256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Features
Synchronous DRAM Module
MT8LSDT3264A(I) - 256MB
MT16LSDT6464A(I) - 512MB
For the latest data sheet, please refer to the Micron® Web site: www.micron.com/products/modules
Features
Figure 1:
• PC100- and PC133-compliant
• 168-pin, dual in-line memory module (DIMM)
• Utilizes 125 MHz and 133 MHz SDRAM
components
• Unbuffered
• 256MB (32 Meg x 64), 512MB (64 Meg x 64)
• Single +3.3V ±0.3V power supply
• Fully synchronous; all signals registered on positive
edge of system clock
• Internal pipelined operation; column address can
be changed every clock cycle
• Internal SDRAM banks for hiding row access/
precharge
• Programmable burst lengths: 1, 2, 4, 8, or full page
• Auto Precharge, including Concurrent Auto
Precharge, and Auto Refresh Modes
• 64ms, 8,192 cycle Auto Refresh cycle
• Self Refresh Mode
• LVTTL-compatible inputs and outputs
• Serial Presence-Detect (SPD)
• Gold edge contacts
Table 1:
Access Time
Clock
Frequency
CL = 2
CL = 3
Setup
Time
Hold
Time
-13E
-133
-10E
133 MHz
133 MHz
100 MHz
5.4ns
–
9ns
–
5.4ns
7.5ns
1.5
1.5
2ns
0.8
0.8
1ns
Table 2:
Low Profile 1.125in. (28.575mm)
Options
Marking
• Package
168-pin DIMM (standard)
168-pin DIMM (lead-free)
• Operating Temperature Range
Commercial (0°C to +70°C)
Industrial (-40°C to +85°C)
• Memory Clock/CAS Latency
(133 MHz)/CL = 2
(133 MHz)/CL = 3
(100 MHz)/CL = 2
• PCB
Low profile 1.125in. (28.575mm)
Timing Parameters
Module
Marking
168-Pin DIMM (MO–161)
G
Y1
None
I1, 2
-13E
-133
-10E1
See page 2 note
Notes: 1. Consult Micron for product availability.
2. Industrial Temperature Option available in 133 speed only.
Address Table
Refresh Count
Device Banks
Device Configuration
Row Addressing
Column Addressing
Module Ranks
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
256MB
512MB
8K
4 (BA0, BA1)
256Mb (32 Meg x 8)
8K (A0–A12)
1K (A0–A9)
1 (S0,S2)
8K
4 (BA0, BA1)
256Mb (32 Meg x 8)
8K (A0–A12)
1K (A0–A9)
2 (S0,S2; S1,S3)
1
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
Products and specifications discussed herein are subject to change by Micron without notice.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Pin Assignments and Descriptions
Table 3:
Part Numbers
Part Number
MT8LSDT3264AG-13E_
MT8LSDT3264AY-13E_
MT8LSDT3264A(I))G-133_
MT8LSDT3264A(I)Y-133_
MT8LSDT3264AG-10E_
MT8LSDT3264AY-10E_
MT16LSDT6464AAG-13E_
MT16LSDT6464AY-13E_
MT16LSDT6464A(I)G-133_
MT16LSDT6464A(I)Y-133_
MT16LSDT6464AG-10E_
MT16LSDT6464AY-10E_
Note:
Module Density
Configuration
System Bus Speed
256MB
256MB
256MB
256MB
256MB
256MB
512MB
512MB
512MB
512MB
512MB
512MB
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
133 MHz
133 MHz
133 MHz
133 MHz
100 MHz
100 MHz
133 MHz
133 MHz
133 MHz
133 MHz
100 MHz
100 MHz
The designators for component and PCB revision are the last two characters of each part
number. Consult factory for current revision codes. Example: MT8LSDT3264AG-133D2.
Pin Assignments and Descriptions
Table 4:
Pin Assignment (168-Pin DIMM Front)
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
Pin
Symbol
Pin
Symbol
Pin
Symbol
Pin
Symbol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
VSS
DQ0
DQ1
DQ2
DQ3
VDD
DQ4
DQ5
DQ6
DQ7
DQ8
VSS
DQ9
DQ10
DQ11
DQ12
DQ13
VDD
DQ14
DQ15
NC
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
NC
VSS
NC
NC
VDD
WE#
DQMB0
DQMB1
S0#
NC
VSS
A0
A2
A4
A6
A8
A10
BA1
VDD
VDD
CK0
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
VSS
NC
S2#
DQMB2
DQMB3
NC
VDD
NC
NC
NC
NC
VSS
DQ16
DQ17
DQ18
DQ19
VDD
DQ20
NC
NC
CKE1
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
VSS
DQ21
DQ22
DQ23
VSS
DQ24
DQ25
DQ26
DQ27
VDD
DQ28
DQ29
DQ30
DQ31
VSS
CK2
NC
NC
SDA
SCL
VDD
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Pin Assignments and Descriptions
Table 5:
Pin Assignment
(168-Pin DIMM Back)
Figure 2:
Pin
Symbol
Pin
Symbol
Pin
Symbol
Pin
Symbol
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
VSS
DQ32
DQ33
DQ34
DQ35
VDD
DQ36
DQ37
DQ38
DQ39
DQ40
VSS
DQ41
DQ42
DQ43
DQ44
DQ45
VDD
DQ46
DQ47
NC
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
NC
VSS
NC
NC
VDD
CAS#
DQMB4
DQMB5
S1#
RAS#
VSS
A1
A3
A5
A7
A9
BA0
A11
VDD
CK1
A12
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
VSS
CKE0
S3#
DQMB6
DQMB7
NC
VDD
NC
NC
NC
NC
VSS
DQ48
DQ49
DQ50
DQ51
VDD
DQ52
NC
NC
NC
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
VSS
DQ53
DQ54
DQ55
VSS
DQ56
DQ57
DQ58
DQ59
VDD
DQ60
DQ61
DQ62
DQ63
VSS
CK3
NC
SA0
SA1
SA2
VDD
Pin Locations (168-Pin DIMM)
Front View
U10
U2
U1
U3
U4
U6
U7
U8
U9
1.125 inches
28.57 millimeters
PIN 41
PIN 1
PIN 84
Back View (Populated only for dual rank, 512MB module)
U11
U12
U13
U14
U17
Indicates a VDD pin
U18
U19
PIN 85
PIN 125
PIN 168
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
U16
Indicates a VSS pin
3
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Pin Assignments and Descriptions
Table 6:
Pin Descriptions
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 2 for for information
Pin Number
Symbol
Type
Description
27, 111, 115
Input
42, 79, 125, 163
RAS#, CAS#,
WE#
CK0–CK3
63, 128
CKE0, CKE1
Input
30, 45,114, 129
S0#–S3#
Input
28, 29, 46, 47, 112, 113, 130,
131
DQMB0–DQMB7
Input
39, 122
BA0, BA1
Input
33–38, 117–121, 123, 126
A0–A12
Input
83
SCL
Input
165–167
SA0–SA2
Input
2–5, 7–11, 13–17, 19–20,
55–58, 60, 65–67, 69–72,
74–77, 86–89, 91–95, 97–101,
103–104, 139–142, 144,
149–151, 153–156,158–161
82
DQ0–DQ63
Input/
Output
Command Inputs: RAS#, CAS#, and WE# (along with S#)
define the command being entered.
