16 MEG x 4 EDO DRAM
DRAM
FEATURES
• Single +3.3V ±0.3V power supply • Industry-standard x4 pinout, timing, functions, and packages • 12 row, 12 column addresses (H9) or 13 row, 11 column addresses (G3) • High-performance CMOS silicon-gate process • All inputs, outputs and clocks are LVTTL-compatible • Extended Data-Out (EDO) PAGE MODE access • Optional self refresh (S) for low-power data retention • 4,096-cycle CAS#-BEFORE-RAS# (CBR) REFRESH distributed across 64ms
MT4LC16M4G3, MT4LC16M4H9
For the latest data sheet, please refer to the Micron Web site: www.micronsemi.com/mti/msp/html/datasheet.html
PIN ASSIGNMENT (Top View) 32-Pin SOJ
VCC DQ0 DQ1 NC NC NC NC WE# RAS# A0 A1 A2 A3 A4 A5 VCC
32-Pin TSOP
VCC DQ0 DQ1 NC NC NC NC WE# RAS# A0 A1 A2 A3 A4 A5 VCC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 Vss DQ3 DQ2 NC NC NC CAS# OE# NC/A12** A11 A10 A9 A8 A7 A6 Vss
OPTIONS
• Refresh Addressing 4,096 (4K) rows 8,192 (8K) rows • Plastic Packages 32-pin SOJ (400 mil) 32-pin TSOP (400 mil) • Timing 50ns access 60ns access • Refresh Rates Standard Refresh Self Refresh (128ms period)
MARKING
H9 G3 DJ TG -5 -6 None S*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
Vss DQ3 DQ2 NC NC NC CAS# OE# NC/A12** A11 A10 A9 A8 A7 A6 Vss
**NC on H9 version, A12 on G3 version
16 MEG x 4 EDO DRAM PART NUMBERS
PART NUMBER MT4LC16M4H9DJ-x MT4LC16M4H9DJ-x S MT4LC16M4H9TG-x MT4LC16M4H9TG-x S MT4LC16M4G3DJ-x MT4LC16M4G3DJ-x S MT4LC16M4G3TG-x MT4LC16M4G3TG-x S x = speed REFRESH ADDRESSING 4K 4K 4K 4K 8K 8K 8K 8K PACKAGE SOJ SOJ TSOP TSOP SOJ SOJ TSOP TSOP REFRESH Standard Self Standard Self Standard Self Standard Self
NOTE: 1. The 16 Meg x 4 EDO DRAM base number differentiates the offerings in one place— MT4LC16M4H9. The fifth field distinguishes the address offerings: H9 designates 4K addresses and G3 designates 8K addresses. 2. The “#” symbol indicates signal is active LOW. *Contact factory for availability
Part Number Example:
GENERAL DESCRIPTION
The 16 Meg x 4 DRAM is a high-speed CMOS, dynamic random-access memory device containing 67,108,864 bits and designed to operate from 3V to 3.6V. The MT4LC16M4H9 and MT4LC16M4G3 are functionally organized as 16,777,216 locations containing 4 bits each. The 16,777,216 memory locations are arranged in 4,096 rows by 4,096 columns on the H9 version and 8,192 rows by 2,048 columns on the G3 version. During READ or WRITE cycles, each location is
MT4LC16M4H9DJ-6
KEY TIMING PARAMETERS
SPEED -5 -6
tRC tRAC tPC tAA tCAC tCAS
84ns 104ns
50ns 60ns
20ns 25ns
25ns 30ns
13ns 15ns
8ns 10ns
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
1
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
FUNCTIONAL BLOCK DIAGRAM MT4LC16M4G3 (13 row addresses)
WE# CAS#
DATA-IN BUFFER
4
CONTROL LOGIC
NO. 2 CLOCK GENERATOR
DATA-OUT BUFFER
4 4
DQ0 DQ1 DQ2 DQ3
OE# COLUMNADDRESS BUFFER(11) REFRESH CONTROLLER
ROW SELECT
13
ROWADDRESS BUFFERS (13)
COMPLEMENT SELECT
ROW DECODER
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
11
11
COLUMN DECODER
2,048
SENSE AMPLIFIERS I/O GATING
4
REFRESH COUNTER 13
2,048
13
8,192
8,192
8,192 x 2,048 x 4 MEMORY ARRAY
RAS#
NO. 1 CLOCK GENERATOR
VDD VSS
FUNCTIONAL BLOCK DIAGRAM MT4LC16M4H9 (12 row addresses)
WE# CAS#
DATA-IN BUFFER
4
CONTROL LOGIC
NO. 2 CLOCK GENERATOR
DATA-OUT BUFFER
4 4
DQ0 DQ1 DQ2 DQ3
OE# COLUMNADDRESS BUFFER(12) REFRESH CONTROLLER
ROW SELECT
12
ROWADDRESS BUFFERS (12)
COMPLEMENT SELECT
ROW DECODER
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
12
12
COLUMN DECODER
4,096
SENSE AMPLIFIERS I/O GATING
4
REFRESH COUNTER 12
4,096
12
4,096
4,096
4,096 x 4,096 x 4 MEMORY ARRAY
RAS#
NO. 1 CLOCK GENERATOR
VDD VSS
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
2
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
GENERAL DESCRIPTION (Continued)
uniquely addressed via the address bits. First, the row address is latched by the RAS# signal, then the column address is latched by CAS#. The device provides EDOPAGE-MODE operation, allowing for fast successive data operations (READ, WRITE, or READ-MODIFYWRITE) within a given row. The 16 Meg x 4 DRAM must be refreshed periodically in order to retain stored data. transitions HIGH and then bring OE# HIGH for a minimum of tOEP anytime during the CAS# HIGH period. This will disable the DQs, and they will remain disabled (regardless of the state of OE# after that point) until CAS# falls again. (Please refer to Figure 1.) During other cycles, the outputs are disabled at tOFF time after RAS# and CAS# are HIGH or at tWHZ after WE# transitions LOW. The tOFF time is referenced from the rising edge of RAS# or CAS#, whichever occurs last. WE# can also perform the function of disabling the output drivers under certain conditions, as shown in Figure 2. EDO-PAGE-MODE operations are always initiated with a row address strobed in by the RAS# signal, followed by a column address strobed in by CAS#, just like for single location accesses. However, subsequent column locations within the row may then be accessed at the page mode cycle time. This is accomplished by cycling CAS# while holding RAS# LOW and entering new column addresses with each CAS# cycle. Returning RAS# HIGH terminates the EDO-PAGE-MODE operation.
