0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
A3PE600-PQG208I

A3PE600-PQG208I

  • 厂商:

    MICROSEMI(美高森美)

  • 封装:

    PQFP

  • 描述:

    IC FPGA 147 I/O 208QFP

  • 详情介绍
  • 数据手册
  • 价格&库存
A3PE600-PQG208I 数据手册
Revision 16 ProASIC3E Flash Family FPGAs with Optional Soft ARM Support DS0098 Features and Benefits Pro (Professional) I/O • • • • High Capacity • 600 k to 3 Million System Gates • 108 to 504 kbits of True Dual-Port SRAM • Up to 620 User I/Os Reprogrammable Flash Technology • 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process • Instant On Level 0 Support • Single-Chip Solution • Retains Programmed Design when Powered Off On-Chip User Nonvolatile Memory • 1 kbit of FlashROM with Synchronous Interfacing High Performance • 350 MHz System Performance • 3.3 V, 66 MHz 64-Bit PCI In-System Programming (ISP) and Security • ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption via JTAG (IEEE 1532–compliant) • FlashLock® Designed to Secure FPGA Contents Low Power • • • • • • • • • • 700 Mbps DDR, LVDS-Capable I/Os 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation Bank-Selectable I/O Voltages—up to 8 Banks per Chip Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS 2.5 V / 5.0 V Input Differential I/O Standards: LVPECL, LVDS, B-LVDS, and M-LVDS Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II I/O Registers on Input, Output, and Enable Paths Hot-Swappable and Cold Sparing I/Os Programmable Output Slew Rate and Drive Strength Programmable Input Delay Schmitt Trigger Option on Single-Ended Inputs Weak Pull-Up/-Down IEEE 1149.1 (JTAG) Boundary Scan Test Pin-Compatible Packages across the ProASIC®3E Family Clock Conditioning Circuit (CCC) and PLL • Six CCC Blocks, Each with an Integrated PLL • Configurable Phase-Shift, Multiply/Divide, Delay Capabilities and External Feedback • Wide Input Frequency Range (1.5 MHz to 350 MHz) • Core Voltage for Low Power • Support for 1.5-V-Only Systems • Low-Impedance Flash Switches SRAMs and FIFOs • • • • • ARM® Processor Support in ProASIC3E FPGAs • Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9, and ×18 organizations available) • True Dual-Port SRAM (except ×18) • 24 SRAM and FIFO Configurations with Synchronous Operation up to 350 MHz High-Performance Routing Hierarchy Segmented, Hierarchical Routing and Clock Structure Ultra-Fast Local and Long-Line Network Enhanced High-Speed, Very-Long-Line Network High-Performance, Low-Skew Global Network Architecture Supports Ultra-High Utilization • M1 ProASIC3E Devices—Cortex-M1 Soft Processor Available with or without Debug Table 1-1 • ProASIC3E Product Family ProASIC3E Devices Cortex-M1 Devices 1 A3PE600 A3PE1500 A3PE3000 M1A3PE1500 M1A3PE3000 System Gates 600,000 1,500,000 3,000,000 VersaTiles (D-flip-flops) 13,824 38,400 75,264 RAM Kbits (1,024 bits) 108 270 504 4,608-Bit Blocks 24 60 112 FlashROM Kbits 1 1 1 Secure (AES) ISP Yes Yes Yes 6 6 6 18 18 18 CCCs with Integrated PLLs2 VersaNet Globals3 I/O Banks Maximum User I/Os Package Pins PQFP FBGA 8 8 8 270 444 620 FG256, FG484 PQ208 FG484, FG676 PQ208 FG324, FG484, FG896 Notes: 1. Refer to the Cortex-M1 product brief for more information. 2. The PQ208 package supports six CCCs and two PLLs. 3. Six chip (main) and three quadrant global networks are available. 4. For devices supporting lower densities, refer to the ProASIC3 Flash Family FPGAs datasheet. November 2019 © 2019 Microsemi Corporation I ProASIC3E Flash Family FPGAs I/Os Per Package1 ProASIC3E Devices A3PE1500 3 A3PE3000 3 M1A3PE1500 M1A3PE3000 A3PE600 Cortex-M1 Devices 2 Differential I/O Pairs Differential I/O Pairs Single-Ended I/O1 Differential I/O Pairs PQ208 – – 147 65 147 65 FG256 165 79 – – – – FG324 – – – – 221 110 FG484 270 135 280 139 341 168 FG676 – – 444 222 – – FG896 – – – – 620 310 Package Single-Ended I/O1 Single-Ended I/O1 I/O Types Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3E FPGA Fabric User’s Guide to ensure compliance with design and board migration requirements. 2. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 3. For A3PE1500 and A3PE3000 devices, the usage of certain I/O standards is limited as follows: – SSTL3(I) and (II): up to 40 I/Os per north or south bank – LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank – SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank 4. FG256 and FG484 are footprint-compatible packages. 5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per minibank (group of I/Os). 6. "G" indicates RoHS-compliant packages. Refer to the "ProASIC3E Ordering Information" on page III for the location of the "G" in the part number. Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions Package PQ208 FG256 FG324 FG484 FG676 FG896 28 × 28 17 × 17 19 × 19 23 × 23 27 × 27 31 × 31 784 289 361 529 729 961 Pitch (mm) 0.5 1.0 1.0 1.0 1.0 1.0 Height (mm) 3.40 1.60 1.63 2.23 2.23 2.23 Length × Width (mm\mm) Nominal Area (mm2 ) ProASIC3E Device Status ProASIC3E Devices Status M1 ProASIC3E Devices Status A3PE600 Production A3PE1500 Production M1A3PE1500 Production A3PE3000 Production M1A3PE3000 Production II R evis ion 16 ProASIC3E Flash Family FPGAs ProASIC3E Ordering Information A3PE3000 _ 1 FG G 896 I Y Security Feature Y = Device Includes License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Note: Only devices with packages greater than or equal to 5x5 are supported Blank = Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Application (Temperature Range) Blank = Commercial (0°C to +85°C Junction Temperature) I = Industrial (–40°C to +100°C Junction Temperature) PP = Pre-Production ES = Engineering Sample (Room Temperature Only) Package Lead Count Lead-Free Packaging Blank = Standard Packaging G = RoHS-Compliant (Green) Packaging Package Type PQ = Plastic Quad Flat Pack (0.5 mm pitch) FG = Fine Pitch