Clock: CK is driven by the system clock. All SDRAM input
signals are sampled on the positive edge of CK. CK also
increments the internal burst counter and controls the output
registers.
Clock Enable: CKE activates (HIGH) and deactivates (LOW) the
CK signal. Deactivating the clock provides PRECHARGE
POWER-DOWN and SELF REFRESH operation (all device banks
idle) or CLOCK SUSPEND OPERATION (burst access in
progress). CKE is synchronous except after the device enters
power- down and self refresh modes, where CKE becomes
asynchronous until after exiting the same mode. The input
buffers, including CK, are disabled during power-down and
self refresh modes, providing low standby power.
Chip Select: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of
the command code.
Input/Output Mask: DQMB is an input mask signal for write
accesses and an output enable signal for read accesses. Input
data is masked when DQMB is sampled HIGH during a WRITE
cycle. The output buffers are placed in a High-Z state (twoclock latency) when DQMB is sampled HIGH during a READ
cycle.
Bank Address: BA0 and BA1 define to which device bank the
ACTIVE, READ, WRITE, or PRECHARGE command is being
applied.
Address Inputs: Provide the row address for ACTIVE
commands, and the column address and auto prcharge bit
(A10) for READ/WRITE commands, to select one location out
of the memory arrary in the respective device bank. A10
sampled during a PRECHARGE command determines whether
the PRECHARGE applies to one device bank (A10 LOW, device
bank selected by BA0, BA1) or all device banks (A10 HIGH).
The address inputs also provide the op-code during a MODE
REGISTER SET command.
Serial Clock for Presence-Detect: SCL is used to synchronize
the presence-detect data transfer to and from the module.
Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
Data I/O: Data bus.
SDA
Input/
Output
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
Input
Serial Presence-Detect Data: SDA is a bidirectional pin used to
transfer addresses and data into and out of the presencedetect portion of the module.
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Pin Assignments and Descriptions
Table 6:
Pin Descriptions (Continued)
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 2 for for information
Pin Number
Symbol
Type
6, 18, 26, 40, 41, 49, 59, 73,
84, 90, 102, 110, 124, 133,
143, 157, 168
1, 12, 23, 32, 43, 54, 64, 68,
78, 85, 96, 107, 116, 127,
138, 148, 152, 162
21–22, 24–25, 31, 44, 48,
50–53, 61–62, 80, 81, 105–
106, 108–109, 132, 134–137,
145–147, 164
VDD
Supply
Power Supply: +3.3V ±0.3V.
VSS
Supply
Ground.
NC
–
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
Description
Not Connected: These pins are not connected on these
modules.
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Functional Block Diagram
Functional Block Diagram
All resistor values are 10Ω unless otherwise specified.
Per industry standard, Micron modules use various component speed grades as referenced in the module part numbering guide at: www.micron.com/numberguide.
Standard modules use the following SDRAM device: MT48LC32M8A2TG; Lead-free
modules use the following SDRAM device: MT48LC32M8A2P. Contact Micron for Industrial Temp. device information.
Figure 3:
Single Rank
S0#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
DQ
DQ
DQ U1
DQ
DQ
DQ
DQ
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQM CS#
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQMB5
DQM CS#
DQ
DQ
DQ
DQ U3
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQM CS#
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DQ
S2#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
DQ
DQ
DQ U7
DQ
DQ
DQ
DQ
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
RAS#
CAS#
CKE0
WE#
A0–A12
BA0
BA1
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQM CS#
DQ
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DQMB7
DQM CS#
DQ
DQ
DQ
DQ U9
DQ
DQ
DQ
DQ
VDD
RAS#: SDRAMs
CAS#: SDRAMs
VSS
CKE0: SDRAMs
WE#: SDRAMs
A0–A12: SDRAMs SCL
WP
BA0: SDRAMs
BA1: SDRAMs
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
SDRAMs
DQM CS#
DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
CK0
U1
U2
U3
U4
U5
SDA CK2
U6
U7
U8
U9
SDRAMs
SPD
U10
A0 A1 A2
SA0 SA1 SA2
3.3pF
CK1,
CK3
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
6
10pF
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Functional Block Diagram
Figure 4:
Dual Rank
S0#
S1#
DQMB0
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB4
DQM CS#
DQ
DQ
DQ
DQ
U1
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U19
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U3
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U17
DQ
DQ
DQ
DQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB1
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQM CS#
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U18
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U16
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U14
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U12
DQ
DQ
DQ
DQ
DQMB5
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
S2#
S3#
DQMB2
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB6
DQM CS#
DQ
DQ
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U13
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
U9
DQ
DQ
DQ
DQ
DQ
DQM CS#
DQ
DQ
DQ
DQ U11
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB3
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB7
VDD
10K Ω
CKE1
CKE0
CAS#
RAS#
WE#
A0–A12
BA0
BA1
CKE: SDRAMs U11–U19
CKE: SDRAMs U1–U9
CAS#: SDRAMs
RAS#: SDRAMs
WE#: SDRAMs
A0–A12: SDRAMs
BA0: SDRAMs
BA1: SDRAMs
VDD
SDRAMs
VSS
SDRAMs
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
U1
U2
U3
U4
U5
CK0
U6
U7
U8
U9
CK2
3.3pF
SCL
WP
U15
U16
U17
U18
U19
CK1
U11
U12
U13
U14
CK3
3.3pF
SPD
U10
A0 A1 A2
SDA
SA0 SA1 SA2
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
General Description
General Description
The MT8LSDT3264A and MT16LSDT6464A are high-speed CMOS, dynamic randomaccess, 256MB and 512MB memory modules organized in a x64 configuration. These
modules use internally configured quad-bank SDRAMs with a synchronous interface (all
signals are registered on the positive edge of the clock signals CK).
