
3.
4.
5.
6.
7.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
241
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
WRITE Operation
Figure 201: WRITE (BL8/BC4-OTF/Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank
Group
T0
T1
T2
T6
T7
T8
T9
T10
T11
T12
T13
T14
WRITE
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
DES
T15
T16
T17
T18
T19
T20
DES
DES
DES
DES
DES
DES
CK_c
CK_t
Command
tWR_CRC_DM
4 Clocks
Bank Group
Address
Address
tWTR_S_CRC_DM/tWTR_L_CRC_DM
BGa
Bank
Col n
tWPST
tWPRE
DQS_t,
DQS_c
WL = AL + CWL = 9
DQ x4,
BL = 8
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DQ x8/X16,
BL = 8
DI
n
DI
n+1
DI
n+2
DI
n+3
DI
n+4
DI
n+5
DI
n+6
DI
n+7
CRC
DM
n
DM
n+1
DM
n+2
DM
n+3
DM
n+4
DM
n+5
DM
n+6
DM
n+7
DQ x4,
BC = 4 (OTF/Fixed)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DQ x8/X16,
BC = 4 (OTF/Fixed)
DI
n
DI
n+1
DI
n+2
DI
n+3
CRC
DM
n
DM
n+1
DM
n+2
DM
n+3
DMx4/x8/x16
BL = 8
DM x4/x8/x16
BC = 4 (OTF / Fixed)
CRC
CRC
Time Break
Notes: 1.
2.
3.
4.
5.
6.
7.
Transitioning Data
Don’t Care
BL8/BC4, AL = 0, CWL = 9, Preamble = 1tCK.
DI n (or b) = data-in from column n (or column b).
DES commands are shown for ease of illustration; other commands may be valid at these times.
BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.
BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.
CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable, DM = Enable.
The write recovery time ( tWR_CRC_DM) and write timing parameter (tWTR_S_CRC_DM/tWTR_L_CRC_DM) are
referenced from the first rising clock edge after the last write data shown at T13.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
242
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Write Timing Violations
Write Timing Violations
Motivation
Generally, if timing parameters are violated, a complete reset/initialization procedure has to be initiated to make sure that the device works properly. However, for certain minor violations, it is desirable
that the device is guaranteed not to "hang up" and that errors are limited to that specific operation. A
minor violation does not include a major timing violation (for example, when a DQS strobe misses in
the tDQSCK window).
For the following, it will be assumed that there are no timing violations with regard to the WRITE
command itself (including ODT, and so on) and that it does satisfy all timing requirements not
mentioned below.
Data Setup and Hold Violations
If the data-to-strobe timing requirements (tDS, tDH) are violated, for any of the strobe edges associated
with a WRITE burst, then wrong data might be written to the memory location addressed with this
WRITE command.
In the example, the relevant strobe edges for WRITE Burst A are associated with the clock edges: T5,
T5.5, T6, T6.5, T7, T7.5, T8, and T8.5.
Subsequent reads from that location might result in unpredictable read data; however, the device will
work properly otherwise.
Strobe-to-Strobe and Strobe-to-Clock Violations
If the strobe timing requirements (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock timing requirements (tDSS, tDSH, tDQSS) are violated, for any of the strobe edges associated with a WRITE burst, then
wrong data might be written to the memory location addressed with the offending WRITE command.
Subsequent reads from that location might result in unpredictable read data; however, the device will
work properly otherwise with the following constraints:
s Both write CRC and data burst OTF are disabled; timing specifications other than tDQSH, tDQSL,
t
WPRE, tWPST, tDSS, tDSH, tDQSS are not violated.
s The offending write strobe (and preamble) arrive no earlier or later than six DQS transition edges
from the WRITE latency position.
s A READ command following an offending WRITE command from any open bank is allowed.
s One or more subsequent WR or a subsequent WRA (to same bank as offending WR) may be issued
tCCD_L later, but incorrect data could be written. Subsequent WR and WRA can be either offending
or non-offending writes. Reads from these writes may provide incorrect data.
s One or more subsequent WR or a subsequent WRA (to a different bank group) may be issued tCCD_S
later, but incorrect data could be written. Subsequent WR and WRA can be either offending or
non-offending writes. Reads from these writes may provide incorrect data.
s After one or more precharge commands (PRE or PREA) are issued to the device after an offending
WRITE command and all banks are in precharged state (idle state), a subsequent, non-offending WR
or WRA to any open bank will be able to write correct data.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
243
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
ZQ CALIBRATION Commands
ZQ CALIBRATION Commands
A ZQ CALIBRATION command is used to calibrate DRAM RON and ODT values. The device needs a
longer time to calibrate the output driver and on-die termination circuits at initialization and a relatively smaller time to perform periodic calibrations.
The ZQCL command is used to perform the initial calibration during the power-up initialization
sequence. This command may be issued at any time by the controller depending on the system environment. The ZQCL command triggers the calibration engine inside the DRAM and, after calibration
is achieved, the calibrated values are transferred from the calibration engine to DRAM I/O, which is
reflected as an updated output driver and ODT values.
The first ZQCL command issued after reset is allowed a timing period of tZQinit to perform the full calibration and the transfer of values. All other ZQCL commands except the first ZQCL command issued
after reset are allowed a timing period of tZQoper.
The ZQCS command is used to perform periodic calibrations to account for voltage and temperature
variations. A shorter timing window is provided to perform the calibration and transfer of values as
defined by timing parameter tZQCS. One ZQCS command can effectively correct a minimum of 0.5%
(ZQ correction) of RON and RTT impedance error within 64 nCK for all speed bins assuming the
maximum sensitivities specified in the Output Driver and ODT Voltage and Temperature Sensitivity
tables. The appropriate interval between ZQCS commands can be determined from these tables and
other application-specific parameters. One method for calculating the interval between ZQCS
commands, given the temperature (Tdrift_rate) and voltage (Vdrift_rate) drift rates that the device is
subjected to in the application, is illustrated. The interval could be defined by the following formula:
ZQcorrection
(Tsense x Tdrift_rate) + (Vsense x Tdrift_rate)
Where Tsense = MAX(dRTTdT, dRONdTM) and Vsense = MAX(dRTTdV, dRONdVM) define the temperature and voltage sensitivities.
For example, if Tsens = 1.5%/ιC, Vsens = 0.15%/mV, Tdriftrate = 1 ιC/sec and Vdriftrate = 15 mV/sec, then
the interval between ZQCS commands is calculated as:
0.5
= 0.133 §128ms
(1.5 × 1) + (0.15 × 15)
No other activities should be performed on the DRAM channel by the controller for the duration of
ZQinit, tZQoper, or tZQCS. The quiet time on the DRAM channel allows accurate calibration of output
driver and on-die termination values. After DRAM calibration is achieved, the device should disable
the ZQ current consumption path to reduce power.
t
All banks must be precharged andtRP met before ZQCL or ZQCS commands are issued by the
controller.
ZQ CALIBRATION commands can also be issued in parallel to DLL lock time when coming out of self
refresh. Upon self refresh exit, the device will not perform an I/O calibration without an explicit ZQ
CALIBRATION command. The earliest possible time for a ZQ CALIBRATION command (short or long)
after self refresh exit is tXS, tXS_Abort, or tXS_FAST depending on operation mode.
In systems that share the ZQ resistor between devices, the controller must not allow any overlap of
ZQoper, tZQinit, or tZQCS between the devices.
t
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
244
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
ZQ CALIBRATION Commands
Figure 202: ZQ Calibration Timing
T0
T1
Ta0
Ta1
Ta2
Ta3
Tb0
Tb1
Tc0
Tc1
Tc2
ZQCL
DES
DES
DES
Valid
Valid
ZQCS
DES
DES
DES
Valid
Address
Valid
Valid
Valid
A10
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
Valid
CK_c
CK_t
Command
CKE
Note 1
Note 2
ODT
DQ Bus
High-Z or RTT(Park)
Activities
High-Z or RTT(Park)
Activities
Note 3
tZQinit_tZQoper
tZQCS
Time Break
Don’t Care
Notes: 1. CKE must be continuously registered HIGH during the calibration procedure.
2. During ZQ calibration, the ODT signal must be held LOW and DRAM continues to provide RTT_PARK.
3. All devices connected to the DQ bus should be High-Z during the calibration procedure.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
245
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
On-Die Termination
On-Die Termination
The on-die termination (ODT) feature enables the device to change termination resistance for each
DQ, DQS, and DM_n/DBI_n signal for x4 and x8 configurations (and TDQS for the x8 configuration
when enabled via A11 = 1 in MR1) via the ODT control pin, WRITE command, or default parking value
with MR setting. For the x16 configuration, ODT is applied to each UDQ, LDQ, UDQS, LDQS,
UDM_n/UDBI_n, and LDM_n/LDBI_n signal. The ODT feature is designed to improve the signal
integrity of the memory channel by allowing the DRAM controller to independently change termination resistance for any or all DRAM devices. If DBI read mode is enabled while the DRAM is in standby,
either DM mode or DBI write mode must also be enabled if RTT(NOM) or RTT(Park) is desired. More
details about ODT control modes and ODT timing modes can be found further along in this document.
The ODT feature is turned off and not supported in self refresh mode.
Figure 203: Functional Representation of ODT
ODT
To other
circuitry
such as
RCV,
...
VDDQ
RTT
Switch
DQ, DQS, DM, TDQS
The switch is enabled by the internal ODT control logic, which uses the external ODT pin and other
control information. The value of RTT is determined by the settings of mode register bits (see Mode
Register). The ODT pin will be ignored if the mode register MR1 is programmed to disable RTT(NOM)
[MR1[10,9,8] = 0,0,0] and in self refresh mode.
ODT Mode Register and ODT State Table
The ODT mode of the DDR4 device has four states: data termination disable, RTT(NOM), RTT(WR), and
RTT(Park). The ODT mode is enabled if any of MR1[10:8] (RTT(NOM)), MR2[11:9] (RTT(WR)), or MR5[8:6]
(RTT(Park)) are non-zero. When enabled, the value of RTT is determined by the settings of these bits.
RTT control of each RTT condition is possible with a WR or RD command and ODT pin.
s RTT(WR): The DRAM (rank) that is being written to provide termination regardless of ODT pin status
(either HIGH or LOW).
s RTT(NOM): DRAM turns ON RTT(NOM) if it sees ODT asserted HIGH (except when ODT is disabled by
MR1).
s RTT(Park): Default parked value set via MR5 to be enabled and RTT(NOM) is not turned on.
s The Termination State Table that follows shows various interactions.
The RTT values have the following priority:
s Data termination disable
s RTT(WR)
s RTT(NOM)
s RTT(Park)
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
246
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
ODT Mode Register and ODT State Table
Table 72: Termination State Table
Case
RTT(Park)
A4
Disabled
B5
C6
Enabled
Disabled
RTT(NOM)
1
Disabled
Disabled
Enabled
ODT READS
ODT
Standby7
ODT WRITES
Off (High-Z)
Off (High-Z)
Off (High-Z)
Don't Care
Off (High-Z)
Off (High-Z)
RTT(WR)
Disabled
Don't Care
Off (High-Z)
RTT(Park)
RTT(Park)
Enabled
Don't Care
Off (High-Z)
RTT(Park)
RTT(WR)
Disabled
Low
Off (High-Z)
Off (High-Z)
Off (High-Z)
High
Off (High-Z)
RTT(NOM)
RTT(NOM)
Low
Off (High-Z)
Off (High-Z)
RTT(WR)
High
Off (High-Z)
RTT(NOM)
RTT(WR)
Low
Off (High-Z)
RTT(Park)
RTT(Park)
High
Off (High-Z)
RTT(NOM)
RTT(NOM)
Low
Off (High-Z)
RTT(Park)
RTT(WR)
High
Off (High-Z)
RTT(NOM)
RTT(WR)
RTT(WR)2
ODT Pin
Disabled
Don't Care
Enabled
Enabled
D6
Enabled
Enabled
Disabled
Enabled
3
Notes: 1. If RTT(NOM) MR is disabled, power to the ODT receiver will be turned off to save power.
2. If RTT(WR) is enabled, RTT(WR) will be activated by a WRITE command for a defined period time independent of the
ODT pin and MR setting of RTT(Park)/RTT(NOM). This is described in the Dynamic ODT section.
3. When a READ command is executed, the DRAM termination state will be High-Z for a defined period independent
of the ODT pin and MR setting of RTT(Park)/RTT(NOM). This is described in the ODT During Read section.
4. Case A is generally best for single-rank memories.
5. Case B is generally best for dual-rank, single-slotted memories.
6. Case C and Case D are generally best for multi-slotted memories.
7. The ODT feature is turned off and not supported in self refresh mode.
ODT Read Disable State Table
Upon receiving a READ command, the DRAM driving data disables ODT after RL - (2 or 3) clock cycles,
where 2 = 1tCK preamble mode and 3 = 2tCK preamble mode. ODT stays off for a duration of BL/2 + (2
or 3) + (0 or 1) clock cycles, where 2 = 1tCK preamble mode, 3 = 2tCK preamble mode, 0 = CRC disabled,
and 1 = CRC enabled.
Table 73: Read Termination Disable Window
Preamble
1t
CK
2tCK
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
CRC
Start ODT Disable After
Read
Duration of ODT Disable
Disabled
RL - 2
BL/2 + 2
Enabled
RL - 2
BL/2 + 3
Disabled
RL - 3
BL/2 + 3
Enabled
RL - 3
BL/2 + 4
247
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Synchronous ODT Mode
Synchronous ODT Mode
Synchronous ODT mode is selected whenever the DLL is turned on and locked. Based on the
power-down definition, these modes include the following:
s Any bank active with CKE HIGH
s Refresh with CKE HIGH
s Idle mode with CKE HIGH
s Active power-down mode
s Precharge power-down mode
In synchronous ODT mode, RTT(NOM) will be turned on DODTLon clock cycles after ODT is sampled
HIGH by a rising clock edge and turned off DODTLoff clock cycles after ODT is registered LOW by a
rising clock edge. The ODT latency is determined by the programmed values for: CAS WRITE latency
(CWL), additive latency (AL), and parity latency (PL), as well as the programmed state of the preamble.
ODT Latency and Posted ODT
The ODT latencies for synchronous ODT mode are summarized in the table below. For details, refer to
the latency definitions.
Table 74: ODT Latency at DDR4-1600/-1866/-2133/-2400/-2666/-3200
Applicable when write CRC is disabled
Symbol
Parameter
1tCK Preamble
2tCK Preamble
DODTLon
Direct ODT turn-on latency
CWL + AL + PL - 2
CWL + AL + PL - 3
DODTLoff
Direct ODT turn-off latency
CWL + AL + PL - 2
CWL + AL + PL - 3
RODTLoff
READ command to internal ODT turn-off
latency
CL + AL + PL - 2
CL + AL + PL - 3
RODTLon4
READ command to RTT(Park) turn-on
latency in BC4-fixed
RODTLoff + 4
RODTLoff + 5
RODTLon8
READ command to RTT(Park) turn-on
latency in BL8/BC4-OTF
RODTLoff + 6
RODTLoff + 7
ODTH4
ODT Assertion time, BC4 mode
4
5
ODTH8
ODT Assertion time, BL8 mode
6
7
Unit
t
CK
Timing Parameters
In synchronous ODT mode, the following parameters apply:
s DODTLon, DODTLoff, RODTLoff, RODTLon4, RODTLon8, and tADC (MIN)/(MAX).
s tADC (MIN) and tADC (MAX) are minimum and maximum RTT change timing skew between
different termination values. These timing parameters apply to both the synchronous ODT mode
and the data termination disable mode.
When ODT is asserted, it must remain HIGH until minimum ODTH4 (BC = 4) or ODTH8 (BL = 8) is
satisfied. If write CRC mode or 2tCK preamble mode is enabled, ODTH should be adjusted to account
for it. ODTHx is measured from ODT first registered HIGH to ODT first registered LOW or from the
registration of a WRITE command.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
248
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Synchronous ODT Mode
Figure 204: Synchronous ODT Timing with BL8
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T1 8
diff_CK
Command
ODT
DODTLon = WL - 2
DODTLoff = WL - 2
t ADC
tADC
DRAM_RTT
tADC
(MAX)
tADC
(MIN)
RTT(Park)
RTT(NOM)
(MAX)
(MIN)
RTT(Park)
Transitioning
Notes: 1. Example for CWL = 9, AL = 0, PL = 0; DODTLon = AL + PL + CWL - 2 = 7; DODTLoff = AL + PL + CWL - 2 = 7.
2. ODT must be held HIGH for at least ODTH8 after assertion (T1).
Figure 205: Synchronous ODT with BC4
T0
T1
T2
T3
T4
T5
T18
T19
T20
T21
T22
T23
T36
T37
T38
T39
T40
T41
42
diff_CK
WRS4
Command
ODTH4
ODT
DODTLoff = WL - 2
ODTLcnw= WL - 2
ODTLcwn4 = ODTLcnw + 4
DODTLon = CWL - 2
tADC
(MAX)
tADC
RTT(Park)
(MIN)
tADC
(MAX)
tADC
(MIN)
RTT(NOM)
RTT(Park)
tADC
(MAX)
tADC
(MIN)
RTT(WR)
tADC
tADC
(MAX)
(MIN)
RTT(Park)
DRAM_RTT
Transitioning
Notes: 1. Example for CWL = 9, AL = 10, PL = 0; DODTLon/off = AL + PL+ CWL - 2 = 17; ODTcnw = AL + PL+ CWL - 2 = 17.
2. ODT must be held HIGH for at least ODTH4 after assertion (T1).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
249
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Synchronous ODT Mode
ODT During Reads
Because the DRAM cannot terminate with RTT and drive with RON at the same time, RTT may nominally
not be enabled until the end of the postamble as shown in the example below. At cycle T26 the device
turns on the termination when it stops driving, which is determined by tHZ. If the DRAM stops driving
early (that is, tHZ is early), thentADC (MIN) timing may apply. If the DRAM stops driving late (that is,
t
HZ is late), then the DRAM complies with tADC (MAX) timing.
Using CL = 11 as an example for the figure below: PL = 0, AL = CL - 1 = 10, RL = PL + AL + CL = 21, CWL=
9; RODTLoff = RL - 2 = 19, DODTLon = PL + AL + CWL - 2 = 17, 1tCK preamble.
Figure 206: ODT During Reads
T0
T1
T2
T3
T4
T8
T9
T10
T18
T19
T20
T21
T22
T23
T24
T25
T26
T27
T28
diff_CK
Command
Address
RD
A
RL = AL + CL + PL
ODT
RODTLoff = RL- 2
DODTLon = WL - 2
t ADC
DQS_ODT
1t CK Preamble
t ADC
(MIN)
(MAX)
(MIN)
RTT(NOM)
RTT(Park)
t ADC
t ADC
(MAX)
t ADC
DQS_ODT
2t CK Preamble
t ADC
(MAX)
t ADC
t ADC
(MIN)
(MAX)
(MIN)
RTT(NOM)
RTT(Park)
DQSdiff
t ADC
t ADC
DQ_ODT
1t CK Preamble
t ADC
t ADC
(MIN)
(MAX)
(MIN)
RTT(NOM)
RTT(Park)
DQ
QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7
t ADC
t ADC
DQ_ODT
2t CK Preamble
(MAX) + 1nCK
(MAX) + 2nCK
t ADC
t ADC
(MIN)
(MAX)
(MIN)
RTT(NOM)
RTT(Park)
DQ
QA0 QA1 QA2 QA3 QA4 QA5 QA6 QA7
Transitioning
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
250
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Dynamic ODT
Dynamic ODT
In certain application cases and to further enhance signal integrity on the data bus, it is desirable that
the termination strength of the device can be changed without issuing an MRS command. This
requirement is supported by the dynamic ODT feature.
Functional Description
Dynamic ODT mode is enabled if bit A9 or A10 of MR2 is set to 1.
s Three RTTvalues are available: RTT(NOM), RTT(WR), and RTT(Park).
n The value for RTT(NOM) is preselected via bits MR1[10:8].
n The value for RTT(WR) is preselected via bits MR2[11:9].
n The value for RTT(Park) is preselected via bits MR5[8:6].
s During operation without WRITE commands, the termination is controlled as follows:
n Nominal termination strength RTT(NOM) or RTT(Park) is selected.
n RTT(NOM) on/off timing is controlled via ODT pin and latencies DODTLon and DODTLoff, and
RTT(Park) is on when ODT is LOW.
s When a WRITE command (WR, WRA, WRS4, WRS8, WRAS4, and WRAS8) is registered, and if dynamic ODT is enabled, the termination is controlled as follows:
n Latency ODTLcnw after the WRITE command, termination strength RTT(WR) is selected.
n Latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for BC4, fixed by MRS
or selected OTF) after the WRITE command, termination strength RTT(WR) is de-selected.
One or two clocks will be added into or subtracted from ODTLcwn8 and ODTLcwn4, depending on
write CRC mode and/or 2tCK preamble enablement.
The following table shows latencies and timing parameters relevant to the on-die termination control
in dynamic ODT mode. The dynamic ODT feature is not supported in DLL-off mode. An MRS
command must be used to set RTT(WR) to disable dynamic ODT externally (MR2[11:9] = 000).
Table 75: Dynamic ODT Latencies and Timing (1tCK Preamble Mode and CRC Disabled)
Name and
Description
Abbr. Defined from
Defined to
1600/1866/
2133/2400
2666
2933/3200
Unit
ODT latency for change
from RTT(Park)/RTT(NOM)
to RTT(WR)
ODTLc
nw
Registering
external
WRITE command
Change RTT
strength from
RTT(Park)/RTT(NO
M) to RTT(WR)
ODTLcnw = WL - 2
ODT latency for change
from RTT(WR) to
RTT(Park)/RTT(NOM) (BC =
4)
ODTLcwn4
Registering
external
WRITE command
Change RTT
strength from
RTT(WR) to
RTT(Park)/RTT(NO
ODTLcwn4 = 4 + ODTLcnw
tCK
ODTLcwn8 = 6 + ODTLcnw
t
t
CK
M)
ODT latency for change
from RTT(WR) to
RTT(Park)/RTT(NOM) (BL =
8)
RTT change skew
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
ODTLcwn8
t
ADC
Registering
external
WRITE command
Change RTT
strength from
RTT(NOM) to
RTT(WR)
ODTLcnw
ODTLcwn
RTT valid
251
t
ADC (MIN) =
0.30
t
ADC (MAX) =
0.70
t
ADC (MIN) =
0.28
t
ADC (MAX) =
0.72
CK
(AVG)
t
t
ADC (MIN) =
CK
0.26
(AVG)
t
ADC (MAX)
= 0.74
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Dynamic ODT
Table 76: Dynamic ODT Latencies and Timing with Preamble Mode and CRC Mode Matrix
1tCK Parameter
2tCK Parameter
Symbol
CRC Off
CRC On
CRC Off
CRC On
Unit
ODTLcnw1
WL - 2
WL - 2
WL - 3
WL - 3
ODTLcwn4
ODTLcnw + 4
ODTLcnw + 7
ODTLcnw + 5
ODTLcnw + 8
ODTLcwn8
ODTLcnw + 6
ODTLcnw + 7
ODTLcnw + 7
ODTLcnw + 8
t
CK
Notes: 1. ODTLcnw = WL - 2 (1tCK preamble) or WL - 3 (2tCK preamble).