Ball Grid Array (1.0 mm pitch) Speed Grade 1 = 15% Faster than Standard 2 = 25% Faster than Standard Part Number ProASIC3E Devices A3PE600 = 600,000 System Gates A3PE1500 = 1,500,000 System Gates A3PE3000 = 3,000,000 System Gates ProASIC3E Devices with Cortex-M1 M1A3PE1500 = 1,500,000 System Gates M1A3PE3000 = 3,000,000 System Gates R evisio n 16 III ProASIC3E Flash Family FPGAs Temperature Grade Offerings Package A3PE600 Cortex-M1 Devices A3PE1500 A3PE3000 M1A3PE1500 M1A3PE3000 PQ208 – C, I C, I FG256 C, I – – FG324 – – C, I FG484 C, I C, I C, I FG676 – C, I – FG896 – – C, I Note: C = Commercial temperature range: 0°C to 70°C ambient temperature I = Industrial temperature range: –40°C to 85°C ambient temperature Speed Grade and Temperature Grade Matrix Temperature Grade C 1 I2 Std. –1 –2       Notes: 1. C = Commercial temperature range: 0°C to 70°C ambient temperature 2. I = Industrial temperature range: –40°C to 85°C ambient temperature References made to ProASIC3E devices also apply to ARM-enabled ProASIC3E devices. The ARM-enabled part numbers start with M1 (Cortex-M1). Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/index.php?option=com_content&id=135&lang=en&view=article. IV R evis ion 16 ProASIC3E Flash Family FPGAs Table of Contents ProASIC3E Device Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 ProASIC3E DC and Switching Characteristics General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66 Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-75 Pin Descriptions and Packaging Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3-2 3-2 3-3 3-4 3-4 3-4 Package Pin Assignments PQ208 FG256 FG324 FG484 FG676 FG896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 R evisio n 16 V 1 – ProASIC3E Device Family Overview General Description ProASIC3E, the third-generation family of Microsemi flash FPGAs, offers performance, density, and features beyond those of the ProASICPLUS® family. Nonvolatile flash technology gives ProASIC3E devices the advantage of being a secure, low power, single-chip solution that is Instant On. ProASIC3E is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. ProASIC3E devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on six integrated phase-locked loops (PLLs). ProASIC3E devices have up to three million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os. Several ProASIC3E devices support the Cortex-M1 soft IP cores, and the ARM-Enabled devices have Microsemi ordering numbers that begin with M1A3PE. Flash Advantages Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based ProASIC3E devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3E family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3E family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/ communications, computing, and avionics markets. Security The nonvolatile, flash-based ProASIC3E devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3E devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. ProASIC3E devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in ProASIC3E devices can be encrypted prior to loading, using the industryleading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. ProASIC3E devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3E devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. Security, built into the FPGA fabric, is an inherent component of the ProASIC3E family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The ProASIC3E family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. A ProASIC3E device provides the best available security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to R evisio n 16 1-1 ProASIC3E Flash Family FPGAs be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based ProASIC3E FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Instant On Flash-based ProASIC3E devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based ProASIC3E devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs that are used for these purposes in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3E device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based ProASIC3E devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. Firm Errors Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3E flash-based FPGAs. Once it is programmed, the flash cell configuration element of ProASIC3E FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Low Power Flash-based ProASIC3E devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3E devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. ProASIC3E devices also have low dynamic power consumption to further maximize power savings. Advanced Flash Technology The ProASIC3E family offers many benefits, including nonvolatility and reprogrammability through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. R evisio n 16 2 General Description Advanced Architecture The proprietary ProASIC3E architecture provides granularity comparable to standard-cell ASICs. The ProASIC3E device consists of five distinct and programmable architectural features (Figure 1-1 on page 3): • FPGA VersaTiles • Dedicated FlashROM • Dedicated SRAM/FIFO memory • Extensive CCCs and PLLs • Pro I/O structure The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a Dflip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the ProASIC3E core tile as either a three-input lookup table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC family of thirdgeneration architecture Flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block Pro I/Os VersaTile ISP AES Decryption Figure 1-1 • 3 User Nonvolatile FlashROM RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block Charge Pumps ProASIC3E Device Architecture Overview R evis ion 16 ProASIC3E Flash Family FPGAs VersaTiles The ProASIC3E