0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MTA36ASF2G72LZ-2G1A1

MTA36ASF2G72LZ-2G1A1

  • 厂商:

    MICRON(镁光)

  • 封装:

    288-LRDIMM

  • 描述:

    IC SDRAM DDR4 2GX72 1.2V RDIMM

  • 数据手册
  • 价格&库存
MTA36ASF2G72LZ-2G1A1 数据手册
16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Features DDR4 SDRAM LRDIMM MTA36ASF2G72LZ – 16GB Features Figure 1: 288-Pin LRDIMM (MO-309, R/C-B) • DDR4 functionality and operations supported as defined in the component data sheet • 288-pin, command/address/control registered, data buffered dual in-line, load reduced memory module(LRDIMM) • Fast data transfer rates: PC4-2400, or PC4-2133 • 16GB (2 Gig x 72) • VDD = 1.20V (NOM) • VPP = 2.5V (NOM) • VDDSPD = 2.5V (NOM) • Supports ECC error detection and correction • Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals • Low-power auto self refresh (LPASR) • Data bus inversion (DBI) for data bus • On-die internal, adjustable, V REFDQ generation • Dual-rank • On-board I2C temperature sensor with integrated serial presence-detect (SPD) EEPROM • 16 internal banks; 4 groups of 4 banks each • Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the mode register set (MRS) • Selectable BC4 or BL8 on-the-fly (OTF) • Gold edge contacts • Halogen-free • Fly-by topology • Multiplexed command, and address bus • Terminated control, command and address bus Module height: 31.25mm (1.23in) Options Marking • Operating temperature – Commercial (0°C ≤ T OPER ≤ 95°C) • Package – 288-pin DIMM (halogen-free) • Frequency/CAS latency – 0.83ns @ CL = 17 (DDR4-2400) – 0.93ns @ CL = 15 (DDR4-2133) None Z -2G3 -2G1 Table 1: Key Timing Parameters Data Rate (MT/s) Industry Speed NomenGrade clature CL = 20, CL = 19 CL = 18 CL = 17 CL = 16 CL = 15 CL = 14 CL = CL = 13 12 CL = 11 CL = 10 tRCD tRC (ns) (ns) -2G6 PC4-2666 2666 2666 2400 2133 2133 1866 1866 1600 – 1333 – 14.16 14.16 46.16 -2G4 PC4-2400 – 2400 2400 2400 2133 1866 1866 1600 1600 – 1333 13.32 13.32 45.32 -2G3 PC4-2400 – 2400 2400 2133 2133 1866 1866 1600 1600 1333 – 14.16 14.16 46.16 PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 1 CL = 9 (ns) tRP Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Features Table 1: Key Timing Parameters (Continued) Data Rate (MT/s) Speed Grade Industry Nomenclature CL = 20, CL = 19 -2G1 PC4-2133 – CL = 18 CL = 17 CL = 16 CL = 15 CL = 14 CL = CL = 13 12 CL = 11 CL = 10 – – 2133 2133 1866 1866 1600 1600 – tRCD CL = 9 (ns) 1333 13.5 tRP (ns) tRC (ns) 13.5 46.5 Table 2: Addressing Parameter 16GB Row address 64K A[15:0] Column address 1K A[9:0] Device bank group address 4 BG[1:0] Device bank address per group 4 BA[1:0] Device configuration 4Gb (1 Gig x 4), 16 banks Module rank address 2 CS_n[1:0] Table 3: Part Numbers and Timing Parameters – 16GB Modules Base device: MT40A1G4,1 4Gb DDR4 SDRAM Module Part Number2 Density Configuration Module Bandwidth Memory Clock/ Data Rate Clock Cycles (CL-tRCD-tRP) MTA36ASF2G72LZ-2G3__ 16GB 2 Gig x 72 19.2 GB/s 0.83ns/2400 MT/s 17-17-17 MTA36ASF2G72LZ-2G1__ 16GB 2 Gig x 72 17.0 GB/s 0.93ns/2133 MT/s 15-15-15 Notes: 1. The data sheet for the base device can be found on micron.com. 2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions. Consult factory for current revision codes. Example: MTA36ASF2G72LZ-2G3A1. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 2 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Pin Assignments Pin Assignments Table 4: Pin Assignments 288-Pin DDR4 LRDIMM Front 288-Pin DDR4 LRDIMM Back Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol 1 NC 37 VSS 73 VDD 109 Vss 145 NC 181 DQ29 217 VDD 253 DQ41 2 VSS 38 DQ24 74 CK0_t 110 DQS14_t 146 VREFCA 182 VSS 218 CK1_t 254 VSS 3 DQ4 39 VSS 75 CK0_c 111 DQS14_c 147 VSS 183 DQ25 219 CK1_c 255 DQS5_c 4 VSS 40 DQS12_t 76 VDD 112 VSS 148 DQ5 184 VSS 220 VDD 256 DQS5_t 5 DQ0 41 DQS12-c 77 VTT 113 DQ46 149 VSS 185 DQS3_c 221 VTT 257 VSS 6 VSS 42 VSS 78 EVENT_n 114 VSS 150 DQ1 186 DQS3_t 222 PARITY 258 DQ47 7 DQS9_t 43 DQ30 79 A0 115 DQ42 151 VSS 187 VSS 223 VDD 259 VSS 8 DQS09_c 44 VSS 80 VDD 116 VSS 152 DQS0_c 188 DQ31 224 BA1 260 DQ43 9 VSS 45 DQ26 81 BA0 117 DQ52 153 DQS0_t 189 VSS 225 A10_AP 261 VSS 10 DQ6 46 VSS 82 RAS_n/ A16 118 VSS 154 VSS 190 DQ27 226 VDD 262 DQ53 11 VSS 47 CB4 83 VDD 119 DQ48 155 DQ7 191 VSS 227 NC 263 VSS 12 DQ2 48 VSS 84 S0_n 120 VSS 156 VSS 192 CB5 228 WE_n/ A14 264 DQ49 13 VSS 49 CB0 85 VDD 121 DQS15_t 157 DQ3 193 VSS 229 VDD 265 VSS 14 DQ12 50 VSS 86 CAS_n/ A15 122 DQS15_c 158 VSS 194 CB1 230 NC 266 DQS6_c 15 VSS 51 DQS17_t 87 ODT0 123 VSS 159 DQ13 195 VSS 231 VDD 267 DQS6_t 16 DQ8 52 DQS17_c 88 VDD 124 DQ54 160 VSS 196 DQS8_c 232 A13 268 VSS 17 VSS 53 VSS 89 S1_n 125 VSS 161 DQ9 197 DQS8_t 233 VDD 269 DQ55 18 DQS10_t 54 CB6 90 VDD 126 DQ50 162 VSS 198 VSS 234 A17 270 VSS 19 DQS10_c 55 VSS 91 ODT1 127 VSS 163 DQS1_c 199 CB7 235 NF 271 DQ51 20 VSS 56 CB2 92 VDD 128 DQ60 164 DQS1_t 200 VSS 236 VDD 272 VSS 21 DQ14 57 VSS 93 S2_n 129 VSS 165 VSS 201 CB3 237 S3_n 273 DQ61 22 VSS 58 RESET_n 94 VSS 130 DQ56 166 DQ15 202 VSS 238 SA2 274 VSS 23 DQ10 59 VDD 95 DQ36 131 VSS 167 VSS 203 CKE1 239 VSS 275 DQ57 24 VSS 60 CKE0 96 VSS 132 DQS16_t 168 DQ11 204 VDD 240 DQ37 276 VSS 25 DQ20 61 VDD 97 DQ32 133 DQS16_c 169 VSS 205 NC 241 VSS 277 DQS7_c 26 VSS 62 ACT_n 98 VSS 134 VSS 170 DQ21 206 VDD 242 DQ33 278 DQS7_t 27 DQ16 63 BG0 99 DQS13_t 135 DQ62 171 VSS 207 BG1 243 VSS 279 VSS 28 VSS 64 VDD 100 DQS13_c 136 VSS 172 DQ17 208 ALERT_n 244 DQS4_c 280 DQ63 29 DQS11_t 65 A12 101 VSS 137 DQ58 173 VSS 209 VDD 245 DQS4_t 281 VSS 30 DQS11_c 66 A9 102 DQ38 138 