DRAM ACCESS
Each location in the DRAM is uniquely addressable, as mentioned in the General Description. The data for each location is accessed via the four I/O pins (DQ0DQ3). A logic HIGH on WE# dictates read mode, while a logic LOW on WE# dictates write mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE# or CAS#, whichever occurs last. An EARLY WRITE occurs when WE# is taken LOW prior to CAS# falling. A LATE WRITE or READ-MODIFY-WRITE occurs when WE# falls after CAS# is taken LOW. During EARLY WRITE cycles, the data outputs (Q) will remain High-Z, regardless of the state of OE#. During LATE WRITE or READ-MODIFY-WRITE cycles, OE# must be taken HIGH to disable the data outputs prior to applying input data. If a LATE WRITE or READ-MODIFYWRITE is attempted while keeping OE# LOW, no WRITE will occur, and the data outputs will drive read data from the accessed location.
DRAM REFRESH
The supply voltage must be maintained at the specified levels, and the refresh requirements must be met in order to retain stored data in the DRAM. The refresh requirements are met by refreshing all 8,192 rows (G3) or all 4,096 rows (H9) in the DRAM array at least once every 64ms. The recommended procedure is to execute 4,096 CBR REFRESH cycles, either uniformly spaced or grouped in bursts, every 64ms. The MT4LC16M4G3 internally refreshes two rows for every CBR cycle, whereas the MT4LC16M4H9 refreshes one row for every CBR cycle. So with either device, executing 4,096 CBR cycles covers all rows. The CBR refresh will invoke the internal refresh counter for automatic RAS# addressing. Alternatively, RAS#-ONLY REFRESH capability is inherently provided. However, with this method, some compatibility issues may become apparent. For example, both G3 and H9 versions require 4,096 CBR REFRESH cycles, yet each requires a different number of RAS#-ONLY REFRESH cycles (G3 = 8,192 and H9 = 4,096). JEDEC strongly recommends the use of CBR REFRESH for this device. An optional self refresh mode is also available on the “S” version. The self refresh feature is initiated by performing a CBR REFRESH cycle and holding RAS# LOW for the specified tRASS. The “S” option allows for an extended refresh period of 128ms, or 31.25µs per row for a 4K refresh and 15.625µs per row for an 8K refresh, when using a distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or battery backup mode.
EDO PAGE MODE
DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of CAS#. If CAS# went HIGH and OE# was LOW (active), the output buffers would be disabled. The 16 Meg x 4 DRAM offers an accelerated page mode cycle by eliminating output disable from CAS# HIGH. This option is called EDO and it allows CAS# precharge time (tCP) to occur without the output data going invalid (see READ and EDO-PAGE-MODE READ waveforms). EDO operates like any DRAM READ or FAST-PAGEMODE READ, except data is held valid after CAS# goes HIGH, as long as RAS# and OE# are held LOW and WE# is held HIGH. OE# can be brought LOW or HIGH while CAS# and RAS# are LOW, and the DQs will transition between valid data and High-Z. Using OE#, there are two methods to disable the outputs and keep them disabled during the CAS# HIGH time. The first method is to have OE# HIGH when CAS# transitions HIGH and keep OE# HIGH for tOEHC thereafter. This will disable the DQs, and they will remain disabled (regardless of the state of OE# after that point) until CAS# falls again. The second method is to have OE# LOW when CAS#
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
3
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
DRAM REFRESH (Continued)
The self refresh mode is terminated by driving RAS# HIGH for a minimum time of tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS# LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR refresh sequence, a burst refresh is not required upon exiting self refresh. However, if the DRAM controller uses RAS#-ONLY or burst CBR refresh, all rows
RAS# V IH V IL
must be refreshed with a refresh rate of tRC minimum prior to resuming normal operation.