core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The ProASIC3E VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure 1-2 for VersaTile configurations. LUT-3 Equivalent X1 X2 X3 LUT-3 D-Flip-Flop with Clear or Set Y Data CLK CLR Y D-FF Enable D-Flip-Flop with Clear or Set Data CLK Y D-FF Enable CLR Figure 1-2 • VersaTile Configurations User Nonvolatile FlashROM ProASIC3E devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, set-top boxes) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management The FlashROM is written using the standard ProASIC3E IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks, as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The ProASIC3E development software solutions, Libero® System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. SRAM and FIFO ProASIC3E devices have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. R evisio n 16 4 General Description For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro. In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. PLL and CCC ProASIC3E devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3E family contains six CCCs, each with an integrated PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. To maximize user I/Os, only the center east and west PLLs are available in devices using the PQ208 package. However, all six CCC blocks are still usable; the four corner CCCs allow simple clock delay operations as well as clock spine access. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. The CCC block has these key features: • Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz • Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz • Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns • 2 programmable delay types for clock skew minimization • Clock frequency synthesis Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration. • Output duty cycle = 50% ± 1.5% or better • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used • Maximum acquisition time = 300 µs • Low power consumption of 5 mW • Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns • Four precise phases; maximum misalignment between adjacent phases of 40 ps × (350 MHz / fOUT_CCC) Global Clocking ProASIC3E devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high fanout nets. 5 R evis ion 16 ProASIC3E Flash Family FPGAs Pro I/Os with Advanced I/O Standards The ProASIC3E family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). ProASIC3E FPGAs support 19 different I/O standards, including single-ended, differential, and voltagereferenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage. Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II) • Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II) I/Os for point-to-point ProASIC3E banks support M-LVDS with 20 multi-drop points. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. Specifying I/O States During Programming You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information. Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only. 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming. 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator window appears. 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box. 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-3 on page 1-7). 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings: 1 – I/O is set to drive out logic High 0 – I/O is set to drive out logic Low Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated R evisio n 16 6 General Description Figure 1-3 • I/O States During Programming Window 6. Click OK to return to the FlashPoint – Programming File Generator window. I/O States during programming are saved to the ADB and resulting programming files after completing programming file generation. 7 R evis ion 16 2 – ProASIC3E DC and Switching Characteristics General Specifications DC and switching characteristics for –F speed grade targets are based only on simulation. The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range. Operating Conditions Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied. Table 2-1 • Absolute Maximum Ratings Symbol Parameter Limits Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V –0.3 to 1.65 V DC I/O output buffer supply voltage –0.3 to 3.75 V VMV 2 DC I/O input buffer supply voltage –0.3 to 3.75 V VI I/O input voltage VCCPLL Analog power supply (PLL) VCCI 2 –0.3 V to 3.6 V (when I/O hot insertion mode is enabled) V –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) TSTG 3 Storage temperature –65 to +150 °C TJ 3 Junction temperature +125 °C Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-2. 2. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information. 3. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for recommended operating limits, refer to Table 2-2 on page 2-2. R evisio n 16 2-1 Table 2-2 • Recommended Operating Conditions 1 Symbol Parameter Commercial Industrial Units TA Ambient temperature 0 to +70 –40 to +85 °C TJ Junction temperature 0 to +85 –40 to +100 °C VCC 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V VJTAG JTAG DC voltage 1.4 to 3.6 1.4 to 3.6 V 3.15 to 3.45 3.15 to 3.45 V 0 to 3.6 0 to 3.6 V Analog power supply (PLL) 1.425 to 1.575 1.425 to 1.575 V 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V 3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V 2.7 to 3.6 2.7 to 3.6 V 2.375 to 2.625 2.375 to 2.625 V 3.0 to 3.6 3.0 to 3.6 V VPUMP 2 Programming voltage Programming Mode Operation3 VCCPLL VCCI and VMV 4 5 3.0 V DC supply voltage LVDS/B-LVDS/M-LVDS differential I/O LVPECL differential I/O Notes: 1. 2. 3. 