Read and write accesses to the SDRAM modules are burst oriented; accesses start at a
selected location and continue for a programmed number of locations in a programmed
sequence. Accesses begin with the registration of an ACTIVE command, which is then
followed by a READ or WRITE command. The address bits registered coincident with the
ACTIVE command are used to select the device bank and row to be accessed (BA0, BA1
select the device bank, A0–A11 select the device row). The address bits registered coincident with the READ or WRITE command are used to select the starting column location
for the burst access.
The modules provide for programmable READ or WRITE burst lengths of 1, 2, 4, or 8
locations, or the full page, with a burst terminate option. An AUTO PRECHARGE function may be enabled to provide a self-timed row precharge that is initiated at the end of
the burst sequence.
SDRAM modules use an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also
allows the column address to be changed on every clock cycle to achieve a high-speed,
fully random access. Precharging one device bank while accessing one of the other three
device banks will hide the precharge cycles and provide seamless, high-speed, randomaccess operation.
SDRAM modules are designed to operate in 3.3V, low-power memory systems. An auto
refresh mode is provided, along with a power-saving, power-down mode. All inputs and
outputs are LVTTL-compatible.
SDRAM modules offer substantial advances in DRAM operating performance, including
the ability to synchronously burst data at a high data rate with automatic columnaddress generation, the ability to interleave between internal banks in order to hide precharge time and the capability to randomly change column addresses on each clock
cycle during a burst access. For more information regarding SDRAM operation, refer to
the 256Mb SDRAM component data sheets.
Serial Presence-Detect Operation
SDRAM modules incorporate serial presence-detect (SPD). The SPD function is implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes.
The first 128 bytes can be programmed by Micron to identify the module type and various SDRAM organizations and timing parameters. The remaining 128 bytes of storage
are available for use by the customer. System READ/WRITE operations between the
master (system logic) and the slave EEPROM device (DIMM) occur via a standard I2C
bus using the DIMM’s SCL (clock) and SDA (data) signals, together with SA (2:0), which
provide eight unique DIMM/EEPROM addresses. Write protect (WP) is tied to ground on
the module, permanently disabling hardware write protect.
Initialization
SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. Once power is
applied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is
defined as a signal cycling within timing constraints specified for the clock pin), the
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Mode Register Definition
SDRAM requires a 100µs delay prior to issuing any command other than a COMMAND
INHIBIT or NOP. Starting at some point during this 100µs period and continuing at least
through the end of this period, Command Inhibit or NOP commands should be applied.
Once the 100µs delay has been satisfied with at least one Command Inhibit or NOP command having been applied, a PRECHARGE command should be applied. All device
banks must then be precharged, thereby placing the device in the all banks idle state.
Once in the idle state, two AUTO refresh cycles must be performed. After the AUTO
refresh cycles are complete, the SDRAM is ready for mode register programming.
Because the mode register will power up in an unknown state, it should be loaded prior
to applying any operational command.
Mode Register Definition
The mode register is used to define the specific mode of operation of the SDRAM. This
definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in the Mode Register Definition Diagram.
The mode register is programmed via the LOAD MODE REGISTER command and will
retain the stored information until it is programmed again or the device loses power.
Mode register bits M0–M2 specify the burst length, M3 specifies the type of burst
(sequential or interleaved), M4–M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the write burst mode, and M10 and M11 are reserved for future
use.
The mode register must be loaded when all device banks are idle, and the controller
must wait the specified time before initiating the subsequent operation. Violating either
of these requirements will result in unspecified operation.
Burst Length
Read and write accesses to the SDRAM are burst oriented, with the burst length being
programmable, as shown in Mode Register Definition Diagram. The burst length determines the maximum number of column locations that can be accessed for a given READ
or WRITE command. Burst lengths of 1, 2, 4, or 8 locations are available for both the
sequential and the interleaved burst types, and a full-page burst is available for the
sequential type. The full-page burst is used in conjunction with the BURST TERMINATE
command to generate arbitrary burst lengths.
Reserved states should not be used, as unknown operation or incompatibility with
future versions may result.
When a READ or WRITE command is issued, a block of columns equal to the burst
length is effectively selected. All accesses for that burst take place within this block,
meaning that the burst will wrap within the block if a boundary is reached, as shown in
the Burst Definition Table. The block is uniquely selected by A1–A9 when the burst
length is set to two; by A2–A9 when the burst length is set to four; and by A3–A9 when the
burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to
select the starting location within the block. Full-page bursts wrap within the page if the
boundary is reached, as shown in Table 7, Burst Definitions, on page 11.
Burst Type
Accesses within a given burst may be programmed to be either sequential or interleaved;
this is referred to as the burst type and is selected via bit M3.
The ordering of accesses within a burst is determined by the burst length, the burst type
and the starting column address, as shown in Table 7, Burst Definitions, on page 11.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
9
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Mode Register Definition
Figure 5:
Mode Register Definition Diagram
A12 A11 A10
12
11
10
Reserved*
A9
9
A8
8
A6
A7
6
7
WB Op Mode
A5
A4
5
A3
4
CAS Latency
3
1
2
BT
A1
A2
Address Bus
A0
0
Mode Register (Mx)
Burst Length
*Should program
M12, M11, M10 = “0, 0, 0”
to ensure compatibility
with future devices.
