0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MTA4ATF51264HZ-2G3B2

MTA4ATF51264HZ-2G3B2

  • 厂商:

    MICRON(镁光)

  • 封装:

    260-SODIMM

  • 描述:

    MODULE DDR4 SDRAM 4GB 260SODIMM

  • 数据手册
  • 价格&库存
MTA4ATF51264HZ-2G3B2 数据手册
4GB (x64, SR) 260-Pin DDR4 SODIMM Features DDR4 SDRAM SODIMM MTA4ATF51264HZ – 4GB Features Figure 1: 260-Pin SODIMM (MO-310 R/C C) • DDR4 functionality and operations supported as defined in the component data sheet • 260-pin, small-outline dual in-line memory module (SODIMM) • Fast data transfer rates: PC4-3200, PC4-2666, or PC4-2400 • 4GB (512 Meg x 64) • VDD = 1.20V (NOM) • VPP = 2.5V (NOM) • VDDSPD = 2.5V (NOM) • Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals • Low-power auto self refresh (LPASR) • Data bus inversion (DBI) for data bus • On-die V REFDQ generation and calibration • Single-rank • On-board I2C serial presence-detect (SPD) EEPROM • 8 internal banks; 2 groups of 4 banks each • Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the mode register set (MRS) • Selectable BC4 or BL8 on-the-fly (OTF) • Gold edge contacts • Halogen-free • Fly-by topology • Terminated control command and address bus Module Height: 30mm (1.181 in) Options Marking • Operating temperature – Commercial (0°C ≤ T OPER ≤ 95°C) • Package – 260-pin DIMM (halogen-free) • Frequency/CAS latency – 0.62ns @ CL = 22 (DDR4-3200) – 0.75ns @ CL = 19 (DDR4-2666) – 0.83ns @ CL = 17 (DDR4-2400) None Z -3G2 -2G6 -2G3 Table 1: Key Timing Parameters Speed Grade Data Rate (MT/s) CL = PC4- 24 22 21 -3G2 3200 3200, 2933 3200, 2933 2933 2666 \ 2666 2400 \ 2400 2133 \ 2133 1866 \ 1866 1600 \ 1600 1333 \ – -2G9 2933 – 2933 2933 2666 \ 2666 2400 \ 2400 2133 \ 2133 1866 \ 1866 1600 \ 1600 1333 \ 14.32 14.32 46.32 – (13.75)1 (13.75)1 (45.75)1 -2G6 2666 – – – 2666 \ 2666 2400 \ 2400 2133 \ 2133 1866 \ 1866 1600 \ 1600 1333 \ 14.25 14.25 46.25 – (13.75)1 (13.75)1 (45.75)1 -2G3 2400 – – – – 2400 \ 2400 2133 \ 2133 1866 \ 1866 1600 \ 1600 1333 \ 14.16 14.16 46.16 – (13.75)1 (13.75)1 (45.75)1 CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 20 \ 19 18 \ 17 16 \ 15 14 \ 13 12 \ 11 10 \ 9 tRCD tRP tRC (ns) (ns) (ns) 13.75 13.75 45.75 1 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. Products and specifications discussed herein are subject to change by Micron without notice. 4GB (x64, SR) 260-Pin DDR4 SODIMM Features Table 1: Key Timing Parameters (Continued) Speed Grade Data Rate (MT/s) CL = 24 22 21 20 \ 19 18 \ 17 16 \ 15 14 \ 13 12 \ 11 10 \ 9 tRCD PC4- (ns) tRP (ns) tRC (ns) -2G1 2133 – – – – – 2133 \ 2133 1866 \ 1866 1600 \ 1600 1333 \ 1333 14.06 (13.5)1 14.06 (13.5)1 47.06 (46.5)1 Note: 1. Down-bin timing, refer to component data sheet Speed Bin Tables for details. Table 2: Addressing Parameter 4GB Row address 64K A[15:0] Column address 1K A[9:0] Device bank group address 2 BG0 Device bank address per group 4 BA[1:0] Device configuration 8Gb (512 Meg x 16), 8 banks Module rank address CS0_n Table 3: Part Numbers and Timing Parameters – 4GB Modules Base device: MT40A512M16,1 8Gb DDR4 SDRAM Module Part Number2 Density Configuration Module Bandwidth Memory Clock/ Data Rate Clock Cycles (CL-tRCD-tRP) MTA4ATF51264HZ-3G2__ 4GB 512 Meg x 64 25.6 GB/s 0.62ns/3200 MT/s 22-22-22 MTA4ATF51264HZ-2G6__ 4GB 512 Meg x 64 21.3 GB/s 0.75ns/2666 MT/s 19-19-19 MTA4ATF51264HZ-2G3__ 4GB 512 Meg x 64 19.2 GB/s 0.83ns/2400 MT/s 17-17-17 Notes: 1. The data sheet for the base device can be found on micron.com. 2. All part numbers end with a two-place code (not shown) that designates component and PCB revisions. Consult factory for current revision codes. Example: MTA4ATF51264HZ-3G2J1. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 2 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Features Important Notes and Warnings Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions. This document supersedes and replaces all information supplied prior to the publication hereof. You may not rely on any information set forth in this document if you obtain the product described herein from any unauthorized distributor or other source not authorized by Micron. Automotive Applications. Products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distributor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of nonautomotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and conditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron products are not designed or intended for use in automotive applications unless specifically designated by Micron as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to indemnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting from any use of non-automotive-grade products in automotive applications. Critical Applications. Products are not authorized for use in applications in which failure of the Micron component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Customer must protect against death, personal injury, and severe property and environmental damage by incorporating safety design measures into customer's applications to ensure that failure of the Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron component for any critical application, customer and distributor shall indemnify and hold harmless Micron and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such critical application, whether or not Micron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Micron product. Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems, applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAILURE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included in customer's applications and products to eliminate the risk that personal injury, death, or severe property or environmental damages will result from failure of any semiconductor component. Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort, warranty, breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly authorized representative. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 3 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Pin Assignments Pin Assignments The pin assignment table below is a comprehensive list of all possible pin assignments for DDR4 SODIMM modules. See Functional Block Diagram for pins specific to this module. Table 4: Pin Assignments 260-Pin DDR4 SODIMM Front 260-Pin DDR4 SODIMM Back Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol 1 VSS 67 DQ29 133 A1 199 DM5_n/ DBI5_n 2 VSS 68 VSS Symbol Pin Symbol 134 EVENT_n, NF 3 DQ5 69 VSS 135 VDD 201 VSS 4 DQ4 70 Pin 200 DQS5_t DQ24 136 VDD 202 VSS 138 DQ47 5 VSS 71 DQ25 137 CK0_t 203 DQ46 6 VSS 72 VSS CK1_t/NF 204 7 DQ1 73 VSS 139 CK0_c 205 VSS 8 DQ0 74 DQS3_c 140 CK1_c/NF 206 VSS 9 VSS 75 DM3_n/ DBI3_n 141 VDD 207 DQ42 10 VSS 76 DQS3_t 142 VDD 208 DQ43 11 DQS0_c 77 VSS 143 PARITY 209 VSS 12 DM0_n/ DBI0_n 78 VSS 144 A0 210 VSS 13 DQS0_t 79 DQ30 145 BA1 211 DQ52 14 VSS 80 DQ31 146 A10/AP 212 DQ53 15 VSS 81 VSS 147 VDD 213 VSS 16 DQ6 82 VSS 148 VDD 214 VSS 17 DQ7 83 DQ26 149 CS0_n 215 DQ49 18 VSS 84 DQ27 150 BA0 216 DQ48 19 VSS 85 VSS 151 WE_n/ A14 217 VSS 20 DQ2 86 VSS 152 RAS_n/ A16 218 VSS 21 DQ3 87 CB5/NC 153 VDD 219 DQS6_c 22 VSS 88 CB4/NC 154 VDD 220 DM6_n/ DBI6_n 23 VSS 89 VSS 155 ODT0 221 DQS6_t 24 DQ12 90 VSS 156 CAS_n/ A15 222 VSS 25 DQ13 91 CB1/NC 157 CS1_n/ NC 223 VSS 26 VSS 92 CB0/NC 158 A13 224 DQ54 DQ55 28 DQ8 94 VSS 160 VDD 226 VSS 30 VSS 96 228 DQ50 DQ51 32 DQS1_c 98 VSS 164 VREFCA 230 VSS VSS 34 DQS1_t 100 CB6/NC 166 SA2 232 DQ60 27 VSS 93 VSS 159 VDD 225 29 DQ9 95 DQS8_c/ NC 161 ODT1/ NC 227 31 VSS 97 DQS8_t/ NC 163 VDD 229 33 DM1_n/ DBI_n 99 VSS 165 C1, CS3_n, 231 NC VSS DM8_n/ 162 C0/ DBI_n/NC CS2_n/NC 35 VSS 101 CB2/NC 167 VSS 233 DQ61 36 VSS 102 VSS 168 VSS 234 VSS 37 DQ15 103 VSS 169 DQ37 235 VSS 38 DQ14 104 CB7/NC 170 DQ36 236 DQ57 39 VSS 105 CB3/NC 171 VSS 237 DQ56 40 VSS 106 VSS 172 VSS 238 VSS 41 DQ10 107 VSS 173 DQ33 239 VSS 42 DQ11 108 RESET_n 174 DQ32 240 DQS7_c 43 VSS 109 CKE0 175 VSS 241 DM7_n/ DBI7_n 44 VSS 110 CKE1/ NC 176 VSS 242 DQS7_t 45 DQ21 111 VDD 177 DQS4_c 243 VSS 46 DQ20 112 VDD 178 DM4_n/ DBI4_n 244 VSS 47 VSS 113 BG1 179 DQS4_t 245 DQ62 48 VSS 114 ACT_n 180 VSS 246 DQ63 49 DQ17 115 BG0 181 VSS 247 VSS 50 DQ16 116 ALERT_n 182 DQ39 248 VSS 51 VSS 117 VDD 183 DQ38 249 DQ58 52 VSS 118 VDD 184 VSS 250 DQ59 53 DQS2_c 119 A12 185 VSS 251 VSS 54 DM2_n/ DBI2_n 120 A11 186 DQ35 252 VSS 55 DQS2_t 121 A9 187 DQ34 253 SCL 56 VSS 122 A7 188 VSS 254 SDA 57 VSS 123 VDD 189 VSS 255 VDDSPD 58 DQ22 124 VDD 190 DQ45 256 SA0 CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 4 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Pin Assignments Table 4: Pin Assignments (Continued) 260-Pin DDR4 SODIMM Front 260-Pin DDR4 SODIMM Back Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin 59 DQ23 125 A8 191 DQ44 257 VPP 60 VSS 126 A5 192 VSS 258 VTT 61 VSS 127 A6 193 VSS 259 VPP 62 DQ18 128 A4 194 DQ41 260 SA1 63 DQ19 129 VDD 195 DQ40 – – 64 VSS 130 VDD 196 VSS – – 65 VSS 131 A3 197 VSS – – 66 DQ28 132 A2 198 DQS5_c – – CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 5 Symbol Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Pin Descriptions Pin Descriptions The pin description table below is a comprehensive list of all possible pins for DDR4 modules. All pins listed may not be supported on this module. See Functional Block Diagram for pins specific to this module. Table 5: Pin Descriptions Symbol Type Description Ax Input Address inputs: Provide the row address for ACTIVATE commands and the column address for READ/WRITE commands in order to select one location out of the memory array in the respective bank (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, and RAS_n/A16 have additional functions; see individual entries in this table). The address inputs also provide the op-code during the MODE REGISTER SET command. A17 is only defined for x4 SDRAM. A10/AP Input Auto precharge: A10 is sampled during READ and WRITE commands to determine whether an auto precharge should be performed on the accessed bank after a READ or WRITE operation (HIGH = auto precharge; LOW = no auto precharge). A10 is sampled during a PRECHARGE command to determine whether the precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by the bank group and