4. All parameters representing voltages are measured with respect to GND unless otherwise specified. The programming temperature range supported is Tambient = 0°C to 85°C. VPUMP can be left floating during normal operation (not programming mode). The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-13 on page 2-17. VMV and VCCI should be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information. 5. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi’s timing and power simulation tools. 6. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation. Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature 1 Product Grade Programming Program Retention Maximum Storage Cycles (biased/unbiased) Temperature TSTG (°C) 2 Maximum Operating Junction Temperature TJ (°C) 2 Commercial 500 20 years 110 100 Industrial 500 20 years 110 100 Notes: 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits. 2 R evis ion 16 ProASIC3E Flash Family FPGAs Table 2-4 • Overshoot and Undershoot Limits 1 Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle2 Maximum Overshoot/ Undershoot2 2.7 V or less 10% 1.4 V 5% 1.49 V 3V 10% 1.1 V 5% 1.19 V 10% 0.79 V 5% 0.88 V 10% 0.45 V 5% 0.54 V VCCI and VMV 3.3 V 3.6 V Notes: 1. Based on reliability requirements at 85°C. 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 3. This table does not provide PCI overshoot/undershoot limits. I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial) Sophisticated power-up management circuitry is designed into every ProASIC®3E device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4. There are five regions to consider during power-up. ProASIC3E I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V VCC Trip Point: Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. R evisio n 16 3 PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLXL exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 on page 2-4 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the ProASIC3E FPGA Fabric User’s Guide for information on clock and lock recovery. Internal Power-Up Activation Sequence 1. Core 2. Input buffers 3. Output buffers, after 200 ns delay from input buffer activation VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC VCC = 1.575 V Region 4: I/O buffers are ON. I/Os are functional (except differential but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Region 1: I/O Buffers are OFF Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH / VIL, VOH / VOL, etc. VCC = 1.425 V Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI / VCC are below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Activation trip point: Va = 0.85 V ± 0.25 V Deactivation trip point: Vd = 0.75 V ± 0.25 V Region 1: I/O buffers are OFF Activation trip point: Va = 0.9 V ± 0.3 V Deactivation trip point: Vd = 0.8 V ± 0.3 V Figure 2-1 • 4 Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification. Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.425 V or 1.7 V or 2.3 V or 3.0 V I/O State as a Function of VCCI and VCC Voltage Levels R evis ion 16 VCCI ProASIC3E Flash Family FPGAs Thermal Characteristics Introduction The temperature variable in Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature. TJ = Junction Temperature = T + TA EQ 1 where: TA = Ambient Temperature T = Temperature gradient between junction (silicon) and ambient T = ja * P ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5. P = Power dissipation Package Thermal Characteristics The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction temperature is 110°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air. Max. junction temp. (C) – Max. ambient temp. (C) = ---------------------------------110C – 70C- = 5.88 W Maximum Power Allowed = -------------------------------------------------------------------------------------------------------------------------------- ja (C/W) 13.6C/W EQ 2 Table 2-5 • Package Thermal Resistivities ja Package Type Pin Count jc Still Air 200 ft./min. 500 ft./min. Units Plastic Quad Flat Package (PQFP) 208 8.0 26.1 22.5 20.8 C/W Plastic Quad Flat Package (PQFP) with embedded heat spreader in A3PE3000 208 3.8 16.2 13.3 11.9 C/W Fine Pitch Ball Grid Array (FBGA) 256 3.8 26.9 22.8 21.5 C/W 484 3.2 20.5 17.0 15.9 C/W 676 3.2 16.4 13.0 12.0 C/W 896 2.4 13.6 10.4 9.4 C/W R evisio n 16 5 Temperature and Voltage Derating Factors Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC = 1.425 V) Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.425 0.87 0.92 0.95 1.00 1.02 1.04 1.500 0.83 0.88 0.90 0.95 0.97 0.98 1.575 0.80 0.85 0.87 0.92 0.93 0.95 Calculating Power Dissipation Quiescent Supply Current Table 2-7 • Quiescent Supply Current Characteristics A3PE600 A3PE1500 A3PE3000 Typical (25°C) 5 mA 12 mA 25 mA Maximum (Commercial) 30 mA 70 mA 150 mA Maximum (Industrial) 45 mA 105 mA 225 mA Notes: 1. IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-8 and Table 2-9 on page 2-7. 2. –F speed grade devices may experience higher standby IDD of up to five times the standard IDD and higher I/O leakage. Power per I/O Pin Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings VMV (V) Static Power PDC2 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL/LVCMOS 3.3 – 17.39 3.3 V LVTTL/LVCMOS – Schmitt trigger 3.3 – 25.51 3.3 V LVTTL/LVCMOS Wide Range3 3.3 – 16.34 3.3 V LVTTL/LVCMOS Wide Range – Schmitt trigger3 3.3 – 24.49 2.5 V LVCMOS 2.5 – 5.76 2.5 V LVCMOS – Schmitt trigger 2.5 – 7.16 1.8 V LVCMOS 1.8 – 2.72 1.8 V LVCMOS – Schmitt trigger 1.8 – 2.80 1.5 V LVCMOS (JESD8-11) 1.5 – 2.08 1.5 V LVCMOS (JESD8-11) – Schmitt trigger 1.5 – 2.00 3.3 V PCI 3.3 – 18.82 Single-Ended Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification. 