STANDBY
Returning RAS# and CAS# HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is preconditioned for the next cycle during the RAS# HIGH time.
CAS#
V IH V IL
ADDR
V IH V IL
ROW
COLUMN (A)
COLUMN (B)
COLUMN (C)
COLUMN (D)
DQ V IOH V IOL
OPEN
VALID DATA (A) tOD tOES
VALID DATA (A)
VALID DATA (B) tOD tOEHC
VALID DATA (C) tOD
VALID DATA (D)
OE#
V IH V IL
tOE tOEP
The DQs go back to Low-Z if tOES is met.
The DQs remain High-Z until the next CAS# cycle if tOEHC is met.
The DQs remain High-Z until the next CAS# cycle if tOEP is met.
Figure 1 OE# Control of DQs
RAS# V IH V IL
CAS#
V IH V IL
ADDR
V IH V IL
ROW
COLUMN (A)
COLUMN (B)
COLUMN (C)
COLUMN (D)
DQ V IOH V IOL
OPEN
VALID DATA (A) t WHZ
VALID DATA (B) tWHZ
INPUT DATA (C)
WE#
V IH V IL V IH V IL
tWPZ
OE#
The DQs go to High-Z if WE# falls and, if tWPZ is met, will remain High-Z until CAS# goes LOW with WE# HIGH (i.e., until a READ cycle is initiated).
WE# may be used to disable the DQs to prepare for input data in an EARLY WRITE cycle. The DQs will remain High-Z until CAS# goes LOW with WE# HIGH (i.e., until a READ cycle is initiated). DON’T CARE UNDEFINED
Figure 2 WE# Control of DQs
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
4
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
ABSOLUTE MAXIMUM RATINGS*
Voltage on VCC Relative to VSS ................ -1V to +4.6V Voltage on NC, Inputs or I/O Pins Relative to VSS ....................................... -1V to +4.6V Operating Temperature, TA (ambient) ... 0°C to +70°C Storage Temperature (plastic) ............ -55°C to +150°C Power Dissipation ................................................... 1W *Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS
(Note: 1) (VCC = +3.3V ±0.3V) PARAMETER/CONDITION SUPPLY VOLTAGE INPUT HIGH VOLTAGE: Valid Logic 1; All inputs, I/Os and any NC INPUT LOW VOLTAGE: Valid Logic 0; All inputs, I/Os and any NC INPUT LEAKAGE CURRENT: Any input at VIN (0V ≤ VIN ≤ VCC + 0.3V); All other pins not under test = 0V OUTPUT HIGH VOLTAGE: IOUT = -2mA OUTPUT LOW VOLTAGE: IOUT = 2mA OUTPUT LEAKAGE CURRENT: Any output at VOUT (0V ≤ VOUT ≤ VCC + 0.3V); DQ is disabled and in High-Z state SYMBOL VCC VIH VIL II MIN 3 2 -0.3 -2 MAX 3.6 VCC + 0.3 0.8 2 UNITS NOTES V V V µA 26 26 27
VOH VOL IOZ
2.4 – -5
– 0.4 5
V V µA
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
5
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
ICC OPERATING CONDITIONS AND MAXIMUM LIMITS
(Notes: 1, 2, 3, 5, 6) (VCC = +3.3V ±0.3V) PARAMETER/CONDITION STANDBY CURRENT: TTL (RAS# = CAS# = VIH) STANDBY CURRENT: CMOS (RAS# = CAS# VCC - 0.2V; DQs may be left open; Other inputs: VIN VCC - 0.2V or VIN ≤ 0.2V) OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS#, CAS#, address cycling: tRC = tRC [MIN]) OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS# = VIL, CAS#, address cycling: tPC = tPC [MIN]) REFRESH CURRENT: RAS#-ONLY Average power supply current (RAS# cycling, CAS# = VIH: tRC = tRC [MIN]) REFRESH CURRENT: CBR Average power supply current (RAS#, CAS#, address cycling: tRC = tRC [MIN]) REFRESH CURRENT: Extended (“S” version only) Average power supply current: CAS# = 0.2V or CBR cycling; RAS# = tRAS (MIN); WE# = VCC - 0.2V; A0-A11, OE# and DIN = VCC - 0.2V or 0.2V (DIN may be left open) REFRESH CURRENT: Self (“S” version only) Average power supply current: CBR with RAS# tRASS (MIN) and CAS# held LOW; WE# = VCC - 0.2V; A0-A11, OE# and DIN = VCC - 0.2V or 0.2V (DIN may be left open) SYMBOL ICC1 4K 8K SPEED REFRESH REFRESH UNITS NOTES ALL 1 1 mA
ICC2 ICC3
ALL -5 -6 -5 -6 -5 -6 -5 -6
500 170 160 150 120 170 160 160 150
500 130 120 150 120 130 120 160 150
µA mA 25
ICC4
mA
25
ICC5
mA
22
ICC6
mA
4, 7
ICC7
ALL
400
400
µA
4, 7
ICC8