Figure 207: Dynamic ODT (1t CK Preamble; CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled)
T0
T1
T2
T5
T6
T7
T8
T9
T10
T11
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
diff_CK
Command
WR
ODT
DODTLon = WL - 2
DODTLoff = WL - 2
tADC
tADC
(MAX)
RTT(Park)
RTT
tADC
(MAX)
RTT(WR)
tADC
tADC
(MAX)
RTT(NOM)
RTT(Park)
tADC
(MIN)
tADC
(MIN)
(MAX)
RTT(Park)
tADC
(MIN)
(MIN)
ODTLcnw
ODTLcwn
Transitioning
Notes: 1. ODTLcnw = WL - 2 (1tCK preamble) or WL - 3 (2tCK preamble).
2. If BC4, then ODTLcwn = WL + 4 if CRC disabled or WL + 5 if CRC enabled; If BL8, then ODTLcwn = WL + 6 if CRC
disabled or WL + 7 if CRC enabled.
Figure 208: Dynamic ODT Overlapped with RTT(NOM) (CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled)
T0
T1
T2
T5
T6
T7
T9
T10
T11
T12
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
diff_CK
Command
WR
ODT
ODTLcnw
ODTLcwn8
tADC
RTT
tADC
(MAX)
RTT_NOM
tADC
(MAX)
RTT_WR
tADC
RTT_NOM
tADC
(MIN)
(MIN)
(MAX)
RTT_PARK
tADC
(MIN)
DODTLoff = CWL -2
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
252
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Dynamic ODT
Note: 1. Behavior with WR command issued while ODT is registered HIGH.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
253
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Asynchronous ODT Mode
Asynchronous ODT Mode
Asynchronous ODT mode is selected when the DRAM runs in DLL-off mode. In asynchronous ODT
timing mode, the internal ODT command is not delayed by either additive latency (AL) or the parity
latency (PL) relative to the external ODT signal (RTT(NOM)). In asynchronous ODT mode, two timing
parameters apply: tAONAS (MIN/MAX), and tAOFAS (MIN/MAX).
RTT(NOM) Turn-on Time
s Minimum RTT(NOM) turn-on time (tAONAS [MIN]) is when the device termination circuit leaves
RTT(Park) and ODT resistance begins to turn on.
s Maximum RTT(NOM) turn-on time (tAONAS [MAX]) is when the ODT resistance has reached
RTT(NOM).
s tAONAS (MIN) and tAONAS (MAX) are measured from ODT being sampled HIGH.
RTT(NOM) Turn-off Time
s Minimum RTT(NOM) turn-off time (tAOFAS [MIN]) is when the device's termination circuit starts to
leave RTT(NOM).
s Maximum RTT(NOM) turn-off time (tAOFAS [MAX]) is when the on-die termination has reached
RTT(Park).
s tAOFAS (MIN) and tAOFAS (MAX) are measured from ODT being sampled LOW.
Figure 209: Asynchronous ODT Timings with DLL Off
T0
T1
T2
T3
T4
T5
T6
Ti
Ti + 1
Ti + 2
Ti + 3
Ti + 4
Ti + 5
Ti + 6
Ta
Tb
diff_CK
CKE
tIH
tIS
tIH
tIS
ODT
tAONAS
RTT
(MAX)
tAONAS
RTT(Park)
(MIN)
RTT(NOM)
tAONAS
(MIN)
tAONAS
(MAX)
Transitioning
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
254
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Electrical Specifications
Electrical Specifications
Absolute Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating
only, and functional operation of the device at these or any other conditions outside those indicated in
the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may adversely affect reliability. Although "unlimited" row accesses to
the same row is allowed within the refresh period; excessive row accesses to the same row over a long
term can result in degraded operation.
Table 77: Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Unit
Notes
Voltage on VDD pin relative to VSS
n
1.5
V
1
Voltage on VDDQ pin relative to VSS
n
1.5
V
1
Voltage on VPP pin relative to VSS
n
3.0
V
3
Voltage on any pin relative to VSS
n
1.5
V
Storage temperature
n
150
ιC
VDD
VDDQ
VPP
VIN, VOUT
TSTG
2
Notes: 1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be greater than 0.6 έ VDDQ.
When VDD and VDDQ are 85
105
ιC
2
Notes: 1. The normal temperature range specifies the temperatures at which all DRAM specifications will be supported.
During operation, the DRAM case temperature must be maintained between 0ιC to 85ιC under all operating
conditions for the commercial offering; The industrial and automotive temperature offerings allow the case
temperature to go below 0ιC to -40ιC.
2. Some applications require operation of the commercial, industrial, and automotive temperature DRAMs in the
extended temperature range (between 85ιC and 105ιC case temperature). Full specifications are supported in this
range, but the following additional conditions apply:
s Refer to tREFI and tRFC parameters table for tREFI requirements when operating above 85ιC
s If SELF REFRESH operation is required in the extended temperature range, it is mandatory to use
either the manual self refresh mode with extended temperature range capability (MR2[6] = 0 and
MR2 [7] = 1) or enable the optional auto self refresh mode (MR2 [6] = 1 and MR2 [7] = 1).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
255
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/PERATING#ONDITIONS
%LECTRICAL#HARACTERISTICSn!#AND$#/PERATING#ONDITIONS
Supply Operating Conditions
Table 79: Recommended Supply Operating Conditions
Rating
Symbol
Parameter
Min
Typ
VDD
Supply voltage
1.14
VDDQ
Supply voltage
for output
VPP
Wordline supply voltage
Max
Unit
Notes
1.2
1.26V
1, 2, 3, 4, 5
1.14
1.2
1.26V
1, 2, 6
2.375
2.5
2.750V
7
Notes: 1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
3. VDD slew rate between 300mV and 80% of VDD,min shall be between 0.004 V/ms and 600 V/ms, 20 MHz
band-limited measurement.
4. VDD ramp time from 300mV to VDD,min shall be no longer than 200ms.
5. A stable valid VDD level is a set DC level (0 Hz to 250 KHz) and must be no less than VDD,min and no greater than
VDD,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed
again after the new set DC level is final. AC noise of ά60mV (greater than 250 KHz) is allowed on VDD provided the
noise doesn't alter VDD to less than VDD,min or greater than VDD,max.
6. A stable valid VDDQ level is a set DC level (0 Hz to 250 KHz) and must be no less than VDDQ,min and no greater than
VDDQ,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be
performed again after the new set DC level is final. AC noise of ά60mV (greater than 250 KHz) is allowed on VDDQ
provided the noise doesn't alter VDDQ to less than VDDQ,min or greater than VDDQ,max.
7. A stable valid VPP level is a set DC level (0 Hz to 250 KHz) and must be no less than VPP,min and no greater than
VPP,max. If the set DC level is altered anytime after initialization, the DLL reset and calibrations must be performed
again after the new set DC level is final. AC noise of ά120mV (greater than 250 KHz) is allowed on VPP provided
the noise doesn't alter VPP to less than VPP,min or greater than VPP,max.
Table 80: VDD Slew Rate
Symbol
Min
Max
Unit
Notes
VDD_sl
0.004
600
V/ms
1, 2
VDD_on
n
200
ms
3
Notes: 1. Measurement made between 300mV and 80% VDD (minimum level).
2. The DC bandwidth is limited to 20 MHz.
3. Maximum time to ramp VDD from 300 mV to VDD minimum.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
256
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/PERATING#ONDITIONS
Leakages
Table 81: Leakages
Condition
Symbol
Min
Max
Unit
Notes
Input leakage (excluding ZQ and TEN)
IIN
n
2
ρA
1
ZQ leakage
IZQ
n
10
ρA
1
TEN leakage
ITEN
n
10
ρA
1, 2
VREFCA leakage
IVREFCA
n
2
ρA
3
Output leakage: VOUT = VDDQ
IOZpd
n
10
ρA
4
Output leakage: VOUT = VSSQ
IOZpu
n
n
ρA
4, 5
Notes: 1.
2.
3.
4.
5.
Input under test 0V < VIN < 1.1V.
Additional leakage due to weak pull-down.
VREFCA = VDD/2, VDD at valid level after initialization.
DQs are disabled.
ODT is disabled with the ODT input HIGH.
VREFCA Supply
VREFCA is to be supplied to the DRAM and equal to VDD/2. The VREFCA is a reference supply input and
therefore does not draw biasing current.
The DC-tolerance limits and AC-noise limits for the reference voltages VREFCA are illustrated in the
figure below. The figure shows a valid reference voltage VREF(t) as a function of time (VREF stands for
VREFCA). VREF(DC) is the linear average of VREF(t) over a very long period of time (1 second). This average
has to meet the MIN/MAX requirements. Furthermore, VREF(t) may temporarily deviate from VREF(DC)
by no more than ά1% VDD for the AC-noise limit.
Figure 210: VREFDQ Voltage Range
Voltage
VDD
VREF(t)
VREF AC-noise
VREF(DC) MAX
VREF(DC)
VDD/2
VREF(DC) MIN
VSS
Time
The voltage levels for setup and hold time measurements are dependent on VREF. VREF is understood
as VREF(DC), as defined in the above figure. This clarifies that DC-variations of VREF affect the absolute
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
257
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/PERATING#ONDITIONS
voltage a signal has to reach to achieve a valid HIGH or LOW level, and therefore, the time to which
setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the
DRAM setup/hold specification and derating values need to include time and voltage associated with
VREF AC-noise. Timing and voltage effects due to AC-noise on VREF up to the specified limit (ά1% of
VDD) are included in DRAM timings and their associated deratings.
VREFDQ Supply and Calibration Ranges
The device internally generates its own VREFDQ. DRAM internal VREFDQ specification parameters:
voltage range, step size, VREF step time, VREF full step time, and VREF valid level are used to help provide
estimated values for the internal VREFDQ and are not pass/fail limits. The voltage operating range specifies the minimum required range for DDR4 SDRAM devices. The minimum range is defined by
VREFDQ,min and VREFDQ,max. A calibration sequence should be performed by the DRAM controller to
adjust VREFDQ and optimize the timing and voltage margin of the DRAM data input receivers.
Table 82: VREFDQ Specification
Parameter
Symbol
Min
Typ
Max
Unit
Notes
Range 1 VREFDQ operating points
VREFDQ R1
60%
n
92%
VDDQ
1, 2
Range 2 VREFDQ operating points
VREFDQ R2
45%
n
77%
VDDQ
1, 2
VREF,step
0.5%
0.65%
0.8%
VDDQ
3
VREF,set_tol
n
0%
1.625%
VDDQ
4, 5, 6
n
0%
0.15%
VDDQ
4, 7, 8
VREF,time
n
n
150
ns
9, 10, 11
VREF_val_tol
n
0%
0.15%
VDDQ
12
VREF step size
VREF set tolerance
VREF step time
VREF valid tolerance
Notes: 1.
2.
3.
4.
5.
VREF(DC) voltage is referenced to VDDQ(DC). VDDQ(DC) is 1.2V.
DRAM range 1 or range 2 is set by the MRS6[6]6.
VREF step size increment/decrement range. VREF at DC level.
VREF,new = VREF,old άn έ VREF,stepNNUMBEROFSTEPS)FINCREMENTUSEhvIFDECREMENTUSEh
v
For n >4, the minimum value of VREF setting tolerance = VREF,new - 1.625% έ VDDQ. The maximum value of VREF
setting tolerance = VREF,new + 1.625% έ VDDQ.
6. Measured by recording the MIN and MAX values of the VREF output over the range, drawing a straight line
between those points, and comparing all other VREF output settings to that line.
7. For n ζ4, the minimum value of VREF setting tolerance = VREF,new - 0.15% έ VDDQ. The maximum value of VREF
setting tolerance = VREF,new + 0.15% έ VDDQ.
8. Measured by recording the MIN and MAX values of the VREF output across four consecutive steps (n = 4), drawing
a straight line between those points, and comparing all VREF output settings to that line.
9. Time from MRS command to increment or decrement one step size for VREF.
10. Time from MRS command to increment or decrement more than one step size up to the full range of VREF.
11. If the VREF monitor is enabled, VREF must be derated by +10ns if DQ bus load is 0pF and an additional +15 ns/pF of
DQ bus loading.
12. Only applicable for DRAM component-level test/characterization purposes. Not applicable for normal mode of
operation. VREF valid qualifies the step times, which will be characterized at the component level.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
258
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/PERATING#ONDITIONS
VREFDQ Ranges
MR6[6] selects range 1 (60% to 92.5% of VDDQ) or range 2 (45% to 77.5% of VDDQ), and MR6[5:0] sets the
VREFDQ level, as listed in the following table. The values in MR6[6:0] will update the VDDQ range and
level independent of MR6[7] setting. It is recommended MR6[7] be enabled when changing the settings
in MR6[6:0], and it is highly recommended MR6[7] be enabled when changing the settings in MR6[6:0]
multiple times during a calibration routine.
Table 83: VREFDQ Range and Levels
MR6[5:0]
MR6[6] 0 =
Range 1
MR6[6] 1 =
Range 2
MR6[5:0]
MR6[6] 0 =
Range 1
MR6[6] 1 =
Range 2
00 0000
60.00%
45.00%
01 1010
76.90%
61.90%
00 0001
60.65%
45.65%
01 1011
77.55%
62.55%
00 0010
61.30%
46.30%
01 1100
78.20%
63.20%
00 0011
61.95%
46.95%
01 1101
78.85%
63.85%
00 0100
62.60%
47.60%
01 1110
79.50%
64.50%
00 0101
63.25%
48.25%
01 1111
80.15%
65.15%
00 0110
63.90%
48.90%
10 0000
80.80%
65.80%
00 0111
64.55%
49.55%
10 0001
81.45%
66.45%
00 1000
65.20%
50.20%
10 0010
82.10%
67.10%
00 1001
65.85%
50.85%
10 0011
82.75%
67.75%
00 1010
66.50%
51.50%
10 0100
83.40%
68.40%
00 1011
67.15%
52.15%
10 0101
84.05%
69.05%
00 1100
67.80%
52.80%
10 0110
84.70%
69.70%
00 1101
68.45%
53.45%
10 0111
85.35%
70.35%
00 1110
69.10%
54.10%
10 1000
86.00%
71.00%
00 1111
69.75%
54.75%
10 1001
86.65%
71.65%
01 0000
70.40%
55.40%
10 1010
87.30%
72.30%
01 0001
71.05%
56.05%
10 1011
87.95%
72.95%
01 0010
71.70%
56.70%
10 1100
88.60%
73.60%
01 0011
72.35%
57.35%
10 1101
89.25%
74.25%
01 0100
73.00%
58.00%
10 1110
89.90%
74.90%
01 0101
73.65%
58.65%
10 1111
90.55%
75.55%
01 0110
74.30%
59.30%
11 0000
91.20%
76.20%
01 0111
74.95%
59.95%
11 0001
91.85%
76.85%
01 1000
75.60%
60.60%
11 0010
92.50%
77.50%
01 1001
76.25%
61.25%
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
11 0011 to 11 1111 are reserved
259
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT-EASUREMENT
Levels
RESET_n Input Levels
Table 84: RESET_n Input Levels (CMOS)
Symbol
Min
Max
Unit
Note
AC input high voltage
Parameter
VIH(AC)_RESET
0.8 έ VDD
VDD
V
1
DC input high voltage
VIH(DC)_RESET
0.7 έ VDD
VDD
V
2
DC input low voltage
VIL(DC)_RESET
VSS
0.3 έ VDD
V
3
AC input low voltage
VIL(AC)_RESET
VSS
0.2 έ VDD
V
4
R_RESET
n
1
ρs
5
PW_RESET_S
Rising time
t
RESET pulse width after power-up
t
1
n
ρs
6, 7
RESET pulse width during power-up
t
200
n
ρs
6
PW_RESET_L
Notes: 1. Overshoot should not exceed the VIN shown in the Absolute Maximum Ratings table.
2. After RESET_n is registered HIGH, the RESET_n level must be maintained above VIH(DC)_RESET, otherwise operation
will be uncertain until it is reset by asserting RESET_n signal LOW.
3. After RESET_n is registered LOW, the RESET_n level must be maintained below VIL(DC)_RESET during tPW_RESET,
otherwise the DRAM may not be reset.
4. Undershoot should not exceed the VIN shown in the Absolute Maximum Ratings table.
5. Slope reversal (ring-back) during this level transition from LOW to HIGH should be mitigated as much as possible.
6. RESET is destructive to data contents.
7. See RESET Procedure at Power Stable Condition figure.
Figure 211: RESET_n Input Slew Rate Definition
tPW_RESET
VIH(AC)_RESET,min
VIH(DC)_RESET,min
VIL(DC)_RESET,max
VIL(AC)_RESET,max
tR_RESET
Command/Address Input Levels
Table 85: Command and Address Input Levels: DDR4-1600 Through DDR4-2400
Parameter
Symbol
Min
Max
Unit
Note
AC input high voltage
VIH(AC)
VREF + 100
VDD5
mV
1, 2, 3
DC input high voltage
VIH(DC)
VREF + 75
VDD
mV
1, 2
DC input low voltage
VIL(DC)
VSS
VREF - 75
mV
1, 2
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
260
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Table 85: Command and Address Input Levels: DDR4-1600 Through DDR4-2400 (Continued)
Parameter
Symbol
Min
Max
Unit
Note
VIL(AC)
VSS5
VREF - 100
mV
1, 2, 3
VREFFCA(DC)
0.49 έ VDD
0.51 έ VDD
V
4
AC input low voltage
Reference voltage for CMD/ADDR inputs
Notes: 1. For input except RESET_n. VREF = VREFCA(DC).
2. VREF = VREFCA(DC).
3. Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings.
4. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ά1% VDD (for reference:
approximately ά12mV).
5. 2EFERTOh/VERSHOOTAND5NDERSHOOT3PECIFICATIONSv
Table 86: Command and Address Input Levels: DDR4-2666
Parameter
Symbol
Min
Max
Unit
Note
AC input high voltage
VIH(AC)
VREF + 90
VDD5
mV
1, 2, 3
DC input high voltage
VIH(DC)
VREF + 65
VDD
mV
1, 2
DC input low voltage
VIL(DC)
VSS
VREF - 65
mV
1, 2
AC input low voltage
VIL(AC)
VSS5
VREF - 90
mV
1, 2, 3
VREFFCA(DC)
0.49 έ VDD
0.51 έ VDD
V
4
Reference voltage for CMD/ADDR inputs
Notes: 1. For input except RESET_n. VREF = VREFCA(DC).
2. VREF = VREFCA(DC).
3. Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings.
4. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ά1% VDD (for reference:
approximately ά12mV).
5. 2EFERTOh/VERSHOOTAND5NDERSHOOT3PECIFICATIONSv
Table 87: Command and Address Input Levels: DDR4-2933 and DDR4-3200
Parameter
Symbol
Min
Max
Unit
Note
AC input high voltage
VIH(AC)
VREF + 90
VDD5
mV
1, 2, 3
DC input high voltage
VIH(DC)
VREF + 65
VDD
mV
1, 2
DC input low voltage
VIL(DC)
VSS
VREF - 65
mV
1, 2
AC input low voltage
VIL(AC)
VSS5
VREF - 90
mV
1, 2, 3
VREFFCA(DC)
0.49 έ VDD
0.51 έ VDD
V
4
Reference voltage for CMD/ADDR inputs
Notes: 1. For input except RESET_n. VREF = VREFCA(DC).
2. VREF = VREFCA(DC).
3. Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings.
4. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than ά1% VDD (for reference:
approximately ά12mV).
5. 2EFERTOh/VERSHOOTAND5NDERSHOOT3PECIFICATIONSv
Table 88: Single-Ended Input Slew Rates
Parameter
3INGLE
ENDEDINPUTSLEWRATEn#!
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Symbol
Min
Max
Unit
Note
SRCA
1.0
7.0
V/ns
1, 2, 3, 4
261
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Notes: 1. For input except RESET_n.
2. VREF = VREFCA(DC).
3. tIS/tIH timings assume SRCA = 1V/ns.
4. Measured between VIH(AC) and VIL(AC) for falling edges and between VIL(AC) and VIH(AC) for rising edges
Figure 212: Single-Ended Input Slew Rate Definition
Command, Control, and Address Setup, Hold, and Derating
The total tIS (setup time) and tIH (hold time) required is calculated to account for slew rate variation
by adding the data sheet tIS (base) values, the VIL(AC)/VIH(AC) points, and tIH (base) values, the
VIL(DC)/VIH(DC) points; to the ȟtIS and ȟtIH derating values, respectively. The base values are derived
with single-end signals at 1V/ns and differential clock at 2 V/ns. Example: tIS (total setup time) = tIS
(base) + ȟtIS. For a valid transition, the input signal has to remain above/below VIH(AC)/VIL(AC) for the
time defined by tVAC.
Although the total setup time for slow slew rates might be negative (for example, a valid input signal
will not have reached VIH(AC)/VIL(AC) at the time of the rising clock transition), a valid input signal is still
required to complete the transition and to reach VIH(AC)/VIL(AC). For slew rates that fall between the
values listed in derating tables, the derating values may be obtained by linear interpolation.
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VIL(DC)max and the first crossing of VIH(AC)min that does not ring back below VIH(DC)min . Setup (tIS)
nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min
and the first crossing of VIL(AC)max that does not ring back above VIL(DC)max.
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VIL(DC)max and the first crossing of VIH(AC)min that does not ring back below VIH(DC)min. Hold (tIH)
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
262
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min
and the first crossing of VIL(AC)minthat does not ring back above VIL(DC)max.