6 R evis ion 16 ProASIC3E Flash Family FPGAs Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings (continued) VMV (V) Static Power PDC2 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V PCI – Schmitt trigger 3.3 – 20.12 3.3 V PCI-X 3.3 – 18.82 3.3 V PCI-X – Schmitt trigger 3.3 – 20.12 3.3 V GTL 3.3 2.90 8.23 2.5 V GTL 2.5 2.13 4.78 3.3 V GTL+ 3.3 2.81 4.14 2.5 V GTL+ 2.5 2.57 3.71 HSTL (I) 1.5 0.17 2.03 HSTL (II) 1.5 0.17 2.03 SSTL2 (I) 2.5 1.38 4.48 SSTL2 (II) 2.5 1.38 4.48 SSTL3 (I) 3.3 3.21 9.26 SSTL3 (II) 3.3 3.21 9.26 LVDS/B-LVDS/M-LVDS 2.5 2.26 1.50 LVPECL 3.3 5.71 2.17 Voltage-Referenced Differential Notes: 1. PDC2 is the static power (where applicable) measured on VMV. 2. PAC9 is the total dynamic power measured on VCC and VMV. 3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification. Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1 CLOAD (pF) VCCI (V) Static Power PDC3 (mW)2 Dynamic Power PAC10 (µW/MHz)3 35 3.3 – 474.70 Single-Ended 3.3 V LVTTL/LVCMOS 4 3.3 V LVTTL/LVCMOS Wide Range 35 3.3 – 474.70 2.5 V LVCMOS 35 2.5 – 270.73 1.8 V LVCMOS 35 1.8 – 151.78 1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 3.3 V PCI 10 3.3 – 204.61 3.3 V PCI-X 10 3.3 – 204.61 3.3 V GTL 10 3.3 – 24.08 2.5 V GTL 10 2.5 – 13.52 3.3 V GTL+ 10 3.3 – 24.10 2.5 V GTL+ 10 2.5 – 13.54 Voltage-Referenced R evisio n 16 7 Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings (continued) (continued)1 CLOAD (pF) VCCI (V) Static Power PDC3 (mW)2 Dynamic Power PAC10 (µW/MHz)3 HSTL (I) 20 1.5 7.08 26.22 HSTL (II) 20 1.5 13.88 27.22 SSTL2 (I) 30 2.5 16.69 105.56 SSTL2 (II) 30 2.5 25.91 116.60 Notes: 1. 2. 3. 4. Dynamic power consumption is given for standard load and software default drive strength and output slew. PDC3 is the static power (where applicable) measured on VCCI. PAC10 is the total dynamic power measured on VCC and VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. SSTL3 (I) 30 3.3 26.02 114.87 SSTL3 (II) 30 3.3 42.21 131.76 Differential LVDS/B-LVDS/M-LVDS – 2.5 7.70 89.62 LVPECL – 3.3 19.42 168.02 Notes: 1. 2. 3. 4. Dynamic power consumption is given for standard load and software default drive strength and output slew. PDC3 is the static power (where applicable) measured on VCCI. PAC10 is the total dynamic power measured on VCC and VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification. Power Consumption of Various Internal Resources Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices Device-Specific Dynamic Contributions (µW/MHz) Parameter 8 Definition A3PE600 A3PE1500 A3PE3000 PAC1 Clock contribution of a Global Rib 12.77 16.21 19.7 PAC2 Clock contribution of a Global Spine 1.85 3.06 4.16 PAC3 Clock contribution of a VersaTile row 0.88 PAC4 Clock contribution of a VersaTile used as a sequential module 0.12 PAC5 First contribution of a VersaTile used as a sequential module 0.07 PAC6 Second contribution of a VersaTile used as a sequential module 0.29 PAC7 Contribution of a VersaTile used as a combinatorial module 0.29 PAC8 Average contribution of a routing net 0.70 PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-8 on page 2-6. PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-9 on page 2-7 PAC11 Average contribution of a RAM block during a read operation R evis ion 16 25.00 ProASIC3E Flash Family FPGAs Table 2-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices Device-Specific Dynamic Contributions (µW/MHz) Parameter Definition PAC12 Average contribution of a RAM block during a write operation PAC13 Static PLL contribution PAC14 Dynamic contribution for PLL A3PE600 A3PE1500 A3PE3000 30.00 2.55 mW 2.60 Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC. R evisio n 16 9 Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-11 on page 2-12. • Enable rates of output buffers—guidelines are provided for typical applications in Table 2-12 on page 2-12. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-12 on page 2-12. The calculation should be repeated for each clock domain defined in the design. Methodology Total Power Consumption—PTOTAL PTOTAL = PSTAT + PDYN PSTAT is the total static power consumption. PDYN is the total dynamic power consumption. Total Static Power Consumption—PSTAT PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3 NINPUTS is the number of I/O input buffers used in the design. NOUTPUTS is the number of I/O output buffers used in the design. Total Dynamic Power Consumption—PDYN PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL Global Clock Contribution—PCLOCK PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK NSPINE is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric User's Guide. NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric User's Guide. FCLK is the global clock signal frequency. NS-CELL is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent. Sequential Cells Contribution—PS-CELL PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-12. FCLK is the global clock signal frequency. Combinatorial Cells Contribution—PC-CELL PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK NC-CELL is the number of VersaTiles used as combinatorial modules in the design. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-12. FCLK is the global clock signal frequency. 10 R evis ion 16 ProASIC3E Flash Family FPGAs Routing Net Contribution—PNET PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. NC-CELL is the number of VersaTiles used as combinatorial modules in the design. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-11 on page 2-12. FCLK is the global clock signal frequency. I/O Input Buffer Contribution—PINPUTS PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK NINPUTS is the number of I/O input buffers used in the design. 2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-12. FCLK is the global clock signal frequency. I/O Output Buffer Contribution—POUTPUTS POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK NOUTPUTS is the number of I/O output buffers used in the design. 2 is the I/O buffer toggle rate—guidelines are provided in Table 2-11 on page 2-12. 