ALL
400
400
µA
4, 7
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
6
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
CAPACITANCE
(Note: 2) PARAMETER Input Capacitance: Address pins Input Capacitance: RAS#, CAS#, WE#, OE# Input/Output Capacitance: DQ SYMBOL CI 1 CI 2 CIO MAX 5 7 7 UNITS pF pF pF
AC ELECTRICAL CHARACTERISTICS
(Notes: 5, 6, 7, 8, 9, 10, 11, 12) (VCC = +3.3V ±0.3V)
AC CHARACTERISTICS PARAMETER Access time from column address Column-address setup to CAS# precharge Column-address hold time (referenced to RAS#) Column-address setup time Row-address setup time Column address to WE# delay time Access time from CAS# Column-address hold time CAS# pulse width CAS# LOW to “Don’t Care” during Self Refresh CAS# hold time (CBR Refresh) CAS# to output in Low-Z Data output hold after CAS# LOW CAS# precharge time Access time from CAS# precharge CAS# to RAS# precharge time CAS# hold time CAS# setup time (CBR Refresh) CAS# to WE# delay time WRITE command to CAS# lead time Data-in hold time Data-in setup time Output disable Output enable time OE# hold time from WE# during READ-MODIFY-WRITE cycle OE# HIGH hold time from CAS# HIGH OE# HIGH pulse width OE# LOW to CAS# HIGH setup time Output buffer turn-off delay -5 SYMBOL tAA tACH tAR tASC tASR tAWD tCAC tCAH tCAS tCHD tCHR tCLZ tCOH tCP tCPA tCRP tCSH tCSR tCWD tCWL tDH tDS tOD tOE tOEH
tOEHC tOEP tOES tOFF
-6 MAX 25 MIN 15 45 0 0 49 13 15 10 10 15 10 0 3 10 5 45 5 35 10 10 0 0 10 10 5 5 0 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns NOTES
MIN 12 38 0 0 42 8 8 15 8 0 3 8 5 38 5 28 8 8 0 0 8 5 5 4 0
18
10,000
4
13
28
35
4 18 19 19 23, 24 20 24
12 12
15 15
12
15
17, 23
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
7
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
AC ELECTRICAL CHARACTERISTICS
(Notes: 5, 6, 7, 8, 9, 10, 11, 12) (VCC = +3.3V ±0.3V)
AC CHARACTERISTICS PARAMETER OE# setup prior to RAS# during HIDDEN REFRESH cycle EDO-PAGE-MODE READ or WRITE cycle time EDO-PAGE-MODE READ-WRITE cycle time Access time from RAS# RAS# to column-address delay time Row-address hold time RAS# pulse width RAS# pulse width (EDO PAGE MODE) RAS# pulse width during Self Refresh Random READ or WRITE cycle time RAS# to CAS# delay time READ command hold time (referenced to CAS#) READ command setup time Refresh period Refresh period (4,096 cycles) “S” version RAS# precharge time RAS# to CAS# precharge time RAS# precharge time exiting Self Refresh READ command hold time (referenced to RAS#) RAS# hold time READ-WRITE cycle time RAS# to WE# delay time WRITE command to RAS# lead time Transition time (rise or fall) WRITE command hold time WRITE command hold time (referenced to RAS#) WE# command setup time WE# to outputs in High-Z WRITE command pulse width WE# pulse width to disable outputs WE# hold time (CBR Refresh) WE# setup time (CBR Refresh) -5 SYMBOL tORD
tPC tPRWC tRAC tRAD tRAH tRAS tRASP tRASS tRC tRCD tRCH tRCS tREF tREF tRP tRPC tRPS tRRH tRSH tRWC tRWD tRWL tT tWCH tWCR tWCS tWHZ tWP tWPZ tWRH tWRP
-6 MAX MIN 0 25 56 50 60 12 10 60 60 100 104 14 0 0 MAX UNITS ns ns ns ns ns ns ns ns µs ns ns ns ns ms ms ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns NOTES
MIN 0 20 47 9 9 50 50 100 84 11 0 0
23 15
10,000 125,000
10,000 125,000
14 16 22 4
64 128 30 5 90 0 13 116 67 13 2 8 38 0 0 5 10 8 8 40 5 105 0 15 140 79 15 2 10 45 0 0 5 10 10 10
64 128
16
18
50
50
18
12
15
4, 23 4, 23
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
8
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
NOTES