VSS 174 DQS2_c 210 A11 246 VSS 282 DQ59 31 VSS 67 VDD 103 Vss 139 SA0 175 DQS2_t 211 A7 247 DQ39 283 VSS 32 DQ22 68 A8 104 DQ34 140 SA1 176 VSS 212 VDD 248 VSS 284 VDDSPD 33 VSS 69 A6 105 VSS 141 SCL 177 DQ23 213 A5 249 DQ35 285 SDA 34 DQ18 70 VDD 106 DQ44 142 VPP 178 VSS 214 A4 250 VSS 286 VPP 35 VSS 71 A3 107 VSS 143 VPP 179 DQ19 215 VDD 251 DQ45 287 VPP 36 DQ28 72 A1 108 DQ40 144 NC 180 VSS 216 A2 252 VSS 288 VPP PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 3 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Pin Descriptions Pin Descriptions The pin description table below is a comprehensive list of all possible pins for DDR4 modules. All pins listed may not be supported on this module. See Functional Block Diagram for pins specific to this module. Table 5: Pin Descriptions Symbol Type Description Ax Input Address inputs: Provide the row address for ACTIVATE commands and the column address for READ/WRITE commands in order to select one location out of the memory array in the respective bank (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, and RAS_n/A16 have additional functions; see individual entries in this table). The address inputs also provide the op-code during the MODE REGISTER SET command. A17 is only defined for x4 SDRAM. A10/AP Input Auto precharge: A10 is sampled during READ and WRITE commands to determine whether an auto precharge should be performed on the accessed bank after a READ or WRITE operation (HIGH = auto precharge; LOW = no auto precharge). A10 is sampled during a PRECHARGE command to determine whether the precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank addresses. A12/BC_n Input Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH = no burst chop; LOW = burst- chopped). See Command Truth Table in the DDR4 component data sheet. ACT_n Input Command input: ACT_n defines the ACTIVATE command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15, and WE_n/A14 are considered as row address A16, A15, and A14. See Command Truth Table. BAx Input Bank address inputs: Define the bank (with a bank group) to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BGx Input Bank group address inputs: Define the bank group to which a REFRESH, ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configurations. x16-based SDRAM only has BG0. C0, C1, C2 Input Chip ID: These inputs are used only when devices are stacked; that is, 2H, 4H, and 8H stacks for x4 and x8 configurations using through-silicon vias (TSVs). These pins are not used in the x16 configuration. Some DDR4 modules support a traditional DDP package, which uses CS1_n, CKE1, and ODT1 to control the second die. All other stack configurations, such as a 4H or 8H, are assumed to be single-load (master/slave) type configurations where C0, C1, and C2 are used as chip ID selects in conjunction with a single CS_n, CKE, and ODT. Chip ID is considered part of the command code. CKx_t CKx_c Input Clock: Differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c. CKEx Input Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become stable during the power-on and initialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and RESET#) are disabled during self refresh. CSx_n Input Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides external rank selection on systems with multiple ranks. CS_n is considered part of the command code (CS2_n and CS3_n are not used on UDIMMs). (RDIMM/LRDIMM only) PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 4 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Pin Descriptions Table 5: Pin Descriptions (Continued) Symbol Type Description ODTx Input On-die termination: ODT (registered HIGH) enables termination resistance internal to the DDR4 SDRAM. When enabled, ODT (RTT) is applied only to each DQ, DQS_t, DQS_c, DM_n/ DBI_n/TDQS_t, and TDQS_c signal for x4 and x8 configurations (when the TDQS function is enabled via the mode register). For the x16 configuration, RTT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode registers are programmed to disable RTT. PARITY Input Parity for command and address: This function can be enabled or disabled via the mode register. When enabled in MR5, the DRAM calculates parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG[1:0], BA[1:0], A[16:0]. Input parity should be maintained at the rising edge of the clock and at the same time as command and address with CS_n LOW. RAS_n/A16 CAS_n/A15 WE_n/A14 Input Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n) define the command and/or address being entered and have multiple functions. For example, for activation with ACT_n LOW, these are addresses like A16, A15, and A14, but for a non-activation command with ACT_n HIGH, these are command pins for READ, WRITE, and other commands defined in Command Truth Table. RESET_n CMOS Input SAx Input Serial address inputs: Used to configure the temperature sensor/SPD EEPROM address range on the I2C bus. SCL Input Serial clock for temperature sensor/SPD EEPROM: Used to synchronize communication to and from the temperature sensor/SPD EEPROM on the I2C bus. DQx, CBx I/O Data input/output and check bit input/output: Bidirectional data bus. DQ represents DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If cyclic redundancy checksum (CRC) is enabled via the mode register, the CRC code is added at the end of the data burst. Any one or all of DQ0, DQ1, DQ2, or DQ3 may be used for monitoring of internal VREF level during test via mode register setting MR[4] A[4] = HIGH; training