1 is the I/O buffer enable rate—guidelines are provided in Table 2-12 on page 2-12. FCLK is the global clock signal frequency. RAM Contribution—PMEMORY PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3 NBLOCKS is the number of RAM blocks used in the design. FREAD-CLOCK is the memory read clock frequency. 2 is the RAM enable rate for read operations—guidelines are provided in Table 2-12 on page 2-12. FWRITE-CLOCK is the memory write clock frequency. 3 is the RAM enable rate for write operations—guidelines are provided in Table 2-12 on page 2-12. PLL Contribution—PPLL PPLL = PAC13 + PAC14 * FCLKOUT FCLKOUT is the output clock frequency.1 1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL contribution. R evisio n 16 11 Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% – … – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-11 • Toggle Rate Guidelines Recommended for Power Calculation Component 1 2 Definition Guideline Toggle rate of VersaTile outputs 10% I/O buffer toggle rate 10% Table 2-12 • Enable Rate Guidelines Recommended for Power Calculation Component 1 2 3 12 Definition Guideline I/O output buffer enable rate 100% RAM enable rate for read operations 12.5% RAM enable rate for write operations 12.5% R evis ion 16 ProASIC3E Flash Family FPGAs User I/O Characteristics Timing Model I/O Module (Non-Registered) Combinational Cell Combinational Cell Y Y tPD = 0.56 ns LVPECL tPD = 0.49 ns tDP = 1.36 ns I/O Module (Non-Registered) Combinational Cell Y tDP = 2.74 ns tPD = 0.87 ns Combinational Cell LVTTL/LVCMOS Output drive strength = 12 mA High slew rate I/O Module (Non-Registered) Y I/O Module (Registered) tPY = 1.22 ns tDP = 2.39 ns LVTTL/LVCMOS Output drive strength = 24 mA High slew rate tPD = 0.51 ns LVPECL D Q Combinational Cell I/O Module (Non-Registered) Y tICLKQ = 0.24 ns tISUD = 0.26 ns tDP = 3.30 ns tPD = 0.47 ns LVCMOS 1.5V Output drive strength = 12 mA High slew Input LVTTL/LVCMOS Clock Register Cell tPY = 0.90 ns D Combinational Cell Y Q I/O Module (Non-Registered) tPY = 1.36 ns Q Input LVTTL/LVCMOS Clock D Q GTL+ 3.3V tDP = 1.53 ns tCLKQ = 0.55 ns tSUD = 0.43 ns tPY = 0.90 ns Figure 2-2 • D tPD = 0.47 ns tCLKQ = 0.55 ns tSUD = 0.43 ns LVDS, BLVDS, M-LVDS I/O Module (Registered) Register Cell tCLKQ = 0.59 ns tSUD = 0.31 ns Input LVTTL/LVCMOS Clock tPY = 0.90 ns Timing Model Operating Conditions: –2 Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case VCC = 1.425 V R evisio n 16 13 tPY tDIN D PAD Q DIN Y CLK To Array I/O Interface tPY = MAX(tPY(R), tPY(F)) tDIN = MAX(tDIN(R), tDIN(F)) VIH Vtrip Vtrip PAD VIL VCC 50% 50% Y GND tPY tPY (R) (F) tPYS tPYS (R) (F) VCC 50% DIN GND Figure 2-3 • 14 50% tDIN tDIN (R) (F) Input Buffer Timing Model and Delays (example) R evis ion 16 ProASIC3E Flash Family FPGAs tDOUT tDP D Q D PAD DOUT Std Load CLK From Array tDP = MAX(tDP(R), tDP(F)) tDOUT = MAX(tDOUT(R), tDOUT(F)) I/O Interface tDOUT (R) D tDOUT VCC 50% (F) 50% 0V VCC DOUT 50% 50% 0V VOH Vtrip Vtrip VOL PAD tDP (R) Figure 2-4 • tDP (F) Output Buffer Model and Delays (example) R evisio n 16 15 tEOUT D Q CLK E tZL, tZH, tHZ, tLZ, tZLS, tZHS EOUT D Q PAD DOUT CLK D tEOUT = MAX(tEOUT(r), tEOUT(f)) I/O Interface VCC D VCC 50% tEOUT (F) 50% E tEOUT (R) VCC 50% EOUT tZL PAD 50% 50% tHZ Vtrip tZH VCCI 90% VCCI Vtrip VOL VCC D VCC E 50% tEOUT (R) 50% tEOUT (F) VCC EOUT PAD 50% 50% tZLS VOH Vtrip Figure 2-5 • 16 50% tZHS Vtrip VOL Tristate Output Buffer Timing Model and Delays (example) R evis ion 16 50% tLZ 10% VCCI ProASIC3E Flash Family FPGAs Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-13 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Equivalent Software Default Drive Strength Slew Min. Drive I/O Standard Strength Option1 Rate V VIL VIH VOL VOH IOL3 IOH3 mA mA Max. V Min. V Max. V Max. V Min. V 2.4 3.3 V LVTTL / 3.3 V LVCMOS 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 3.3 V LVCMOS Wide Range 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 2.5 V LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 3.6 0.7 1.8 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 1.5 V LVCMOS 12 mA 12 mA High –0.3 0.30 * VCCI 3.3 V PCI 0.7 * VCCI 12 12 VCCI – 0.2 0.1 0.1 1.7 12 12 VCCI – 0.45 12 12 3.6 0.25 * VCCI 0.75 * VCCI 12 12 Per PCI Specification 3.3 V PCI-X Per PCI-X Specification 3.3 V GTL 20 mA2 20 mA2 High –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 2.5 V GTL 20 mA2 20 mA2 High –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 3.3 V GTL+ 35 mA 35 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 – 35 35 2.5 V GTL+ 33 mA 33 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 – 33 33 HSTL (I) 8 mA 8 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 8 8 HSTL (II) 15 mA2 15 mA2 High –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 15 15 SSTL2 (I) 15 mA 15 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.54 VCCI – 0.62 15 15 SSTL2 (II) 18 mA 18 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.35 VCCI – 0.43 18 18 SSTL3 (I) 14 mA 14 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.7 VCCI – 1.1 14 14 SSTL3 (II) 21 mA 21 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6 0.5 VCCI – 0.9 21 21 Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Output drive strength is below JEDEC specification. 3. Currents are measured at 85°C junction temperature. 