1. All voltages referenced to VSS. 2. This parameter is sampled. VCC = +3.3V; f = 1 MHz; TA = 25°C. 3. ICC is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open. 4. Enables on-chip refresh and address counters. 5. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is ensured. 6. An initial pause of 100µs is required after powerup, followed by eight RAS# refresh cycles (RAS#ONLY or CBR with WE# HIGH), before proper device operation is ensured. The eight RAS# cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded. 7. AC characteristics assume tT = 2.5ns. 8. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH). 9. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner. 10. If CAS# and RAS# = VIH, data output is High-Z. 11. If CAS# = VIL, data output may contain data from the last valid READ cycle. 12. Measured with a load equivalent to two TTL gates and 100pF; and VOL = 0.8V and VOH = 2V. 13. If CAS# is LOW at the falling edge of RAS#, output data will be maintained from the previous cycle. To initiate a new cycle and clear the dataout buffer, CAS# must be pulsed HIGH for tCP. 14. The tRAD (MAX) limit is no longer specified. tRAD (MAX) was specified as a reference point only. If tRAD was greater than the specified tRAD (MAX) limit, then access time was controlled exclusively by tAA (tRAC and tCAC no longer applied). With or without the tRAD (MAX) limit, tAA, tRAC, and tCAC must always be met. 15. The tRCD (MAX) limit is no longer specified. tRCD (MAX) was specified as a reference point only. If tRCD was greater than the specified tRCD (MAX) limit, then access time was controlled exclusively by tCAC (tRAC [MIN] no longer applied). With or without the tRCD limit, tAA and tCAC must always be met. 16. Either tRCH or tRRH must be satisfied for a READ cycle. 17. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL. 18. tWCS, tRWD, tAWD, and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. If tWCS > tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. tRWD, tAWD, and tCWD define READMODIFY-WRITE cycles. Meeting these limits allows for reading and disabling output data and then applying input data. OE# held HIGH and WE# taken LOW after CAS# goes LOW results in a LATE WRITE (OE#-controlled) cycle. tWCS, tRWD, tCWD, and tAWD are not applicable in a LATE WRITE cycle. 19. These parameters are referenced to CAS# leading edge in EARLY WRITE cycles and WE# leading edge in LATE WRITE or READ-MODIFY-WRITE cycles. 20. If OE# is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible. 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE# is LOW and OE# is HIGH. 22. RAS#-ONLY REFRESH requires that all rows be refreshed at least once every 64ms (4,096 rows for the H9 version and 8,192 rows for the G3 version). CBR REFRESH requires that at least 4,096 cycles be completed every 64ms. 23. The DQs open during READ cycles once tOD or tOFF occur. If CAS# stays LOW while OE# is brought HIGH, the DQs will open. If OE# is brought back LOW (CAS# still LOW), the DQs will provide the previously read data. 24. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE# HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE# is taken back LOW while CAS# remains LOW, the DQs will remain open. 25. Column address changed once each cycle. 26. VIH overshoot: VIH (MAX) = VCC + 2V for a pulse width ≤ 10ns, and the pulse width cannot be greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for a pulse width ≤ 10ns, and the pulse width cannot be greater than one third of the cycle rate. 27. NC pins are assumed to be left floating and are not tested for leakage.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
9
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
READ CYCLE
tRC tRAS V IH V IL tCSH tRSH tCRP CAS# V IH V IL tAR tASR tRAD tRAH tASC tACH V IH V IL tCAH tRCD tCAS tRRH tRP
RAS#
ADDR
ROW tRCS
COLUMN tRCH
ROW
WE#