Burst Length
M2 M1 M0
M3 = 0
M3 = 1
0
0
0
1
1
0
0
1
2
2
0
1
0
4
4
0
1
1
8
8
1
0
0
Reserved
Reserved
1
0
1
Reserved
Reserved
1
1
0
Reserved
Reserved
1
1
1
Full Page
Reserved
M3
Burst Type
0
Sequential
1
Interleaved
M6 M5 M4
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
CAS Latency
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
3
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
M8
M7
M6–M0
Operating Mode
0
0
Defined
Standard Operation
-
-
-
M9
Write Burst Mode
0
Programmed Burst Length
1
Single Location Access
10
All other states reserved
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Mode Register Definition
Table 7:
Burst Definitions
Burst Length
Starting Column
Address
A0
0
1
A0
0
1
0
1
A0
0
1
0
1
0
1
0
1
2
4
8
Full Page
(y)
A1
0
0
1
1
A2
A1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
n = A0–A9
(location 0 - y)
Order of Accesses Within a Burst
Type = Sequential
Type = Interleaved
0-1
1-0
0-1
1-0
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3
1-0-3-2
2-3-0-1
3-2-1-0
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
Cn, Cn+1, Cn+2 Cn+3,
Cn+4...
...Cn-1, Cn...
0-1-2-3-4-5-6-7
1-0-3-2-5-4-7-6
2-3-0-1-6-7-4-5
3-2-1-0-7-6-5-4
4-5-6-7-0-1-2-3
5-4-7-6-1-0-3-2
6-7-4-5-2-3-0-1
7-6-5-4-3-2-1-0
Not Supported
Notes: 1. For full-page accesses: y = 1,024
2. For a burst length of two, A1–A9 select the block of two burst; A0 selects the starting column within the block.
3. For a burst length of four, A2–A9 select the block of four burst; A0–A1 select the starting
column within the block.
4. For a burst length of eight, A3–A9 select the block of eight burst; A0–A2 select the starting
column within the block.
5. For a full-page burst, the full row is selected and A0–A9 select the starting column.
6. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.
7. For a burst length of one, A0–A9 select the unique column to be accessed, and Mode Register bit M3 is ignored. For a full-page burst, the full row is selected and A0–A8 select the
starting column.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
11
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Mode Register Definition
Figure 6:
CAS Latency Diagram
T0
T1
T2
T3
READ
NOP
NOP
CLK
COMMAND
tLZ
tOH
DOUT
DQ
tAC
CAS Latency = 2
T0
T1
T2
T3
T4
READ
NOP
NOP
NOP
CLK
COMMAND
tLZ
tOH
DOUT
DQ
tAC
CAS Latency = 3
DON’T CARE
UNDEFINED
Burst Type
Accesses within a given burst may be programmed to be either sequential or interleaved;
this is referred to as the burst type and is selected via bit M3.
The ordering of the accesses within a burst is determined by the burst length, the burst
type, and the starting column adress, as shown in Table 7, Burst Definitions, .
CAS Latency
The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two
or three clocks.
If a READ command is registered at clock edge n, and the latency is m clocks, the data
will be available by clock edge n + m. The DQs will start driving as a result of the clock
edge one cycle earlier (n + m - 1), and provided that the relevant access times are met,
the data will be valid by clock edge n + m. For example, assuming that the clock cycle
time is such that all relevant access times are met, if a READ command is registered at T0
and the latency is programmed to two clocks, the DQs will start driving after T1 and the
data will be valid by T2, as shown in Figure 6, CAS Latency Diagram. Table 8, CAS
Latency Table, indicates the operating frequencies at which each CAS latency setting
can be used.
Reserved states should not be used as unknown operation or incompatibility with future
versions may result.
Operating Mode
The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
12
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Commands
Test modes and reserved states should not be used because unknown operation or
incompatibility with future versions may result.
Write Burst Mode
When M9 = 0, the burst length programmed via M0–M2 applies to both READ and
WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but
write accesses are single-location (nonburst) accesses.
Table 8:
CAS Latency Table
Allowable Operating Clock Frequency (MHz)
Speed
CAS Latency = 2
CAS Latency = 3
-13E
-133
-10E
≤ 133
≤ 100
≤ 100
≤ 143
≤ 133
NA
Commands
The Truth Table provides a quick reference of available commands. This is followed by
written description of each command. For a more detailed descrip-tion of commands
and operations, refer to the 256Mb SDRAM component data sheet.
Table 9:
Truth Table – SDRAM Commands and DQMB Operation
CKE is HIGH for all commands shown except SELF REFRESH; notes appear following the Truth Table
Name (Function)
CS#
COMMAND INHIBIT (NOP)
NO OPERATION (NOP)
ACTIVE (Select bank and activate row)
READ (Select bank and column, and start READ burst)
WRITE (Select bank and column, and start WRITE burst)
BURST TERMINATE
PRECHARGE (Deactivate row in bank or banks)
AUTO REFRESH or SELF REFRESH
(Enter self refresh mode)
LOAD MODE REGISTER
Write Enable/Output Enable
Write Inhibit/Output High-Z
ADDR
DQ
H
L
L
L
L
L
L
L
RAS# CAS# WE# DQMB
X
H
L
H
H
H
L
L
X
H
H
L
L
H
H
L
X
H
H
H
L
L
L
H
X
X
X
L/H
L/H
X
X
X
X
X
Bank/Row
Bank/Col
Bank/Col
X
Code
X
X
X
X
X
Valid
Active
X
X
Notes
3
4, 5
L
–
–
L
–
–
L
–
–
L
–
–
X
L
H
Op-code
–
–
X
Active
High-Z
6
7
7
1
2
2
Notes: 1. A0–A12 provide row address; BA0–BA1 determine which device bank is made active.
2. A0–A9 provide column address; A10 HIGH enables the auto-precharge feature (nonpersistent), while A10 LOW disables the auto-precharge feature; BA0-BA1 determine which
device bank is being read from or written to.
3. A10 LOW: BA0–BA1 determine which device bank is being precharged. A10 HIGH: all
device banks are precharged and BA0, BA1 are “Don’t Care.”
4. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
5. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care”
except for CKE.
6. A0–A11 define the op-code written to the mode register and A12 should be driven LOW.
7. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock
delay).