Table 89: #OMMANDAND!DDRESS3ETUPAND(OLD6ALUES2EFERENCEDn!#$#
"ASED
Symbol
1600
1866
2133
2400
2666
2933
3200
Unit
Reference
IS(base, AC100)
115
100
80
62
n
n
n
ps
VIH(AC)/VIL(AC)
t
IH(base, DC75)
140
125
105
87
n
n
n
ps
VIH(DC)/VIL(DC)
t
IS(base, AC90)
n
n
n
n
55
48
40
ps
VIH(AC)/VIL(AC)
IH(base, DC65)
n
n
n
n
80
73
65
ps
VIH(DC)/VIL(DC)
tIS/tIH(Vref)
215
200
180
162
145
138
130
ps
VIH(DC)/VIL(DC)
t
t
Table 90: Derating Values for tIS/t)(n!#$#
"ASED
ȟtIS with AC100 Threshold, ȟt)(WITH$#4HRESHOLD$ERATINGPS n!#$#
"ASED
CK, CK# Differential Slew Rate
10.0 V/ns
8.0 V/ns
6.0 V/ns
4.0 V/ns
3.0 V/ns
2.0 V/ns
1.5 V/ns
1.0 V/ns
CMD/ADD
R Slew
Rate V/ns
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIH
7.0
76
54
76
55
77
56
79
58
82
60
86
64
94
73
111
89
6.0
73
53
74
53
75
54
77
56
79
58
83
63
92
71
108
88
5.0
70
50
71
51
72
52
74
54
76
56
80
60
88
68
105
85
4.0
65
46
66
47
67
48
69
50
71
52
75
56
83
65
100
81
3.0
57
40
57
41
58
42
60
44
63
46
67
50
75
58
92
75
2.0
40
28
41
28
42
29
44
31
46
33
50
38
58
46
75
63
1.5
23
15
24
16
25
17
27
19
29
21
33
25
42
33
58
50
1.0
n
n
n
n
n
n
n
n
n
n
0
0
8
8
25
25
0.9
n
n
n
n
n
n
n
n
n
n
n
n
1
4
18
21
0.8
n
n
n
n
n
n
n
n
n
n
n
n
n
n
9
16
0.7
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
9
0.6
n
n
n
n
n
n
n
n
n
n
n
n
n n n
0
0.5
n
n
n
n
n
n
n
n
n
n
n
n
n n n n
0.4
n
n
n
n
n
n
n
n
n
n
n
n
n n n n
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
263
ȟtIH ȟtIS ȟtIH ȟtIS ȟtIH
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Table 91: Derating Values for tIS/t)(n!#$#
"ASED
ȟtIS with AC90 Threshold, ȟt)(WITH$#4HRESHOLD$ERATINGPS n!#$#
"ASED
CK, CK# Differential Slew Rate
10.0 V/ns
8.0 V/ns
6.0 V/ns
4.0 V/ns
3.0 V/ns
2.0 V/ns
1.5 V/ns
1.0 V/ns
CMD/ADD
R Slew
Rate V/ns
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIS
ȟtIH
ȟtIH
7.0
68
47
69
47
70
48
72
50
73
52
77
56
85
63
100
78
6.0
66
45
67
46
68
47
69
49
71
50
75
54
83
62
98
77
5.0
63
43
64
44
65
45
66
46
68
48
72
52
80
60
95
75
4.0
59
40
59
40
60
41
62
43
64
45
68
49
75
56
90
71
3.0
51
34
52
35
53
36
54
38
56
40
60
43
68
51
83
66
2.0
36
24
37
24
38
25
39
27
41
29
45
33
53
40
68
55
1.5
21
13
22
13
23
14
24
16
26
18
30
22
38
29
53
44
1.0
n
n
n
n
n
n
n
n
n
n
0
0
8
8
23
23
0.9
n
n
n
n
n
n
n
n
n
n
n
n
1
4
16
19
0.8
n
n
n
n
n
n
n
n
n
n
n
n
n
n
8
14
0.7
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
9
0.6
n
n
n
n
n
n
n
n
n
n
n
n
n n n
1
0.5
n
n
n
n
n
n
n
n
n
n
n
n
n n n n
0.4
n
n
n
n
n
n
n
n
n
n
n
n
n n n n
ȟtIH ȟtIS ȟtIH ȟtIS ȟtIH
Data Receiver Input Requirements
The following parameters apply to the data receiver Rx MASK operation detailed in the Write Timing
section, Data Strobe-to-Data Relationship.
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising
edge are shown in the figure below. A LOW-to-HIGH transition time, tr1, is measured from 0.5 έ
VdiVW,max below VCENTDQ,midpoint to the last transition through 0.5 έ VdiVW,max above VCENTDQ,midpoint;
tr2 is measured from the last transition through 0.5 έ VdiVW,max above VCENTDQ,midpoint to the first transition through the 0.5 έ VIHL(AC)min above VCENTDQ,midpoint.
The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling
edge are shown in the figure below. A HIGH-to-LOW transition time, tf1, is measured from 0.5 έ
VdiVW,max above VCENTDQ,midpoint to the last transition through 0.5 έ VdiVW,max below VCENTDQ,midpoint;
tf2 is measured from the last transition through 0.5 έ VdiVW,max below VCENTDQ,midpoint to the first transition through the 0.5 έ VIHL(AC)min below VCENTDQ,midpoint.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
264
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Figure 213: DQ Slew Rate Definitions
0.5 ×
VIHL(AC)min
VdiVW,max
0.5 ×
VIHL(AC)min
0.5 × VdiVW,max
Rx Mask
VCENTDQ,midpoint
0.5 × VdiVW,max
tr1
0.5 × VdiVW,max
Rx Mask
VdiVW,max
0.5 ×
VIHL(AC)min
tf1
VCENTDQ,midpoint
0.5 ×
VIHL(AC)min
VIHL(AC)min
VIHL(AC)min
tr2
0.5 × VdiVW,max
tf2
Notes: 1. Rising edge slew rate equation srr1 = VdiVW,max/(tr1).
2. Rising edge slew rate equation srr2 = (VIHL(AC)min - VdiVW,max )/(2 έ tr2).
3. Falling edge slew rate equation srf1 = VdiVW,max/(tf1).
4. Falling edge slew rate equation srf2 = (VIHL(AC)min - VdiVW,max )/(2 έ tf2).
Table 92: DQ Input Receiver Specifications
DDR4-1600,
1866, 2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Notes
VIN Rx mask
input
peak-to-peak
VdiVW
n
136
n
130
n
120
n
115
n
110
mV
2, 3
DQ Rx input
timing window
TdiVW
n
0.2
n
0.2
n
0.22
n
0.23
n
0.23
UI
2, 3
DQ AC input
swing
peak-to-peak
VIHL(AC)
186
n
160
n
150
n
145
n
140
n
mV
4, 5
DQ input pulse
width
TdiPW
0.58
n
0.58
n
0.58
n
0.58
n
0.58
n
UI
6
Parameter
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
265
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Table 92: DQ Input Receiver Specifications (Continued)
DDR4-1600,
1866, 2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Notes
DQS2DQ
n
0.17
n
0.17
n
0.19
n
0.22
n
0.22
UI
7
DQ-to-DQ Rx
mask offset
tDQ2DQ
n
0.1
n
0.1
n
0.105
n
0.115
n
0.125
UI
8
Input slew rate
over VdiVW if
srr1, srf1
1
9
1
9
1
9
1
9
1
9
V/ns
9
srr1, srf1
n
n
1.25
9
1.25
9
1.25
9
1.25
9
V/ns
9
Rising input
slew rate over
1/2 VIHL(AC)
srr2
0.2 έ
srr1
9
0.2 έ
srr1
9
0.2 έ
srr1
9
0.2 έ
srr1
9
0.2 έ
srr1
9
V/ns
10
Falling input
slew rate over
1/2 VIHL(AC)
srf2
0.2 έ
srf1
9
0.2 έ
srf1
9
0.2 έ
srf1
9
0.2 έ
srf1
9
0.2 έ
srf1
9
V/ns
10
Parameter
DQS-to-DQ Rx
mask offset
t
t
CK η 0.937ns
Input slew rate
over VdiVW if
0.937ns > tCK η
0.625ns
Notes: 1. All Rx mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated
when satisfying TdiVW (MIN), VdiVW,max, and minimum slew rate limits, then either TdiVW (MIN) or minimum slew
rates would have to be increased to the point where the minimum input pulse width would no longer be violated.
2. Data Rx mask voltage and timing total input valid window where VdiVW is centered around VCENTDQ,midpoint after
VREFDQ training is completed. The data Rx mask is applied per bit and should include voltage and temperature drift
terms. The input buffer design specification is to achieve at least a BER =1e- 16 when the Rx mask is not violated.
3. Defined over the DQ internal VREF range 1.
4. Overshoot and undershoot specifications apply.
5. DQ input pulse signal swing into the receiver must meet or exceed VIHL(AC)min. VIHL(AC)min is to be achieved on an
UI basis when a rising and falling edge occur in the same UI (a valid TdiPW).
6. DQ minimum input pulse width defined at the VCENTDQ,midpoint.
7. DQS-to-DQ Rx mask offset is skew between DQS and DQ within a nibble (x4) or word (x8, x16 [for x16, the upper
and lower bytes are treated as separate x8s]) at the SDRAM balls over process, voltage, and temperature.
8. DQ-to-DQ Rx mask offset is skew between DQs within a nibble (x4) or word (x8, x16) at the SDRAM balls for a given
component over process, voltage, and temperature.
9. Input slew rate over VdiVW mask centered at VCENTDQ,midpoint. Slowest DQ slew rate to fastest DQ slew rate per
transition edge must be within 1.7V/ns of each other.
10. Input slew rate between VdiVW mask edge and VIHL(AC)min points.
11. Note 1 applies to the entire table.
The following figure shows the Rx mask relationship to the input timing specifications relative to
system tDS and tDH. The classical definition for tDS/tDH required a DQ rising and falling edges to not
violate tDS and tDH relative to the DQS strobe at any time; however, with the Rx mask tDS and tDH can
shift relative to the DQS strobe provided the input pulse width specification is satisfied and the Rx mask
is not violated.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
266
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Figure 214: Rx Mask Relative to tDS/tDH
TdiPW
VIH(DC)
VdiVW
0.5 × VdiVW
VCENTDQ,pin mean
Rx
Mask
0.5 × VdiVW
VIL(DC)
tf1
tDS
tr1
TdiVW
= Greater of 0.5 × TdiVW
or
0.5 × (TdiPW + VdiVW/tf1)
tDH
= Greater of 0.5 × TdiVW
or
0.5 × (TdiPW + VdiVW/tr1)
DQS_c
DQS_t
The following figure and table show an example of the worst case Rx mask required if the DQS and DQ
pins do not have DRAM controller to DRAM write DQ training. The figure and table show that without
DRAM write DQ training, the Rx mask would increase from 0.2UI to essentially 0.54UI. This would also
be the minimum tDS and tDH required as well.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
267
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Figure 215: Rx Mask Without Write Training
TdiVW + 2 × tDQS2DQ
VdiVW
VIH(DC)
0.5 × VdiVW
Rx Mask
VCENTDQ,midpoint
0.5 × VdiVW
VIL(DC)
tDS
tDH
0.5 × TdiVW + tDQS2DQ 0.5 × TdiVW + tDQS2DQ
DQS_c
DQS_t
Table 93: Rx Mask and tDS/tDH without Write Training
DQ2DQ
(UI)
Rx Mask
with Write
Train
(ps)
ά0.17
0.1
125
338
0.2
ά0.17
0.1
107.1
289
136
0.2
ά0.17
0.1
94
253
0.58
130
0.2
ά0.17
0.1
83.3
225
150
0.58
120
0.22
ά0.19
0.105
82.5
225
2933
145
0.58
115
0.23
ά0.22
0.115
78.4
228
3200
140
0.58
110
0.23
ά0.22
0.125
71.8
209
DDR4
VIHL(AC)
(mV)
TdiPW
(UI)
VdiVW
(mV)
TdiVW
(UI)
1600
186
0.58
136
0.2
1866
186
0.58
136
2133
186
0.58
2400
160
2666
t
DQS2DQ
(UI)
t
t
DS + tDH
(ps)
Notes: 1. VIHL(AC), VdiVW, and VILH(DC) referenced to VCENTDQ,midpoint.
Connectivity Test (CT) Mode Input Levels
Table 94: TEN Input Levels (CMOS)
Parameter
Symbol
Min
Max
Unit
Note
TEN AC input high voltage
VIH(AC)_TEN
0.8 έ VDD
VDD
V
1
TEN DC input high voltage
VIH(DC)_TEN
0.7 έ VDD
VDD
V
TEN DC input low voltage
VIL(DC)_TEN
VSS
0.3 έ VDD
V
TEN AC input low voltage
VIL(AC)_TEN
VSS
0.2 έ VDD
V
n
10
ns
TEN falling time
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
t
F_TEN
268
2
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Table 94: TEN Input Levels (CMOS) (Continued)
Parameter
Symbol
Min
Max
Unit
tR_TEN
n
10
ns
TEN rising time
Note
Notes: 1. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table.
2. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table.
Figure 216: TEN Input Slew Rate Definition
VIH(AC)_TENmin
VIH(DC)_TENmin
VIL(DC)_TENmin
VIL(AC)_TENmin
tF_TEN
tR_TEN
Table 95: CT Type-A Input Levels
Symbol
Min
CTipA AC input high voltage
Parameter
VIH(AC)
VREF + 200
Max
Unit
Note
V
VDD1
2, 3
CTipA DC input high voltage
VIH(DC)
VREF + 150
VDD
V
2, 3
CTipA DC input low voltage
VIL(DC)
VSS
VREF - 150
V
2, 3
CTipA AC input low voltage
VIL(AC)
VSS1 1
VREF - 200
V
2, 3
1
CTipA falling time
t
F_CTipA
n
5
ns
2
CTipA rising time
tR_CTipA
n
5
ns
2
Notes: 1. Refer to Overshoot and Undershoot Specifications.
2. CT Type-A inputs: CS_n, BG[1:0], BA[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14, CAS_n/A15, RAS_n/A16,
A17, CKE, ACT_n, ODT, CLK_t, CLK_C, PAR.
3. VREFCA = 0.5 έ VDD.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
269
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Figure 217: CT Type-A Input Slew Rate Definition
VIH(AC)_CTipAmin
VIH(DC)_CTipAmin
VREFCA
VIL(DC)_CTipAmax
VIL(AC)_CTipAmax
tF_CTipA
tR_CTipA
Table 96: CT Type-B Input Levels
Symbol
Min
CTipB AC input high voltage
Parameter
VIH(AC)
VREF + 300
Max
Unit
Note
V
VDD1
2, 3
CTipB DC input high voltage
VIH(DC)
VREF + 200
VDD
V
2, 3
CTipB DC input low voltage
VIL(DC)
VSS
VREF - 200
V
2, 3
CTipB AC input low voltage
VIL(AC)
VSS11
VREF - 300
V
2, 3
1
CTipB falling time
t
F_CTipB
n
5
ns
2
CTipB rising time
t
R_CTipB
n
5
ns
2
Notes: 1. Refer to Overshoot and Undershoot Specifications.
2. CT Type-B inputs: DML_n/DBIL_n, DMU_n/DBIU_n and DM_n/DBI_n.
3. VREFDQ should be 0.5 έ VDD
Figure 218: CT Type-B Input Slew Rate Definition
VIH(AC)_CTipBmin
VIH(DC)_CTipBmin
VREFDQ
VIL(DC)_CTipBmax
VIL(AC)_CTipBmax
tF_CTipB
tR_CTipB
Table 97: CT Type-C Input Levels (CMOS)
Parameter
Symbol
Min
Max
Unit
Note
CTipC AC input high voltage
VIH(AC)_CTipC
0.8 έ VDD
VDD1
V
2
CTipC DC input high voltage
VIH(DC)_CTipC
0.7 έ VDD
VDD
V
2
CTipC DC input low voltage
VIL(DC)_CTipC
VSS
0.3 έ VDD
V
2
CTipC AC input low voltage
VIL(AC)_CTipC
VSS1
0.2 έ VDD
V
2
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
270
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#3INGLE
%NDED)NPUT
Measurement Levels
Table 97: CT Type-C Input Levels (CMOS) (Continued)
Parameter
Symbol
Min
Max
Unit
Note
CTipC falling time
tF_CTipC
n
10
ns
2
CTipC rising time
t
n
10
ns
2
R_CTipC
Notes: 1. Refer to Overshoot and Undershoot Specifications.
2. CT Type-C inputs: Alert_n.
Figure 219: CT Type-C Input Slew Rate Definition
VIH(AC)_TENmin
VIH(DC)_TENmin
VIL(DC)_TENmin
VIL(AC)_TENmin
tF_TEN
tR_TEN
Table 98: CT Type-D Input Levels
Parameter
Symbol
Min
Max
Unit
Note
CTipD AC input high voltage
VIH(AC)_CTipD
0.8 έ VDD
VDD
V
4
CTipD DC input high voltage
VIH(DC)_CTipD
0.7 έ VDD
VDD
V
2
CTipD DC input low voltage
VIL(DC)_CTipD
VSS
0.3 έ VDD
V
1
CTipD AC input low voltage
VIL(AC)_CTipD
VSS
0.2 έ VDD
V
5
R_RESET
n
1
ρs
3
PW_RESET_S
Rising time
t
RESET pulse width - after power-up
t
1
n
ρs
RESET pulse width - during power-up
t
200
n
ρs
PW_RESET_L
Notes: 1. After RESET_n is registered LOW, the RESET_n level must be maintained below VIL(DC)_RESET during tPW_RESET,
otherwise, the DRAM may not be reset.
2. After RESET_n is registered HIGH, the RESET_n level must be maintained above VIH(DC)_RESET, otherwise, operation
will be uncertain until it is reset by asserting RESET_n signal LOW.
3. Slope reversal (ring-back) during this level transition from LOW to HIGH should be mitigated as much as possible.
4. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table.
5. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table.
6. CT Type-D inputs: RESET_n; same requirements as in normal mode.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
271
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
Figure 220: CT Type-D Input Slew Rate Definition
tPW_RESET
VIH(AC)_RESETmin
VIH(DC)_RESETmin
VIL(DC)_RESETmax
VIL(AC)_RESETmax
tR_RESET
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT-EASUREMENT
Levels
Differential Inputs
Figure 221: $IFFERENTIAL!#3WINGANDh4IME%XCEEDING!#
,EVELvtDVAC
tDVAC
VIH,diff(AC)min
VIH,diff,min
CK_t, CK_c
0.0
VIL,diff,max
VIL,diff(AC)max
tDVAC
Half cycle
Notes: 1. Differential signal rising edge from VIL,diff,max to VIH,diff(AC)min must be monotonic slope.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
272
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
2. Differential signal falling edge from IH,diff,min to VIL,diff(AC)max must be monotonic slope.
Table 99: Differential Input Swing Requirements for CK_t, CK_c
DDR4-1600 /
1866 / 2133
DDR4-2400 /
2666
DDR4-2933
DDR4-3200
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Notes
Differential input high
VIHdiff
150
Note 3
135
Note 3
125
Note 3
110
Note 3
mV
1
Differential input low
VILdiff
Note 3
n
Note 3
-135
Note 3
-125
Note 3
-110
mV
1
Differential input high
(AC)
VIH-
V
2
diff(AC)
Note 3
2έ
Note 3
2έ
Note 3
2έ
Note 3
2έ
(VIH(AC)
(VIH(AC)
(VIH(AC)
(VIH(AC)
- VREF)
- VREF)
- VREF)
- VREF)
Differential input low
(AC)
Note 3
2έ
Note 3
2έ
Note 3
2έ
2έ
(VIL(AC)
(VIL(AC)
(VIL(AC)
(VIL(AC)
- VREF)
- VREF)
- VREF)
- VREF)
V
2
diff(AC)
Parameter
VIL-
Note 3
Notes: 1. Used to define a differential signal slew-rate.
2. For CK_t, CK_c use VIH(AC) and VIL(AC) of ADD/CMD and VREFCA.
3. These values are not defined; however, the differential signals (CK_t, CK_c) need to be within the respective limits,
VIH(DC)max and VIL(DC)min for single-ended signals as well as the limitations for overshoot and undershoot.
Table 100: Minimum Time AC Time tDVAC for CK
t
DVAC (ps) at |VIH,diff(AC) to VIL,diff(AC)|
Slew Rate (V/ns)
200mV
TBDmV
>4.0
120
TBD
4.0
115
TBD
3.0
110
TBD
2.0
105
TBD
1.9
100
TBD
1.6
95
TBD
1.4
90
TBD
1.2
85
TBD
1.0
80
TBD
VDD/2 + 145mV
N/A
120mV
VDD/2 + 100mV ζ VSEH ζ VDD/2 + 145mV
N/A
(VSEH - VDD/2) - 25mV
VDD/2 - 145mV ζ VSEL ζ VDD/2 - 100mV
n6DD/2 - VSEL) + 25mV
N/A
VSEL < VDD/2 - 145mV
nM6
N/A
Table 104: Cross Point Voltage For CK Differential Input Signals at DDR4-2666 through DDR4-3200
DDR4-2666, 2933, 3200
Parameter
Differential input
cross point voltage relative to
VDD/2 for CK_t,
CK_c
Sym
Input Level
Min
Max
VIX(CK)
VSEH > VDD/2 + 145mV
N/A
110mV
VDD/2 + 90mV ζ VSEH ζ VDD/2 + 145mV
N/A
(VSEH - VDD/2) - 30mV
VDD/2 - 145mV ζ VSEL ζ VDD/2 - 90mV
n6DD/2 - VSEL) + 30mV
N/A
VSEL < VDD/2 - 145mV
nM6
N/A
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
276
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
DQS Differential Input Signal Definition and Swing Requirements
DQS_t, DQS_c: Differential Input Voltage
Figure 225: Differential Input Signal Definition for DQS_t, DQS_c
VIH,diff,peak
Half cycle
0.0V
Half cycle
VIL,diff,peak
Table 105: DDR4-1600 through DDR4-2400 Differential Input Swing Requirements for DQS_t, DQS_c
DDR4-1600, 1866,
2133
Parameter
DDR4-2400
Symbol
Min
Max
Min
Max
Unit
Notes
Peak differential input high voltage
VIH,diff,peak
186
VDDQ
160
VDDQ
mV
1, 2
Peak differential input low voltage
VIL,diff,peak
VSSQ
n
VSSQ
n
mV
1, 2
Notes: 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot
and undershoot limits.
2. Minimum value point is used to determine differential signal slew-rate.
Table 106: DDR4-2633 through DDR4-3200 Differential Input Swing Requirements for DQS_t, DQS_c
DDR4-2666
DDR4-2933
DDR4-3200
Symbol
Min
Max
Min
Max
Min
Max
Unit
Notes
Peak differential input high voltage
VIH,diff,peak
150
VDDQ
145
VDDQ
140
VDDQ
mV
1, 2
Peak differential input low voltage
VIL,diff,peak
VSSQ
n
VSSQ
n
VSSQ
n
mV
1, 2
Parameter
Notes: 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot
and undershoot limits.
2. Minimum value point is used to determine differential signal slew-rate.
The peak voltage of the DQS signals are calculated using the following equations: VIH,dif,Peak voltage =
MAX(ft)
VIL,dif,Peak voltage = MIN(ft)
(ft) = DQS_t, DQS_c.
The MAX(f(t)) or MIN(f(t)) used to determine the midpoint from which to reference the ά35% window
of the exempt non-monotonic signaling shall be the smallest peak voltage observed in all UIs.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
277
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
DQS_t, DQS_c: Single-Ended Input Voltages
Figure 226: DQS_t, DQS_c Input Peak Voltage Calculation and Range of Exempt non-Monotonic
Signaling
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
DQS_t
+35%
+50%
MIN(ft)
MAX(ft)
–35%
–50%
DQS_c
278
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
DQS Differential Input Cross Point Voltage
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe,
the cross point voltage of differential input signals (DQS_t, DQS_c) must meet VIX_DQS,ratio in the table
below. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is measured from
the actual cross point of DQS_t, DQS_c relative to the VDQS,mid of the DQS_t and DQS_c signals.
VDQS,mid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c
signals, and noted by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent
above VDQS,mid of the transitioning DQS signals and the highest horizontal tangent below VDQS,mid of
THETRANSITIONING$13SIGNALS!NON
MONOTONICTRANSITIONINGSIGNALSLEDGEISEXEMPTORNOTUSEDIN
determination of a horizontal tangent provided the said ledge occurs within ά35% of the midpoint of
either VIH.DIFF.Peak voltage (DQS_t rising) or VIL.DIFF.Peak voltage (DQS_c rising), as shown in the figure
below.