V IH V IL tAA tRAC tCAC tCLZ tOFF
NOTE 1
DQ
V OH V OL
OPEN tOE
VALID DATA tOD
OPEN
OE#
V IH V IL
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL
tAA tACH tAR tASC tASR tCAC tCAH tCAS tCLZ tCRP tCSH tOD tOE
-6 MAX 25 MIN 15 45 0 0 13 15 10 10 0 5 12 12 45 0 15 15 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL
tOFF tRAC tRAD tRAH tRAS tRC tRCD tRCH tRCS tRP tRRH tRSH
-5 MIN 0 9 9 50 84 11 0 0 30 0 13 10,000 MAX 12 50 MIN 0 12 10 60 104 14 0 0 40 0 15
-6 MAX 15 60 UNITS ns ns ns ns ns ns ns ns ns ns ns ns
MIN 12 38 0 0 8 8 0 5 38 0
10,000
10,000
NOTE: 1. tOFF is referenced from rising edge of RAS# or CAS#, whichever occurs last.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
10
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
EARLY WRITE CYCLE
tRC tRAS V IH V IL tCSH tRSH tCRP CAS# V IH V IL tAR tASR ADDR V IH V IL tRAD tRAH tASC tCAH tRCD tCAS tRP
RAS#
tACH ROW
ROW
COLUMN tCWL tRWL tWCS tWCR tWCH tWP
WE#
V IH V IL tDS tDH
V DQ V IOH IOL V IH V IL
VALID DATA
OE#
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tACH
tAR tASC tASR tCAH tCAS tCRP tCSH tCWL tDH tDS tRAD
-6 MAX MIN 15 45 0 0 10,000 10 10 5 45 15 10 0 12 10,000 MAX UNITS ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL tRAH
tRAS tRC tRCD tRP tRSH tRWL tWCH tWCR tWCS tWP
-5 MIN 9 50 84 11 30 13 13 8 38 0 5 MAX 10,000 MIN 10 60 104 14 40 15 15 10 45 0 5
-6 MAX 10,000 UNITS ns ns ns ns ns ns ns ns ns ns ns
MIN 12 38 0 0 8 8 5 38 8 8 0 9
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
11
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)
tRWC tRAS V IH V IL tCSH tRSH tCAS tRP
RAS#
tCRP V IH V IL tAR tRAD tRAH
tRCD
CAS#
tASR ADDR V IH V IL
tASC
tCAH
tACH ROW
ROW
COLUMN tRWD tCWD tAWD tCWL tRWL tWP
tRCS
WE#
V IH V IL tAA tRAC tCAC tCLZ tDS VALID D OUT tOE V IH V IL tOD tDH
V DQ V IOH IOL
OPEN
VALID D IN tOEH
OPEN
OE#
DON’ T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL
tAA tACH tAR tASC tASR tAWD tCAC tCAH tCAS tCLZ tCRP tCSH tCWD tCWL tDH tDS
-6 MAX 25 MIN 15 45 0 0 49 13 15 10 10 0 5 45 35 10 10 0 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL
tOD tOE tOEH tRAC tRAD tRAH tRAS tRCD tRCS tRP tRSH tRWC tRWD tRWL tWP
-5 MIN 0 8 50 9 9 50 11 0 30 13 116 67 13 5 10,000 12 10 60 14 0 40 15 140 79 15 5 MAX 12 12 10 MIN 0
-6 MAX 15 15 60 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
MIN 12 38 0 0 42 8 8 0 5 38 28 8 8 0
10,000
10,000
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
12
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
EDO-PAGE-MODE READ CYCLE
tRASP V IH V IL tCSH tCRP CAS# V IH V IL tAR tASR ADDR V IH V IL tRAD tRAH tACH tASC tCAH tACH tASC tACH tCAH tASC tCAH tRCD tCAS tPC tCP tCAS tCP tRSH tCAS tCP tRP
RAS#
ROW tRCS
COLUMN
COLUMN
COLUMN tRCH tRRH
ROW
WE#
V IH V IL tAA tRAC tCAC tCLZ tAA tCPA tCAC tCOH VALID DATA tOE VALID DATA tOD tCLZ tOEHC
tAA tCPA tCAC
tOFF
DQ
V OH V OL
OPEN
VALID DATA tOE tOES tOEP tOD
OPEN
OE#
V IH V IL
tOES
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tAA
tACH tAR tASC tASR tCAC tCAH tCAS tCLZ tCOH tCP tCPA tCRP tCSH tOD tOE
-6 MAX 25 MIN 15 45 0 0 13 15 10 10,000 10 0 3 10 28 35 5 45 12 12 0 15 15 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL
tOEHC tOEP tOES tOFF tPC tRAC tRAD tRAH tRASP tRCH tRCD tRCS tRP tRRH tRSH
-5 MIN 5 5 4 0 20 50 9 9 50 0 11 0 30 0 13 125,000 12 10 60 0 14 0 40 0 15 12 MAX MIN 10 5 5 0 25
-6 MAX UNITS ns ns 15 60 ns ns ns ns ns ns ns ns ns ns ns ns ns
MIN 12 38 0 0 8 8 0 3 8 5 38 0
125,000
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
13
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
EDO-PAGE-MODE EARLY WRITE CYCLE
t RASP V IH V IL t CSH t CRP V IH V IL t AR t RAD t ASR ADDR V IH V IL t RAH t ASC tACH t CAH t ASC t ACH t CAH t ASC t ACH t CAH t RCD t CAS t PC t CP t CAS t CP t RSH t CAS t CP t RP