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
13
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Electrical Specifications
Electrical Specifications
Stresses greater than those listed may cause permanent damage to the device. This is a
stress rating only, and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Table 10:
Absolute Maximum Ratings
Parameter
Voltage on VDD, VDDQ Supply Relative to VSS
Voltage on Inputs NC or I/O Pins Relative to VSS
Operating Temperature
TA (Commercial)
TA (Industrial)
Storage Temperature (plastic)
Table 11:
MIN
MAX
Units
-1
-1
+4.6
+4.6
V
V
0
-40
-55
+65
+85
+150
°C
°C
°C
DC Electrical Characteristics and Operating Conditions – 256MB Module
Notes: 1, 5, 6; notes appear on page 19; VDD, VDDQ = +3.3V ±0.3V
Parameter/Condition
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
Command and Address
INPUT LEAKAGE CURRENT:
Inputs, CKE
Any input 0V ≤ VIN ≤ VDD
(All other pins not under test = 0V)
CK, S#
DQ, DQMB
OUTPUT LEAKAGE CURRENT: DQ pins are disabled;
0V ≤ VOUT ≤ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
Table 12:
Symbol
MIN
MAX
Units
Notes
VDD, VDDQ
VIH
VIL
II
3
2
-0.3
-40
3.6
VDD + 0.3
0.8
40
V
V
V
µA
22
22
33
IOZ
-20
-5
-5
20
5
5
µA
µA
µA
33
VOH
VOL
2.4
–
–
0.4
V
V
DC Electrical Characteristics and Operating Conditions – 512MB Module
Notes: 1, 5, 6; notes appear on page 19; VDD, VDDQ = +3.3V ±0.3V
Parameter/Condition
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
Command and Address
INPUT LEAKAGE CURRENT:
Inputs, CKE
Any input 0V ≤ VIN ≤ VDD
(All other pins not under test = 0V)
CK, S#
DQ, DQMB
OUTPUT LEAKAGE CURRENT: DQ pins are disabled;
0V ≤ VOUT ≤ VDDQ
OUTPUT LEVELS:
Output High Voltage (IOUT = -4mA)
Output Low Voltage (IOUT = 4mA)
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
14
Symbol
MIN
MAX
Units
Notes
VDD, VDDQ
VIH
VIL
II
3
2
-0.3
-80
3.6
VDD + 0.3
0.8
80
V
V
V
µA
22
22
33
IOZ
-20
-10
-10
20
10
10
µA
µA
µA
33
VOH
VOL
2.4
–
–
0.4
V
V
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Electrical Specifications
Table 13:
IDD Specifications and Conditions – 256MB
Notes: 1, 5, 6, 11, 13; notes appear on page 19; VDD, VDDQ = +3.3v ±0.3v; SDRAM component values only
MAX
Parameter/Condition
OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE;
t
RC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode; All device device
banks idle; CKE = LOW
STANDBY CURRENT: Active Mode;CKE = HIGH; CS# = HIGH; All
device banks active after tRCD met; No accesses in progress
OPERATING CURRENT: Burst Mode; Continuous burst; READ or
WRITE; All device banks active
t
RFC = tRFC (MIN)
AUTO REFRESH CURRENT
tRFC = 7.8125µs
CKE = HIGH; CS# = HIGH
SELF REFRESH CURRENT: CKE ≤ 0.2V
Table 14:
Symbol
-13E
-133
-10E
Units
Notes
IDD1
1,080
1,080
1,080
mA
IDD2
16
16
16
mA
3, 18,19,
22
22
IDD3
320
320
320
mA
IDD4
1,080
1,080
1,080
mA
IDD5
IDD6
2,280
28
2,160
28
2,160
28
mA
mA
IDD7
20
20
20
mA
3, 12,
19, 22
3, 18,
19, 22
3, 12
18, 19,
22, 30
4
IDD Specifications and Conditions – 512MB
Notes: 1, 6, 11, 13; notes appear on page 19; VDD, VDDQ = +3.3V ±0.3V; SDRAM component values only
MAX
Parameter/Condition
Symbol
-13E
-133
-10E
Units
Notes
IDD1a
1,096
1,016
1,016
mA
IDD2b
32
32
32
mA
3, 18,19,
22
22
IDD3a
336
336
336
mA
OPERATING CURRENT: Active Mode; Burst = 2; READ or WRITE;
tRC = tRC (MIN)
STANDBY CURRENT: Power-Down Mode; All device device
banks idle; CKE = LOW
STANDBY CURRENT: Active Mode; CKE = HIGH; CS# = HIGH; All
device banks active after tRCD met; No accesses in progress
OPERATING CURRENT: Burst Mode; Continuous burst; READ or
WRITE; All device banks active
tRFC = tRFC (MIN)
AUTO REFRESH CURRENT
t
RFC = 7.8125µs
CKE = HIGH; CS# = HIGH
IDD4a
1,096
1,096
1,096
mA
IDD5b
IDD6b
4,560
56
4,320
56
4,320
56
mA
mA
SELF REFRESH CURRENT: CKE ≤ 0.2V
IDD7b
40
40
40
mA
3, 12,
19, 22
3, 18,
19, 22
3, 12
18, 19,
22, 30
4
a - Value calculated as one module bank in this condition, and all other module banks in power-down mode (IDD2).