bank addresses. A12/BC_n Input Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH = no burst chop; LOW = burst chopped). See Command Truth Table in the DDR4 component data sheet. ACT_n Input Command input: ACT_n defines the ACTIVATE command being entered along with CS_n. The input into RAS_n/A16, CAS_n/A15, and WE_n/A14 are considered as row address A16, A15, and A14. See Command Truth Table. BAx Input Bank address inputs: Define the bank (with a bank group) to which an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BGx Input Bank group address inputs: Define the bank group to which a REFRESH, ACTIVATE, READ, WRITE, or PRECHARGE command is being applied. Also determine which mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] are used in the x4 and x8 configurations. x16-based SDRAM only has BG0. C0, C1, C2 (RDIMM/LRDIMM only) Input Chip ID: These inputs are used only when devices are stacked; that is, 2H, 4H, and 8H stacks for x4 and x8 configurations using through-silicon vias (TSVs). These pins are not used in the x16 configuration. Some DDR4 modules support a traditional DDP package, which uses CS1_n, CKE1, and ODT1 to control the second die. All other stack configurations, such as a 4H or 8H, are assumed to be single-load (master/slave) type configurations where C0, C1, and C2 are used as chip ID selects in conjunction with a single CS_n, CKE, and ODT. Chip ID is considered part of the command code. CKx_t CKx_c Input Clock: Differential clock inputs. All address, command, and control input signals are sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c. CKEx Input Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down (row active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become stable during the power-on and initialization sequence, it must be maintained during all operations (including SELF REFRESH). CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RESET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and RESET_n) are disabled during self refresh. CSx_n Input Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides external rank selection on systems with multiple ranks. CS_n is considered part of the command code (CS2_n and CS3_n are not used on UDIMMs). CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 6 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Pin Descriptions Table 5: Pin Descriptions (Continued) Symbol Type Description ODTx Input On-die termination: ODT (registered HIGH) enables termination resistance internal to the DDR4 SDRAM. When enabled, ODT (RTT) is applied only to each DQ, DQS_t, DQS_c, DM_n/ DBI_n/TDQS_t, and TDQS_c signal for x4 and x8 configurations (when the TDQS function is enabled via the mode register). For the x16 configuration, RTT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal. The ODT pin will be ignored if the mode registers are programmed to disable RTT. PARITY Input Parity for command and address: This function can be enabled or disabled via the mode register. When enabled in MR5, the DRAM calculates parity with ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, BG[1:0], BA[1:0], A[16:0]. Input parity should be maintained at the rising edge of the clock and at the same time as command and address with CS_n LOW. RAS_n/A16 CAS_n/A15 WE_n/A14 Input Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n) define the command and/or address being entered and have multiple functions. For example, for activation with ACT_n LOW, these are addresses like A16, A15, and A14, but for a non-activation command with ACT_n HIGH, these are command pins for READ, WRITE, and other commands defined in Command Truth Table. RESET_n CMOS Input SAx Input Serial address inputs: Used to configure the temperature sensor/SPD EEPROM address range on the I2C bus. SCL Input Serial clock for temperature sensor/SPD EEPROM: Used to synchronize communication to and from the temperature sensor/SPD EEPROM on the I2C bus. DQx, CBx I/O Data input/output and check bit input/output: Bidirectional data bus. DQ represents DQ[3:0], DQ[7:0], and DQ[15:0] for the x4, x8, and x16 configurations, respectively. If cyclic redundancy checksum (CRC) is enabled via the mode register, the CRC code is added at the end of the data burst. Any one or all of DQ0, DQ1, DQ2, or DQ3 may be used for monitoring of internal VREF level during test via mode register setting MR[4] A[4] = HIGH; training times change when enabled. DM_n/DBI_n/ TDQS_t (DMU_n, DBIU_n), (DML_n/ DBIl_n) I/O Input data mask and data bus inversion: DM_n is an input mask signal for write data. Input data is masked when DM_n is sampled LOW coincident with that input data during a write access. DM_n is sampled on both edges of DQS. DM is multiplexed with the DBI function by the mode register A10, A11, and A12 settings in MR5. For a x8 device, the function of DM or TDQS is enabled by the mode register A11 setting in MR1. DBI_n is an input/output identifying whether to store/output the true or inverted data. If DBI_n is LOW, the data will be stored/ output after inversion inside the DDR4 device and not inverted if DBI_n is