RAS#
CAS#
ROW
COLUMN t CWL t WCS t WCH t WP
COLUMN t CWL t WCS t WCH t WP
COLUMN t CWL t WCS t WCH t WP
ROW
WE#
V IH V IL t WCR t DS t DH t DS t DH t DS t RWL t DH
V DQ V IOH IOL
VALID DATA
VALID DATA
VALID DATA
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL
tACH tAR tASC tASR tCAH tCAS tCP tCRP tCSH tCWL tDH tDS
-6 MAX MIN 15 45 0 0 10,000 10 10 10 5 45 10 10 0 10,000 MAX UNITS ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL
tPC tRAD tRAH tRASP tRCD tRP tRSH tRWL tWCH tWCR tWCS tWP
-5 MIN 20 9 9 50 11 30 13 13 8 38 0 5 125,000 MAX MIN 25 12 10 60 14 40 15 15 10 45 0 5
-6 MAX UNITS ns ns ns 125,000 ns ns ns ns ns ns ns ns ns
MIN 12 38 0 0 8 8 8 5 38 8 8 0
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
14
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)
tRWC tRAS V IH V IL tCSH tRSH tCAS tRP
RAS#
tCRP V IH V IL tAR tRAD tRAH
tRCD
CAS#
tASC
tCAH tACH
tASR ADDR V IH V IL
ROW
COLUMN tRWD tCWD tAWD tCWL tRWL tWP
ROW
tRCS
WE#
V IH V IL tAA tRAC tCAC tCLZ tDS VALID D OUT tOE V IH V IL tOD tDH
V DQ V IOH IOL
OPEN
VALID D IN tOEH
OPEN
OE#
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tAA tAR
tASC tASR tAWD tCAC tCAH tCAS tCLZ tCP tCPA tCRP tCSH tCWD tCWL tDH tDS
-6 MAX 25 MIN 45 0 0 49 13 15 10 10,000 10 0 10 28 35 5 45 35 10 10 0 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL tOD tOE
tOEH tPC tPRWC tRAC tRAD tRAH tRASP tRCD tRCS tRP tRSH tRWD tRWL tWP
-5 MIN 0 8 20 47 50 9 9 50 11 0 30 13 67 13 5 125,000 12 10 60 14 0 40 15 79 15 5 MAX 12 12 MIN 0 10 25 56
-6 MAX 15 15 UNITS ns ns ns ns 60 ns ns ns ns ns ns ns ns ns ns ns ns
MIN 38 0 0 42 8 8 0 8 5 38 28 8 8 0
125,000
NOTE: 1. tPC is for LATE WRITE cycles only.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
15
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
EDO-PAGE-MODE READ EARLY WRITE CYCLE (Pseudo READ-MODIFY-WRITE)
t RASP RAS# V IH V IL t CSH tPC tCRP CAS# V IH V IL tAR tRAD tASR ADDR V IH V IL tRAH ROW tASC tCAH t ASC t CAH tASC t ACH t CAH t RCD t CAS t CP t CAS tPC t CP t CAS tRSH t CP t RP
COLUMN (A) tRCS
COLUMN (B) tRCH
COLUMN (N) tWCS tWCH
ROW
WE#
V IH V IL tRAC
tAA tCPA tCAC
tAA
tCAC tCOH t WHZ VALID DATA (B)
t DS
t DH
DQ V IOH V IOL V IH V IL
OPEN tOE
VALID DATA (A)
VALID DATA IN
OE#
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tAA tACH
tAR tASC tASR tCAC tCAH tCAS tCOH tCP tCPA tCRP tCSH tDH tDS
-6 MAX 25 MIN 15 45 0 0 13 15 10 10,000 10 3 10 28 35 5 45 10 0 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns SYMBOL tOE tPC
tRAC tRAD tRAH tRASP tRCD tRCH tRCS tRP tRSH tWCH tWCS tWHZ
-5 MIN 20 50 9 9 50 11 0 0 30 13 8 0 0 12 125,000 12 10 60 14 0 0 40 15 10 0 0 MAX 12 MIN 25
-6 MAX 15 60 UNITS ns ns ns ns ns ns ns ns ns ns ns ns 15 ns ns
MIN 12 38 0 0 8 8 3 8 5 38 8 0
125,000
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
16
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
READ CYCLE (With WE#-controlled disable)
RAS# V IH V IL tCSH tCRP CAS# V IH V IL tAR tASR V IH V IL tRAD tRAH tASC tCAH tASC tRCD tCAS tCP
ADDR
ROW tRCS
COLUMN tRCH tWPZ tRCS
COLUMN
WE#
V IH V IL tAA tRAC tCAC tCLZ tWHZ tCLZ
DQ
V OH V OL
OPEN tOE
VALID DATA tOD
OPEN
OE#
V IH V IL
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tAA tAR
tASC tASR tCAC tCAH tCAS tCLZ tCP tCRP tCSH
-6 MAX 25 MIN 45 0 0 13 15 10 10 0 10 5 45 10,000 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns ns SYMBOL tOD tOE
tRAC tRAD tRAH tRCD tRCH tRCS tWHZ tWPZ
-5 MIN 0 MAX 12 12 50 9 9 11 0 0 0 10 12 12 10 14 0 0 0 10 MIN 0
-6 MAX 15 15 60 UNITS ns ns ns ns ns ns ns 15 ns ns ns
MIN 38 0 0 8 8 0 8 5 38
10,000
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
17