times change when enabled. DM_n/DBI_n/ TDQS_t (DMU_n, DBIU_n), (DML_n/ DBIl_n) I/O Input data mask and data bus inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a write access. DM_n is sampled on both edges of DQS. DM is multiplexed with the DBI function by the mode register A10, A11, and A12 settings in MR5. For a x8 device, the function of DM or TDQS is enabled by the mode register A11 setting in MR1. DBI_n is an input/output identifying whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/ output after inversion inside the DDR4 device and not inverted if DBI_n is HIGH. TDQS is only supported in x8 SDRAM configurations (TDQS is not valid for UDIMMs). SDA I/O Serial Data: Bidirectional signal used to transfer data in or out of the EEPROM or EEPROM/TS combo device. DQS_t DQS_c DQSU_t DQSU_c DQSL_t DQSL_c I/O Data strobe: Output with read data, input with write data. Edge-aligned with read data, centered-aligned with write data. For x16 configurations, DQSL corresponds to the data on DQ[7:0], and DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4 SDRAM supports a differential data strobe only and does not support a single-ended data strobe. ALERT_n Output Alert output: Possesses functions such as CRC error flag and command and address parity error flag as output signal. If a CRC error occurs, ALERT_n goes LOW for the period time interval and returns HIGH. If an error occurs during a command address parity check, ALERT_n goes LOW until the on-going DRAM internal recovery transaction is complete. During connectivity test mode, this pin functions as an input. Use of this signal is system-dependent. If not connected as signal, ALERT_n pin must be connected to VDD on DIMMs. EVENT_n Output Temperature event: The EVENT_n pin is asserted by the temperature sensor when critical temperature thresholds have been exceeded. This pin has no function (NF) on modules without temperature sensors. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN Active LOW asynchronous reset: Reset is active when RESET_n is LOW and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. 5 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Pin Descriptions Table 5: Pin Descriptions (Continued) Symbol Type Description TDQS_t TDQS_c Output Termination data strobe: When enabled via the mode register, the DRAM device enables the same RTT termination resistance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c. When the TDQS function is disabled via the mode register, the DM/TDQS_t pin provides the data mask (DM) function, and the TDQS_c pin is not used. The TDQS function must be disabled in the mode register for both the x4 and x16 configurations. The DM function is supported only in x8 and x16 configurations. DM, DBI, and TDQS are a shared pin and are enabled/disabled by mode register settings. For more information about TDQS, see the DDR4 DRAM component data sheet (TDQS_t and TDQS_c are not valid for UDIMMs). VDD Supply Module power supply: 1.2V (TYP). VPP Supply DRAM activating power supply: 2.5V –0.125V / +0.250V. VREFCA Supply Reference voltage for control, command, and address pins. VSS Supply Ground. (x8 DRAM-based RDIMM only) VTT Supply Power supply for termination of address, command, and control VDD/2. VDDSPD Supply Power supply used to power the I2C bus for SPD. RFU – Reserved for future use. NC – No connect: No internal electrical connection is present. NF – No function: May have internal connection present, but has no function. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 6 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM DQ Map DQ Map Table 6: Component-to-Module DQ Map, Front Component Reference Number Component DQ Module DQ U1 0 1 2 U3 U5 U8 U10 U12 U14 U17 U19 PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number 0 5 U2 0 10 23 2 12 1 8 16 1 150 2 11 168 3 3 157 3 9 161 0 22 32 0 31 188 1 21 170 1 29 181 2 23 177 2 30 43 3 20 25 3 28 36 0 CB6 54 0 34 104 1 CB5 192 1 32 97 2 CB7 199 2 35 249 3 CB4 47 3 33 242 0 40 108 0 50 126 1 42 115 1 48 119 2 41 253 2 51 271 3 43 260 3 49 264 0 60 128 0 7 155 1 62 135 1 5 148 2 61 273 2 6 10 3 63 280 3 4 3 0 14 21 0 17 172 1 12 14 1 19 179 2 15 166 2 16 27 3 13 159 3 18 34 0 25 183 0 CB0 49 1 27 190 1 CB3 201 2 24 38 2 CB1 194 3 26 45 3 CB2 56 0 38 102 0 46 113 1 36 95 1 44 106 2 39 247 2 47 258 3 37 240 3 45 251 0 52 117 0 58 137 1 54 124 1 57 275 2 53 262 2 59 282 3 55 269 3 56 130 U4 U7 U9 U11 U13 U15 U18 U20 7 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM DQ Map Table 7: Component-to-Module DQ Map, Back Component Reference Number Component DQ U21 U23 U25 U27 U29 U31 U33 U35 U37 PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN Module DQ Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number 0 62 135 U22 0 48 119 1 60 128 1 50 126 2 63 280 2 49 264 3 61 273 3 51 271 0 42 115 0 32 97 1 40 108 1 34 104 2 43 260 2 33 242 3 41 253 3 35 249 0 CB5 192 0 29 181 1 CB5 54 1 31 188 2 CB4 47 2 28 36 3 CB7 199 3 30 43 0 21 170 0 8 16 1 22 32 1 10 23 2 20 25 2 9 161 3 23 177 3 11 168 0 2 12 0 57 275 1 0 5 1 58 137 2 3 157 2 56 130 3 1 150 3 59 282 0 54 124 0 44 106 1 52 117 1 46 113 2 55 269 2 45 251 3 53 262 3 47 258 0 36 95 0 CB3 201 1 38 102 1 CB0 49 2 37 240 2 CB2 56 3 39 247 3 CB1 194 0 27 190 0 19 179 1 25 183 1 17 172 2 26 45 2 18 34 3 24 38 3 16 27 0 12 14 0 5 148 1 14 21 1 7 155 2 13 159 2 4 3 3 15 166 3 6 10 U24 U26 U28 U30 U32 U34 U36 U38 8 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Functional Block Diagram Functional Block Diagram Figure 2: Functional Block Diagram CS0A, CS0B CS1A, CS1B Data Buffers Data Buffers CS0A DQ0 DQ1 DQ2 DQ3 U47 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U1 DQS9_t DQS9_c VDD DQ4 DQ5 DQ6 DQ7 VSS CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ U38 ZQ VSS VSS VSS DQ8 DQ9 DQ10 DQ11 U46 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U2 ZQ VDD DQ12 DQ13 DQ14 DQ15 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ U37 ZQ VSS VSS VSS DQ16 DQ17 DQ18 DQ19 U45 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U13 ZQ DQS11_t DQS11_c ALERT_N ZQCAL VDD DQ20 DQ21 DQ22 DQ23 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U3 U27 ZQ VSS ZQ VSS DQ24 DQ25 DQ26 DQ27 U44 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U14 ZQ ALERT_N ZQCAL VDD DQ28 DQ29 DQ30 DQ31 CS_n DQS_t DQS_c DQ DQ DQ DQ U4 U26 ZQ VSS VSS CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ U18 U32 ZQ ZQ VSS VSS CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U9 U22 ZQCAL DQ52 DQ53 DQ54 DQ55 VSS CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ U19 ZQ CB0 CB1 CB2 CB3 U43 CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U15 ZQCAL CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ U20 ZQ CB4 CB5 CB6 CB7 VSS CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ U5 ZQ U25 CS_n DQS_t DQS_c CS_n DQS_t DQS_c DQ DQ DQ DQ DQ DQ DQ DQ EVT A0 SDA A1 A2 SA0 SA1 SA2 EVENT_N U21 ZQ SPD EEPROM/Temp Sensor, Register VDD DDR4 SDRAM, Register, Data Buffers VTT Control, command and address termination VSS Command, control, address, and clock line terminations: CS_n[3:0]A/B, BA[1:0]A/B, BG[1:0]A/B, ACT_nA/B, A[17, 13:0]A/B, RAS_n/A16A/B, CAS_n/A15A/B, WE_n/A14A/B, PAR-A/B, CKE[1:0]A/B, ODT[1:0]A/B CK0[A:D]_t CK0[A:D]_c DDR4 SDRAM VTT DDR4 SDRAM VDD DDR4 SDRAMs, Register BVREF ZQ U6 SPD EEPROM/ Temperature sensor SCL VSS VREFCA VSS Note: PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN VSS CS_n DQS_t DQS_c CK1t CK1c VSS ZQ ZQ VSS DQS17_t DQS17_c ZQCAL ZQ U10 DDR4 SDRAM (U1–U5, U7–U15, U17–U38) DATA BUFFERS (U39–U47) CKDB_t QRST_N: DDR4 SDRAM U30 VSS VDDSPD CK0[A:D]_t CK0[A:D]_c RESET_CONN_N VSS DQ DQ DQ DQ VSS VREFCA: DDR4 SDRAM BVREF: DATA BUFFERS CKDB_c ZQ Rank 0: U1–U5, U7–U15, U17–U20 Rank 1: U21–U38 U34 VREFCA_CONN VSS VSS DQ60 DQ61 DQ62 DQ63 BODT: DATA BUFFERS BCKE: DATA BUFFERS C O N T R O L DQS7_t DQS7_c DQ56 DQ57 DQ58 DQ59 BCOM0: DATA BUFFERS BCOM1: DATA BUFFERS BCOM2: DATA BUFFERS BCOM3: DATA BUFFERS U31 ZQ VDD SA0 SA1 SA2 SCL SDA ZQ DQ DQ DQ DQ VSS CS0A/B: Rank 0 CS1A/B: Rank 1 BA[1:0]A/B: DDR4 SDRAM BG[1:0]A/B: DDR4 SDRAM ACTA/B: DDR4 SDRAMS A[17,13:0]A/B: DDR4 SDRAM RAS_n/A16A/B: DDR4 SDRAM CAS_n/A15A/B: DDR4 SDRAM WE_n/A14A/B: DDR4 SDRAM CKE0A/B: Rank 0, Rank 2 CKE1A/B: Rank 1, Rank 3 ODT0A/B: Rank 0, Rank 2 tied to VSS ODT1A/B: Rank 1, Rank 3 tied to VSS PARA/B: DDR4 SDRAM C[2:0]: DDR4 SDRAM ALERT_N: DDR4 SDRAM R E G I S T E R – P L L – B U F F E R CK0t CK0c VSS DQS16_t DQS16_c ALERT_N ZQ VSS VSS DQS8_t DQS8_c DQS8_t DQS8_c DQS17_t DQS17_c ALERT_N ZQCAL CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ DQ DQ DQ DQ DQS15_t DQS15_c DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 VSS U23 VSS DQ48 DQ49 DQ50 DQ51 DQS7_t DQS7_c DQS16_t DQS16_c ZQ CS_n DQS_t DQS_c DQ DQ DQ DQ U8 VSS U39 VSS DQS12_t DQS12_c CS_n DQS_t DQS_c DQ DQ DQ DQ CS0 CS1 BA[1:0] BG[1:0] ACT_n A[17,13:0] RAS_n/A16 CAS_n/A15 WE_n/A14 CKE0 CKE1 ODT0 ODT1 PAR_IN C[2:0] ALERT_CONN_N DQS6_t DQS6_c VDD U35 VSS ZQ ALERT_N DQS3_t DQS3_c DQS3_t DQS3_c DQS12_t DQS12_c ZQCAL DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 VSS ZQ VSS DQ44 DQ45 DQ46 DQ47 U40 ZQ U33 ZQ DQS6_t DQS6_c DQS15_t DQS15_c U36 CS_n DQS_t DQS_c DQ DQ DQ DQ U17 ZQ DQ40 DQ41 DQ42 DQ43 VDD DQS2_t DQS2_c DQS2_t DQS2_c DQS11_t DQS11_c CS_n DQS_t DQS_c DQS14_t DQS14_c ALERT_N ZQ VSS DQS5_t DQS5_c DQ40 DQ41 DQ41 DQ43 DQ44 DQ45 DQ46 DQ47 VSS ZQ DQ DQ DQ DQ VSS DQS5_t DQS5_c DQS14_t DQS14_c ZQ DQ DQ DQ DQ U12 ZQCAL U16 U24 VSS DQ36 DQ37 DQ38 DQ39 U41 VSS DQS10_t DQS10_c CS_n DQS_t DQS_c DQ DQ DQ DQ U7 DQS13_t DQS13_c VDD U28 CS_n DQS_t DQS_c DQ DQ DQ DQ ZQ ALERT_N ZQ DQS1_t DQS1_c DQS1_t DQS1_c DQS10_t DQS10_c ALERT_N ZQCAL DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 ZQ DQ DQ DQ DQ U11 DQ32 DQ33 DQ34 DQ35 U42 VSS CS1B DQS4_t DQS4_c DQS4_t DQS4_c DQS13_t DQS13_c U29 ZQ ALERT_N ZQCAL CS0B DQS0_t DQS0_c DQS0_t DQS0_c DQS9_t DQS9_c VDD CS1A Data Buffers VPP DDR4 SDRAM VSS DDR4 SDRAM, Register, Data Buffer 1. The ZQ ball on each DDR4 component is connected to an external 240Ω ±1% resistor that is tied to ground. It is used for the calibration of the component’s ODT and output driver. 9 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM General Description General Description High-speed DDR4 SDRAM modules use DDR4 SDRAM devices with two or four internal memory bank groups. DDR4 SDRAM modules utilizing 4- and 8-bit-wide DDR4 SDRAM devices have four internal bank groups consisting of four memory banks each, providing a total of 16 banks. 