HIGH. TDQS is only supported in x8 SDRAM configurations (TDQS is not valid for UDIMMs). SDA I/O Serial Data: Bidirectional signal used to transfer data in or out of the EEPROM or EEPROM/TS combo device. DQS_t DQS_c DQSU_t DQSU_c DQSL_t DQSL_c I/O Data strobe: Output with read data, input with write data. Edge-aligned with read data, centered-aligned with write data. For x16 configurations, DQSL corresponds to the data on DQ[7:0], and DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 configurations, DQS corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4 SDRAM supports a differential data strobe only and does not support a single-ended data strobe. ALERT_n Output Alert output: Possesses functions such as CRC error flag and command and address parity error flag as output signal. If a CRC error occurs, ALERT_n goes LOW for the period time interval and returns HIGH. If an error occurs during a command address parity check, ALERT_n goes LOW until the on-going DRAM internal recovery transaction is complete. During connectivity test mode, this pin functions as an input. Use of this signal is system-dependent. If not connected as signal, ALERT_n pin must be connected to VDD on DIMMs. EVENT_n Output Temperature event: The EVENT_n pin is asserted by the temperature sensor when critical temperature thresholds have been exceeded. This pin has no function (NF) on modules without temperature sensors. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN Active LOW asynchronous reset: Reset is active when RESET_n is LOW and inactive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. 7 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Pin Descriptions Table 5: Pin Descriptions (Continued) Symbol Type Description TDQS_t TDQS_c Output Termination data strobe: When enabled via the mode register, the DRAM device enables the same RTT termination resistance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c. When the TDQS function is disabled via the mode register, the DM/TDQS_t pin provides the data mask (DM) function, and the TDQS_c pin is not used. The TDQS function must be disabled in the mode register for both the x4 and x16 configurations. The DM function is supported only in x8 and x16 configurations. DM, DBI, and TDQS are a shared pin and are enabled/disabled by mode register settings. For more information about TDQS, see the DDR4 DRAM component data sheet (TDQS_t and TDQS_c are not valid for UDIMMs). VDD Supply Module power supply: 1.2V (TYP). VPP Supply DRAM activating power supply: 2.5V –0.125V / +0.250V. VREFCA Supply Reference voltage for control, command, and address pins. VSS Supply Ground. (x8 DRAM-based RDIMM only) VTT Supply Power supply for termination of address, command, and control VDD/2. VDDSPD Supply Power supply used to power the I2C bus for SPD. RFU – Reserved for future use. NC – No connect: No internal electrical connection is present. NF – No function: May have internal connection present, but has no function. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 8 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM DQ Map DQ Map Table 6: Component-to-Module DQ Map Component Reference Number Component DQ U1 U4 CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN Module DQ Module Pin Number Component Reference Number Component DQ Module DQ Module Pin Number 00 3 21 U2 00 19 63 01 1 7 01 17 49 02 2 20 02 18 62 03 0 8 03 16 50 04 7 17 04 23 59 05 5 3 05 21 45 06 6 16 06 22 58 07 4 4 07 20 46 08 10 41 08 26 83 09 8 28 09 24 70 10 11 42 10 27 84 11 9 29 11 25 71 12 14 38 12 30 79 13 13 25 13 29 67 14 15 37 14 31 80 15 12 24 15 28 66 00 35 186 00 51 229 01 33 173 01 49 215 02 34 187 02 50 228 03 32 174 03 48 216 04 39 182 04 55 225 05 37 169 05 53 212 06 38 183 06 54 224 07 36 170 07 52 211 08 42 207 08 58 249 09 40 195 09 56 237 10 43 208 10 59 250 11 41 194 11 57 236 12 46 203 12 62 245 13 45 190 13 61 233 14 47 204 14 63 246 15 44 191 15 60 232 U5 9 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Functional Block Diagram Functional Block Diagram Figure 2: Functional Block Diagram CS0_n CS_n DQS0_t DQS0_c DM0_n/DBI0_n DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQS1_t DQS1_c DM1_n/DBI1_n DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 VSS DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ U1 DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ ZQ CS_n DQS2_t DQS2_c DM2_n/DBI2_n DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQS3_t DQS3_c DM3_n/DBI3_n DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 VSS DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ U2 DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ ZQ Note: CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN CS_n DQS4_t DQS4_c DM4_n/DBI4_n DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 DQS5_t DQS5_c DM5_n/DBI5_n DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 VSS DQS6_t DQS6_c DM6_n/DBI6_n DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 DQS7_t DQS7_c DM7_n/DBI7_n DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 VSS DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ U4 DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ ZQ BA[1:0] BG[1:0] ACT_n A[13:0] RAS_n/A16 CAS_n/A15 WE_n/A14 CKE0 ODT0 RESET PAR_IN ALERT_CONN BA[1:0]: DDR4 SDRAM BG[1:0]: DDR4 SDRAM ACT_n: DDR4 SDRAM A[13:0]: DDR4 SDRAM RAS_n/A16: DDR4 SDRAM CAS_n/A15: DDR4 SDRAM WE_n/A14: DDR4 SDRAM CKE0: Rank 0 ODT0: Rank 0 RESET_n: DDR4 SDRAM PAR: DDR4 SDRAM ALERT_DRAM: DDR4 SDRAM Clock, control, command, and address line terminations: DDR4 SDRAM CS0_n, BA[1:0], BG[1:0], ACT_n, A[13:0], RAS_n/A16, CAS_n/A15, WE_n/A14, CKE0, ODT0 VTT DDR4 SDRAM CK0_t CK0_c VDD CS_n DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ U5 DQS_t DQS_c DM_n/DBI_n DQ DQ DQ DQ DQ DQ DQ DQ ZQ U3 SCL SPD EEPROM EVT A0 Vss CK0_t CK0_c SDA A1 A2 SA0 SA1 Vss Rank 0 CK1_t CK1_c Vddspd SPD EEPROM Vdd DDR4 SDRAM Vtt Control, command, and address termination Vref CA DDR4 SDRAM Vpp DDR4 SDRAM Vss DDR4 SDRAM 1. The ZQ ball on each DDR4 component is connected to an external 240Ω ±1% resistor that is tied to ground. It is used for the calibration of the component’s ODT and output driver. 10 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM General Description General Description High-speed DDR4 SDRAM modules use DDR4 SDRAM devices with two or four internal memory bank groups. DDR4 SDRAM modules utilizing 4- and 8-bit-wide DDR4 SDRAM devices have four internal bank groups consisting of four memory banks each, providing a total of 16 banks. 16-bit-wide DDR4 SDRAM devices have two internal bank groups consisting of four memory banks each, providing a total of eight banks. DDR4 SDRAM modules benefit from DDR4 SDRAM's use of an 8n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single READ or WRITE operation for the DDR4 SDRAM effectively consists of a single 8n-bitwide, four-clock data transfer at the internal DRAM core and eight corresponding n-bitwide, one-half-clock-cycle data transfers at the I/O pins. DDR4 modules use two sets of differential signals: DQS_t and DQS_c to capture data and CK_t and CK_c to capture commands, addresses, and control signals. Differential clocks and data strobes ensure exceptional noise immunity for these signals and provide precise crossing points to capture input signals. Fly-By Topology DDR4 modules use faster clock speeds than earlier DDR technologies, making signal quality more important than ever. For improved signal quality, the clock, control, command, and address buses have been routed in a fly-by topology, where each clock, control, command, and address pin on each DRAM is connected to a single trace and terminated (rather than a tree structure, where the termination is off the module near the connector). Inherent to fly-by topology, the timing skew between the clock and DQS signals can be easily accounted for by using the write-leveling feature of DDR4. Module Manufacturing Location Micron Technology manufactures modules at sites world-wide. Customers may receive modules from any of the following manufacturing locations: Table 7: DRAM Module Manufacturing Locations Manufacturing Site Location Country of Origin Specified on Label Boise, USA USA Aguadilla, Puerto Rico Puerto Rico Xian, China China Singapore Singapore CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 11 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Address Mapping to DRAM Address Mapping to DRAM Address Mirroring To achieve optimum routing of the address bus on DDR4 multi rank modules, the address bus will be wired as shown in the table below, or mirrored. For quad rank modules, ranks 1 and 3 are mirrored and ranks 0 and 2 are non-mirrored. Highlighted address pins have no secondary functions allowing for normal operation when crosswired. Data is still read from the same address it was written. However, Load Mode operations require a specific address. This requires the controller to accommodate for a rank that is "mirrored." Systems may reference DDR4 SPD to determine if the module has mirroring implemented or not. See the JEDEC DDR4 SPD specification for more details. Table 8: Address Mirroring Edge Connector Pin DRAM Pin, Non-mirrored DRAM Pin, Mirrored A0 A0 A0 A1 A1 A1 A2 A2 A2 A3 A3 A4 A4 A4 A3 A5 A5 A6 A6 A6 A5 A7 A7 A8 A8 A8 A7 A9 A9 A9 A10 A10 A10 A11 A11 A13 A13 A13 A11 A12 A12 A12 A14 A14 A14 A15 A15 A15 A16 A16 A16 A17 A17 A17 BA0 BA0 BA1 BA1 BA1 BA0 BG0 BG0 BG1 BG1 BG1 BG0 CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 12 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM SPD EEPROM Operation SPD EEPROM Operation DDR4 SDRAM modules incorporate serial presence detect (SPD). The SPD data is stored in a 512-byte JEDEC JC-42.4-compliant EEPROM that is segregated into four 128byte, write-protectable blocks. The SPD content is aligned with these blocks as shown in the table below. Block Range Description 0 0–127 1 128–255 080h–0FFh Module-specific parameters 2 256–319 100h–13Fh Reserved; all bytes coded as 00h 320–383 140h–17Fh Manufacturing information 384–511 180h–1FFh End-user programmable 3 000h–07Fh Configuration and DRAM parameters The first 384 bytes are programmed by Micron to comply with JEDEC standard JC-45, "Appendix X: Serial Presence Detect (SPD) for DDR4 SDRAM Modules." The remaining 128 bytes of storage are available for use by the customer. The EEPROM resides on a two-wire I2C serial interface and is not integrated with the memory bus in any way. It operates as a slave device in the I2C bus protocol, with all operations synchronized by the serial clock. Transfer rates of up to 1 MHz are achievable at 2.5V (NOM). Micron implements reversible software write protection on DDR4 SDRAM-based modules. This prevents the lower 384 bytes (bytes 0–383) from being inadvertently programmed or corrupted. The upper 128 bytes remain available for customer use and unprotected. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 13 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Electrical Specifications Electrical Specifications Stresses greater than those listed may cause permanent damage to the module. This is a stress rating only, and functional operation of the module at these or any other conditions outside those indicated in each device's data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may adversely affect reliability. Table 9: Absolute Maximum Ratings Symbol Parameter Min Max Units Notes VDD VDD supply voltage relative to VSS –0.4 1.5 V 1 VDDQ VDDQ supply voltage relative to VSS –0.4 1.5 V 1 Voltage on VPP pin relative to VSS –0.4 3.0 V 2 VIN, VOUT Voltage on any pin relative to VSS –0.4 1.5 V VPP Table 10: Operating Conditions Symbol Parameter Min Nom Max Units Notes VDD VDD supply voltage 1.14 1.2 1.26 V 1 VPP DRAM activating power supply 2.375 2.5 2.75 V 2 0.49 × VDD 0.5 × VDD 0.51 × VDD V 3 –500 – 500 mA 0.49 × VDD 20mV 0.5 × VDD 0.51 × VDD + 20mV V 4 VREFCA(DC) Input reference voltage command/ address bus IVTT Termination reference current from VTT VTT Termination reference voltage (DC) – command/address bus IIN Input leakage current; any input excluding ZQ; 0V < VIN < 1.1V –2.0 – 2.0 µA 5 IZQ Input leakage current; ZQ 5, 6 –50.0 – 10.0 µA IOZpd Output leakage current; VOUT = VDD; DQ is disabled – – 10.0 µA IOZpu Output leakage current; VOUT = VSS; DQ is disabled; ODT is disabled with ODT input HIGH –50.0 – – µA VREFCA leakage; VREFCA = VDD/2 (after DRAM is initialized) –2.0 – 2.0 µA IVREFCA Notes: CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 5 1. VDDQ tracks with VDD; VDDQ and VDD are tied together. 2. VPP must be greater than or equal to VDD at all times. 3. VREFCA must not be greater than 0.6 x VDD. When VDD is less than 500mV, VREF may be less than or equal to 300mV. 4. VTT termination voltages in excess of the specification limit adversely affect the voltage margins of command and address signals and reduce timing margins. 5. Multiply by the number of DRAM die on the module. 6. Tied to ground. Not connected to edge connector. 14 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Electrical Specifications Table 11: Thermal Characteristics Symbol Parameter/Condition Value Units Notes TC Commercial operating case temperature 0 to 85 °C 1, 2, 3 >85 to 95 °C 1, 2, 3, 4 0 to 85 °C 5, 7 TC TOPER Normal operating temperature range TOPER Extended temperature operating range (optional) >85 to 95 °C 5, 7 TSTG Non-operating storage temperature –55 to 100 °C 6 RHSTG Non-operating Storage Relative Humidity (non-condensing) 5 to 95 % NA Change Rate of Storage Temperature 20 °C/hour Notes: CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 1. Maximum operating case temperature; TC is measured in the center of the package. 2. A thermal solution must be designed to ensure the DRAM device does not exceed the maximum TC during operation. 3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during operation. 4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2X refresh, which is a 3.9µs interval refresh rate. 5. The refresh rate must double when 85°C < TOPER ≤ 95°C. 6. Storage temperature is defined as the temperature of the top/center of the DRAM and does not reflect the storage temperatures of shipping trays. 7. For additional information, refer to technical note TN-00-08: "Thermal Applications" available at micron.com. 15 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM DRAM Operating Conditions DRAM Operating Conditions Recommended AC operating conditions are given in the DDR4 component data sheets. Component specifications are available at micron.com. Module speed grades correlate with component speed grades, as shown below. Table 12: Module and Component Speed Grades DDR4 components may exceed the listed module speed grades; module may not be available in all listed speed grades Module Speed Grade Component Speed Grade -3G2 -062E -2G9 -068 -2G6 -075 -2G3 -083 -2G1 -093E Design Considerations Simulations Micron memory modules are designed to optimize signal integrity through carefully designed terminations, controlled board impedances, routing topologies, trace length matching, and decoupling. However, good signal integrity starts at the system level. Micron encourages designers to simulate the signal characteristics of the system's memory bus to ensure adequate signal integrity of the entire memory system. Power Operating voltages are specified at the edge connector of the module, not at the DRAM. Designers must account for any system voltage drops at anticipated power levels to ensure the required supply voltage is maintained. IDD, I PP and IDDQ Specifications IDD and IPP values are only for the DDR4 SDRAM, and calculated from values in the supporting component data sheet. IPP and IDDQ currents are not included in IDD currents. IDD and IDDQ currents are not included in IPP currents. Micron does not specify IDDQ currents. In DRAM module application, IDDQ cannot be measured separately because VDD and V DDQ use a merged-power layer in the module PCB. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 16 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM IDD Specifications IDD Specifications Table 13: DDR4 IDD Specifications and Conditions – 4GB (Die Revision B) Values are for the MT40A512M16 DDR4 SDRAM only and are computed from values specified in the 8Gb (512 Meg x 16) component data sheet Parameter Symbol 2666 2400 Units One bank ACTIVATE-PRECHARGE current IDD0 340 320 mA One bank ACTIVATE-PRECHARGE, Word Line Boost, IPP current IPP0 16 16 mA One bank ACTIVATE-READ-PRECHARGE current IDD1 420 400 mA Precharge standby current IDD2N 140 136 mA Precharge standby ODT current IDD2NT 300 300 mA Precharge power-down current IDD2P 100 100 mA Precharge quiet standby current IDD2Q 120 120 mA Active standby current IDD3N 200 188 mA Active standby IPP current IPP3N 12 12 mA Active power-down current IDD3P 172 164 mA Burst read current IDD4R 1052 972 mA Burst write current IDD4W 976 912 mA Burst refresh current (1x REF) IDD5R 244 236 mA Burst refresh IPP current (1x REF) IPP5R 20 20 mA Self refresh current: Normal temperature range (0°C to 85°C) IDD6N 120 120 mA Self refresh current: Extended temperature range (0°C to 95°C) IDD6E 140 140 mA Self refresh current: Reduced temperature range (0°C to 45°C) IDD6R 80 80 mA Auto self refresh current (25°C) IDD6A 34.4 34.4 mA Auto self refresh current (45°C) IDD6A 80 80 mA Auto self refresh current (75°C) IDD6A 120 120 mA Auto self refresh IPP current IPP6X 20 20 mA Bank interleave read current IDD7 1036 996 mA Bank interleave read IPP current IPP7 60 60 mA Maximum power-down current IDD8 100 100 mA CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 17 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM IDD Specifications Table 14: DDR4 IDD Specifications and Conditions – 4GB (Die Revision D) Values are for the MT40A512M16 DDR4 SDRAM only and are computed from values specified in the 8Gb (512 Meg x 16) component data sheet Parameter Symbol 3200 2666 Units One bank ACTIVATE-PRECHARGE current IDD0 380 340 mA One bank ACTIVATE-PRECHARGE, Word Line Boost, IPP current IPP0 16 16 mA One bank ACTIVATE-READ-PRECHARGE current IDD1 460 420 mA Precharge standby current IDD2N 148 140 mA Precharge standby ODT current IDD2NT 324 300 mA Precharge power-down current IDD2P 100 100 mA Precharge quiet standby current IDD2Q 120 120 mA Active standby current IDD3N 244 220 mA Active standby IPP current IPP3N 12 12 mA Active power-down current IDD3P 188 172 mA Burst read current IDD4R 1208 1052 mA Burst write current IDD4W 1160 1020 mA Burst refresh current (1x REF) IDD5R 288 268 mA Burst refresh IPP current (1x REF) IPP5R 20 20 mA Self refresh current: Normal temperature range (0°C to 85°C) IDD6N 124 124 mA Self refresh current: Extended temperature range (0°C to 95°C) IDD6E 144 144 mA Self refresh current: Reduced temperature range (0°C to 45°C) IDD6R 84 84 mA Auto self refresh current (25°C) IDD6A 34.4 34.4 mA Auto self refresh current (45°C) IDD6A 84 84 mA Auto self refresh current (75°C) IDD6A 124 124 mA Auto self refresh IPP current IPP6X 20 20 mA Bank interleave read current IDD7 1116 1036 mA Bank interleave read IPP current IPP7 80 80 mA Maximum power-down current IDD8 100 100 mA CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 18 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM IDD Specifications Table 15: DDR4 IDD Specifications and Conditions – 4GB (Die Revision E) Values are for the MT40A512M16 DDR4 SDRAM only and are computed from values specified in the 8Gb (512 Meg x 16) component data sheet Parameter Symbol 3200 2666 2400 Units One bank ACTIVATE-PRECHARGE current IDD0 216 200 192 mA One bank ACTIVATE-PRECHARGE, Word Line Boost, IPP current IPP0 16 16 16 mA One bank ACTIVATE-READ-PRECHARGE current IDD1 320 304 296 mA Precharge standby current IDD2N 132 124 120 mA Precharge standby ODT current IDD2NT 220 196 184 mA Precharge power-down current IDD2P 88 88 88 mA Precharge quiet standby current IDD2Q 104 104 104 mA Active standby current IDD3N 176 160 152 mA Active standby IPP current IPP3N 12 12 12 mA Active power-down current IDD3P 136 128 124 mA Burst read current IDD4R 1248 1092 1012 mA Burst write current IDD4W 1000 864 796 mA Burst refresh current (1x REF) IDD5R 200 192 188 mA Burst refresh IPP current (1x REF) IPP5R 20 20 20 mA Self refresh current: Normal temperature range (0°C to 85°C) IDD6N 136 136 136 mA Self refresh current: Extended temperature range (0°C