A secondary horizontal tangent resulting from a ring-back transition is also exempt in determination
OFAHORIZONTALTANGENT4HATISAFALLINGTRANSITIONSHORIZONTALTANGENTISDERIVEDFROMITSNEGATIVE
SLOPETOZEROSLOPETRANSITIONPOINT!INTHEFIGUREBELOW ANDARING
BACKSHORIZONTALTANGENTIS
derived from its positive slope to zero slope transition (point B in the figure below) and is not a valid
HORIZONTALTANGENTARISINGTRANSITIONSHORIZONTALTANGENTISDERIVEDFROMITSPOSITIVESLOPETOZERO
SLOPETRANSITIONPOINT#INTHEFIGUREBELOW ANDARING
BACKSHORIZONTALTANGENTDERIVEDFROMITS
negative slope to zero slope transition (point D in the figure below) and is not a valid horizontal
tangent.
Figure 227: VIXDQS Definition
Lowest horizontal tanget above VDQS,mid
of the transitioning signals
VIX_DQS,RF
VDQS,mid
VIX_DQS,FR
VIX_DQS,RF
B
VDQS_trans
D
VIX_DQS,FR
VDQS_trans/2
DQS_t, DQS_c: Single-Ended Input Voltages
C
DQS_t
DQS_c
A
Highest horizontal tanget below VDQS,mid
of the transitioning signals
VSSQ
Table 107: Cross Point Voltage For Differential Input Signals DQS
DDR4-1600, 1866, 2133, 2400,
2666, 2933, 3200
Parameter
DQS_t and DQS_c crossing relative to the
midpoint of the DQS_t and DQS_c signal
swings
VDQS,mid to Vcent(midpoint) offset
Symbol
Min
Max
Unit
Notes
VIX_DQS,ratio
n
25
%
1, 2
VDQS,mid_to_V-
n
Note 3
mV
2
cent
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
279
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
Notes: 1. VIX_DQS,ratio is DQS VIX crossing (VIX_DQS,FR or VIX_DQS,RF) divided by VDQS_trans. VDQS_trans is the difference between
the lowest horizontal tangent above VDQS,midd of the transitioning DQS signals and the highest horizontal tangent
below VDQS,mid of the transitioning DQS signals.
2. VDQS,mid will be similar to the VREFDQ internal setting value (Vcent(midpoint) offset) obtained during VREF Training if
the DQS and DQs drivers and paths are matched.
3. The maximum limit shall not exceed the smaller of V IH,diff,DQS minimum limit or 50mV.
Slew Rate Definitions for DQS Differential Input Signals
Table 108: DQS Differential Input Slew Rate Definition
Measured
Description
From
To
Defined by
Differential input slew rate for rising edge
VIL,diff,DQS
VIH,diff,DQS
|VIH,diff,DQS - VIL,diff,DQS|/ȟTRdiff
Differential input slew rate for falling edge
VIH,diff,DQS
VIL,diff,DQS
|VIHdiffDQS - VIL,diff,DQS|/ȟTFdiff
Notes: 1. The differential signal DQS_t, DQS_c must be monotonic between these thresholds.
Figure 228: Differential Input Slew Rate and Input Level Definition for DQS_t, DQS_c
Table 109: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t,
DQS_c
DDR4-1600, 1866, 2133
Parameter
DDR4-2400
Symbol
Min
Max
Min
Max
Unit
Notes
Peak differential input high voltage
VIH,diff,peak
186
VDDQ
160
VDDQ
mV
1
Differential input high voltage
VIH,diff,DQS
136
n
130
n
mV
2, 3
Differential input low voltage
VIL,diff,DQS
n
n
n
n
mV
2, 3
Peak differential input low voltage
VIL,diff,peak
-VDDQ
n
-VDDQ
n
mV
1
SRIdiff
3.0
18
3.0
18
V/ns
4, 5
DQS differential input slew rate
Notes: 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot
and undershoot limits.
2. Differential signal rising edge from VIL,diff,DQS to VIH,diff,DQS must be monotonic slope.
3. Differential signal falling edge from VIH,diff,DQS to VIL,diff,DQS must be monotonic slope.
4. Differential input slew rate for rising edge from VIL,diff,DQS to VIH,diff,DQS is defined by |VIL,diff,min VIH,diff,max|/ȟTRdiff.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
280
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#$IFFERENTIAL)NPUT
Measurement Levels
5. Differential input slew rate for falling edge from VIH,diff,DQS to VIL,diff,DQS is defined by |VIL,diff,min VIH,diff,max|/ȟTFdiff.
Table 110: DDR4-2666 through DDR4-3200 Differential Input Slew Rate and Input Levels for DQS_t,
DQS_c
DDR4-2666
Parameter
DDR4-2933
DDR4-3200
Symbol
Min
Max
Min
Max
Min
Max
Unit
Notes
Peak differential input
high voltage
VIH,diff,peak
150
VDDQ
145
VDDQ
140
VDDQ
mV
1
Differential input high
voltage
VIH,diff,DQS
130
n
115
n
110
n
mV
2, 3
Differential input low
voltage
VIL,diff,DQS
n
n
n
n
n
n
mV
2, 3
Peak differential input
low voltage
VIL,diff,peak
VSSQ
n
VSSQ
n
VSSQ
n
mV
1
DQS differential input
slew rate
SRIdiff
2.5
18
2.5
18
2.5
18
V/ns
4, 5
Notes: 1. Minimum and maximum limits are relative to single-ended portion and can be exceeded within allowed overshoot
and undershoot limits.
2. Differential signal rising edge from VIL,diff,DQS to VIH,diff,DQS must be monotonic slope.
3. Differential signal falling edge from VIH,diff,DQS to VIL,diff,DQS must be monotonic slope.
4. Differential input slew rate for rising edge from VIL,diff,DQS to VIH,diff,DQS is defined by |VIL,diff,min VIH,diff,max|/ȟTRdiff.
5. Differential input slew rate for falling edge from VIH,diff,DQS to VIL,diff,DQS is defined by |VIL,diff,min VIH,diff,max|/ȟTFdiff.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
281
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/VERSHOOTAND5NDERSHOOT
Specifications
%LECTRICAL#HARACTERISTICSn/VERSHOOTAND5NDERSHOOT3PECIFICATIONS
Address, Command, and Control Overshoot and Undershoot Specifications
Table 111: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications
DDR4- DDR41600
1866
Description
DDR42133
DDR4- DDR4- DDR4- DDR42400
2666
2933
3200
Unit
Address and control pins (A[17:0], BG[1:0], BA[1:0], CS_n, RAS_n, CAS_n, WE_n, CKE, ODT, C2-0)
Area A: Maximum peak amplitude above VDD
absolute MAX
0.06
0.06
0.06
0.06
0.06
0.06
0.06
V
Area B: Amplitude allowed between VDD and VDD
absolute MAX
0.24
0.24
0.24
0.24
0.24
0.24
0.24
V
Area C: Maximum peak amplitude allowed for
undershoot below VSS
0.30
0.30
0.30
0.30
0.30
0.30
0.30
V
Area A maximum overshoot area per 1tCK
0.0083
0.0071
0.0062
0.0055
0.0055
0.0055
0.0055
V/ns
Area B maximum overshoot area per 1tCK
0.2550
0.2185
0.1914
0.1699
0.1699
0.1699
0.1699
V/ns
Area C maximum undershoot area per 1tCK
0.2644
0.2265
0.1984
0.1762
0.1762
0.1762
0.1762
V/ns
Figure 229: ADDR, CMD, CNTL Overshoot and Undershoot Definition
Absolute MAX overshoot
Volts (V)
VDD absolute MAX
VDD
VSS
A
Overshoot area above VDD absolute MAX
B
Overshoot area below VDD absolute MAX
and above VDD MAX
1tCK
C
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Undershoot area below VSS
282
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/VERSHOOTAND5NDERSHOOT
Specifications
Clock Overshoot and Undershoot Specifications
Table 112: CK Overshoot and Undershoot/ Specifications
DDR41600
DDR41866
DDR42133
DDR42400
DDR42666
DDR42933
DDR43200
Unit
Area A: Maximum peak amplitude above VDD
absolute MAX
0.06
0.06
0.06
0.06
0.06
0.06
0.06
V
Area B: Amplitude allowed between VDD and
VDD absolute MAX
0.24
0.24
0.24
0.24
0.24
0.24
0.24
V
Area C: Maximum peak amplitude allowed for
undershoot below VSS
0.30
0.30
0.30
0.30
0.30
0.30
0.30
V
Area A maximum overshoot area per 1UI
0.0038
0.0032
0.0028
0.0025
0.0025
0.0025
0.0025
V/ns
Area B maximum overshoot area per 1UI
0.1125
0.0964
0.0844
0.0750
0.0750
0.0750
0.0750
V/ns
Area C maximum undershoot area per 1UI
0.1144
0.0980
0.0858
0.0762
0.0762
0.0762
0.0762
V/ns
Description
CLK_t, CLK_n
Figure 230: CK Overshoot and Undershoot Definition
Absolute MAX overshoot
Volts (V)
VDD absolute MAX
A
Overshoot area above VDD absolute MAX
B
Overshoot area below VDD absolute MAX
and above VDD MAX
VDD
VSS
1UI
C
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Undershoot area below VSS
283
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/VERSHOOTAND5NDERSHOOT
Specifications
Data, Strobe, and Mask Overshoot and Undershoot Specifications
Table 113: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications
DDR41600
Description
DDR41866
DDR42133
DDR42400
DDR42666
DDR42933
DDR43200
Unit
DQS_t, DQS_n, LDQS_t, LDQS_n, UDQS_t, UDQS_n, DQ[0:15], DM/DBI, UDM/UDBI, LDM/LDBI,
Area A: Maximum peak amplitude above
VDDQ absolute MAX
0.16
0.16
0.16
0.16
0.16
0.16
0.16
V
Area B: Amplitude allowed between VDDQ and
VDDQ absolute MAX
0.24
0.24
0.24
0.24
0.24
0.24
0.24
V
Area C: Maximum peak amplitude allowed for
undershoot below VSSQ
0.30
0.30
0.30
0.30
0.30
0.30
0.30
V
Area D: Maximum peak amplitude below VSSQ
absolute MIN
0.10
0.10
0.10
0.10
0.10
0.10
0.10
V
Area A maximum overshoot area per 1UI
0.0150
0.0129
0.0113
0.0100
0.0100
0.0100
0.0100
V/ns
Area B maximum overshoot area per 1UI
0.1050
0.0900
0.0788
0.0700
0.0700
0.0700
0.0700
V/ns
Area C maximum undershoot area per 1UI
0.1050
0.0900
0.0788
0.0700
0.0700
0.0700
0.0700
V/ns
Area D maximum undershoot area per 1UI
0.0150
0.0129
0.0113
0.0100
0.0100
0.0100
0.0100
V/ns
Figure 231: Data, Strobe, and Mask Overshoot and Undershoot Definition
Absolute MAX overshoot
Volts (V)
VDDQ absolute MAX
A
Overshoot area above VDDQ absolute MAX
B
Overshoot area below VDDQ absolute MAX
and above VDDQ MAX
VDDQ
1UI
VSSQ
C
VSSQ absolute MIN
Undershoot area below VSSQ MIN and
above VSSQ absolute MIN
D
Undershoot area below VSSQ absolute MIN
Absolute MAX undershoot
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
284
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT
Levels
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT,EVELS
Single-Ended Outputs
Table 114: Single-Ended Output Levels
Parameter
Symbol
DDR4-1600 to DDR4-3200
Unit
DC output high measurement level (for IV curve linearity)
VOH(DC)
1.1 έ VDDQ
V
DC output mid measurement level (for IV curve linearity)
VOM(DC)
0.8 έ VDDQ
V
DC output low measurement level (for IV curve linearity)
VOL(DC)
0.5 έ VDDQ
V
AC output high measurement level (for output slew rate)
VOH(AC)
(0.7 + 0.15) έ VDDQ
V
AC output low measurement level (for output slew rate)
VOL(AC)
(0.7 - 0.15) έ VDDQ
V
Notes: 1. The swing of ά0.15 έ VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing
with a driver impedance of RZQ/7 and an effective test load of 50ȳ to VTT = VDDQ.
Using the same reference load used for timing measurements, output slew rate for falling and rising
edges is defined and measured between VOL(AC) and VOH(AC) for single-ended signals.
Table 115: Single-Ended Output Slew Rate Definition
Measured
Description
From
To
Defined by
Single-ended output slew rate for rising edge
VOL(AC)
VOH(AC)
[VOH(AC) - VOL(AC)]/ȟTRse
Single-ended output slew rate for falling edge
VOH(AC)
VOL(AC)
[VOH(AC) - VOL(AC)]/ȟTFse
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
285
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT
Levels
Figure 232: Single-ended Output Slew Rate Definition
TRse
Single-Ended Output Voltage (DQ)
VOH(AC)
VOL(AC)
TFse
Table 116: Single-Ended Output Slew Rate
DDR4-1600/ 1866 / 2133 /
2400
Parameter
DDR4-2666
DDR4-2933 / 3200
Symbol
Min
Max
Min
Max
Min
Max
Unit
SRQse
4
9
4
9
4
9
V/ns
Single-ended output
slew rate
Notes: 1. SR = slew rate; Q = query output; se = single-ended signals.
2. In two cases a maximum slew rate of 12V/ns applies for a single DQ signal within a byte lane:
s Case 1 is defined for a single DQ signal within a byte lane that is switching into a certain direction
(either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane
are static (they stay at either HIGH or LOW).
s Case 2 is defined for a single DQ signal within a byte lane that is switching into a certain direction
(either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ signals in the same byte lane
are switching into the opposite direction (from LOW-to-HIGH or HIGH-to-LOW, respectively). For
the remaining DQ signal switching into the opposite direction, the standard maximum limit of 9
V/ns applies.
3. For RON = RZQ/7.
Differential Outputs
Table 117: Differential Output Levels
Parameter
Symbol
DDR4-1600 to DDR4-3200
Unit
AC differential output high measurement level (for output slew
rate)
VOH,diff(AC)
0.3 έ VDDQ
V
AC differential output low measurement level (for output slew
rate)
VOL,diff(AC)
nέ VDDQ
V
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
286
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT
Levels
Notes: 1. The swing of ά0.3 έ VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing
with a driver impedance of RZQ/7 and an effective test load of 50ȳ to VTT = VDDQ at each differential output.
Using the same reference load used for timing measurements, output slew rate for falling and rising
edges is defined and measured between VOL,diff(AC) and VOH,diff(AC) for differential signals.
Table 118: Differential Output Slew Rate Definition
Measured
Description
From
To
Defined by
Differential output slew rate for rising edge
VOL,diff(AC)
VOH,diff(AC)
[VOH,diff(AC) - VOL,diff(AC)]/ȟTRdiff
Differential output slew rate for falling edge
VOH,diff(AC)
VOL,diff(AC)
[VOH,diff(AC) - VOL,diff(AC)]/ȟTFdiff
Figure 233: Differential Output Slew Rate Definition
Differential Input Voltage (DQS_t, DQS_c)
TRdiff
VOH,diff(AC)
VOL,diff(AC)
TFdiff
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
287
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT
Levels
Table 119: Differential Output Slew Rate
DDR4-1600 / 1866 / 2133 /
2400
Parameter
Differential output slew
rate
DDR4-2666
DDR4-2933 / 3200
Symbol
Min
Max
Min
Max
Min
Max
Unit
SRQdiff
8
18
8
18
8
18
V/ns
Notes: 1. SR = slew rate; Q = query output; diff = differential signals.
2. For RON = RZQ/7.
Reference Load for AC Timing and Output Slew Rate
The effective reference load of 50ȳ to VTT = VDDQ and driver impedance of RZQ/7 for each output was
used in defining the relevant AC timing parameters of the device as well as output slew rate measurements.
RON nominal of DQ, DQS_t and DQS_c drivers uses 34 ohms to specify the relevant AC timing parameter values of the device. The maximum DC high level of output signal = 1.0 έ VDDQ, the minimum DC
low level of output signal = { 34 /( 34 + 50 ) } έ VDDQ = 0.4 έ VDDQ.
The nominal reference level of an output signal can be approximated by the following: The center of
maximum DC high and minimum DC low = { ( 1 + 0.4 ) / 2 } έ VDDQ = 0.7 έ VDDQ. The actual reference
level of output signal might vary with driver RON and reference load tolerances. Thus, the actual referENCELEVELORMIDPOINTOFANOUTPUTSIGNALISATTHEWIDESTPARTOFTHEOUTPUTSIGNALSEYE
Figure 234: Reference Load For AC Timing and Output Slew Rate
VDDQ
VTT = VDDQ
DQ, DQS_t, DQS_c,
DM, TDQS_t, TDQS_c
CK_t, CK_c
DUT
RTT = 50ȍ
VSSQ
Timing reference point
Connectivity Test Mode Output Levels
Table 120: Connectivity Test Mode Output Levels
Parameter
Symbol
DDR4-1600 to DDR4-3200
Unit
DC output high measurement level (for IV curve linearity)
VOH(DC)
1.1 έ VDDQ
V
DC output mid measurement level (for IV curve linearity)
VOM(DC)
0.8 έ VDDQ
V
DC output low measurement level (for IV curve linearity)
VOL(DC)
0.5 έ VDDQ
V
DC output below measurement level (for IV curve linearity)
VOB(DC)
0.2 έ VDDQ
V
AC output high measurement level (for output slew rate)
VOH(AC)
VTT + (0.1 έ VDDQ)
V
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
288
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT-EASUREMENT
Levels
Table 120: Connectivity Test Mode Output Levels (Continued)
Parameter
Symbol
DDR4-1600 to DDR4-3200
Unit
AC output low measurement level (for output slew rate)
VOL(AC)
VTT - (0.1 έ VDDQ)
V
Notes: 1. Driver impedance of RZQ/7 and an effective test load of 50ȳ to VTT = VDDQ.
Figure 235: Connectivity Test Mode Reference Test Load
VDDQ
CT_Inputs
DUT
DQ, DQS_t, DQS_c,
LDQS_t, LDQS_c, UDQS_t, UDQS_c,
DM, LDM, HDM, TDQS_t, TDQS_c
0.5 × VDDQ
RTT = 50 ȍ
VSSQ
Timing reference point
Figure 236: Connectivity Test Mode Output Slew Rate Definition
VOH(AC)
VTT
0.5 x VDD
VOL(AC)
TFoutput_CT
TRoutput_CT
Table 121: Connectivity Test Mode Output Slew Rate
DDR4-1600 / 1866 /
2133 / 2400
Parameter
DDR4-2666
DDR4-2933 /
3200
Symbol
Min
Max
Min
Max
Min
Max
Unit
Output signal falling
time
TF_output_CT
n
10
n
10
n
10
ns/V
Output signal rising time
TR_output_CT
n
10
n
10
n
10
ns/V
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
289
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER
Characteristics
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER#HARACTERISTICS
Connectivity Test Mode Output Driver Electrical Characteristics
The DDR4 driver supports special values during connectivity test mode. These RON values are referenced in this section. A functional representation of the output buffer is shown in the figure below.
Figure 237: Output Driver During Connectivity Test Mode
Chip in drive mode
Output driver
VDDQ
IPU_CT
To
other
circuitry
like
RCV,
...
RONPU_CT
DQ
IOUT
RONPD_CT
VOUT
IPD_CT
VSSQ
The output driver impedance, RON, is determined by the value of the external reference resistor RZQ as
follows: RON = RZQ/7. This targets 34ȳ with nominal RZQ = 240ȳ; however, connectivity test mode uses
uncalibrated drivers and only a maximum target is defined. Mismatch between pull up and pull down
is undefined.
The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows:
RONPu_CT when RONPd_CT is off:
RONPU_CT =
VDDQ - VOUT
IOUT
RONPD_CT when RONPU_CT is off:
RONPD_CT =
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
290
VOUT
IOUT
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER
Characteristics
Table 122: Output Driver Electrical Characteristics During Connectivity Test Mode
RON,nom_CT
Resistor
RONPD_CT
34ȳ
RONPU_CT
VOUT
Min
Nom
Max
Unit
VOB(DC) = 0.2 έ VDDQ
N/A
N/A
1.9
RZQ/7
VOL(DC) = 0.5 έ VDDQ
N/A
N/A
2.0
RZQ/7
VOM(DC) = 0.8 έ VDDQ
N/A
N/A
2.2
RZQ/7
VOH(DC) = 1.1 έ VDDQ
N/A
N/A
2.5
RZQ/7
VOB(DC) = 0.2 έ VDDQ
N/A
N/A
1.9
RZQ/7
VOL(DC) = 0.5 έ VDDQ
N/A
N/A
2.0
RZQ/7
VOM(DC) = 0.8 έ VDDQ
N/A
N/A
2.2
RZQ/7
VOH(DC) = 1.1 έ VDDQ
N/A
N/A
2.5
RZQ/7
Notes: 1. Assumes RZQ = 240ȳ; ZQ calibration not required.
Output Driver Electrical Characteristics
The DDR4 driver supports two RON values. These RON values are referred to as strong mode (low RON:
34ȳ) and weak mode (high RON: 48ȳ). A functional representation of the output buffer is shown in the
figure below.
Figure 238: Output Driver: Definition of Voltages and Currents
Chip in drive mode
Output driver
VDDQ
IPU
To
other
circuitry
like
RCV,
...
RONPU
DQ
IOUT
RONPD
VOUT
IPD
VSSQ
The output driver impedance, RON, is determined by the value of the external reference resistor RZQ as
follows: RON(34) = RZQ/7, or RON(48) = RZQ/5. This provides either a nominal 34.3ȳ ά10% or 48ȳ ά10%
with nominal RZQ = 240ȳ.
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as follows:
RONPu when RONPd is off:
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
291
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER
Characteristics
RONPU =
VDDQ - VOUT
IOUT
RONPD when RONPU is off:
RONPD =
VOUT
IOUT
Table 123: Strong Mode (34ȳ) Output Driver Electrical Characteristics
RON,nom
Resistor
VOUT
Min
Nom
Max
Unit
Notes
VOL(DC) = 0.5 έ VDDQ
0.73
1.00
1.10
RZQ/7
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.83
1.00
1.10
RZQ/7
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.83
1.00
1.25
RZQ/7
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.90
1.00
1.25
RZQ/7
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.90
1.00
1.10
RZQ/7
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.80
1.00
1.10
RZQ/7
1, 2, 3
Mismatch between pull-up and
pull-down, MMPUPD
VOM(DC) = 0.8 έ VDDQ
10
n
23
%
1, 2, 3,
4, 6, 7
Mismatch between DQ to DQ within
byte variation pull-up, MMPUdd
VOM(DC) = 0.8 έ VDDQ
n
n
10
%
1, 2, 3,
4, 5
Mismatch between DQ to DQ within
byte variation pull-down, MMPDdd
VOM(DC) = 0.8 έ VDDQ
-
n
10
%
1, 2, 3,
4, 6, 7
RON34PD
34ȳ
RON34PU
Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the
tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.
3. Micron recommends calibrating pull-down and pull-up output driver impedances at 0.8 έ VDDQ. Other calibration
schemes may be used to achieve the linearity specification shown above; for example, calibration at 0.5 έ VDDQ
and 1.1 VDDQ.
4. DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c (characterized).
5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD:
Measure both RONPU and RONPD at 0.8 έ VDDQ separately; RON,nom is the nominal RON value:
MMPUPD =
RONPU - RONPD
× 100
RON,nom
6. RON variance range ratio to RON nominal value in a given component, including DQS_t and DQS_c:
MMPUDD =
MMPDDD =
RONPU,max - RONPU,min
RON,nom
× 100
RONPD,max - RONPD,min
× 100
RON,nom
7. The lower and upper bytes of a x16 are each treated on a per byte basis.
8. 4HEMINIMUMVALUESAREDERATEDBYWHENTHEDEVICEOPERATESBETWEENnιC and 0ιC (TC).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
292
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER
Characteristics
9. Assumes RZQ = 240ȳ; entire operating temperature range after proper ZQ calibration.
Table 124: Weak Mode (48ȳ) Output Driver Electrical Characteristics
RON,nom
Resistor
VOUT
Min
Nom
Max
Unit
Notes
48ȳ
RON48PD
VOL(DC) = 0.5 έ VDDQ
0.73
1.00
1.10
RZQ/5
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.83
1.00
1.10
RZQ/5
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.83
1.00
1.25
RZQ/5
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.90
1.00
1.25
RZQ/5
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.90
1.00
1.10
RZQ/5
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.80
1.00
1.10
RZQ/5
1, 2, 3
Mismatch between pull-up and
pull-down, MMPUPD
VOM(DC) = 0.8 έ VDDQ
10
n
23
%
1, 2, 3, 4,
6, 7
Mismatch between DQ to DQ
within byte variation pull-up,
MMPUdd
VOM(DC) = 0.8 έ VDDQ
n
n
10
%
1, 2, 3, 4, 5
Mismatch between DQ to DQ
within byte variation pull-down,
MMPDdd
VOM(DC) = 0.8 έ VDDQ
n
n
10
%
1, 2, 3, 4,
6, 7
RON48PU
Notes: 1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the
tolerance limits if temperature or voltage changes after calibration, see following section on voltage and temperature sensitivity.
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS.
3. Micron recommends calibrating pull-down and pull-up output driver impedances at 0.8 έ VDDQ. Other calibration
schemes may be used to achieve the linearity specification shown above; for example, calibration at 0.5 έ VDDQ
and 1.1 VDDQ.
4. DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c (characterized).
5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD:
Measure both RONPU and RONPD at 0.8 έ VDDQ separately; RON,nom is the nominal RON value:
MMPUPD =
RONPU - RONPD
× 100
RON,nom
6. RON variance range ratio to RON nominal value in a given component, including DQS_t and DQS_c:
MMPUDD =
MMPDDD =
RONPU,max - RONPU,min
RON,nom
RONPD,max - RONPD,min
RON,nom
× 100
× 100
7. The lower and upper bytes of a x16 are each treated on a per byte basis.
8. 4HEMINIMUMVALUESAREDERATEDBYWHENTHEDEVICEOPERATESBETWEENnιC and 0ιC (TC).
9. Assumes RZQ = 240ȳ; entire operating temperature range after proper ZQ calibration
Output Driver Temperature and Voltage Sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to the
equations and tables below.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
293
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER
Characteristics
ȟT = T - T(@calibration); ȟV = VDDQ - VDDQ(@ calibration); VDD = VDDQ
Table 125: Output Driver Sensitivity Definitions
Symbol
Min
Max
Unit
RONPU@ VOH(DC)
0.6 - dRONdTH έ |ȟT| - dRONdVH έ |ȟV|
1.1 _ dRONdTH έ |ȟT| + dRONdVH έ |ȟV|
RZQ/6
RON@ VOM(DC)
0.9 - dRONdTM έ |ȟT| - dRONdVM έ |ȟV|
1.1 + dRONdTM έ |ȟT| + dRONdVM έ |ȟV|
RZQ/6
RONPD@ VOL(DC)
0.6 - dRONdTL έ |ȟT| - dRONdVL έ |ȟV|
1.1 + dRONdTL έ |ȟT| + dRONdVL έ |ȟV|
RZQ/6
Table 126: Output Driver Voltage and Temperature Sensitivity
Voltage and Temperature Range
Symbol
Min
Max
Unit
dRONdTM
0
1.5
%/ιC
dRONdVM
0
0.15
%/mV
dRONdTL
0
1.5
%/ιC
dRONdVL
0
0.15
%/mV
dRONdTH
0
1.5
%/ιC
dRONdVM
0
0.15
%/mV
Alert Driver
A functional representation of the alert output buffer is shown in the figure below. Output driver
impedance, RON, is defined as follows.
Figure 239: Alert Driver
Alert driver
DRAM
Alert
RONPD
IOUT
IPD
VOUT
VSSQ
RONPD when RONPU is off:
RONPD =
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
294
VOUT
IOUT
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn!#AND$#/UTPUT$RIVER
Characteristics
Table 127: Alert Driver Voltage
RON,nom
Register
VOUT
Min
Nom
Max
Unit
N/A
RONPD
VOL(DC) = 0.1 έ VDDQ
0.3
N/A
1.2
RZQ/7
VOM(DC) = 0.8 έ VDDQ
0.4
N/A
1.2
RZQ/7
VOH(DC) = 1.1 έ VDDQ
0.4
N/A
1.4
RZQ/7
Notes: 1. VDDQ voltage is at VDDQ(DC).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
295
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS
ODT Levels and I-V Characteristics
On-die termination (ODT) effective resistance settings are defined and can be selected by any or all of
the following options:
s MR1[10:8] (RTT(NOM)): Disable, 240 ohms, 120 ohms, 80 ohms, 60 ohms, 48 ohms, 40 ohms, and 34
ohms.
s MR2[11:9] (RTT(WR)): Disable, 240 ohms,120 ohms, and 80 ohms.
s MR5[8:6] (RTT(Park)): Disable, 240 ohms, 120 ohms, 80 ohms, 60 ohms, 48 ohms, 40 ohms, and 34
ohms.
ODT is applied to the following inputs:
s x4: DQ, DM_n, DQS_t, and DQS_c inputs.
s x8: DQ, DM_n, DQS_t, DQS_c, TDQS_t, and TDQS_c inputs.
s x16: DQ, LDM_n, UDM_n, LDQS_t, LDQS_c, UDQS_t, and UDQS_c inputs.
A functional representation of ODT is shown in the figure below.
Figure 240: ODT Definition of Voltages and Currents
Chip in termination mode
ODT
To other
circuitry
like RCV,
...
VDDQ
RTT
DQ
IOUT
VOUT
VSSQ
Table 128: ODT DC Characteristics
RTT
VOUT
Min
Nom
Max
Unit
Notes
240 ohm
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ/2
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ/2
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ/2
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ/3
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ/3
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ/3
1, 2, 3
120 ohm
80 ohm
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
296
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS
Table 128: ODT DC Characteristics (Continued)
RTT
VOUT
Min
Nom
Max
Unit
Notes
60 ohm
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ/4
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ/4
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ/4
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ/5
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ/5
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ/5
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ/6
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ/6
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ/6
1, 2, 3
VOL(DC) = 0.5 έ VDDQ
0.9
1
1.25
RZQ/7
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0.9
1
1.1
RZQ/7
1, 2, 3
VOH(DC) = 1.1 έ VDDQ
0.8
1
1.1
RZQ/7
1, 2, 3
VOM(DC) = 0.8 έ VDDQ
0
n
10
%
1, 2, 4, 5, 6
48 ohm
40 ohm
34 ohm
DQ-to-DQ mismatch
within byte
Notes: 1. The tolerance limits are specified after calibration to 240 ohm ά1% resistor with stable voltage and temperature.
For the behavior of the tolerance limits if temperature or voltage changes after calibration, see ODT Temperature
and Voltage Sensitivity.
2. Micron recommends calibrating pull-up ODT resistors at 0.8 έ VDDQ. Other calibration schemes may be used to
achieve the linearity specification shown here.
3. The tolerance limits are specified under the condition that VDDQ = VDD and VSSQ = VSS.
4. The DQ-to-DQ mismatch within byte variation for a given component including DQS_t and DQS_c.
5. RTT variance range ratio to RTT nominal value in a given component, including DQS_t and DQS_c.
DQ-to-DQ mismatch =
RTT(MAX) - RTT(MIN)
RTT(NOM)
× 100
6. DQ-to-DQ mismatch for a x16 device is treated as two separate bytes.
7. &OR)4!4AND54DEVICESTHEMINIMUMVALUESAREDERATEDBYWHENTHEDEVICEOPERATESBETWEENnιC and
0ιC (TC).
ODT Temperature and Voltage Sensitivity
If temperature and/or voltage change after calibration, the tolerance limits widen according to the
following equations and tables.
ȟT = T - T(@ calibration); ȟV = VDDQ - VDDQ(@ calibration); VDD = VDDQ
Table 129: ODT Sensitivity Definitions
Parameter
RTT@
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Min
Max
Unit
0.9 - dRTTdT έ |ȟT| - dRTTdV έ |ȟV|
1.6 + dRTTdTH έ |ȟT| + dRTTdVH έ |ȟV|
RZQ/n
297
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS
Table 130: ODT Voltage and Temperature Sensitivity
Parameter
Min
Max
Unit
dRTTdT
0
1.5
%/ιC
dRTTdV
0
0.15
%/mV
ODT Timing Definitions
The reference load for ODT timings is different than the reference load used for timing measurements.
Figure 241: ODT Timing Reference Load
VDDQ
DQ, DQS_t, DQS_c,
DM, TDQS_t, TDQS_c
CK_t, CK_c
DUT
RTT = 50ȍ
VTT = VSSQ
VSSQ
Timing reference point
ODT Timing Definitions and Waveforms
Definitions fortADC, tAONAS, and tAOFAS are provided in the 4 and shown in 3 and 5. Measurement
reference settings are provided in the subsequent 5.
The tADC for the dynamic ODT case and read disable ODT cases are represented by tADC of Direct
ODT Control case.
Table 131: ODT Timing Definitions
Parameter Begin Point Definition
End Point Definition
Figure
Rising edge of CK_t, CK_c defined by the end point of DOD- Extrapolated point at VRTT,nom
TLoff
3
Rising edge of CK_t, CK_c defined by the end point of DOD- Extrapolated point at VSSQ
TLon
3
Rising edge of CK_t, CK_c defined by the end point of
ODTLcnw
Extrapolated point at VRTT,nom
4
Rising edge of CK_t, CK_c defined by the end point of
ODTLcwn4 or ODTLcwn8
Extrapolated point at VSSQ
4
t
Rising edge of CK_t, CK_c with ODT being first registered
HIGH
Extrapolated point at VSSQ
5
t
Rising edge of CK_t, CK_c with ODT being first registered
LOW
Extrapolated point at VRTT,nom
5
tADC
AONAS
AOFAS
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
298
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS
Table 132: Reference Settings for ODT Timing Measurements
Measure
Parameter
RTT(Park)
RTT(NOM)
RTT(WR)
VSW1
VSW2
Note
Disable
RZQ/7 (34ȳ)
n
0.20V
0.40V
1, 2, 4
n
RZQ/7 (34ȳ)
High-Z
0.20V
0.40V
1, 3, 5
tAONAS
Disable
RZQ/7 (34ȳ)
n
0.20V
0.40V
1, 2, 6
tAOFAS
Disable
RZQ/7 (34ȳ)
n
0.20V
0.40V
1, 2, 6
t
ADC
Notes: 1. MR settings are as follows: MR1 has A10 = 1, A9 = 1, A8 = 1 for RTT(NOM) setting; MR5 has A8 = 0, A7 = 0, A6 = 0 for
RTT(Park) setting; and MR2 has A11 = 0, A10 = 1, A9 = 1 for RTT(WR) setting.
2. ODT state change is controlled by ODT pin.
3. ODT state change is controlled by a WRITE command.
4. Refer to Figure 3.
5. Refer to Figure 4.
6. Refer to Figure 5.
Figure 242: tADC Definition with Direct ODT Control
DODTLoff
Begin point: Rising edge
of CK_t, CK_c defined
by the end point of
DODTLoff
DODTLon
Begin point: Rising edge
of CK_t, CK_c defined
by the end point of
DODTLon
CK_c
CK_t
tADC
VRTT,nom
DQ, DM
DQS_t, DQS_c
TDQS_t, TDQS_c
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
tADC
End point: Extrapolated
point at VRTT,nom
VRTT,nom
Vsw2
Vsw1
VSSQ
299
VSSQ
End point: Extrapolated
point at VSSQ
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
%LECTRICAL#HARACTERISTICSn/N
$IE4ERMINATION#HARACTERISTICS
Figure 243: tADC Definition with Dynamic ODT Control
ODTLcnw
Begin point: Rising edge
of CK_t, CK_c defined
by the end point of
ODTLcnw
ODTLcnw4/8
Begin point: Rising edge
of CK_t, CK_c defined
by the end point of
ODTLcnw4 or ODTLcnw8
CK_c
CK_t
tADC
VRTT,nom
tADC
End point: Extrapolated
point at VRTT,nom
VRTT,nom
Vsw2
DQ, DM
DQS_t, DQS_c
TDQS_t, TDQS_c
Vsw1
VSSQ
VSSQ
End point: Extrapolated
point at VSSQ
Figure 244: tAOFAS and tAONAS Definitions
Rising edge of CK_t, CK_c
with ODT being first
registered LOW
Rising edge of CK_t, CK_c
with ODT being first
registered HIGH
CK_c
CK_t
tAOFAS
VRTT,nom
DQ, DM
DQS_t, DQS_c
TDQS_t, TDQS_c
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
tAONAS
End point: Extrapolated
point at VRTT_NOM
VRTT,nom
Vsw2
Vsw1
VSSQ
300
VSSQ
End point: Extrapolated
point at VSSQ
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
DRAM Package Electrical Specifications
DRAM Package Electrical Specifications
Table 133: DRAM Package Electrical Specifications for x4 and x8 Devices
1600/1866/2133/
2400/2666
Parameter
2933
3200
Symbol
Min
Max
Min
Max
Min
Max
Unit
Notes
ZIO
45
85
48
85
48
85
ohm
1, 2, 4
TdIO
14
42
14
40
14
40
ps
1, 3, 4
Lpkg
LIO
n
3.3
n
3.3
n
3.3
nH
10
Cpkg
CIO
n
0.78
n
0.78
n
0.78
pF
11
Zpkg
ZIO DQS
45
85
48
85
48
85
ohm
1, 2
Package delay
TdIO DQS
14
42
14
40
14
40
ps
1, 3
Delta Zpkg
DZIO DQS
n
10
n
10
n
10
ohm
1, 2, 6
Delta delay
DTdIO DQS
n
5
n
5
n
5
ps
1, 3, 6
Lpkg
LIO DQS
n
3.3
n
3.3
n
3.3
nH
10
Cpkg
CIO DQS
n
0.78
n
0.78
n
0.78
pF
11
Zpkg
ZI CTRL
50
90
50
90
50
90
ohm
1, 2, 8
TdI CTRL
14
42
14
40
14
40
ps
1, 3, 8
Lpkg
LI CTRL
n
3.4
n
3.4
n
3.4
nH
10
Cpkg
CI CTRL
n
0.7
n
0.7
n
0.7
pF
11
Zpkg
ZI ADD CMD
50
90
50
90
50
90
ohm
1, 2, 7
TdI ADD CMD
14
45
14
40
14
40
ps
1, 3, 7
Lpkg
LI ADD CMD
n
3.6
n
3.6
n
3.6
nH
10
Cpkg
CI ADD CMD
n
0.74
n
0.74
n
0.74
pF
11
Zpkg
ZCK
50
90
50
90
50
90
ohm
1, 2
TdCK
14
42
14
42
14
42
ps
1, 3
Delta Zpkg
DZDCK
n
10
n
10
n
10
ohm
1, 2, 5
Delta delay
DTdDCK
n
5
n
5
n
5
ps
1, 3, 5
Lpkg
LI CLK
n
3.4
n
3.4
n
3.4
nH
10
Cpkg
CI CLK
n
0.7
n
0.7
n
0.7
pF
11
ZQ Zpkg
ZO ZQ
n
100
n
100
n
100
ohm
1, 2
ZQ delay
TdO ZQ
20
90
20
90
20
90
ps
1, 3
ALERT Zpkg
ZO ALERT
40
100
40
100
40
100
ohm
1, 2
ALERT delay
TdO ALERT
20
55
20
55
20
55
ps
1, 3
Input/output
DQS_t,
DQS_c
Input CTRL
pins
Input CMD
ADD pins
CK_t, CK_c
Zpkg
Package delay
Package delay
Package delay
Package delay
Notes: 1. This parameter is not subject to a production test; it is verified by design and characterization and are provided
for reference; system signal simulations should not use these values but use the Micron package model. The
package parasitic (L and C) are validated using package only samples. The capacitance is measured with VDD, VDDQ,
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
301
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
DRAM Package Electrical Specifications
VSS, and VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS, and VSSQ
shorted and all other signal pins shorted at the die, not pin, side.
2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total
per pin) = SQRT (Lpkg/Cpkg).
3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin)
= SQRT (Lpkg έ Cpkg).
4. ZIO and TdIO apply to DQ, DM, TDQS_t and TDQS_c.
5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).
6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for
delay (Td).
7. ZI ADD CMD and TdI ADD CMD apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, WE_n, ACT_n, and PAR.
8. ZI CTRL and TdI CTRL apply to ODT, CS_n, and CKE.
9. Package implementations will meet specification if the Zpkg and package delay fall within the ranges shown, and
the maximum Lpkg and Cpkg do not exceed the maximum values shown.
10. It is assumed that Lpkg can be approximated as Lpkg = ZO έ Td.
11. It is assumed that Cpkg can be approximated as Cpkg = Td/ZO.
Table 134: DRAM Package Electrical Specifications for x16 Devices
1600/1866/2133/
2400/2666
Parameter
Input/output
Symbol
Zpkg
ZIO
Package delay TdIO
2933
3200
Min
Max
Min
Max
Min
Max
Unit
Notes
45
85
45
85
45
85
ohm
1, 2, 4
14
45
14
45
14
45
ps
1, 3, 4
Lpkg
LIO
n
3.4
n
3.4
n
3.4
nH
11
Cpkg
CIO
n
0.82
n
0.82
n
0.82
pF
11
45
85
45
85
45
85
ohm
1, 2
14
45
14
45
14
45
ps
1, 3
n
3.4
n
3.4
n
3.4
nH
11
CIO DQS
n
0.82
n
0.82
n
0.82
pF
11
LDQS_t/LDQ Delta Zpkg
S_c,
UDQS_t/UD Delta delay
QS_c,
DZIO DQS
n
10.5
n
10.5
n
10.5
ohm
1, 2, 6
DTdIO DQS
n
5
n
5
n
5
ps
1, 3, 6
Input CTRL
pins
ZI CTRL
50
90
50
90
50
90
ohm
1, 2, 8
14
42
14
42
14
42
ps
1, 3, 8
LDQS_t/LDQ Zpkg
ZIO DQS
S_c/UDQS_t/
Package delay TdIO DQS
UDQS_c
Lpkg
LIO DQS
Cpkg
Input CMD
ADD pins
Zpkg
Package delay TdI CTRL
Lpkg
LI CTRL
n
3.4
n
3.4
n
3.4
nH
11
Cpkg
CI CTRL
n
0.7
n
0.7
n
0.7
pF
11
Zpkg
ZI ADD CMD
50
90
50
90
50
90
ohm
1, 2, 7
14
52
14
52
14
52
ps
1, 3, 7
Package delay TdI ADD CMD
Lpkg
LI ADD CMD
n
3.9
n
3.9
n
3.9
nH
11
Cpkg
CI ADD CMD
n
0.86
n
0.86
n
0.86
pF
11
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
302
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
DRAM Package Electrical Specifications
Table 134: DRAM Package Electrical Specifications for x16 Devices (Continued)
1600/1866/2133/
2400/2666
Parameter
CK_t, CK_c
Symbol
Zpkg
ZCK
Package delay TdCK
2933
3200
Min
Max
Min
Max
Min
Max
Unit
Notes
50
90
50
90
50
90
ohm
1, 2
14
42
14
42
14
42
ps
1, 3
Delta Zpkg
DZDCK
n
10.5
n
10.5
n
10.5
ohm
1, 2, 5
Delta delay
DTdDCK
n
5
n
5
n
5
ps
1, 3, 5
Lpkg
LI CLK
n
3.4
n
3.4
n
3.4
nH
11
Cpkg
CI CLK
n
0.7
n
0.7
n
0.7
pF
11
ZQ Zpkg
ZO ZQ
n
100
n
100
n
100
ohm
1, 2
ZQ delay
TdO ZQ
20
90
20
90
20
90
ps
1, 3
ALERT Zpkg
ZO ALERT
40
100
40
100
40
100
ohm
1, 2
ALERT delay
TdO ALERT
20
55
20
55
20
55
ps
1, 3
Input CLK
Notes: 1. This parameter is not subject to a production test; it is verified by design and characterization and are provided
for reference; system signal simulations should not use these values but use the Micron package model. The
package parasitic (L and C) are validated using package only samples. The capacitance is measured with VDD, VDDQ,
VSS, and VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS, and VSSQ
shorted and all other signal pins shorted at the die, not pin, side.
2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where: Zpkg (total
per pin) = SQRT (Lpkg/Cpkg).
3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where: Tdpkg (total per pin)
= SQRT (Lpkg έ Cpkg).
4. ZIO and TdIO apply to DQ, DM, TDQS_t and TDQS_c.
5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c for delay (Td).
6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO (DQS_t), TdIO (DQS_c) for
delay (Td).
7. ZI ADD CMD and TdI ADD CMD apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, WE_n, ACT_n, and PAR.
8. ZI CTRL and TdI CTRL apply to ODT, CS_n, and CKE.
9. Package implementations will meet specification if the Zpkg and package delay fall within the ranges shown, and
the maximum Lpkg and Cpkg do not exceed the maximum values shown.
10. It is assumed that Lpkg can be approximated as Lpkg = ZO έ Td.
11. It is assumed that Cpkg can be approximated as Cpkg = Td/ZO.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
303
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
DRAM Package Electrical Specifications
Table 135: Pad Input/Output Capacitance
DDR4-1600,
1866, 2133
DDR4-2400,
2666
DDR4-2933
DDR4-3200
Symbol
Min
Max
Min
Max
Min
Max
Min
Max
Unit
Notes
Input/output capacitance:
DQ, DM, DQS_t, DQS_c,
TDQS_t, TDQS_c
CIO
0.55
1.4
0.55
1.15
0.55
1.00
0.55
1.00
pF
1, 2, 3
Input capacitance: CK_t
and CK_c
CCK
0.2
0.8
0.2
0.7
0.2
0.7
0.15
0.7
pF
2, 3
Input capacitance delta:
CK_t and CK_c
CDCK
-
0.05
-
0.05
-
0.05
-
0.05
pF
2, 3, 6
Input/output capacitance
delta: DQS_t and DQS_c
CDDQS
-
0.05
-
0.05
-
0.05
-
0.05
pF
2, 3, 5
Input capacitance: CTRL,
ADD, CMD input-only pins
CI
0.2
0.8
0.2
0.7
0.2
0.6
0.15
0.55
pF
2, 3, 4
Input capacitance delta: All
CTRL input-only pins
CDI_CTRL
n
0.1
n
0.1
n
0.1
n
0.1
pF
2, 3,
8, 9
Input capacitance delta: All
ADD/CMD input-only pins
CDI_AD-
n
0.1
n
0.1
n
0.1
n
0.1
pF
1, 2,
10, 11
Parameter
D_CMD
Input/output capacitance
delta: DQ, DM, DQS_t,
DQS_c, TDQS_t, TDQS_c
CDIO
n
0.1
n
0.1
n
0.1
n
0.1
pF
1, 2, 3,
4
Input/output capacitance:
ALERT pin
CALERT
0.5
1.5
0.5
1.5
0.5
1.5
0.5
1.5
pF
2, 3
Input/output capacitance:
ZQ pin
CZQ
n
2.3
n
2.3
n
2.3
n
2.3
pF
2, 3,
12
Input/output capacitance:
TEN pin
CTEN
0.2
2.3
0.2
2.3
0.2
2.3
0.15
2.3
pF
2, 3,
13
Notes: 1. Although the DM, TDQS_t, and TDQS_c pins have different functions, the loading matches DQ and DQS.