b - Value calculated reflects all module banks in this condition.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Electrical Specifications
Table. 15:
Capacitance – 256MB
Note 2; notes appear on page 19
Parameter
Input Capacitance: Address and Command
Input Capacitance: CK0
Input Capacitance: CK2
Input Capacitance: S0#
Input Capacitance: S2#
Input Capacitance: CKE
Input Capacitance: DQMB0, 2–4, 6, 7
Input Capacitance: DQMB1
Input/Output Capacitance: DQ, CB
Table 16:
Symbol
MIN
MAX
Units
CI1
CI2
CI2
CI3
CI3
CI4
CI5
CI6
CIO
22.5
12.5
13.3
12.5
10
22.5
2.5
5
4
34.2
17.5
17.3
19
15.2
34.2
3.8
7.6
6
pF
pF
pF
pF
pF
pF
pF
pF
pF
Symbol
MIN
MAX
Units
CI1
CI2
CI2
CI3
CI3
CI4
CI5
CI6
CIO
45
12.5
13.3
12.5
10
22.5
5
7.5
8
68.4
17.5
17.3
19
15.2
34.2
7.6
11.4
12
pF
pF
pF
pF
pF
pF
pF
pF
pF
Capacitance – 512MB
Note 2; notes appear on page 19
Parameter
Input Capacitance: Address and Command
Input Capacitance: CK0
Input Capacitance: CK2
Input Capacitance: S0#
Input Capacitance: S2#
Input Capacitance: CKE
Input Capacitance: DQMB0, 2–4, 6, 7
Input Capacitance: DQMB1
Input/Output Capacitance: DQ, CB
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
16
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Electrical Specifications
Table 17:
Electrical Characteristics and Recommended AC Operating Conditions
Notes: 5, 6, 8, 9, 11, 22; notes appear on page 19
Module AC timing parameters comply with PC100 and PC133 Design Specs, based on component parameters
AC Characteristics
Parameter
Access timefrom CLK (pos.edge) CL=3
CL=2
Address hold time
Address setup time
CLK high-level width
CLK low-level width
Clock cycle time
CL=3
CL = 2
CKE hold time
CKE setup time
CS#, RAS#, CAS#, WE#, DQM hold time
CS#, RAS#, CAS#, WE#, DQM setup time
Data-in hold time
Data-in setup time
Data-out high-impedance time CL = 3
CL = 2
Data-out low-impedance time
Data-out hold time (load)
Data-out hold time (no load)
ACTIVE to PRECHARGE command
ACTIVE to ACTIVE command period
ACTIVE to READ or WRITE delay
Refresh period (8,192 rows)
AUTOREFRESH period
PRECHARGE command period
ACTIVE bank a to ACTIVE bank b
command
Transition time
WRITE recovery time
Exit SELF REFRESH to ACTIVE command
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
-13E
Symbol
MIN
MAX
t
AC(3)
AC(2)
t
AH
t
AS
tCH
t
CL
tCK(3)
tCK(2)
tCKH
tCKS
tCMH
tCMS
tDH
tDS
tHZ(3)
tHZ(2)
tLZ
tOH
tOH
N
tRAS
tRC
tRCD
tREF
tRFC
tRP
tRRD
t
WR
tXSR
MIN
5.4
5.4
t
tT
-133
0.8
1.5
2.5
2.5
7
7.5
0.8
1.5
0.8
1.5
0.8
1.5
MAX
0.8
1.5
2.5
2.5
7.5
10
0.8
1.5
0.8
1.5
0.8
1.5
120,000
1
3
1.8
44
66
20
120,000
1.2
17
0.3
1 CLK
+7.5ns
15
75
Units
Notes
6
6
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ms
ns
ns
ns
27
6
6
1
3
1.8
50
70
20
64
66
20
15
0.3
1 CLK
+7ns
14
67
MAX
1
2
3
3
8
10
1
2
1
2
1
2
5.4
6
64
66
15
14
MIN
5.4
6
5.4
5.4
1
3
1.8
37
60
15
-10E
120,000
64
70
20
20
1.2
0.3
1 CLK
+7ns
15
80
1.2
23
23
10
10
28
31
ns
ns
7
24
ns
ns
25
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Electrical Specifications
Table. 18:
AC Functional Characteristics
Notes: 5, 6, 7, 8, 9, 11, 22; notes appear on page 19
Parameter
Symbol
READ/WRITE command to READ/WRITE command
CKE to clock disable or power-down entry mode
CKE to clock enable or power-down exit setup mode
DQM to input data delay
DQM to data mask during WRITEs
DQMto data high-impedance during READs
WRITE command to input data delay
Data-into ACTIVE command
Data-into PRECHARGE command
Last data-in to burst STOP command
Last data-in to new READ/WRITE command
Lastdata-into PRECHARGE command
LOADMODEREGISTER command to ACTIVE or REFRESH command
Data-out to high-impedance from PRECHARGE
CL = 3
command
CL = 2
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
18
t
CCD
CKED
t
PED
t
DQD
tDQM
t
DQZ
t
DWD
t
DAL
t
DPL
t
BDL
t
CDL
tRDL
tMRD
tROH(3)
tROH(2)
t
-13E
1
1
1
0
0
2
0
4
2
1
1
2
2
3
2
-133
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
-10E
1
1
1
0
0
2
0
4
2
1
1
2
2
3
2
Units
t
CK
CK
t
CK
t
CK
tCK
t
CK
t
CK
t
CK
t
CK
t
CK
t
CK
tCK
tCK
tCK
tCK
t
Notes
17
14
14
17
17
17
17
15, 21
16, 21
17
17
16, 21
26
17
17
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Notes
Notes
1. All voltages referenced to VSS.
2. This parameter is sampled. VDD, VDDQ = +3.3V; TA = 25°C; pin under test biased at
1.4; f = 1 MHz.
3. IDD is dependent on output loading and cycle rates. Specified values are obtained
with minimum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to indicate cycle time at which proper
operation over the full temperature range is ensured (Commercial Temperature: 0°C ≤
TA +70°C and Industrial Temperature: -40°C ≤ ΤΑ ≤ +85°C).
6. An initial pause of 100µs is required after power-up, followed by two AUTO REFRESH commands, before proper device operation is ensured. (VDD and VDDQ must be powered up
simultaneously. VSS and VSSQ must be at same potential.) The two AUTO REFRESH command wake-ups should be repeated any time the tREF refresh requirement is exceeded.
7. AC characteristics assume tT = 1ns.
8. In addition to meeting the transition rate specification, the clock and CKE must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
9. Outputs measured at 1.5V with equivalent load:
Q
50pF
10. tHZ defines the time at which the output achieves the open circuit condition; it is not
a reference to VOH or VOL. The last valid data element will meet tOH before going
High-Z.
11. AC timing and IDD tests have VIL = 0V and VIH = 3V, with timing referenced to 1.5V
crossover point. If the input transition time is longer than 1ns, then the timing is referenced at VIL (MAX) and VIH (MIN) and no longer at the 1.5V crossover point.
12. Other input signals are allowed to transition no more than once every two clocks and
are otherwise at valid VIH or VIL levels.
13. IDD specifications are tested after the device is properly initialized.
14. Timing actually specified by tCKS; clock(s) specified as a reference only at minimum
cycle rate.
15. Timing actually specified by tWR plus tRP; clock(s) specified as a reference only at
minimum cycle rate.