16-bit-wide DDR4 SDRAM devices have two internal bank groups consisting of four memory banks each, providing a total of eight banks. DDR4 SDRAM modules benefit from DDR4 SDRAM's use of an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single READ or WRITE operation for the DDR4 SDRAM effectively consists of a single 8n-bitwide, four-clock data transfer at the internal DRAM core and eight corresponding n-bitwide, one-half-clock-cycle data transfers at the I/O pins. DDR4 modules use two sets of differential signals: DQS_t and DQS_c to capture data and CK_t and CK_c to capture commands, addresses, and control signals. Differential clocks and data strobes ensure exceptional noise immunity for these signals and provide precise crossing points to capture input signals. Fly-By Topology DDR4 modules use faster clock speeds than earlier DDR technologies, making signal quality more important than ever. For improved signal quality, the clock, control, command, and address buses have been routed in a fly-by topology, where each clock, control, command, and address pin on each DRAM is connected to a single trace and terminated (rather than a tree structure, where the termination is off the module near the connector). Inherent to fly-by topology, the timing skew between the clock and DQS signals can be easily accounted for by using the write-leveling feature of DDR4. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 10 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Address Mapping to DRAM Address Mapping to DRAM Address Mirroring To achieve optimum routing of the address bus on DDR4 multi rank modules, the address bus will be wired as shown in the table below, or mirrored. For quad rank modules, ranks 1 and 3 are mirrored and ranks 0 and 2 are non-mirrored. Highlighted address pins have no secondary functions allowing for normal operation when crosswired. Data is still read from the same address it was written. However, Load Mode operations require a specific address. This requires the controller to accommodate for a rank that is "mirrored." Systems may reference DDR4 SPD to determine if the module has mirroring implemented or not. See the JEDEC DDR4 SPD specification for more details. Table 8: Address Mirroring Edge Connector Pin DRAM Pin, Non-mirrored DRAM Pin, Mirrored A0 A0 A0 A1 A1 A1 A2 A2 A2 A3 A3 A4 A4 A4 A3 A5 A5 A6 A6 A6 A5 A7 A7 A8 A8 A8 A7 A9 A9 A9 A10 A10 A10 A11 A11 A13 A13 A13 A11 A12 A12 A12 A14 A14 A14 A15 A15 A15 A16 A16 A16 A17 A17 A17 BA0 BA0 BA1 BA1 BA1 BA0 BG0 BG0 BG1 BG1 BG1 BG0 Registering Clock Driver Operation Registered DDR4 SDRAM modules use a registering clock driver device consisting of a register and a phase-lock loop (PLL). The device complies with the JEDEC DDR4 RCD01 Specification. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 11 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Data Buffer Operation and Description To reduce the electrical load on the host memory controller's command, address, and control bus, Micron's RDIMMs utilize a DDR4 registering clock driver (RCD). The RCD presents a single load to the controller while redriving signals to the DDR4 SDRAM devices, which helps enable higher densities and increase signal integrity. The RCD also provides a low-jitter, low-skew PLL that redistributes a differential clock pair to multiple differential pairs of clock outputs. Control Words The RCD device(s) used on DDR4 RDIMMs and LRDIMMs contain configuration registers known as control words, which the host uses to configure the RCD based on criteria determined by the module design. Control words can be set by the host controller through either the DRAM address and control bus or the I2C bus interface. The RCD I 2C bus interface resides on the same I2C bus interface as the module temperature sensor and EEPROM. Parity Operations The RCD includes a parity-checking function that can be enabled or disabled in control word RC0E. The RCD receives a parity bit at the DPAR input from the memory controller and compares it with the data received on the qualified command and address inputs; it indicates on its open-drain ALERT_n pin whether a parity error has occurred. If parity checking is enabled, the RCD forwards commands to the SDRAM when no parity error has occurred. If the parity error function is disabled, the RCD forwards sampled commands to the SDRAM regardless of whether a parity error has occurred. Parity is also checked during control word WRITE operations unless parity checking is disabled. Rank Addressing The chip select pins (CS_n) on Micron's modules are used to select a specific rank of DRAM. The RDIMM is capable of selecting ranks in one of three different operating modes, dependant on setting DA[1:0] bits in the DIMM configuration control word located within the RCD. Direct DualCS mode is utilized for single- or dual-rank modules. For quad-rank modules, either direct or encoded QuadCS mode is used. Data Buffer Operation and Description Data buffers operate as 4-bit bidirectional data registers with differential strobes, designed for 1.2 V DD operation. Each buffer has a dual 4-bit host bus interface connected to the memory controller and a dual 4-bit DRAM interface connected to two x4 DRAM devices. Each buffer has an input-only 4-bit control bus interface consisting of two dedicated control signals, a voltage reference input, and a differential clock signal. All DQ inputs are pseudo-differentiated with an internal voltage reference. All DQ outputs are V DD-terminated drivers that are optimized to drive single- or dual-terminated traces in DDR4 LRDIMM applications. The differential DQS strobes are used to sample the DQ inputs and are regenerated internally to drive the DQ outputs on the opposite side of the device. Control inputs are sampled by the clock inputs, and each data buffer supports ZQ calibration for parity (with dedicated pins) and sequence error alerts. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 12 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Temperature Sensor With SPD EEPROM Operation Temperature Sensor With SPD EEPROM Operation Thermal Sensor Operations The integrated thermal sensor continuously monitors the temperature of the module PCB directly below the device and updates the temperature data register. Temperature data may be read from the bus host at any time, which provides the host real-time feedback of the module's temperature. Multiple programmable and read-only temperature registers can be used to create a custom temperature-sensing solution based on system requirements and JEDEC JC-42.2. EVENT_n Pin The temperature sensor also adds the EVENT_n pin (open-drain), which requires a pullup to V DDSPD. EVENT_n is a temperature sensor output used to flag critical events that can be set up in the sensor’s configuration registers. EVENT_n is not used by the serial presence-detect (SPD) EEPROM. EVENT_n has three defined modes of operation: interrupt, comparator, and TCRIT. In interrupt mode, the EVENT_n pin remains asserted until it is released by writing a 1 to the clear event bit in the status register. In comparator mode, the EVENT_n pin clears itself when the error condition is removed. Comparator mode is always used when the temperature is compared against the TCRIT limit. In TCRIT only mode, the EVENT_n pin is only asserted if the measured temperature exceeds the TCRIT limit; it then remains asserted until the temperature drops below the TCRIT limit minus the TCRIT hysteresis. SPD EEPROM Operation DDR4 SDRAM modules incorporate SPD. The SPD data is stored in a 512-byte, JEDEC JC-42.4-compliant EEPROM that is segregated into four 128-byte, write-protectable blocks. The SPD content is aligned with these blocks as shown in the table below. Block Range Description 0 0–127 1 128–255 080h–0FFh Module parameters 2 256–319 100h–13Fh Reserved (all bytes coded as 00h) 320–383 140h–17Fh Manufacturing information 384–511 180h–1FFh End-user programmable 3 000h–07Fh Configuration and DRAM parameters The first 384 bytes are programmed by Micron to comply with JEDEC standard JC-45, "Appendix X: Serial Presence Detect (SPD) for DDR4 SDRAM Modules." The remaining 128 bytes of storage are available for use by the customer. The EEPROM resides on a two-wire I2C serial interface and is not integrated with the memory bus in any manner. It operates as a slave device in the I2C bus protocol, with all operations synchronized by the serial clock. Transfer rates of up to 1 MHz are achievable at 2.5V (NOM). Micron implements reversible software write protection on DDR4 SDRAM-based modules. This prevents the lower 384 bytes (bytes 0 to 383) from being inadvertently programmed or corrupted. The upper 128 bytes remain available for customer use and are unprotected. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 13 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Electrical Specifications Electrical Specifications Stresses greater than those listed may cause permanent damage to the module. This is a stress rating only, and functional operation of the module at these or any other conditions outside those indicated in each device's data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Table 9: Absolute Maximum Ratings Symbol Parameter Min Max Units Notes VDD VDD supply voltage relative to VSS –0.4 1.5 V 1 VDDQ VDDQ supply voltage relative to VSS –0.4 1.5 V 1 Voltage on VPP pin relative to VSS –0.4 3.0 V 2 VIN, VOUT Voltage on any pin relative to VSS –0.4 1.5 V VPP Table 10: Operating Conditions Symbol Parameter Min Nom Max Units Notes VDD VDD supply voltage 1.14 1.20 1.26 V 1 VPP DRAM activating power supply 2.375 2.5 2.75 V 2 0.49 × VDD 0.5 × VDD 0.51 × VDD V 3 –750 – 750 mA 0.49 × VDD 20mV 0.5 × VDD 0.51 × VDD + 20mV V 4 – µA 5 VREFCA(DC) Input reference voltage – command/address bus IVTT Termination reference current from VTT VTT Termination reference voltage (DC) – command/address bus II Input leakage current; any input excluding ZQ; 0V < VIN < 1.1V – – II Input leakage current; ZQ –3 – 3 µA 6, 7 DQ leakage; 0V < VIN < VDD –4 – 4 µA 7 IOZpd Output leakage current; VOUT = VDD; DQ is disabled – – 5 µA IOZpu Output leakage current; VOUT = VSS; DQ and ODT are disabled; ODT is disabled with ODT input HIGH – – 50 µA VREFCA leakage; VREFCA = VDD/2 (after DRAM is initialized) –2 – 2 µA II/O IVREFCA Notes: PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 7 1. VDDQ balls on DRAM are tied to VDD. 2. VPP must be greater than or equal to VDD at all times. 3. VREFCA must not be greater than 0.6 × VDD. When VDD is less than 500mV, VREF may be less than or equal to 300mV. 4. VTT termination voltages in excess of specification limit adversely affect command and address signals' voltage margins and reduce timing margins. 5. Command and address inputs are terminated to VDD/2 in the registering clock driver. Input current is dependent on termination resistance set in the registering clock driver. 6. Tied to ground. Not connected to edge connector. 7. Multiply by number of DRAM die on module. 14 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Electrical Specifications Table 11: Thermal Characteristics Symbol Parameter/Condition Value Units Notes TC Commercial operating case temperature 0 to 85 °C 1, 2, 3 >85 to 95 °C 1, 2, 3, 4 0 to 85 °C 5, 7 TC TOPER Normal operating temperature range TOPER Extended temperature operating range (optional) >85 to 95 °C 5, 7 TSTG Non-operating storage temperature -55 to 100 °C 6 5 to 95 % 20 °C/hour RHSTG NA Non-operating Storage Relative Humidity (non-condensing) Change Rate of Storage Temperature Notes: PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 1. Maximum operating case temperature; TC is measured in the center of the package. 