to 95°C) IDD6E 232 232 232 mA Self refresh current: Reduced temperature range (0°C to 45°C) IDD6R 84 84 84 mA Auto self refresh current (25°C) IDD6A 34.4 34.4 34.4 mA Auto self refresh current (45°C) IDD6A 84 84 84 mA Auto self refresh current (75°C) IDD6A 124 124 124 mA Auto self refresh current (95°C) IDD6A 232 232 232 mA Auto self refresh IPP current IPP6X 20 20 20 mA Bank interleave read current IDD7 1080 1008 972 mA Bank interleave read IPP current IPP7 72 72 72 mA Maximum power-down current IDD8 72 72 72 mA CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 19 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM IDD Specifications Table 16: DDR4 IDD Specifications and Conditions – 4GB (Die Revision J) Values are for the MT40A512M16 DDR4 SDRAM only and are computed from values specified in the 8Gb (512 Meg x 16) component data sheet Parameter Symbol 3200 2666 Units One bank ACTIVATE-PRECHARGE current IDD0 208 192 mA One bank ACTIVATE-PRECHARGE, Word Line Boost, IPP current IPP0 16 16 mA One bank ACTIVATE-READ-PRECHARGE current IDD1 304 288 mA Precharge standby current IDD2N 124 120 mA Precharge standby ODT current IDD2NT 212 188 mA Precharge power-down current IDD2P 88 88 mA Precharge quiet standby current IDD2Q 104 104 mA Active standby current IDD3N 176 160 mA Active standby IPP current IPP3N 12 12 mA Active power-down current IDD3P 136 128 mA Burst read current IDD4R 1184 1040 mA Burst write current IDD4W 952 820 mA Burst refresh current (1x REF) IDD5R 188 180 mA Burst refresh IPP current (1x REF) IPP5R 20 20 mA Self refresh current: Normal temperature range (0°C to 85°C) IDD6N 128 128 mA Self refresh current: Extended temperature range (0°C to 95°C) IDD6E 220 220 mA Self refresh current: Reduced temperature range (0°C to 45°C) IDD6R 80 80 mA Auto self refresh current (25°C) IDD6A 32.8 32.8 mA Auto self refresh current (45°C) IDD6A 80 80 mA Auto self refresh current (75°C) IDD6A 120 120 mA Auto self refresh current (95°C) IDD6A 220 220 mA Auto self refresh IPP current IPP6X 20 20 mA Bank interleave read current IDD7 1028 960 mA Bank interleave read IPP current IPP7 60 60 mA Maximum power-down current IDD8 72 72 mA CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 20 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM SPD EEPROM Operating Conditions SPD EEPROM Operating Conditions For the latest SPD data, refer to Micron's SPD page: micron.com/spd. Table 17: SPD EEPROM DC Operating Conditions Parameter/Condition Symbol Min Nom Max Units VDDSPD – 2.5 – V Input low voltage: logic 0; all inputs VIL –0.5 – VDDSPD × 0.3 V Input high voltage: logic 1; all inputs VIH VDDSPD × 0.7 – VDDSPD + 0.5 V Output low voltage: 3mA sink current VDDSPD > 2V Supply voltage VOL – – 0.4 V Input leakage current: (SCL, SDA) VIN = VDDSPD or VSSSPD ILI – – ±5 µA Output leakage current: VOUT = VDDSPD or VSSSPD, SDA in High-Z ILO – – ±5 µA Notes: 1. Table is provided as a general reference. Consult JEDEC JC-42.4 EE1004 and TSE2004 device specifications for complete details. 2. All voltages referenced to VDDSPD. Table 18: SPD EEPROM AC Operating Conditions Parameter/Condition Symbol Min Max Units tSCL 10 1000 kHz Clock pulse width HIGH time tHIGH 260 – ns Clock pulse width LOW time tLOW 500 – ns tTIMEOUT 25 35 ms SDA rise time tR – 120 ns SDA fall time tF – 120 ns Data-in setup time tSU:DAT 50 – ns Data-in hold time tHD:DI 0 – ns Data out hold time tHD:DAT 0 350 ns Start condition setup time tSU:STA 260 – ns Start condition hold time tHD:STA 260 – ns Stop condition setup time tSU:STO 260 – ns tBUF 500 – ns tW Clock frequency Detect clock LOW timeout Time the bus must be free before a new transition can start Write time Warm power cycle time off Time from power on to first command Note: CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN – 5 ms tPOFF 1 – ms tINIT 10 – ms 1. Table is provided as a general reference. Consult JEDEC JC-42.4 EE1004 and TSE2004 device specifications for complete details. 21 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved. 4GB (x64, SR) 260-Pin DDR4 SODIMM Module Dimensions Module Dimensions Figure 3: 260-Pin DDR4 SODIMM 2.5 (0.1) MAX Front view 69.73 (2.745) 69.47 (2.735) .65 (0.025) R0 (4X) U1 1.75 (0.07) 1.8 (0.071) TYP (2X) (2X) U4 U2 30.13 (1.186) 29.87 (1.176) U5 20.0 (0.787) TYP U3 6.0 (0.236) TYP 0.35 (0.014) TYP PIN 1 2.0 (0.079) TYP 1.0 (0.039) TYP 1.3 (0.051) 1.1 (0.043) 0.5 (0.019) TYP PIN 259 65.6 (2.58) TYP Back view 0.6 (0.24) x 45° (4X) No Components This Side of Module 4.0 (0.157) TYP (2X) 18.0 (0.71) TYP 2.55 (0.10) TYP PIN 260 2.5 (0.98) TYP 4.0 (0.157) TYP 0.25 (0.1) x 45° (2X) PIN 2 28.5 (1.12) TYP 35.5 (1.4) TYP 38.3 (1.51) TYP Notes: 1. All dimensions are in millimeters (inches); MAX/MIN or typical (TYP) where noted. 2. The dimensional diagram is for reference only. 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. CCMTD-1725822587-10265 atf4c512x64hz.pdf – Rev. F 10/18 EN 22 Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2016 Micron Technology, Inc. All rights reserved.
MTA4ATF51264HZ-2G3B2 价格&库存

很抱歉,暂时无法提供与“MTA4ATF51264HZ-2G3B2”相匹配的价格&库存,您可以联系我们找货

免费人工找货