16. Timing actually specified by tWR.
17. Required clocks are specified by JEDEC functionality and are not dependent on any
timing parameter.
18. The IDD current will increase or decrease proportionally according to the amount of
frequency alteration for the test condition.
19. Address transitions average one transition every two clocks.
20. CLK must be toggled a minimum of two times during this period.
21. Based on tCK = 10ns for -10E, and tCK = 7.5ns for -133 and -13E.
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse width ≤ 3ns, and the pulse width
cannot be greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for
a pulse width ≤ 3ns.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
19
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Notes
23. The clock frequency must remain constant (stable clock is defined as a signal cycling
within timing constraints specified for the clock pin) during access or precharge
states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may be
used to reduce the data rate.
24. Auto precharge mode only. The precharge timing budget (tRP) begins 7ns for -13E;
7.5ns for -133 and 7ns for -10E after the first clock delay, after the last WRITE is executed. May not exceed limit set for precharge mode.
25. Precharge mode only.
26. JEDEC and PC100 specify three clocks.
27. tAC for -133/-13E at CL = 3 with no load is 4.6ns and is guaranteed by design.
28. Parameter guaranteed by design.
29. For -10E, CL= 2 and tCK = 10ns; for -133, CL = 3 and tCK = 7.5ns; for -13E, CL = 2 and
t
CK = 7.5ns.
30. CKE is HIGH during refresh command period tRFC (MIN) else CKE is LOW. The IDD6
limit is actually a nominal value and does not result in a fail value.
31. The value of tRAS used in -13E speed grade module SPDs is calculated from tRC - tRP =
45ns.
32. Refer to device data sheet for timing waveforms.
33. Leakage number reflects the worst-case leakage possible through the module pin, not
what each memory device contributes.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
20
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Serial Presence-Detect
Serial Presence-Detect
SPD Clock and Data Conventions
Data states on the SDA line can change only during SCL LOW. SDA state changes during
SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure 7,
Data Validity, and Figure 8, Definition of Start and Stop).
SPD Start Condition
All commands are preceded by the start condition, which is a HIGH-to-LOW transition
of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL
lines for the start condition and will not respond to any command until this condition
has been met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device
into standby power mode.
SPD Acknowledge
Acknowledge is a software convention used to indicate successful data transfers. The
transmitting device, either master or slave, will release the bus after transmitting eight
bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Figure 9, Acknowledge Response From
Receiver).
The SPD device will always respond with an acknowledge after recognition of a start
condition and its slave address. If both the device and a WRITE operation have been
selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eight bit word. In the read mode the SPD device will transmit eight bits of data,
release the SDA line and monitor the line for an acknowledge. If an acknowledge is
detected and no stop condition is generated by the master, the slave will continue to
transmit data. If an acknowledge is not detected, the slave will terminate further data
transmissions and await the stop condition to return to standby power mode.
Figure 7:
Data Validity
SCL
SDA
DATA STABLE
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
DATA
CHANGE
21
DATA STABLE
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Serial Presence-Detect
Figure 8:
Definition of Start and Stop
SCL
SDA
START
BIT
Figure 9:
STOP
BIT
Acknowledge Response From Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Serial Presence-Detect
Table 19:
EEPROM Device Select Code
The most significant bit (b7) is sent first
Device Type Identifier
Memory Area Select Code (two arrays)
Protection Register Select Code
Table 20:
Chip Enable
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
1
1
0
0
SA2
SA2
SA1
SA1
SA0
SA0
RW
RW
EEPROM Operating Modes
Mode
Current Address Read
RandomAddressRead
Sequential Read
Byte Write
Page Write
Figure 10:
RW Bit
WC
Bytes
1
0
1
1
0
0
VIH or VIL
VIH or VIL
VIH or VIL
VIH or VIL
VIL
VIL
1
1
≥1
1
≤ 16
Initial Sequence
Start, Device Select, RW = 1
Start, Device Select, RW= 0, Address
RESTART, Device Select, RW= 1
Similar to Current or Random Address Read
START, Device Select, RW = 0
START, Device Select, RW = 0
SPD EEPROM Timing Diagram
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t DH
t AA
t BUF
SDA OUT
UNDEFINED
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
23
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Serial Presence-Detect
Table 21:
Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT: SCL = SDA = VDD - 0.3V;
All other inputs = GND or 3.3V ±10%
POWER SUPPLY CURRENT:
SCL Clock frequency = 100 KHz
Table 22:
Symbol
MIN
MAX
Units
VDD
VIH
VIL
VOL
ILI
ILO
ICCS
3
VDD x 0.7
-1
–
–
–
–
3.6
VDD + 0.5
VDD x 0.3
0.4
10
10
30
V
V
V
V
µA
µA
µA
ICC Write
ICC Read
–
–
3
1
mA
Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition
SCL LOW to SDA data-out valid
Time the bus must be free before a new transition
can start
Data-out hold time
SDA and SCL fall time
Data-in hold time
Start condition hold time
Clock HIGH period
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
SDA and SCL rise time
SCL clock frequency
Data-in setup time
Start condition setup time