2. A thermal solution must be designed to ensure the DRAM device does not exceed the maximum TC during operation. 3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during operation. 4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2X refresh, which is a 3.9µs interval refresh rate. 5. The refresh rate must double when 85°C < TOPER ≤ 95°C. 6. Storage temperature is defined as the temperature of the top/center of the DRAM and does not reflect the storage temperatures of shipping trays. 7. For additional information, refer to technical note TN-00-08: "Thermal Applications" available at micron.com. 15 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM DRAM Operating Conditions DRAM Operating Conditions Recommended AC operating conditions are given in the DDR4 component data sheets. Component specifications are available at micron.com. Module speed grades correlate with component speed grades, as shown below. Table 12: Module and Component Speed Grades DDR4 components may exceed the listed module speed grades; module may not be available in all listed speed grades Module Speed Grade Component Speed Grade -2G6 -075 -2G4 -083E -2G3 -083 -2G1 -093E -1G9 -107E Design Considerations Simulations Micron memory modules are designed to optimize signal integrity through carefully designed terminations, controlled board impedances, routing topologies, trace length matching, and decoupling. However, good signal integrity starts at the system level. Micron encourages designers to simulate the signal characteristics of the system's memory bus to ensure adequate signal integrity of the entire memory system. Power Operating voltages are specified at the edge connector of the module, not at the DRAM. Designers must account for any system voltage drops at anticipated power levels to ensure the required supply voltage is maintained. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 16 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM IDD Specifications IDD Specifications Table 13: DDR4 IDD Specifications and Conditions – 16GB (Die Revision A) Values are for the MT40A1G4 DDR4 SDRAM only and are computed from values specified in the 4Gb (1 Gig x 4) component data sheet Parameter Symbol 2400 2133 Units IDD01 One bank ACTIVATE-PRECHARGE current One bank ACTIVATE-PRECHARGE, word line boost, IPP current One bank ACTIVATE-READ-PRECHARGE current 1728 1620 mA 1 126 126 mA 1 1800 1710 mA IPP0 IDD1 Precharge standby current IDD2N 2 1800 1656 mA Precharge standby ODT current IDD2NT1 1620 1512 mA Precharge power-down current IDD2P2 1152 1080 mA Precharge quite standby current IDD2Q2 1476 1404 mA 2 Active standby current IDD3N 2412 2268 mA Active standby IPP current IPP3N2 108 108 mA Active power-down current IDD3P2 1584 1584 mA 1 Burst read current IDD4R 3436 3240 mA Burst read IDDQ current IDDQ4R 1 1296 1188 mA Burst write current IDD4W1 3816 3420 mA 1 4032 3960 mA 1 450 450 mA Burst refresh current (1 x REF) IDD5B Burst refresh IPP current (1 x REF) IPP5B Self refresh current: Normal temperature range (0–85°C) IDD6N 2 720 720 mA Self refresh current: Extended temperature range (0–95°C) IDD6E2 972 972 mA Self refresh current: Reduced temperature range (0–45°C) IDD6R2 360 360 mA 2 324 324 mA Auto self refresh current (25°C) IDD6A Auto self refresh current (45°C) IDD6A 2 360 360 mA Auto self refresh current (75°C) IDD6A2 576 576 mA Bank interleave read current IDD71 Bank interleave read IPP current PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 3870 mA 306 270 mA 2 648 648 mA IPP7 Maximum power-down current Notes: 4356 1 IDD8 1. One module rank in the active IDD/PP, the other rank in IDD2P/PP3N. 2. All ranks in this IDD/PP condition. 17 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Registering Clock Driver Specifications Registering Clock Driver Specifications Table 14: Registering Clock Driver Electrical Characteristics DDR4 RCD01 devices or equivalent Parameter Symbol Pins Min Nom Max Units DC supply voltage VDD – 1.14 1.2 1.26 V DC reference voltage VREF VREFCA 0.49 × VDD 0.5 × VDD 0.51 × VDD V DC termination voltage VTT – VREF - 40mV VREF VREF + 40mV V High-level input voltage VIH. CMOS DRST_n 0.65 × VDD – VDD V Low-level input voltage VIL. CMOS 0 – 0.35 × VDD V DRST_n pulse width tINIT_Power_stable – 1.0 – – µs AC high-level output voltage VOH(AC) All outputs except ALERT_n VTT + (0.15 × VDD) – – V AC low-level output voltage VOL(AC) – – VTT + (0.15 x VDD) V AC differential output high measurement level (for output slew rate) VOHdiff(AC) – 0.3 × VDD – mV AC differential output low measurement level (for output slew rate) VOLdiff(AC) – –0.3 × VDD – mV Note: PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN Yn_t - Yn_c, BCK_t BCK_c 1. Timing and switching specifications for the register listed are critical for proper operation of DDR4 SDRAM RDIMMs. These are meant to be a subset of the parameters for the specific device used on the module. See the JEDEC RCD01 specification for complete operating electrical characteristics. Registering clock driver parametric values are specified for device default control word settings, unless otherwise stated. The RC0A control word setting does not affect parametric values. 