2. This parameter is not subject to a production test; it is verified by design and characterization and are provided
for reference; system signal simulations should not use these values but use the Micron package model. The capacITANCEIFANDWHENISMEASUREDACCORDINGTOTHE*%0SPECIFICATIONh0ROCEDUREFOR-EASURING)NPUT#APACITANCE5SINGA6ECTOR.ETWORK!NALYZER6.! vWITH6DD, VDDQ, VSS, and VSSQ applied and all other pins floating
(except the pin under test, CKE, RESET_n and ODT, as necessary). VDD = VDDQ = 1.2V, VBIAS = VDD/2 and on-die
termination off. Measured data is rounded using industry standard half-rounded up methodology to the nearest
hundredth of the MSB.
3. This parameter applies to monolithic die, obtained by de-embedding the package L and C parasitics.
4. CDIO = CIO(DQ, DM) - 0.5 έ (CIO(DQS_t) + CIO(DQS_c)).
5. Absolute value of CIO (DQS_t), CIO (DQS_c)
6. Absolute value of CCK_t, CCK_c
7. CI applies to ODT, CS_n, CKE, A[17:0], BA[1:0], BG[1:0], RAS_n, CAS_n, ACT_n, PAR and WE_n.
8. CDI_CTRL applies to ODT, CS_n, and CKE.
9. CDI_CTRL = CI(CTRL) - 0.5 έ (CI(CLK_t) + CI(CLK_c)).
10. CDI_ADD_CMD applies to A[17:0], BA1:0], BG[1:0], RAS_n, CAS_n, ACT_n, PAR and WE_n.
11. CDI_ADD_CMD = CI(ADD_CMD) - 0.5 έ (CI(CLK_t) + CI(CLK_c)).
12. Maximum external load capacitance on ZQ pin: 5pF.
13. Only applicable if TEN pin does not have an internal pull-up.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
304
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Thermal Characteristics
Thermal Characteristics
Table 136: Thermal Characteristics
Parameter/Condition
Value
Units
Symbol
Notes
Operating case temperature:
Commercial
0 to +85
ιC
TC
1, 2, 3
0 to +95
ιC
TC
1, 2, 3, 4
Operating case temperature:
Industrial
nTO
ιC
TC
1, 2, 3
nTO
ιC
TC
1, 2, 3, 4
Operating case temperature:
Automotive
nTO
ιC
TC
1, 2, 3
nTO
ιC
TC
1, 2, 3, 4
Junction-to-case (TOP)
3.1
ιC/W
ȣJC
5
Junction-to-board
10.6
ιC/W
ȣJB
Junction-to-case (TOP)
3.0
ιC/W
ȣJC
Junction-to-board
9.9
ιC/W
ȣJB
Junction-to-case (TOP)
3.5
ιC/W
ȣJC
Junction-to-board
21
ιC/W
ȣJB
Junction-to-case (TOP)
4.1
ιC/W
ȣJC
Junction-to-board
16.2
ιC/W
ȣJB
Junction-to-case (TOP)
3.2
ιC/W
ȣJC
Junction-to-board
20.2
ιC/W
ȣJB
Junction-to-case (TOP)
TBD
ιC/W
ȣJC
Junction-to-board
TBD
ιC/W
ȣJB
Junction-to-case (TOP)
4.9
ιC/W
ȣJC
Junction-to-board
14.2
ιC/W
ȣJB
Junction-to-case (TOP)
4.8
ιC/W
ȣJC
Junction-to-board
15.2
ιC/W
ȣJB
Junction-to-case (TOP)
2.8
ιC/W
ȣJC
Junction-to-board
13.1
ιC/W
ȣJB
Junction-to-case (TOP)
N/A
ιC/W
ȣJC
Junction-to-board
N/A
ιC/W
ȣJB
Junction-to-case (TOP)
4.4
ιC/W
ȣJC
Junction-to-board
13.2
ιC/W
ȣJB
Junction-to-case (TOP)
3.4
ιC/W
ȣJC
Junction-to-board
14.7
ιC/W
ȣJB
Junction-to-case (TOP)
6.0
ιC/W
ȣJC
Junction-to-board
17.9
ιC/W
ȣJB
Junction-to-case (TOP)
5.9
ιC/W
ȣJC
Junction-to-board
17.4
ιC/W
ȣJB
78-ball
h0-v
REV A
96-ball
h(!v
78-ball
h7%v
REV B
BALLh*9v
78-ball
h7%v
REV D
BALLh,9v
BALLh3!v
REV E
BALLh,9v
78-ball
h7%v
REV G
N/A
BALLh3!v
REV H
BALLh,9v
BALLh3!v
REV J
BALLh4"v
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
305
5
5
5
5
5
5
5
5
5
5
5
5
5
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
Table 136: Thermal Characteristics (Continued)
Parameter/Condition
78-ball "SA"
REV R
96-ball "TB"
Value
Units
Symbol
Notes
Junction-to-case (TOP)
8.2
ιC/W
ȣJC
5
Junction-to-board
19.8
ιC/W
ȣJB
Junction-to-case (TOP)
8.1
ιC/W
ȣJC
Junction-to-board
19.2
ιC/W
ȣJB
5
Notes: 1. MAX operating case temperature. TCis measured in the center of the package.
2. A thermal solution must be designed to ensure the DRAM device does not exceed the maximum TC during operation.
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during operation.
4. If TC exceeds 85ιC, the DRAM must be refreshed externally at 2x refresh, which is a 3.9ρs interval refresh rate.
5. The thermal resistance data is based off of a typical number.
Figure 245: Thermal Measurement Point
TC test point
(L/2)
L
(W/2)
W
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
IDD, IPP, and IDDQ Measurement Conditions
IDD, IPP, and IDDQ measurement conditions, such as test load and patterns, are defined in this section.
s IDD currents (IDD0, IDD1, IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5R, IDD6N, IDD6E,
IDD6R, IDD6A, IDD7, DD8 and IDD9) are measured as time-averaged currents with all VDD balls of the
device under test grouped together.
s IPP currents are IPP3N for standby cases (IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD8), IPP0 for
active cases (IDD0,IDD1, IDD4R, IDD4W), IPP5R for the distributed refresh case (IDD5R), IPP6x for self
refresh cases (IDD6N, IDD6E, IDD6R, IDD6A), IPP7 for the operating bank interleave read case (IDD7) and
IPP9 for the MBIST-PPR operation case. These have the same definitions as the IDD currents referenced but are measured on the VPP supply.
s IDDQ currents are measured as time-averaged currents with VDDQ balls of the device under test
grouped together. Micron does not specify IDDQ currents.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
306
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
s IPP and IDDQ currents are not included in IDD currents, IDD and IDDQ currents are not included in IPP
currents, and IDD and IPP currents are not included in IDDQ currents.
NOTE: IDDQ values cannot be directly used to calculate the
I/O power of the device. They can be used to
support correlation of simulated I/O power to actual I/O power. In DRAM module application, IDDQ
cannot be measured separately because VDD and VDDQ are using a merged-power layer in the module
PCB.
The following definitions apply for IDD, IPP and IDDQ measurements.
s hvANDh,/7vAREDEFINEDAS6IN ζVIL(AC)max
s hvANDh()'(vAREDEFINEDAS6IN ηVIH(AC)min
s h-IDLEVELvISDEFINEDASINPUTS6REF = VDD/2
s Timings used for IDD, IPP and IDDQ measurement-loop patterns are provided in the Current Test
Definition and Patterns section.
s Basic IDD, IPP, and IDDQ measurement conditions are described in the Current Test Definition and
Patterns section.
s Detailed IDD, IPP, and IDDQ measurement-loop patterns are described in the Current Test Definition
and Patterns section.
s Current measurements are done after properly initializing the device. This includes, but is not
limited to, setting:
RON = RZQ/7 (34 ohm in MR1);
Qoff = 0B (output buffer enabled in MR1);
RTT(NOM) = RZQ/6 (40 ohm in MR1);
RTT(WR) = RZQ/2 (120 ohm in MR2);
RTT(Park) = disabled;
TDQS feature disabled in MR1; CRC disabled in MR2; CA parity feature disabled in MR3; Gear-down
mode disabled in MR3; Read/Write DBI disabled in MR5; DM disabled in MR5
s Define D = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, LOW, LOW, LOW}; apply BG/BA changes when
directed.
s Define D_n = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, HIGH, HIGH, HIGH}; apply invert of BG/BA
changes when directed above.
NOTE: The measurement-loop patterns must be executed at least once before
actual current measurements can be taken, with the exception of IDD9 which may be measured any time after MBIST-PPR entry.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
307
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
Figure 246: Measurement Setup and Test Load for IDDx, IPPx, and IDDQx
IDD
VDD
RESET_n
CK_t/CK_c
IPP
IDDQ
VPP
DDR4
SDRAM
CKE
CS_n
C
ACT_n, RAS_n, CAS_n, WE_n
VDDQ
DQS_t, DQS_c
DQ
DM_n
A, BG, BA
ODT
ZQ
V
VSSQ
SS
Figure 247: Correlation: Simulated Channel I/O Power to Actual Channel I/O Power
Applic ation-s pe c ific
memory c ha nne l
env ironmen t
C hanne l I/O
pow er simulation
I DD Q
tes t loa d
I DD Q
simulation
IDD Q
meas ure ment
C or relation
C orre c tion
C hanne l I/O
pow er n umber
Note: 1. Supported by IDDQ measurement.
IDD Definitions
Table 137: Basic IDD, IPP, and IDDQ Measurement Conditions
Symbol
Description
IDD0
Operating One Bank Active-Precharge Current (AL = 0)
CKE: HIGH; External clock: On; tCK, nRC, nRAS, CL: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between
ACT and PRE; Command, address, bank group address, bank address inputs: partially toggling according to the
next table; Data I/O: VDDQ; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2,
2, ... (see the IDD0 Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers;2 ODT
signal: stable at 0; Pattern details: see the IDD0 Measurement-Loop Pattern table
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
308
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
Table 137: Basic IDD, IPP, and IDDQ Measurement Conditions
Symbol
Description
IPP0
Operating One Bank Active-Precharge IPP Current (AL = 0)
Same conditions as IDD0 above
IDD1
Operating One Bank Active-Read-Precharge Current (AL = 0)
CKE: HIGH; External clock: on; tCK, nRC, nRAS, nRCD, CL: see the previous table; BL: 8;,, 5 AL: 0; CS_n: HIGH
between ACT, RD, and PRE; Command, address, bank group address, bank address inputs, Data I/O: partially
toggling according to the IDD1 Measurement-Loop Pattern table; DM_n: stable at 0; Bank activity: cycling with
one bank active at a time: 0, 0, 1, 1, 2, 2, ... (see the following table); Output buffer and RTT: enabled in mode
registers;2 ODT Signal: stable at 0; Pattern details: see the IDD1 Measurement-Loop Pattern table
IDD2N
Precharge Standby Current (AL = 0)
CKE: HIGH; External clock: On; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command,
address, bank group address, bank address Inputs: partially toggling according to the IDD2N and IDD3N Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and
RTT: enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD2N and IDD3N Measurement-Loop Pattern table
IDD2NT
Precharge Standby ODT Current
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command,
address, bank gropup address, bank address inputs: partially toggling according to the IDD2NT Measurement-Loop Pattern table; Data I/O: VSSQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and
RTT: enabled in mode registers;2 ODT signal: toggling according to the IDD2NT Measurement-Loop Pattern
table; Pattern details: see the IDD2NT Measurement-Loop Pattern table
IDD2P
Precharge Power-Down Current
CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command,
address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity:
all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
IDD2Q
Precharge Quiet Standby Current
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command,
address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity:
all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
IDD3N
Active Standby Current (AL = 0)
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command,
address, bank group address, bank address inputs: partially toggling according to the IDD2N and IDD3N Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and
RTT: Enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD2N and IDD3N Measurement-Loop Pattern table
IPP3N
Active Standby IPP3N Current (AL = 0)
Same conditions as IDD3N above
IDD3P
Active Power-Down Current (AL = 0)
CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command,
address, bank group address, bank address inputs: stable at 1; Data I/O: VDDQ; DM_n: stable at 1; Bank activity:
all banks open; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
309
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
Table 137: Basic IDD, IPP, and IDDQ Measurement Conditions
Symbol
Description
IDD4R
Operating Burst Read Current (AL = 0)
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;, 5 AL: 0; CS_n: HIGH between RD; Command, address, bank group address, bank address inputs: partially toggling according to the IDD4R Measurement-Loop Pattern table; Data I/O: seamless read data burst with different data between one burst and the
next one according to the IDD4R Measurement-Loop Pattern table; DM_n: stable at 1; Bank activity: all banks
open, RD commands cycling through banks: 0, 0, 1, 1, 2, 2, ... (see the IDD4R Measurement-Loop Pattern table);
Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD4R Measurement-Loop Pattern table
IDD4W
Operating Burst Write Current (AL = 0)
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between WR; Command, address, bank group address, bank address inputs: partially toggling according to the IDD4W Measurement-Loop Pattern table; Data I/O: seamless write data burst with different data between one burst and the
next one according to the IDD4W Measurement-Loop Pattern table; DM: stable at 0; Bank activity: all banks
open, WR commands cycling through banks: 0, 0, 1, 1, 2, 2, ... (see IDD4W Measurement-Loop Pattern table);
Output buffer and RTT: enabled in mode registers (see note2); ODT signal: stable at HIGH; Pattern details: see
the IDD4W Measurement-Loop Pattern table
IDD5R
Distributed Refresh Current (1X REF)
CKE: HIGH; External clock: on; tCK, CL, nREFI: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between REF;
Command, address, bank group address, bank address inputs: partially toggling according to the IDD5R Measurement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: REF command every nREFI (see
the IDD5R Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers2; ODT signal:
stable at 0; Pattern details: see the IDD5R Measurement-Loop Pattern table
IPP5R
Distributed Refresh Current (1X REF)
Same conditions as IDD5R above
IDD6N
Self Refresh Current: Normal Temperature Range
TCnιC; Auto self refresh (ASR): disabled;3 Self refresh temperature range (SRT): normal;4 CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the table above; BL: 8;1 AL: 0; CS_n, command, address, bank group
address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: SELF REFRESH operation; Output buffer
and RTT: enabled in mode registers;2 ODT signal: midlevel
IDD6E
Self Refresh Current: Extended Temperature Range 4
TCnιC; Auto self refresh (ASR): disabled4; Self refresh temperature range (SRT): extended;4 CKE: LOW;
External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8;1 AL: 0; CS_n, command, address,
group bank address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE
SELF REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel
IPP6x
Self Refresh IPP Current
Same conditions as IDD6E above
IDD6R
Self Refresh Current: Reduced Temperature Range
TCnιC; Auto self refresh (ASR): disabled; Self refresh temperature range (SRT): reduced;4 CKE: LOW; External clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8;1 AL: 0; CS_n, command, address, bank
group address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF
REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
310
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn-EASUREMENT#ONDITIONS
Table 137: Basic IDD, IPP, and IDDQ Measurement Conditions
Symbol
Description
IDD7
Operating Bank Interleave Read Current
CKE: HIGH; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see the previous table; BL: 8;, 5 AL: CL 1; CS_n: HIGH between ACT and RDA; Command, address, group bank adress, bank address inputs: partially
toggling according to the IDD7 Measurement-Loop Pattern table; Data I/O: read data bursts with different data
between one burst and the next one according to the IDD7 Measurement-Loop Pattern table; DM: stable at 1;
Bank activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see the IDD7
Measurement-Loop Pattern table; Output buffer and RTT: enabled in mode registers;2 ODT signal: stable at 0;
Pattern details: see the IDD7 Measurement-Loop Pattern table
IPP7
Operating Bank Interleave Read IPP Current
Same conditions as IDD7 above
IDD8
Maximum Power Down Current
Place DRAM in MPSM then CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n:
stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n:
stable at 1; Bank activity: all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
IDD9
MBIST-PPR Current 7
Device in MBIST-PPR mode; External clock: on; CS_n: stable at 1 after MBIST-PPR entry; Command, address,
bank group address, bank address inputs: stable at 1; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks
closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0
IPP9
MBIST-PPR IPP Current
Same condition with IDD9 above
Notes: 1. Burst length: BL8 fixed by MRS: set MR0[1:0] 00.
2. Output buffer enable: set MR1[12] 0 (output buffer enabled); set MR1[2:1] 00 (RON = RZQ/7); RTT(NOM) enable: set
MR1[10:8] 011 (RZQ/6); RTT(WR) enable: set MR2[11:9] 001 (RZQ/2), and RTT(Park) enable: set MR5[8:6] 000 (disabled).
3. Auto self refresh (ASR): set MR2[6] 0 to disable or MR2[6] 1 to enable feature.
4. Self refresh temperature range (SRT): set MR2[7] 0 for normal or MR2[7] 1 for extended temperature range.
5. READ burst type: Nibble sequential, set MR0[3] 0.
6. In the dual-rank DDP case, note the following IDD measurement considerations:
s For all IDD measurements except IDD6, the unselected rank should be in an IDD2P condition.
s For all IPP measurements except IPP6, the unselected rank should be in an IDD3N condition.
s For all IDD6/IPP6 measurements, both ranks should be in the same IDD6 condition.
7. When measuring IDD9/IPP9 after entering MBIST-PPR mode and ALERT_N driving LOW, there is a chance that the
DRAM may perform an internal hPPR if fails are found after internal self-test is completed and before ALERT_N
fires HIGH.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
311
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Current Test Definitions and Patterns
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
CK_t, CK_c
Table 138: IDD0 and IPP0 Measurement-Loop Pattern1
0
0
ACT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
1, 2
D, D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
3, 4
D_n,
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
...
Static High
Toggling
nRAS
Notes: 1.
2.
3.
4.
Data3
Repeat pattern 1...4 until nRAS - 1; truncate if necessary
PRE
0
1
0
1
0
0
0
0
0
0
0
0
0
0
...
Repeat pattern 1...4 until nRC - 1; truncate if necessary
1
1 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead
2
2 έ nRC
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
3 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
4 έ nRC
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
5 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
6 έ nRC
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
7 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
8 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
9 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
10 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
11 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
12 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
13
13 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14
14 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15
15 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4
n
DQS_t, DQS_c are VDDQ.
BG1 is a "Don't Care" for x16 devices.
DQ signals are VDDQ.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
312
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
CK_c, CK_t,
Table 139: IDD1-EASUREMENTn,OOP0ATTERN1
0
0
ACT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
n
1, 2
D, D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
3, 4
D_n,
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
...
nRCD - AL
Repeat pattern 1...4 until nRCD - AL - 1; truncate if necessary
RD
...
nRAS
PRE
Static High
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
Repeat pattern 1...4 until nRC - 1; truncate if necessary
D0 = 00, D1 =
FF,
D2 = FF, D3 =
00,
D4 = FF, D5 =
00,
D5 = 00, D7 =
FF
1 έ nRC + 0
ACT
0
0
0
1
1
0
1
1
0
0
0
0
0
0
n
1 έ nRC + 1, 2
D, D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
1 έ nRC + 3, 4
D_n,
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
Repeat pattern nRC + 1...4 until 1 έ nRC + nRAS - 1; truncate if necessary
...
Toggling
0
Repeat pattern 1...4 until nRAS - 1; truncate if necessary
...
1
Data3
1έ
nRC+nRCD AL
RD
...
1 έ nRC +
nRAS
...
0
1
1
0
1
0
1
1
0
0
0
0
0
0
0
0
Repeat pattern 1...4 until nRAS - 1; truncate if necessary
PRE
0
1
0
1
0
0
1
1
0
0
0
0
Repeat pattern nRC + 1...4 until 2 έ nRC - 1; truncate if necessary
2
2 έ nRC
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
3 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
4 έ nRC
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
5 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
6 έ nRC
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
7 έ nRC
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
9 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
10 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
11 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
12 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
13 έ nRC
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
313
D0 = FF, D1 =
00,
D2 = 00, D3 =
FF,
D4 = 00, D5 =
FF,
D5 = FF, D7 =
00
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Notes: 1.
2.
3.
4.
A[17,13,11]]
WE_n/A14
CAS_n/A15
RAS_n/A16
15
16 έ nRC
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4
A[9:7]
BA[1:0]
ODT
A[2:0]
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
A[6:3]
15 έ nRC
A[10]/AP
14
A12/BC_n
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4
BG[1:0]2
14 έ nRC
ACT_n
13
CS_n
Cycle
Number
Command
Sub-Loop
Static High CKE
Toggling
CK_c, CK_t,
Table 139: IDD1-EASUREMENTn,OOP0ATTERN1
Data3
DQS_t, DQS_c are VDDQ when not toggling.
BG1 is a "Don't Care" for x16 devices.
DQ signals are VDDQ except when burst sequence drives each DQ signal by a READ command.
For x4 and x8 only.
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
Static High
Toggling
CK_c, CK_t,
Table 140: IDD2N, IDD3N, and IPP3P-EASUREMENTn,OOP0ATTERN1
0
0
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
1
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
2
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
3
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
1
n
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead
2
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
n
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
n
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
n
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
n
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
n
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
13
n
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15
n
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead4
Data3
Notes: 1. DQS_t, DQS_c are VDDQ.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
314
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
2. BG1 is a "Don't Care" for x16 devices.
3. DQ signals are VDDQ.
4. For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
315
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Notes: 1.
2.
3.
4.
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
Static High
Toggling
CK_c, CK_t,
Table 141: IDD2NT-EASUREMENTn,OOP0ATTERN1
0
0
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
1
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
2
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
3
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
Data3
1
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 1 instead
2
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
13
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14
n
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15
n
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4
DQS_t, DQS_c are VSSQ.
BG1 is a "Don't Care" for x16 devices.
DQ signals are VSSQ.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
316
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
CK_c, CK_t,
Table 142: IDD4R-EASUREMENTn,OOP0ATTERN1
0
0
RD
0
1
1
0
1
0
0
0
0
0
0
0
0
0
1
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
2, 3
D_n,
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
4
RD
0
1
1
0
1
0
1
1
0
0
0
7
F
0
5
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
6, 7
D_n,
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
Static High
Toggling
1
Notes: 1.
2.
3.
4.
2
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
13
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4
Data3
D0 = 00, D1 = FF,
D2 = FF, D3 = 00,
D4 = FF, D5 = 00,
D5 = 00, D7 = FF
D0 = FF, D1 = 00
D2 = 00, D3 = FF
D4 = 00, D5 = FF
D5 = FF, D7 = 00
DQS_t, DQS_c are VDDQ when not toggling.
BG1 is a "Don't Care" for x16 devices.