Stop condition setup time
WRITE cycle time
Symbol
MIN
MAX
Units
Notes
tAA
0.9
µs
µs
1
tBUF
0.2
1.3
tDH
200
tF
tHD:DAT
tHD:STA
tHIGH
300
0
0.6
0.6
tI
tLOW
50
1.3
tR
0.3
400
fSCL
tSU:DAT
tSU:STA
tSU:STO
tWRC
100
0.6
0.6
10
ns
ns
µs
µs
µs
ns
µs
µs
KHz
ns
µs
µs
ms
2
2
3
4
Notes: 1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1
and the falling or rising edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a
write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE
cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
24
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Serial Presence-Detect
Table 23:
Serial Presence-Detect Matrix
VDD = +3.3V ±0.3V; “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
Byte
Description
0
1
2
3
4
5
6
7
8
9
Number of Bytes Used by Micron
Total Number of SPD Memory Bytes
Memory Type
Number of Row Addresses
Number of Column Addresses
Number of Module Banks
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
SDRAM Cycle Time, tCK
(CAS Latency = 3)
10
25
26
27
SDRAM Access from CLK, tAC
(CAS Latency = 3)
Module Configuration Type
Refresh Rate/Type
Sdram Width (Primary SDRAM)
Error-checking SDRAM Data Width
Minimum Clock Delay From Back-to-Back Random
Column Addresses, tCCD
Burst Lengths Supported
Number of Banks on SDRAM Device
CAS Latencies Supported
CS Latency
WE Latency
SDRAM Module Attributes
SDRAM Device Attributes: General
SDRAM Cycle Time, tCK
(CAS Latency = 2) 10 (-133/-10E) A0
SDRAM Access from CLK, tAC
(CAS Latency = 2)
SDRAM Cycle Time, tCK, (CAS Latency = 1)
SDRAM Access From CLK, tAC, (CAS Latency = 1)
Minimum Row Precharge Time, tRP
28
Minimum Row Active to Row Active, tRRD
29
Minimum RAS# to CAS# Delay, tRCD
30
Minimum RAS# Pulse Width, tRAS (See note 1)
31
32
Module Bank Density
Command And Address Setup Time, tAS, tCMS
11
12
13
14
15
16
17
18
19
20
21
22
23
24
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
25
Entry
(Version
MT8LSDT3264A
MT16LSDT6464A
128
256
SDRAM
13
10
1 or 2
64
0
LVTTL
7ns (-13E)
7.5ns (-133)
8ns (-10E)
5.4ns (-13E/-133)
6ns (-10E)
NONPARITY
7.8125µs/SELF
8
NONE
1
80
08
04
0D
0A
01
40
00
01
70
75
80
54
60
00
82
08
00
01
80
08
04
0D
0A
02
40
00
01
70
75
80
54
60
00
82
08
00
01
1, 2, 4, 8, PAGE
4
2, 3
0
0
UNBUFFERED
0E
7.5ns (13E)
10ns (-133/-10E)
5.4ns (-13E)
6ns (-133/-10E)
8F
04
06
01
01
00
0E
75
A0
54
60
00
00
0F
14
0E
0F
14
0F
14
2D
2C
32
40
15
20
8F
04
06
01
01
00
0E
75
A0
54
60
00
00
0F
14
0E
0F
14
0F
14
2D
2C
32
40
15
20
15ns (-13E)
20ns (-133/-10E)
14ns (-13E)
15ns (-133)
20ns (-10E)
15ns (-13E)
20ns (-133/-10E)
45ns (-13E)
44ns (133)
50ns (-10E)
256MB
1.5ns (-13E/-133)
2ns (-10E)
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Serial Presence-Detect
Table 23:
Serial Presence-Detect Matrix
VDD = +3.3V ±0.3V; “1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”
Byte
Entry
(Version
Description
33
Command And Address Hold Time,
34
Data Signal Input Setup Time, tDS
35
Data Signal Input Hold Time, tDH
tAH, tCMH
36-40
41
Reserved
Device Minimum Active/Auto-Refresh Time, tRC
42-61
62
63
Reserved
SPD Revision
Checksum For Bytes 0–62
64
65-71
72
73-90
91
92
93
94
95-98
99-125
126
Manufacturer’s JEDEC ID Code
Manufacturer’s JEDEC ID Code (Cont.)
Manufacturing Location
Module Part Number (ASCII)
Pcb Identification Code
Identification Code (Cont.)
Year of Manufacture In BCD
Week of Manufacture In BCD
Module Serial Number
Manufacturer-specific Data (RSVD)
System Frequency
127
0.8ns (-13E/-133)
1ns (-10E)
1.5ns (-13E/-133)
2ns (-10E)
0.8ns (-13E/-133)
1ns (-10E)
60ns (-13E)
66ns (-133)
70ns (10E)
REV. 1.2
(-13E)
(-133)
(-10E)
MICRON
0
100 MHz (-13E/
-133/-10E)
Sdram Component & Clock Detail
MT8LSDT3264A
MT16LSDT6464A
08
10
15
20
08
10
00
3C
42
46
00
12
B7
03
4F
2C
FF
01 - 06
Variable Data
01-04
00
Variable Data
Variable Data
Variable Data
08
10
15
20
08
10
00
3C
42
46
00
12
B8
04
50
2C
FF
01 - 06
Variable Data
01-04
00
Variable Data
Variable Data
Variable Data
64
64
AF
FF
Notes: 1. The value of tRAS used for -13E modules is calculated from tRC - tRP. Actual device spec.
value is 37ns.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Module Dimensions
Module Dimensions
All dimensions are in inches (millimeters); MAX or typical where noted.
MIN
Figure 11:
168-Pin Single Rank Module
FRONT VIEW
0.125 (3.18)
MAX
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(2X)
U10
U1
U2
U3
U4
U6
U7
U8
U9
1.131 (28.73)
0.700 (17.78) 1.119 (28.42)
TYP
0.118 (3.00)
(2X)
0.118 (3.00)
TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
PIN 1 (PIN 85 ON BACKSIDE)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84 (PIN 168 ON BACKSIDE)
4.550 (115.57)
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
27
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.
256MB (x64, SR), 512MB (x64, DR) 168-Pin SDRAM UDIMM
Module Dimensions
Figure 12:
168-Pin Dual Rank Module
0.157 (3.99)
MAX
5.256 (133.50)
5.244 (133.20)
FRONT VIEW
0.079 (2.00) R
(2X)
U10
U1
U3
U2
U4
U6
U7
U8
U9
1.131 (28.73)
0.700 (17.78) 1.119 (28.42)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
0.250 (6.35) TYP
0.118 (3.00)
TYP
1.661 (42.18)
0.039 (1.00)R
(2X)
2.625 (66.68)
0.128 (3.25)
(2X)
0.118 (3.00)
0.039 (1.00)
TYP
0.050 (1.27)
TYP
0.054 (1.37)
0.046 (1.17)
PIN 84
PIN 1
4.550 (115.57)
BACK VIEW
U12
U11
U13
U14
U17
U16
PIN 168
U18
U19
PIN 85
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range
for production devices. Although considered final, these specifications are subject to change, as further product
development and data characterization sometimes occur.
PDF: 09005aef807b3771/Source: 09005aef807b37b5
SD8_16C32_64x64AG.fm - Rev. D 3/05 EN
28
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2003 Micron Technology, Inc. All rights reserved.