18 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Data Buffer Specifications Data Buffer Specifications Table 15: Data Buffer Electrical Characteristics DDR4 DB01 devices or equivalent Parameter Symbol DC supply voltage Pins Min Nom Max Unit V VDD – 1.14 1.2 1.26 DC reference voltage BVREFCA BVREF 0.49 × VDD 0.5 × VDD 0.51 × VDD Low-level input voltage VIL(static) BCK_t, BCK_c (during clock stop) 0 – 0.35 × VDD Differential input cross point voltage range VIX(BCK) –120 – 120 Extended differential input cross point voltage range VIX_EX(BCK) –150 – 150 Average common mode DC voltage VCM(DC) 0.46 × VDD 0.5 × VDD 0.54 × VDD V DDR4-1866, 2133 (VDD/2) + 90 DDR4-2400 (VDD/2) + 75 – – mV – – DDR4-1866, 2133 (VDD/2) - 90 DDR4-2400 (VDD/2) 75 DDR4-1866, 2133 BVREFCA + 90 DDR4-2400 BVREFCA + 75 – – – – DDR4-1866, 2133 BVREFCA - 90 DDR4-2400 BVREFCA 75 DDR4-1866, 2133; 130 DDR4-2400; 100 – – – – DDR4-1866, 2133; –130 DDR4-2400; –100 Single-ended high level VSEH Single-ended low level VSEL AC input high VIH(AC) BCK_t, BCK_c BCK_t, BCK_c BCK_t, BCK_c BCK_t, BCK_c BCK_t, BCK_c AC input low VIL(AC) BCK_t, BCK_c Differential input high VIH,diff Differential input low VIL,diff AC differential input high VIH,diff(AC) BCK_t, BCK_c 2 x (VIH(AC).MIN BVREFCA ) – – AC differential input low VIL,diff(AC) BCK_t, BCK_c – – 2 x (VIL(AC).MAX BVREFCA) PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN BCK_t, BCK_c BCK_t, BCK_c 19 mV mV mV mV Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Data Buffer Specifications Table 15: Data Buffer Electrical Characteristics (Continued) DDR4 DB01 devices or equivalent Parameter Symbol Pins Min Nom Max Unit V AC output high VOH(AC) – (0.7 + 0.15) x VDD – AC output low VOL(AC) – (0.7 - 0.15) x VDD – DC output high VOH(DC) DC output mid VOM(DC) DC output low VOL(DC) AC differential output high VOH,diff(AC) AC differential output low VOL,diff(AC) Junction temperature All outputs except ALERT_n – 1.1 x VDD – – 0.8 x VDD – – 0.5 x VDD – – 0.3 x VDD – – –0.3 x VDD – Tj – 0 – 125 TCASE – – – TBD Input clamp current IIK – – – –50 output clamp current IOK – – – ±50 Continuous output current IO – – – ±50 Continuous output current each VDD or VSS pin ICCC – – – ±100 Case temperature Note: PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN V V C° mA 1. Data buffer parametric values are specified for the device default control word settings, unless otherwise stated. 20 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Temperature Sensor With SPD EEPROM Temperature Sensor With SPD EEPROM The temperature sensor continuously monitors the module's temperature and can be read back at any time over the I2C bus shared with the serial presence-detect (SPD) EEPROM. Refer to JEDEC JC-42.4 EE1004 and TSE2004 device specifications for complete details. SPD Data For the latest SPD data, refer to Micron's SPD page: micron.com/SPD. Table 16: Temperature Sensor With SPD EEPROM Operating Conditions Parameter/Condition Symbol Min Nom Max Units VDDSPD – 2.5 – V Input low voltage: logic 0; all inputs VIL –0.5 – VDDSPD × 0.3 V Input high voltage: logic 1; all inputs VIH VDDSPD × 0.7 – VDDSPD + 0.5 V Output low voltage: 3mA sink current VDDSPD > 2V Supply voltage VOL – – 0.4 V Input leakage current: (SCL, SDA) VIN = VDDSPD or VSSSPD ILI – – ±5 µA Output leakage current: VOUT = VDDSPD or VSSSPD, SDA in High-Z ILO – – ±5 µA Table 17: Temperature Sensor and EEPROM Serial Interface Timing Parameter/Condition Min Max Units fSCL 10 1000 kHz Clock pulse width HIGH time tHIGH 260 – ns Clock pulse width LOW time tLOW 500 – ns tTIMEOUT Clock frequency Detect clock LOW timeout Symbol 25 35 ms SDA rise time tR – 120 ns SDA fall time tF – 120 ns Data-in setup time tSU:DAT 50 – ns Data-in hold time tHD:DI ns 0 – Data out hold time tHD:DAT 0 350 ns Start condition setup time tSU:STA 260 – ns Start condition hold time tHD:STA 260 – ns Stop condition setup time tSU:STO 260 – ns tBUF 500 – ns Time the bus must be free before a new transition can start Write time Warm power cycle time off Time from power on to first command PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN tW – 5 ms tPOFF 1 – ms tINIT 10 – ms 21 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved. 16GB (x72, ECC, DR) 288-Pin DDR4 LRDIMM Module Dimensions Module Dimensions Figure 3: 288-Pin DDR4 LRDIMM Front view 3.9 (0.153) MAX 133.48 (5.255) 133.22 (5.244) 45.85 (1.8) TYP (2X) 7.18 (0.283) TYP (2X) U1 0.50 (0.02) R (4X) 0.75 (0.03) R (8X) U3 U2 U11 27.3 (1.1) TYP U4 U13 U12 U14 U6 U5 U7 U8 U16 U15 U18 U17 U10 U9 24.6 (0.97) TYP U20 U19 2.50 (0.098) D (2X) 31.40 (1.236) 31.10 (1.224) 16.1 (0.63) 9.5 (0.374) TYP TYP 4.8 (0.189) TYP 1.5 (0.059) 1.3 (0.051) 0.75 (0.030) R Pin 1 2.20 (0.087) TYP 0.85 (0.033) TYP 3.35 (0.132) TYP (2X) 0.60 (0.0236) TYP Pin 144 72.25 (2.84) TYP 126.65 (4.99) TYP 1.0 (0.039) R (4X) Back view U21 23.05 (0.91) TYP U30 14.6 (0.57) TYP 8.0 (0.315) U39 U23 U22 U32 U31 U40 U41 U24 U33 U25 U34 U26 U35 U42 U43 U27 U36 U29 U28 U38 U37 U44 1.25 (0.049) x 45° (2X) U45 U46 3.1 (0.122) (2X) TYP 3.0 (0.118) (4X) TYP U47 TYP 0.5 (0.0197) TYP 3.15 (0.124) TYP Pin 288 22.95 (0.90) TYP 10.2 (0.4) TYP 5.95 (0.234) TYP 22.95 (0.9) TYP 25.5 (1.0) TYP 28.9 (1.14) TYP 64.6 (2.54) TYP 56.10 (2.21) TYP Notes: 10.2 (0.4) TYP Pin 145 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted. 2. The dimensional diagram is for reference only. 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. TwinDie is a trademark of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. PDF: 09005aef8581805b asf36c2gx72lz.pdf - Rev. D 9/15 EN 22 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved.
MTA36ASF2G72LZ-2G1A1 价格&库存

很抱歉,暂时无法提供与“MTA36ASF2G72LZ-2G1A1”相匹配的价格&库存,您可以联系我们找货

免费人工找货