Burst sequence driven on each DQ signal by a READ command. Outside burst operation, DQ signals are VDDQ.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
317
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
CK_c, CK_t,
Table 143: IDD4W-EASUREMENTn,OOP0ATTERN1
0
0
WR
0
1
1
0
0
1
0
0
0
0
0
0
0
0
1
D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
2, 3
D_n,
D_n
1
1
1
1
0
1
3
3
0
0
0
7
F
0
4
WR
0
1
1
0
0
1
1
1
0
0
0
7
F
0
5
D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
6, 7
D_n,
D_n
1
1
1
1
0
1
3
3
0
0
0
7
F
0
Static High
Toggling
1
Notes: 1.
2.
3.
4.
Data3
D0 = 00, D1 = FF,
D2 = FF, D3 = 00,
D4 = FF, D5 = 00,
D5 = 00, D7 = FF
2
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
13
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4
D0 = FF, D1 = 00
D2 = 00, D3 = FF
D4 = 00, D5 = FF
D5 = FF, D7 = 00
DQS_t, DQS_c are VDDQ when not toggling.
BG1 is a "Don't Care" for x16 devices.
Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are VDDQ.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
318
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]3
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
CK_c, CK_t,
Table 144: IDD4Wc-EASUREMENTn,OOP0ATTERN1
0
0
WR
0
1
1
0
0
1
0
0
0
0
0
0
0
0
1, 2
D, D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
3, 4
D_n,
D_n
1
1
1
1
0
1
3
3
0
0
0
7
F
0
5
WR
0
1
1
0
0
1
1
1
0
0
0
7
F
0
6, 7
D, D
1
0
0
0
0
1
0
0
0
0
0
0
0
0
8, 9
D_n,
D_n
1
1
1
1
0
1
3
3
0
0
0
7
F
0
Static High
Toggling
1
Notes: 1.
2.
3.
4.
5.
Data4
D0 = 00, D1 = FF,
D2 = FF, D3 = 00,
D4 = FF, D5 = 00,
D8 = CRC
D0 = FF, D1 = 00,
D2 = 00, D3 = FF,
D4 = 00, D5 = FF,
D5 = FF, D7 = 00
D8 = CRC
2
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
5
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead
6
n
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
7
n
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead
8
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4
9
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4
10
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4
11
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead4
12
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead4
13
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead4
14
n
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead4
15
n
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead4
Pattern provided for reference only.
DQS_t, DQS_c are VDDQ when not toggling.
BG1 is a "Don't Care" for x16 devices.
Burst sequence driven on each DQ signal by WRITE command. Outside burst operation, DQ signals are VDDQ.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
319
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
0
0
REF
0
1
0
0
1
0
0
0
0
0
0
0
0
0
n
1
1
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
2
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
3
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
4
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
Static High
Toggling
CK_c, CK_t,
Table 145: IDD5R-EASUREMENTn,OOP0ATTERN1
2
Notes: 1.
2.
3.
4.
n
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 1 instead
n
Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 2 instead
n
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 3 instead
n
Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 1 instead
n
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 2 instead
n
Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 3 instead
n
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 0 instead
n
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 0 instead4
n
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 1 instead4
n
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 2 instead4
n
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 3 instead4
n
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 1 instead4
n
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 2 instead4
n
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 3 instead4
n
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 0 instead4
65...nREFI - 1
Repeat sub-loop 1; truncate if necessary
Data3
DQS_t, DQS_c are VDDQ.
BG1 is a "Don't Care" for x16 devices.
DQ signals are VDDQ.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
320
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
Sub-Loop
Cycle
Number
Command
CS_n
ACT_n
RAS_n/A16
CAS_n/A15
WE_n/A14
ODT
BG[1:0]2
BA[1:0]
A12/BC_n
A[17,13,11]]
A[10]/AP
A[9:7]
A[6:3]
A[2:0]
CKE
CK_t, CK_c
Table 146: IDD7-EASUREMENTn,OOP0ATTERN1
0
0
ACT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
RDA
0
1
1
0
1
0
0
0
0
0
1
0
0
0
2
D
1
0
0
0
0
0
0
0
0
0
0
0
0
0
n
3
D_n
1
1
1
1
1
0
3
3
0
0
0
7
F
0
n
...
Static High
Toggling
1
Notes: 1.
2.
3.
4.
Data3
n
Repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary
nRRD
ACT
0
0
0
0
0
0
1
1
0
0
0
0
0
0
nRRD+1
RDA
0
1
1
0
1
0
1
1
0
0
1
0
0
0
n
...
Repeat pattern 2...3 until 2 έ nRRD - 1, if nRRD > 4. Truncate if necessary
2
2 έ nRRD
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead
3
3 έ nRRD
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead
4
4 έ nRRD
Repeat pattern 2...3 until nFAW - 1, if nFAW > 4 έ nRRD. Truncate if necessary
5
nFAW
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead
6
nFAW + nRRD
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead
7
nFAW + 2 έ nRRD
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead
8
nFAW + 3 έ nRRD
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead
9
nFAW + 4 έ nRRD
Repeat sub-loop 4
10
2 έ nFAW
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead
11
2 έ nFAW + nRRD
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead
12
2 έ nFAW + 2 έ nRRD
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead
13
2 έ nFAW + 3 έ nRRD
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead
14
2 έ nFAW + 4 έ nRRD
Repeat sub-loop 4
15
3 έ nFAW
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead
16
3 έ nFAW + nRRD
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead
17
3 έ nFAW + 2 έ nRRD
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead
18
3 έ nFAW + 3 έ nRRD
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead
19
3 έ nFAW + 4 έ nRRD
Repeat sub-loop 4
20
4 έ nFAW
Repeat pattern 2...3 until nRC - 1, if nRC > 4 έ nFAW. Truncate if necessary
DQS_t, DQS_c are VDDQ.
BG1 is a "Don't Care" for x16 devices.
DQ signals are VDDQ except when burst sequence drives each DQ signal by a READ command.
For x4 and x8 only.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
321
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn0ATTERNSAND4EST#ONDITIONS
IDD Specifications
0.682
24-24-24
22-22-22
20-20-20
22-22-22
20-20-20
0.75
21-21-21
18-18-18
0.833
20-20-20
16-16-16
0.937
19-19-19
14-14-14
1.071
18-18-18
12-12-12
1.25
tCK
17-17-17
DDR4-3200
16-16-16
DDR4-2933
15-15-15
DDR4-2666
14-14-14
DDR4-2400
13-13-13
DDR4-2133
12-12-12
DDR4-1866
11-11-11
Symbol
DDR4-1600
10-10-10
Table 147: Timings used for IDD, IPP, and IDDQ-EASUREMENTn,OOP0ATTERNS
0.625
Unit
ns
CL
10
11
12
12
13
14
14
15
16
16
17
18
18
19
20
20
21
22
20
22
24
CK
CWL
9
11
11
10
12
12
11
14
14
16
16
16
18
18
18
14
18
18
16
20
20
CK
nRCD
10
11
12
12
13
14
14
15
16
16
17
18
18
19
20
19
20
21
20
22
24
CK
nRC
38
39
40
44
45
46
50
51
52
55
56
57
61
62
63
66
67
68
72
74
76
CK
nRP
10
11
12
12
13
14
14
15
16
16
17
18
18
19
20
19
20
21
20
22
24
CK
nRAS
28
32
36
39
43
47
52
CK
nFAW x41
16
16
16
16
16
16
16
CK
x8
20
22
23
26
28
31
34
CK
x1
6
28
28
32
36
40
44
48
CK
x4
4
4
4
4
4
4
4
CK
x8
4
4
4
4
4
4
4
CK
x1
6
5
6
6
7
8
8
9
CK
x4
5
5
6
6
7
8
8
CK
x8
5
5
6
6
7
8
8
CK
x1
6
6
6
7
8
9
10
11
CK
nCCD_S
4
4
4
4
4
4
4
CK
nCCD_L
5
5
6
6
7
8
8
CK
nWTR_S
2
3
3
3
4
4
4
CK
nWTR_L
6
7
8
9
10
11
12
CK
nREFI
6,240
7,283
8,325
9,364
10,400
11,437
12,480
CK
nRFC 2Gb
128
150
171
193
214
235
256
CK
nRFC 4Gb
208
243
278
313
347
382
416
CK
nRFC 8Gb
280
327
374
421
467
514
560
CK
nRFC 16Gb
280
327
374
421
467
514
560
CK
nRRD_
S
nRRD_
L
Notes: 1. 1KB based x4 use same numbers of clocks for nFAW as the x8.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
322
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
#URRENT3PECIFICATIONSn,IMITS
Table 148: IDD, IPP, and IDDQ Current Limits; Die Rev. A (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
Unit
IDD0: One bank ACTIVATE-to-PRECHARGE current
x4, x8
55
60
65
TBD
mA
x16
85
90
95
TBD
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP current
x4, x8
3
3
3
TBD
mA
x16
4
4
4
TBD
mA
IDD1: One bank ACTIVATE-to-READ-toPRECHARGE current
x4, x8
70
75
80
TBD
mA
x16
105
110
115
TBD
mA
IDD2N: Precharge standby current
x4, x8
45
50
55
TBD
mA
x16
65
70
75
TBD
mA
x4, x8
55
60
65
TBD
mA
x16
75
80
90
TBD
mA
x4, x8
25
30
35
TBD
mA
x16
45
50
55
TBD
mA
x4, x8
45
45
50
TBD
mA
x16
65
65
70
TBD
mA
x4, x8
55
55
60
TBD
mA
x16
75
75
85
TBD
mA
ALL
3
3
3
TBD
mA
x4, x8
35
40
40
TBD
mA
x16
55
60
65
TBD
mA
x4
135
145
160
TBD
mA
x8
150
150
175
TBD
mA
x16
210
230
250
TBD
mA
x4
135
145
160
TBD
mA
x8
150
160
175
TBD
mA
x16
210
230
250
TBD
mA
x4, x8
64
64
68
TBD
mA
x16
84
84
94
TBD
mA
IPP5R: Distributed refresh IPP current (1X
REF)
ALL
5
5
5
TBD
mA
IDD6N3ELFREFRESHCURRENTnιC 1
ALL
30
30
30
TBD
mA
x4, x8
35
35
35
TBD
mA
x16
50
50
50
IDD6R3ELFREFRESHCURRENTn#3, 4
ALL
25
25
25
TBD
mA
IDD6A: Auto self refresh current (25ιC)4
ALL
20
20
20
TBD
mA
IDD2NT: Precharge standby ODT current
IDD2P: Precharge power-down current
IDD2Q: Precharge quiet standby current
IDD3N: Active standby current
IPP3N: Active standby IPP current
IDD3P: Active power-down current
IDD4R: Burst read current
IDD4W: Burst write current
IDD5R: Distributed refresh current (1X
REF)
IDD6E3ELFREFRESHCURRENTnιC 2, 4
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
323
mA
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 148: IDD, IPP, and IDDQ Current Limits; Die Rev. A (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
Unit
IDD6A: Auto self refresh current (45ιC)4
ALL
25
25
25
TBD
mA
IDD6A: Auto self refresh current (75ιC)4
x4, x8
35
35
35
TBD
mA
x16
50
50
50
TBD
mA
ALL
5
5
5
x4
250
255
265
TBD
mA
x8
200
205
215
TBD
mA
x16
265
270
280
TBD
mA
x4
25
25
25
TBD
mA
x8
15
15
15
TBD
x16
20
20
20
TBD
mA
ALL
20
20
20
TBD
mA
IPP6x: Auto self refresh IPP current;
mA
nιC25
IDD7: Bank interleave read current
IPP7: Bank interleave read IPP current
IDD8: Maximum power-down current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately 0%.
6. When additive latency is enabled for IDD1, current changes by approximately +5%(x4/x8), +4%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately +0%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(x4/x8), +10%(x16).
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (x8), +12% (x16).
19. When 2X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
20. When 4X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
23. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
24. The IDD values must be derated (increased) when operated outside of the range 0ιC ζ TC ζ 85ιC:
When TC < 0ιC: IDD2P, and IDD3P must be derated by 6%; IDD4R and IDD4W must be derated by 4%; IDD6, IDD6ET, and
IDD7 must be derated by 11%.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
324
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
When TC > 85ιC: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, and IDD5R must be derated by 3%; IDD2P
must be derated by 40%. These values are verified by design and characterization, and may not be subject to
production test.
25. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 149: IDD, IPP, and IDDQ Current Limits; Die Rev. B (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
40
43
46
49
52
mA
x8
45
48
51
54
57
mA
x16
75
80
85
90
95
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
3
3
3
3
3
mA
x16
4
4
4
4
4
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
52
55
58
61
64
mA
x8
57
60
63
66
69
mA
x16
95
100
105
110
115
mA
IDD2N: Precharge standby
current
ALL
33
34
35
36
37
mA
IDD2NT: Precharge standby
ODT current
x4, x8
45
50
50
55
60
mA
x16
67
75
75
78
81
mA
IDD2P: Precharge
power-down current
ALL
25
25
25
25
25
mA
IDD2Q: Precharge quiet
standby current
ALL
30
30
30
30
30
mA
x4
35
38
41
44
47
mA
x8
40
43
46
49
52
mA
x16
44
47
50
53
56
mA
ALL
3
3
3
3
3
mA
x4
30
32
34
36
38
mA
x8
35
37
39
41
43
mA
x16
39
41
43
45
47
mA
x4
100
110
121
132
143
mA
x8
125
135
146
157
168
mA
x16
225
243
263
283
302
mA
x4
95
103
112
121
130
mA
x8
115
123
132
141
150
mA
x16
213
228
244
261
278
mA
IDD5R: Distributed refresh
current (1X REF)
x4, x8
50
53
56
59
62
mA
x16
56
59
61
64
67
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD0: One bank ACTIVATE-to-PRECHARGE current
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
IDD4R: Burst read current
IDD4W: Burst write current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
325
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 149: IDD, IPP, and IDDQ Current Limits; Die Rev. B (0ι ζ TC ζ 85ιC)
Symbol
IDD6N: Self refresh current;
nιC
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
ALL
30
30
30
30
30
mA
ALL
35
35
35
35
35
mA
ALL
20
20
20
20
20
mA
ALL
8.6
8.6
8.6
8.6
8.6
mA
ALL
20
20
20
20
20
mA
ALL
30
30
30
30
30
mA
ALL
5
5
5
5
5
mA
x4
175
185
200
215
230
mA
x8
170
175
180
185
190
mA
x16
239
249
259
269
279
mA
x4
16
17
18
19
20
mA
x8
15
15
15
15
15
mA
x16
20
20
20
20
20
mA
ALL
25
25
25
25
25
mA
1
IDD6E: Self refresh current;
nιC
Width
2, 4
IDD6R: Self refresh current;
n#3, 4
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current
(45ιC)4
IDD6A: Auto self refresh current
(75ιC)4
IPP6x: Auto self refresh IPP
CURRENTnιC25
IDD7: Bank interleave read
current
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately 0%.
6. When additive latency is enabled for IDD1, current changes by approximately +5%(x4/x8), +4%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately 0%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(x4/x8), +10%(x16).
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
326
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (x8), +12% (x16).
19. When 2X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
20. When 4X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
23. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
24. The IDD values must be derated (increased) when operated outside of the range 0ιC ζ TC ζ 85ιC:
When TC < 0ιC: IDD2P, and IDD3P must be derated by 6%; IDD4R and IDD4W must be derated by 4%; IDD6, IDD6ET, and
IDD7 must be derated by 11%.
When TC > 85ιC: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, and IDD5R must be derated by 3%; IDD2P
must be derated by 40%. These values are verified by design and characterization, and may not be subject to
production test.
25. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 150: IDD, IPP, and IDDQ Current Limits; Die Rev. D (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
40
43
46
49
52
mA
x8
45
48
51
54
57
mA
x16
75
80
85
90
95
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
3
3
3
3
3
mA
x16
4
4
4
4
4
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
52
55
58
61
64
mA
x8
57
60
63
66
69
mA
x16
95
100
105
110
115
mA
IDD2N: Precharge standby
current
ALL
33
34
35
36
37
mA
IDD2NT: Precharge standby
ODT current
x4, x8
45
50
50
55
60
mA
x16
67
75
75
78
81
mA
IDD2P: Precharge
power-down current
ALL
25
25
25
25
25
mA
IDD2Q: Precharge quiet
standby current
ALL
30
30
30
30
30
mA
x4
40
43
46
49
52
mA
x8
45
48
51
54
56
mA
x16
49
52
55
58
61
mA
ALL
3
3
3
3
3
mA
x4
30
32
34
36
38
mA
x8
35
37
39
41
43
mA
x16
39
41
43
45
47
mA
IDD0: One bank ACTIVATE-to-PRECHARGE current
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
327
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 150: IDD, IPP, and IDDQ Current Limits; Die Rev. D (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
100
110
121
132
143
mA
x8
125
135
146
157
168
mA
x16
225
243
263
283
302
mA
x4
105
113
122
130
140
mA
x8
125
132
142
150
160
mA
x16
225
240
255
270
290
mA
IDD5R: Distributed refresh
current (1X REF)
x4, x8
56
58
61
64
66
mA
x16
61
64
67
69
72
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD6N: Self refresh current;
ALL
31
31
31
31
31
mA
ALL
36
36
36
36
36
mA
ALL
21
21
21
21
21
mA
ALL
8.6
8.6
8.6
8.6
8.6
mA
ALL
21
21
21
21
21
mA
ALL
31
31
31
31
31
mA
ALL
5
5
5
5
5
mA
x4
175
185
200
215
230
mA
x8
170
175
180
185
190
mA
x16
239
249
259
269
279
mA
x4
16
17
18
19
20
mA
x8
15
15
15
15
15
mA
x16
20
20
20
20
20
mA
ALL
25
25
25
25
25
mA
IDD4R: Burst read current
IDD4W: Burst write current
nιC 1
IDD6E: Self refresh current;
nιC
2, 4
IDD6R: Self refresh current;
n#3, 4
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current (45ιC)4
IDD6A: Auto self refresh current
(75ιC)4
IPP6x: Auto self refresh IPP
CURRENTnιC25
IDD7: Bank interleave read
current
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately 0%.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
328
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
6. When additive latency is enabled for IDD1, current changes by approximately +5%(x4/x8), +4%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately 0%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(x4/x8), +10%(x16).
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (x8), +12% (x16).
19. When 2X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
20. When 4X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
23. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
24. The IDD values must be derated (increased) when operated outside of the range 0ιC ζ TC ζ 85ιC:
When TC < 0ιC: IDD2P, and IDD3P must be derated by +6%; IDD4R and IDD4W must be derated by +4%; IDD6, IDD6ET,
and IDD7 must be derated by +11%.
When TC > 85ιC: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, and IDD4W must be derated by +3%; IDD2P must
be derated by +40%; and IDD5R and IPP5R must be derated by +40%. These values are verified by design and characterization, and may not be subject to production test.
25. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 151: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
37
39
41
43
45
mA
x8
39
41
43
45
47
mA
x16
46
48
50
52
54
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
3
3
3
3
3
mA
x16
4
4
4
4
4
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
50
52
54
56
58
mA
x8
55
57
59
61
63
mA
x16
72
74
76
78
80
mA
IDD2N: Precharge standby
current
ALL
29
30
31
32
33
mA
IDD2NT: Precharge standby
ODT current
x4, x8
36
38
40
42
44
mA
x16
43
46
49
52
55
mA
IDD2P: Precharge
power-down current
ALL
22
22
22
22
22
mA
IDD2Q: Precharge quiet
standby current
ALL
26
26
26
26
26
mA
IDD0: One bank ACTIVATE-to-PRECHARGE current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
329
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 151: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
34
36
38
40
42
mA
x8
35
37
39
41
43
mA
x16
36
38
40
42
44
mA
ALL
3
3
3
3
3
mA
x4
28
29
30
31
32
mA
x8
29
30
31
32
33
mA
x16
30
31
32
33
34
mA
x4
110
120
131
142
153
mA
x8
135
145
156
167
178
mA
x16
235
253
273
293
312
mA
x4
96
105
114
123
132
mA
x8
114
123
132
141
150
mA
x16
182
199
216
233
250
mA
IDD5R: Distributed refresh
current (1X REF)
ALL
46
47
48
49
50
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD6N: Self refresh current;
ALL
34
34
34
34
34
mA
ALL
58
58
58
58
58
mA
ALL
21
21
21
21
21
mA
ALL
8.6
8.6
8.6
8.6
8.6
mA
ALL
21
21
21
21
21
mA
ALL
31
31
31
31
31
mA
ALL
58
58
58
58
58
mA
ALL
5
5
5
5
5
mA
x4
175
185
200
215
230
mA
x8
170
175
180
185
190
mA
x16
234
243
252
261
270
mA
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
IDD4R: Burst read current
IDD4W: Burst write current
nιC
1
IDD6E: Self refresh current;
nιC 2, 4
IDD6R: Self refresh current;
nιC
3, 4
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current
(45ιC)4
IDD6A: Auto self refresh current
(75ιC)4
IDD6A: Auto self refresh current (95ιC)4
IPP6x: Auto self refresh IPP
CURRENT
nιC26
IDD7: Bank interleave read
current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
330
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 151: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40ι ζ TC ζ 85ιC)
Symbol
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
14
14
14
14
14
mA
x8
13
13
13
13
13
mA
x16
18
18
18
18
18
mA
ALL
18
18
18
18
18
mA
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately +1%.
6. When additive latency is enabled for IDD1, current changes by approximately +8%(x4/x8), +7%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately +1%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +10%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +4%.
14. When read DBI is enabled for IDD4R, current changes by approximately -14%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately -5%.
18. When CA parity is enabled for IDD4W, current changes by approximately +12%.
19. When 2X REF is enabled for IDD5R, current changes by approximately +0%.
20. When 4X REF is enabled for IDD5R, current changes by approximately +0%.
21. When 2X REF is enabled for IPP5R, current changes by approximately +0%.
22. When 4X REF is enabled for IPP5R, current changes by approximately +0%.
23. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
24. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
25. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
26. The IDD values must be derated (increased) when operating between 85ιC < TC ζ 95ιC: IDD0, IDD1, IDD2N, IDD2NT,
IDD2Q, IDD3N, IDD3P, IDD4R, and IDD4W must be derated by +3%; IDD2P must be derated by +10%; and IDD5R and IPP5R
must be derated by +43%; All IPP currents except IPP6x and IPP5R must be derated by +0%. These values are verified
by design and characterization, and may not be subject to production test.
27. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 152: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40ι ζ TC ζ 105ιC)
Symbol
IDD0: One bank ACTIVATE-to-PRECHARGE current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x8
43
45
47
49
51
mA
x16
50
52
54
56
58
mA
331
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 152: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40ι ζ TC ζ 105ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x8
3
3
3
3
3
mA
x16
4
4
4
4
4
mA
x8
59
61
63
65
67
mA
x16
77
79
81
83
85
mA
IDD2N: Precharge standby
current
ALL
32
33
34
35
36
mA
IDD2NT: Precharge standby
ODT current
x8
40
42
44
46
48
mA
x16
47
49
53
56
59
mA
IDD2P: Precharge
power-down current
ALL
26
26
26
26
26
mA
IDD2Q: Precharge quiet
standby current
ALL
29
29
29
29
29
mA
x8
39
41
43
45
47
mA
x16
40
42
44
46
48
mA
ALL
3
3
3
3
3
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
x8
33
34
35
36
37
mA
x16
34
35
36
37
38
mA
IDD4R: Burst read current
x8
145
155
166
178
189
mA
x16
247
265
292
306
326
mA
x8
123
132
141
151
160
mA
x16
193
210
228
245
263
mA
IDD5R: Distributed refresh
current (1X REF)
ALL
96
97
98
99
100
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD6N: Self refresh current;
ALL
34
34
34
34
34
mA
ALL
95
95
95
95
95
mA
ALL
21
21
21
21
21
mA
ALL
8.6
8.6
8.6
8.6
8.6
mA
ALL
21
21
21
21
21
mA
ALL
31
31
31
31
31
mA
IDD4W: Burst write current
nιC 1
IDD6E: Self refresh current;
nιC
2, 4
IDD6R: Self refresh current;
nιC
3, 4
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current (45ιC)4
IDD6A: Auto self refresh current
(75ιC)4
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
332
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 152: IDD, IPP, and IDDQ Current Limits; Die Rev. E (-40ι ζ TC ζ 105ιC)
Symbol
IDD6A: Auto self refresh current
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
ALL
95
95
95
95
95
mA
ALL
6
6
6
6
6
mA
x8
175
180
185
190
195
mA
x16
239
248
257
266
275
mA
x8
13
13
13
13
13
mA
x16
18
18
18
18
18
mA
ALL
20
20
20
20
20
mA
(105ιC)4
IPP6x: Auto self refresh IPP
CURRENT
nιC26
IDD7: Bank interleave read
current
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately +1%.
6. When additive latency is enabled for IDD1, current changes by approximately +8%(x4/x8), +7%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately +1%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +10%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +4%.
14. When read DBI is enabled for IDD4R, current changes by approximately -14%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately -5%.
18. When CA parity is enabled for IDD4W, current changes by approximately +12%.
19. When 2X REF is enabled for IDD5R, current changes by approximately +0%.
20. When 4X REF is enabled for IDD5R, current changes by approximately +0%.
21. When 2X REF is enabled for IPP5R, current changes by approximately +0%.
22. When 4X REF is enabled for IPP5R, current changes by approximately +0%.
23. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
24. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
25. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
333
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
26. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 153: IDD, IPP, and IDDQ Current Limits; Die Rev. G (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
40
43
46
49
52
mA
x8
45
48
51
54
57
mA
x16
75
80
85
90
95
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
3
3
3
3
3
mA
x16
4
4
4
4
4
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
52
55
58
61
64
mA
x8
57
60
63
66
69
mA
x16
95
100
105
110
115
mA
IDD2N: Precharge standby
current
ALL
33
34
35
36
37
mA
IDD2NT: Precharge standby
ODT current
x4, x8
45
50
50
55
60
mA
x16
67
75
75
78
81
mA
IDD2P: Precharge
power-down current
ALL
25
25
25
25
25
mA
IDD2Q: Precharge quiet
standby current
ALL
30
30
30
30
30
mA
x4
40
43
46
49
52
mA
x8
45
48
51
54
56
mA
x16
49
52
55
58
61
mA
ALL
3
3
3
3
3
mA
x4
30
32
34
36
38
mA
x8
35
37
39
41
43
mA
x16
39
41
43
45
47
mA
x4
100
110
121
132
143
mA
x8
125
135
146
157
168
mA
x16
225
243
263
283
302
mA
x4
100
108
117
126
135
mA
x8
120
128
137
146
155
mA
x16
218
233
249
266
283
mA
IDD5R: Distributed refresh
current (1X REF)
x4, x8
56
58
61
64
66
mA
x16
61
64
67
69
72
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD6N: Self refresh current;
ALL
31
31
31
31
31
mA
IDD0: One bank ACTIVATE-to-PRECHARGE current
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
IDD4R: Burst read current
IDD4W: Burst write current
nιC
1
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
334
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 153: IDD, IPP, and IDDQ Current Limits; Die Rev. G (0ι ζ TC ζ 85ιC)
Symbol
IDD6E: Self refresh current;
nιC
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
ALL
36
36
36
36
36
mA
ALL
21
21
21
21
21
mA
ALL
8.6
8.6
8.6
8.6
8.6
mA
ALL
21
21
21
21
21
mA
ALL
31
31
31
31
31
mA
ALL
5
5
5
5
5
mA
x4
175
185
200
215
230
mA
x8
170
175
180
185
190
mA
x16
239
249
259
269
279
mA
x4
16
17
18
19
20
mA
x8
15
15
15
15
15
mA
x16
20
20
20
20
20
mA
ALL
25
25
25
25
25
mA
2, 4
IDD6R: Self refresh current;
n#3, 4
IDD6A: Auto self refresh current (25ιC)4
IDD6A: Auto self refresh current
(45ιC)4
IDD6A: Auto self refresh current
(75ιC)4
IPP6x: Auto self refresh IPP
CURRENTnιC25
IDD7: Bank interleave read
current
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately 0%.
6. When additive latency is enabled for IDD1, current changes by approximately +5%(x4/x8), +4%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately 0%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(x4/x8), +10%(x16).
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (x8), +12% (x16).
19. When 2X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
20. When 4X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
335
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
23. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
24. The IDD values must be derated (increased) when operated outside of the range 0ιC ζ TC ζ 85ιC:
When TC < 0ιC: IDD2P, and IDD3P must be derated by 6%; IDD4R and IDD4W must be derated by 4%; IDD6, IDD6ET, and
IDD7 must be derated by 11%.
When TC > 85ιC: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, and IDD5R must be derated by 3%; IDD2P
must be derated by 40%. These values are verified by design and characterization, and may not be subject to
production test.
25. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 154: IDD, IPP, and IDDQ Current Limits; Die Rev. H (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
55
55
57
60
na
mA
x8
55
55
60
61
na
mA
x16
75
75
80
83
na
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
3
3
3
3
na
mA
x16
5
5
5
5
na
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
68
68
71
75
na
mA
x8
68
68
73
75
na
mA
x16
100
100
107
111
na
mA
IDD2N: Precharge standby
current
ALL
39
39
42
43
na
mA
IDD2NT: Precharge standby
ODT current
x4, x8
43
43
48
50
na
mA
x16
47
47
50
54
na
mA
IDD2P: Precharge
power-down current
ALL
27
27
27
27
na
mA
IDD2Q: Precharge quiet
standby current
ALL
34
34
36
36
na
mA
x4
46
47
49
52
na
mA
x8
46
47
49
52
na
mA
x16
46
47
50
53
na
mA
ALL
4.5
4.5
4.5
4.5
na
mA
x4
34
34
34
37
na
mA
x8
36
36
39
40
na
mA
x16
37
37
40
42
na
mA
x4
135
135
157
173
na
mA
x8
147
147
174
188
na
mA
x16
259
259
312
341
na
mA
IDD0: One bank ACTIVATE-to-PRECHARGE current
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
IDD4R: Burst read current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
336
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 154: IDD, IPP, and IDDQ Current Limits; Die Rev. H (0ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
163
163
192
210
na
mA
x8
181
181
217
234
na
mA
x16
298
298
359
392
na
mA
x4
49
49
51
53
na
mA
x8
49
49
51
53
na
mA
x16
49
49
52
54
na
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5.5
5.5
5.5
5.5
na
mA
IDD6N: Self refresh current;
ALL
36
36
36
36
na
mA
x4, x8
48
48
49
49
na
mA
x16
50
50
50
51
na
mA
ALL
26
26
26
26
na
mA
ALL
15
15
15
15
na
mA
ALL
26
26
26
26
na
mA
ALL
36
36
36
36
na
mA
ALL
5
5
5
5
na
mA
x4
278
278
388
369
na
mA
x8
228
228
240
244
na
mA
x16
311
311
321
331
na
mA
x4
21
21
26
28
na
mA
x8
16
16
16
16
na
mA
x16
22
22
22
22
na
mA
ALL
21
21
21
21
na
mA
IDD4W: Burst write current
IDD5R: Distributed refresh
current (1X REF)
nιC 1
IDD6E: Self refresh current;
nιC
2, 4
IDD6R: Self refresh current;
n#3, 4
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current
(45ιC)4
IDD6A: Auto self refresh current (75ιC)4
IPP6x: Auto self refresh IPP
CURRENTnιC25
IDD7: Bank interleave read
current
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately 0%.
6. When additive latency is enabled for IDD1, current changes by approximately +5%(x4/x8), +4%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately 0%.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
337
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.
12. When additive latency is enabled for IDD3N, current changes by approximately +1%.
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(x4/x8), +4%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(x4/x8), +10%(x16).
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (x8), +12% (x16).
19. When 2X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
20. When 4X REF is enabled for IDD5RCURRENTCHANGESBYAPPROXIMATELYn
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
23. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
24. The IDD values must be derated (increased) when operated outside of the range 0ιC ζ TC ζ 85ιC:
When TC < 0ιC: IDD2P, and IDD3P must be derated by 6%; IDD4R and IDD4W must be derated by 4%; IDD6, IDD6ET, and
IDD7 must be derated by 11%.
When TC > 85ιC: IDD0, IDD1, IDD2N, IDD2NT, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, and IDD5R must be derated by 3%; IDD2P
must be derated by 40%. These values are verified by design and characterization, and may not be subject to
production test.
25. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 155: IDD, IPP, and IDDQ Current Limits; Die Rev. J (-40ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
35
37
39
41
43
mA
x8
37
39
41
43
44
mA
x16
44
46
48
50
52
mA
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
3
3
3
3
3
mA
x16
4
4
4
4
4
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
48
50
51
53
55
mA
x8
52
54
56
58
60
mA
x16
68
70
72
74
76
mA
IDD2N: Precharge standby
current
ALL
28
29
30
30
31
mA
IDD2NT: Precharge standby
ODT current
x4, x8
34
36
38
40
42
mA
x16
41
44
47
50
53
mA
IDD2P: Precharge
power-down current
ALL
22
22
22
22
22
mA
IDD2Q: Precharge quiet
standby current
ALL
26
26
26
26
26
mA
IDD0: One bank ACTIVATE-to-PRECHARGE current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
338
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 155: IDD, IPP, and IDDQ Current Limits; Die Rev. J (-40ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
34
36
38
40
42
mA
x8
35
37
39
41
43
mA
x16
36
38
40
42
44
mA
ALL
3
3
3
3
3
mA
x4
28
29
30
31
32
mA
x8
29
30
31
32
33
mA
x16
30
31
32
33
34
mA
x4
105
114
125
135
145
mA
x8
128
138
148
158
169
mA
x16
223
240
260
278
296
mA
x4
91
100
108
117
126
mA
x8
108
116
125
134
142
mA
x16
173
189
205
221
238
mA
IDD5R: Distributed refresh
current (1X REF)
ALL
44
45
45
46
47
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD6N: Self refresh current;
ALL
32
32
32
32
32
mA
ALL
55
55
55
55
55
mA
ALL
20
20
20
20
20
mA
ALL
8.2
8.2
8.2
8.2
8.2
mA
ALL
20
20
20
20
20
mA
ALL
30
30
30
30
30
mA
ALL
55
55
55
55
55
mA
ALL
5
5
5
5
5
mA
x4
166
176
190
205
219
mA
x8
161
166
171
175
180
mA
x16
222
231
240
248
257
mA
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
IDD4R: Burst read current
IDD4W: Burst write current
nιC
1
IDD6E: Self refresh current;
nιC 2, 4
IDD6R: Self refresh current;
nιC
3, 4
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current
(45ιC)4
IDD6A: Auto self refresh current
(75ιC)4
IDD6A: Auto self refresh current (95ιC)4
IPP6x: Auto self refresh IPP
CURRENT
nιC27
IDD7: Bank interleave read
current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
339
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 155: IDD, IPP, and IDDQ Current Limits; Die Rev. J (-40ι ζ TC ζ 85ιC)
Symbol
IPP7: Bank interleave read
IPP current
IDD8: Maximum
power-down current
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
11
11
11
11
11
mA
x8
10
10
10
10
13
mA
x16
15
15
15
15
15
mA
ALL
18
18
18
18
18
mA
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately +1%.
6. When additive latency is enabled for IDD1, current changes by approximately +8%(x4/x8), +7%(x16).
7. When additive latency is enabled for IDD2N, current changes by approximately +1%.
8. When DLL is disabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
9. When CAL is enabled for IDD2NCURRENTCHANGESBYAPPROXIMATELYn
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.
11. When CA parity is enabled for IDD2N, current changes by approximately +13%.
12. When additive latency is enabled for IDD3N, current changes by approximately +2%.
13. When additive latency is enabled for IDD4R, current changes by approximately +4(x4/x8), +3%(x16).
14. When read DBI is enabled for IDD4R, current changes by approximately -14%(x4/x8), -20%(x16).
15. When additive latency is enabled for IDD4W, current changes by approximately +4%(x4/x8), +3%(x16).
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.
17. When write CRC is enabled for IDD4W, current changes by approximately -5%.
18. When CA parity is enabled for IDD4W, current changes by approximately +12%.
19. When 2X REF is enabled for IDD5R, current changes by approximately +0%.
20. When 4X REF is enabled for IDD5R, current changes by approximately +0%.
21. When 2X REF is enabled for IPP5R, current changes by approximately +0%.
22. When 4X REF is enabled for IPP5R, current changes by approximately +0%.
23. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
24. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
25. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
26. The IDD values must be derated (increased) when operating between 85ιC < TC ζ 95ιC: IDD0, IDD1, IDD2N, IDD2NT,
IDD2Q, IDD3N, IDD3P, IDD4R, and IDD4W, must be derated by +3%; IDD2P must be derated by +13%; IDD5R and IPP5R must
be derated by +43%; All IPP currents except IPP6x and IPP5R must be derated by +0%. These values are verified by
design and characterization, and may not be subject to production test.
27. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
Table 156: IDD, IPP, and IDDQ Current Limits; Die Rev. R (-40ι ζ TC ζ 85ιC)
Symbol
IDD0: One bank ACTIVATE-to-PRECHARGE current
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
x4
38
40
42
44
46
mA
x8
40
42
44
46
48
mA
x16
51
53
55
57
59
mA
340
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 156: IDD, IPP, and IDDQ Current Limits; Die Rev. R (-40ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
IPP0: One bank ACTIVATE-to-PRECHARGE IPP
current
x4, x8
4
4
4
4
4
mA
x16
5
5
5
5
5
mA
IDD1: One bank ACTIVATE-to-READ-to- PRECHARGE current
x4
43
45
47
49
51
mA
x8
47
49
51
53
55
mA
x16
61
63
65
67
69
mA
IDD2N: Precharge standby
current
ALL
34
35
36
37
38
mA
IDD2NT: Precharge standby
ODT current
x4, x8
33
35
37
39
41
mA
x16
38
40
42
44
46
mA
IDD2P: Precharge
power-down current
ALL
30
30
30
30
30
mA
IDD2Q: Precharge quiet
standby current
ALL
34
34
34
34
34
mA
x4
34
36
38
40
42
mA
x8
35
37
39
41
43
mA
x16
36
38
40
42
44
mA
ALL
3
3
3
3
3
mA
x4
28
29
30
31
32
mA
x8
29
30
31
32
33
mA
x16
30
31
32
33
34
mA
x4
74
80
88
95
103
mA
x8
92
98
105
113
123
mA
x16
130
139
151
164
176
mA
x4
62
66
70
76
82
mA
x8
79
85
91
98
106
mA
x16
102
109
119
127
138
mA
IDD5R: Distributed refresh
current (1X REF)
ALL
44
45
45
46
47
mA
IPP5R: Distributed refresh
IPP current (1X REF)
ALL
5
5
5
5
5
mA
IDD6N: Self refresh current;
ALL
32
32
32
32
32
mA
ALL
52
52
52
52
52
mA
ALL
19
19
19
19
19
mA
IDD3N: Active standby current
IPP3N: Active standby IPP
current
IDD3P: Active power-down
current
IDD4R: Burst read current
IDD4W: Burst write current
nιC
1
IDD6E: Self refresh current;
nιC 2, 4
IDD6R: Self refresh current;
nιC
3, 4
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
341
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
Table 156: IDD, IPP, and IDDQ Current Limits; Die Rev. R (-40ι ζ TC ζ 85ιC)
Symbol
Width
DDR4-2133
DDR4-2400
DDR4-2666
DDR4-2933
DDR4-3200
Unit
ALL
8
8
8
8
8
mA
ALL
19
19
19
19
19
mA
ALL
29
29
29
29
29
mA
ALL
52
52
52
52
52
mA
ALL
5
5
5
5
5
mA
x4
154
169
186
200
215
mA
x8
135
140
145
150
155
mA
x16
165
179
196
210
225
mA
x4
13
13
13
13
13
mA
x8
8
8
8
8
8
mA
x16
13
13
13
13
13
mA
IDD8: Maximum
power-down current
ALL
24
24
24
24
24
mA
IDD9: MBIST-PPR current
ALL
170
170
170
170
170
mA
IPP9: MBIST-PPR IPP current
ALL
13
13
13
13
13
mA
IDD6A: Auto self refresh current
(25ιC)4
IDD6A: Auto self refresh current
(45ιC)4
IDD6A: Auto self refresh current (75ιC)4
IDD6A: Auto self refresh current
(95ιC)4
IPP6x: Auto self refresh IPP
CURRENT
nιC27
IDD7: Bank interleave read
current
IPP7: Bank interleave read
IPP current
Notes: 1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature range of operation
nιC).
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended temperature range of operation
nιC).
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature range of operation
nιC).
4. IDD6E, IDD6R, IDD6A values are verified by design and characterization, and may not be subject to production test.
5. When additive latency is enabled for IDD0, current changes by approximately +1%.
6. When additive latency is enabled for IDD1, current changes by approximately +5%.
7. When additive latency is enabled for IDD2N, current changes by approximately 2%.
8. When DLL is disabled for IDD2N, current changes by approximately +19%.
9. When CAL is enabled for IDD2N, current changes by approximately -20%.
10. When gear-down is enabled for IDD2N, current changes by approximately +2%.
11. When CA parity is enabled for IDD2N, current changes by approximately +10%.
12. When additive latency is enabled for IDD3N, current changes by approximately -2%.
13. When additive latency is enabled for IDD4R, current changes by approximately +4%.
14. When read DBI is enabled for IDD4R, current changes by approximately -14%
15. When additive latency is enabled for IDD4W, current changes by approximately +6%.
16. When write DBI is enabled for IDD4W, current changes by approximately +1%.
17. When write CRC is enabled for IDD4W, current changes by approximately -5%.
18. When CA parity is enabled for IDD4W, current changes by approximately +14%.
19. When 2X REF is enabled for IDD5R, current changes by approximately 0%.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
342
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
#URRENT3PECIFICATIONSn,IMITS
20. When 4X REF is enabled for IDD5R, current changes by approximately 0%.
21. When 2X REF is enabled for IPP5R, current changes by approximately 0%.
22. When 4X REF is enabled for IPP5R, current changes by approximately 0%.
23. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.
24. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x and IDD8 conditions; that is, testing IPP3N should satisfy the
IPPs for the noted IDD tests.
25. DDR4-1600 and DDR4-1866 use the same IDD limits as DDR4-2133.
26. The IDD values must be derated (increased) when operating between 85ιC < TC ζ 95ιC: IDD0, IDD1, IDD2N ,IDD2P
,IDD2NT ,IDD2Q, IDD3N, IDD3P, IDD4R, and IDD4W, must be derated by +10%. IDD5R and IPP5R must be derated by +43%;
IPP0 must be derated by +13%. IPP3N must be derated by +22%. IPP7 must be derated by +3%. These values are verified by design and characterization, and may not be subject to production test.
27. IPP6x is applicable to IDD6N, IDD6E, IDD6R and IDD6A conditions.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
343
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
8Gb: x4, x8, x16 DDR4 SDRAM
Speed Bin Tables
Speed Bin Tables
DDR4 DRAM timing is primarily covered by two types of tables: the Speed Bin tables in this section and
the tables found in the Electrical Characteristics and AC Timing Parameters section. The timing
parameter tables define the applicable timing specifications based on the speed rating. The Speed Bin
tables on the following pages list the tAA, tRCD, tRP, tRAS, and tRC limits of a given speed mark and are
applicable to the CL settings in the lower half of the table provided they are applied in the correct clock
range, which is noted.
Backward Compatibility
Although the speed bin tables list the slower data rates, tAA, CL, and CWL, it is difficult to determine
whether a faster speed bin supports all of the tAA, CL, and CWL combinations across all the data rates
of a slower speed bin. To assist in this process, please refer to the Backward Compatibility table.
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
344
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
Note 1 applies to the entire table.
Speed Bin Supported
Component
Speed Bin
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Table 157: Backward Compatibility
-125
-125
yes
-125E
yes2
-107
yes
-107E
yes2
-093
yes
-093E
yes2
-083D
yes
yes
yes
yes
-083
yes
yes
yes
yes
345
-083E
yes
2
-125E
-107
-107E
-093
-093E -083D
-083
-083E -075D
-075
-075E -068D
-068
-068E
-062
-062E -062Y
yes
yes
yes
yes2
yes
yes
yes
yes
yes2
yes
2
yes
yes
yes
yes2
yes
2
yes
yes
yes
2
yes
yes2
yes
yes
yes
yes
yes
-075
yes
yes
yes
yes
yes
yes
yes
-075E
yes
yes
yes
yes
yes
-068D
yes
yes
yes
yes
-068
yes
yes
yes
yes
yes
yes
yes
yes
yes
-068E
yes
yes
yes
yes
yes
yes
yes
yes
yes
-062
yes
yes
yes
yes
-062E
yes
yes
yes
yes
yes
-062Y
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
Notes: 1. The backward compatibility table is not meant to guarantee that any new device will be a drop in replacement for an existing part number.
Customers should review the operating conditions for any device to determine its suitability for use in their design.
2. This condition exceeds the JEDEC requirement in order to allow additional flexibility for components. However, JEDEC SPD compliance may
force modules to only support the JEDEC-defined value. Refer to the SPD documentation for further clarification.
8Gb: x4, x8, x16 DDR4 SDRAM
Speed Bin Tables
Micron Technology, Inc. reserves the right to change products or specifications without notice.
¥2015 Micron Technology, Inc. All rights reserved.
-075D
CCMTD-1725822587-9875
8gb_ddr4_dram.pdf - Rev. T 09/2021 EN
Table 158: DDR4-1600 Speed Bins and Operating Conditions
Notes 1n3 apply to the entire table
DDR4-1600 Speed Bin
-125E
CL-nRCD-nRP
11-11-11
Parameter
Symbol
AA_DBI
t
AA
(MIN) +
2nCK
t
AA
(MAX) +
2nCK
t
AA
(MIN) +
2nCK
t
AA
(MAX) +
2nCK
ns
RCD
13.75
(13.50)4
n
15.00
n
ns
t
RP
13.75
(13.50)4
n
15.00
n
ns
RAS
35
9 έ tREFI
35
9 έ tREFI
ns
RAS +
t
RP
n
RAS +
t
RP
n
ns
t
ACTIVATE-to-ACTIVATE or REFRESH command period
t
346
1600
READ
CL: DBI
-
13.50
9
11
-
15.00
10
12
-125E
13.75
11
13
-125
15.00
12
14
WRITE
CWL
9
Symbol
Min
Max
1.500
1.9006
t
1.5006
1.9006
t
1.250