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
RAS#-ONLY REFRESH CYCLE (OE# and WE# = DON’T CARE)
tRC tRAS V IH V IL tCRP V IH V IL tASR ADDR V IH V IL tRAH tRPC tRP
RAS#
CAS#
ROW
ROW
V DQ V OH OL
OPEN
CBR REFRESH CYCLE (Addresses and OE# = DON’T CARE)
t RP RAS# V IH V IL t RPC t CP CAS# V IH V IL V OH V OL t WRP WE# V IH V IL t WRH OPEN t WRP t WRH t CSR t CHR t RPC t CSR t CHR t RAS NOTE 1 t RP t RAS
DQ
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tASR
tCHR tCP tCRP tCSR tRAH
-6 MAX MIN 0 10 10 5 5 10 MAX UNITS ns ns ns ns ns ns SYMBOL tRAS
tRC tRP tRPC tWRH tWRP
-5 MIN 50 84 30 5 8 8 MAX 10,000 MIN 60 104 40 5 10 10
-6 MAX 10,000 UNITS ns ns ns ns ns ns
MIN 0 8 8 5 5 9
NOTE: 1. End of first CBR REFRESH cycle.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
18
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
HIDDEN REFRESH CYCLE 1 (WE# = HIGH; OE# = LOW)
tRAS RAS# V IH V IL tCRP CAS# V IH V IL tAR tRAD tASR V IH V IL tRAH tASC tCAH tRCD tRSH tCHR tRP tRAS
ADDR
ROW
COLUMN tAA tRAC tCAC tCLZ tOFF
V DQ V OH OL
OPEN tOE
VALID DATA tOD tORD
OPEN
V OE# V IH IL
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL
tAA tAR tASC tASR tCAC tCAH tCHR tCLZ tCRP tOD
-6 MAX 25 MIN 45 0 0 13 15 10 10 0 5 12 0 15 MAX 30 UNITS ns ns ns ns ns ns ns ns ns ns SYMBOL tOE tOFF tORD tRAC
tRAD tRAH tRAS tRCD tRP tRSH
-5 MIN 0 0 9 9 50 11 30 13 10,000 MAX 12 12 50 12 10 60 14 40 15 MIN 0 0
-6 MAX 15 15 60 UNITS ns ns ns ns ns ns 10,000 ns ns ns ns
MIN 38 0 0 8 8 0 5 0
NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE# is LOW and OE# is HIGH.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
19
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
SELF REFRESH CYCLE (Addresses and OE# = DON’T CARE)
tRP V IH V IL tRASS NOTE 1 (( )) (( )) tCSR tCHD (( )) (( )) (( )) tWRP tWRH (( )) (( )) OPEN tWRP tWRH tRPS NOTE 2
RAS#
tRPC tCP
tRPC tCP
(( ))
CAS#
V IH V IL
V DQ V OH OL V WE# V IH IL
DON’T CARE UNDEFINED
TIMING PARAMETERS
-5 SYMBOL tCHD tCP tCSR tRASS tRP MIN 15 8 5 100 30 MAX MIN 15 10 5 100 40 -6 MAX UNITS ns ns ns µs ns SYMBOL tRPC tRPS tWRH tWRP MIN 5 90 8 8 -5 MAX MIN 5 105 10 10 -6 MAX UNITS ns ns ns ns
NOTE: 1. Once tRASS (MIN) is met and RAS# remains LOW, the DRAM will enter self refresh mode. 2. Once tRPS is satisfied, a complete burst of all rows should be executed if RAS#-only por Burst CBR refresh is being used.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
20
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
32-PIN PLASTIC SOJ (400 mil)
.829 (21.05) .823 (20.90)
.445 (11.31) .435 (11.05) .405 (10.29) .399 (10.13)
PIN #1 ID
.050 (1.27) TYP .750 (19.05) TYP
.037 (0.95) MAX DAMBAR PROTRUSION .024 (0.61) .032 (0.82) .026 (0.67) .030 (0.76) MIN .145 (3.68) .132 (3.35) SEATING PLANE .020 (0.51) .015 (0.38) R .040 (1.02) .030 (0.77) .095 (2.42) .080 (2.03)
.380 (9.65) .360 (9.14)
NOTE: 1. All dimensions in inches (millimeters) MAX or typical where noted. MIN 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
21
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.
16 MEG x 4 EDO DRAM
32-PIN PLASTIC TSOP (400 mil)
.827 (21.01) .823 (20.91) .050 (1.27) TYP 32 SEE DETAIL A .0375 (0.95)
.467 (11.86) .459 (11.66) .402 (10.21) .398 (10.11)
1
16 .020 (0.50) .012 (0.30) .007 (0.18) .005 (0.13)
.010 (0.25) .004 (0.10) .047(1.19) MAX .008 (0.20) .002 (0.05) .0315 (0.80) GAGE PLANE
.024 (0.60) .016 (0.40)
DETAIL A
NOTE: 1. All dimensions in inches (millimeters) MAX or typical where noted. MIN 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron is a registered trademark of Micron Technology, Inc.
16 Meg x 4 EDO DRAM D22_2.p65 – Rev. 5/00
22
Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2000, Micron Technology, Inc.