4. Output Slew Rates can be extracted from IBIS Models, located at http://www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article. R evisio n 16 17 Table 2-14 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions Commercial1 Industrial2 IIL3 IIH4 IIL3 IIH4 DC I/O Standards µA µA µA µA 3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15 3.3 V LVCMOS Wide Range 10 10 15 15 2.5 V LVCMOS 10 10 15 15 1.8 V LVCMOS 10 10 15 15 1.5 V LVCMOS 10 10 15 15 3.3 V PCI 10 10 15 15 3.3 V PCI-X 10 10 15 15 3.3 V GTL 10 10 15 15 2.5 V GTL 10 10 15 15 3.3 V GTL+ 10 10 15 15 2.5 V GTL+ 10 10 15 15 HSTL (I) 10 10 15 15 HSTL (II) 10 10 15 15 SSTL2 (I) 10 10 15 15 SSTL2 (II) 10 10 15 15 SSTL3 (I) 10 10 15 15 SSTL3 (II) 10 10 15 15 Notes: 1. Commercial range (0°C < TA < 70°C) 2. Industrial range (–40°C < TA < 85°C) 3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 18 R evis ion 16 ProASIC3E Flash Family FPGAs Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-15 • Summary of AC Measuring Points Input Reference Voltage Board Termination Measuring Trip Point (VREF_TYP) Voltage (VTT_REF) (Vtrip) Standard 3.3 V LVTTL LVCMOS / 3.3 V – – 1.4 V 3.3 V LVCMOS Wide Range – – 1.4 V 2.5 V LVCMOS – – 1.2 V 1.8 V LVCMOS – – 0.90 V 1.5 V LVCMOS – – 0.75 V 3.3 V PCI – – 0.285 * VCCI (RR) 0.615 * VCCI (FF)) 3.3 V PCI-X – – 0.285 * VCCI (RR) 0.615 * VCCI (FF) 3.3 V GTL 0.8 V 1.2 V VREF 2.5 V GTL 0.8 V 1.2 V VREF 3.3 V GTL+ 1.0 V 1.5 V VREF 2.5 V GTL+ 1.0 V 1.5 V VREF HSTL (I) 0.75 V 0.75 V VREF HSTL (II) 0.75 V 0.75 V VREF SSTL2 (I) 1.25 V 1.25 V VREF SSTL2 (II) 1.25 V 1.25 V VREF SSTL3 (I) 1.5 V 1.485 V VREF SSTL3 (II) 1.5 V 1.485 V VREF LVDS – – Cross point LVPECL – – Cross point Table 2-16 • I/O AC Parameter Definitions Parameter Definition tDP Data to Pad delay through the Output Buffer tPY Pad to Data delay through the Input Buffer with Schmitt trigger disabled tDOUT Data to Output Buffer delay through the I/O interface tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface tDIN Input Buffer to Data delay through the I/O interface tPYS Pad to Data delay through the Input Buffer with Schmitt trigger enabled tHZ Enable to Pad delay through the Output Buffer—High to Z tZH Enable to Pad delay through the Output Buffer—Z to High tLZ Enable to Pad delay through the Output Buffer—Low to Z tZL Enable to Pad delay through the Output Buffer—Z to Low tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low R evisio n 16 19 tZHS (ns) tZLS (ns) tHZ (ns) tLZ (ns) tZH (ns) tZL (ns) tEOUT (ns) tPYS (ns) tPY (ns) tDIN (ns) tDP (ns) tDOUT (ns) External Resistor () Slew Rate I/O Standard Equivalent Software Drive Default Strength Drive (mA) Strength Option)1 Capacitive Load (pF) Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings –2 Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V 3.3 V LVTTL / 3.3 V LVCMOS 12 12 High 35 – 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 3.3 V LVCMOS Wide Range2 100 µA 12 High 35 – 0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79 2.5 V LVCMOS 12 12 High 35 – 0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28 1.8 V LVCMOS 12 12 High 35 – 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 1.5 V LVCMOS 12 12 High 35 – 3.3 V PCI 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 3 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 Per PCI spec – High 10 25 Per PCI-X spec – High 10 253 0.49 2.09 0.03 0.78 1.17 0.32 2.13 1.49 2.45 2.70 3.80 3.16 3.3 V GTL 20 4 – High 10 25 0.45 1.55 0.03 2.19 – 0.32 1.52 1.55 – – 3.19 3.22 2.5 V GTL 20 4 – High 10 25 0.45 1.59 0.03 1.83 – 0.32 1.61 1.59 – – 3.28 3.26 3.3 V GTL+ 35 – High 10 25 0.45 1.53 0.03 1.19 – 0.32 1.56 1.53 – – 3.23 3.20 2.5 V GTL+ 33 – High 10 25 0.45 1.65 0.03 1.13 – 0.32 1.68 1.57 – – 3.35 3.24 HSTL (I) 8 – High 20 50 0.49 2.37 0.03 1.59 – 0.32 2.42 2.35 – – 4.09 4.02 HSTL (II) 15 4 – High 20 25 0.49 2.26 0.03 1.59 – 0.32 2.30 2.03 – – 3.97 3.70 SSTL2 (I) 15 – High 30 50 0.49 1.59 0.03 1.00 – 0.32 1.62 1.38 – – 3.29 3.05 SSTL2 (II) 18 – High 30 25 0.49 1.62 0.03 1.00 – 0.32 1.65 1.32 – – 3.32 2.99 SSTL3 (I) 14 – High 30 50 0.49 1.72 0.03 0.93 – 0.32 1.75 1.37 – – 3.42 3.04 SSTL3 (II) 21 – High 30 25 0.49 1.54 0.03 0.93 – 0.32 1.57 1.25 – – 3.24 2.92 LVDS/B-LVDS/ M-LVDS 24 – High – – 0.49 1.40 0.03 1.36 – – – – – – – – LVPECL 24 – High – – 0.49 1.36 0.03 1.22 – – – – – – – – 3.3 V PCI-X Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3V wide range as specified in the JESD8b specification. 3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on page 2-39 for connectivity. This resistor is not required during normal operation. 4. Output drive strength is below JEDEC specification. 5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6. 20 R evis ion 16 ProASIC3E Flash Family FPGAs Detailed I/O DC Characteristics Table 2-18 • Input Capacitance Symbol Definition Conditions Min. Max. Units CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF Table 2-19 • I/O Output Buffer Maximum Resistances1 Drive Strength RPULL-DOWN ()2 RPULL-UP ()3 4 mA 100 300 8 mA 50 150 12 mA 25 75 16 mA 17 50 24 mA 11 33 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 4 mA 100 200 8 mA 50 100 12 mA 25 50 16 mA 20 40 24 mA 11 22 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 12 mA 20 22 16 mA 20 22 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 Per PCI/PCI-X specification 25 75 3.3 V GTL 20 mA 4 11 – 2.5 V GTL 4 14 – Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 3.3 V PCI/PCI-X 20 mA Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 4. Output drive strength is below JEDEC specification. R evisio n 16 21 Table 2-19 • I/O Output Buffer Maximum Resistances1 (continued) Drive Strength RPULL-DOWN ()2 RPULL-UP ()3 3.3 V GTL+ 35 mA 12 – 2.5 V GTL+ 33 mA 15 – HSTL (I) 8 mA 50 50 25 25 Standard HSTL (II) 15 mA 4 SSTL2 (I) 15 mA 27 31 SSTL2 (II) 18 mA 13 15 SSTL3 (I) 14 mA 44 69 SSTL3 (II) 21 mA 18 32 Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at www.microsemi.com/index.php?option=com_content&id=1671&lang=en&view=article. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec 4. Output drive strength is below JEDEC specification. Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R((WEAK PULL-UP)1 () R(WEAK PULL-DOWN)2 () VCCI Min. Max. Min. Max. 3.3 V 10 k 45 k 10 k 45 k 3.3 V (Wide Range I/Os) 10 k 45 k 10 k 45 k 2.5 V 11 k 55 k 12 k 74 k 1.8 V 18 k 70 k 17 k 110 k 1.5 V 19 k 90 k 19 k 140 k Notes: 1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN) 2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN) 22 R evis ion 16 ProASIC3E Flash Family FPGAs Table 2-21 • I/O Short Currents IOSH/IOSL Drive Strength 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS IOSH (mA)* IOSL (mA)* 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 12 mA 103 109 16 mA 132 127 24 mA 268 181 100 µA Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 4 mA 16 18 8 mA 32 37 12 mA 65 74 16 mA 83 87 24 mA 169 124 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 45 51 12 mA 91 74 16 mA 91 74 2 mA 13 16 4 mA 25 33 6 mA 32 39 8 mA 66 55 12 mA 66 55 Notes: 1. TJ = 100°C 2. Applicable to 3.3 V LVCMOS Wide Range. IOSL/IOSH dependent on the I/O buffer drive strength selected for wide range applications. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8b specification. The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis. For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-22 • Duration of Short Circuit Event Before Failure Temperature Time before Failure –40°C > 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years R evisio n 16 23 Table 2-22 • Duration of Short Circuit Event Before Failure (continued) Temperature Time before Failure 85°C 2 years 100°C 6 months Table 2-23 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers Input Buffer Configuration Hysteresis Value (typ.) 3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode) 240 mV 2.5 V LVCMOS (Schmitt trigger mode) 140 mV 1.8 V LVCMOS (Schmitt trigger mode) 80 mV 1.5 V LVCMOS (Schmitt trigger mode) 60 mV Table 2-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability* Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability LVTTL/LVCMOS (Schmitt trigger disabled) No requirement 10 ns * 20 years (110°C) LVTTL/LVCMOS (Schmitt trigger enabled) No requirement No requirement, but input noise voltage cannot exceed Schmitt hysteresis. 20 years (110°C) HSTL/SSTL/GTL No requirement 10 ns * 10 years (100°C) LVDS/B-LVDS/M-LVDS/ LVPECL No requirement 10 ns * 10 years (100°C) Input Buffer Note: *For clock signals and similar edge-generating signals, refer to the "ProASIC3/E SSO and Pin Placement Guidelines" chapter of the ProASIC3E FPGA Fabric User’s Guide. The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. 24 R evis ion 16 ProASIC3E Flash Family FPGAs Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support. Table 2-25 • Minimum and Maximum DC Input and Output Levels 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min., V Max. V Max. V Min. V 2 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 10 10 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath Figure 2-6 • 35 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 35 pF for tZH / tZHS / tZL / tZLS 35 pF for tHZ / tLZ AC Loading Table 2-26 • 3.3 V LVTTL / 3.3 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF) 3.3 1.4 – 35 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. R evisio n 16 25 Timing Characteristics Table 2-27 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 7.88 0.04 1.20 1.57 0.43 8.03 6.70 2.69 2.59 10.26 8.94 ns –1 0.56 6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73 7.60 ns –2 0.49. 5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67 6.67 ns Std. 0.66 7.88 0.04 1.20 1.57 0.43 8.03 6.70 2.69 2.59 10.26 8.94 ns –1 0.56 6.71 0.04 1.02 1.33 0.36 6.83 5.70 2.29 2.20 8.73 7.60 ns –2 0.49 5.89 0.03 0.90 1.17 0.32 6.00 5.01 2.01 1.93 7.67 6.67 ns Std. 0.66 5.08 0.04 1.20 1.57 0.43 5.17 4.14 3.05 3.21 7.41 6.38 ns –1 0.56 4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30 5.43 ns –2 0.49 3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53 4.76 ns Std. 0.66 5.08 0.04 1.20 1.57 0.43 5.17 4.14 3.05 3.21 7.41 6.38 ns –1 0.56 4.32 0.04 1.02 1.33 0.36 4.40 3.52 2.59 2.73 6.30 5.43 ns –2 0.49 3.79 0.03 0.90 1.17 0.32 3.86 3.09 2.28 2.40 5.53 4.76 ns Std. 0.66 3.67 0.04 1.20 1.57 0.43 3.74 2.87 3.28 3.61 5.97 5.11 ns –1 0.56 3.12 0.04 1.02 1.33 0.36 3.18 2.44 2.79 3.07 5.08 4.34 ns –2 0.49 2.74 0.03 0.90 1.17 0.32 2.79 2.14 2.45 2.70 4.46 3.81 ns Std. 0.66 3.46 0.04 1.20 1.57 0.43 3.53 2.61 3.33 3.72 5.76 4.84 ns –1 0.56 2.95 0.04 1.02 1.33 0.36 3.00 2.22 2.83 3.17 4.90 4.12 ns –2 0.49 2.59 0.03 0.90 1.17 0.32 2.63 1.95 2.49 2.78 4.30 3.62 ns Std. 0.66 3.21 0.04 1.20 1.57 0.43 3.27 2.16 3.39 4.13 5.50 4.39 ns –1 0.56 2.73 0.04 1.02 1.33 0.36 2.78 1.83 2.88 3.51 4.68 3.74 ns –2 0.49 2.39 0.03 0.90 1.17 0.32 2.44 1.61 2.53 3.08 4.11 3.28 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Drive Strength 2 mA 4 mA 6 mA 8 mA 26 Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 13.45 11.29 ns Std. 0.66 11.01 0.04 1.20 1.57 0.43 11.21 9.05 2.69 2.44 –1 0.56 9.36 0.04 1.02 1.33 0.36 9.54 7.70 2.29 2.08 11.44 9.60 ns –2 0.49 8.22 0.03 0.90 1.17 0.32 8.37 6.76 2.01 1.82 10.04 8.43 ns Std. 0.66 11.01 0.04 1.20 1.57 0.43 11.21 9.05 2.69 2.44 13.45 11.29 ns –1 0.56 9.36 0.04 1.02 1.33 0.36 9.54 7.70 2.29 2.08 11.44 9.60 ns –2 0.49 8.22 0.03 0.90 1.17 0.32 8.37 6.76 2.01 1.82 10.04 8.43 ns Std. 0.66 7.86 0.04 1.20 1.57 0.43 8.01 6.44 3.04 3.06 10.24 8.68 ns –1 0.56 6.69 0.04 1.02 1.33 0.36 6.81 5.48 2.58 2.61 8.71 7.38 ns –2 0.49 5.87 0.03 0.90 1.17 0.32 5.98 4.81 2.27 2.29 7.65 6.48 ns Std. 0.66 7.86 0.04 1.20 1.57 0.43 8.01 6.44 3.04 3.06 10.24 8.68 ns –1 0.56 6.69 0.04 1.02 1.33 0.36 6.81 5.48 2.58 2.61 8.71 7.38 ns R evis ion 16 ProASIC3E Flash Family FPGAs Table 2-28 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Drive Strength 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units –2 0.49 5.87 0.03 0.90 1.17 0.32 5.98 4.81 2.27 2.29 7.65 6.48 ns Std. 0.66 6.03 0.04 1.20 1.57 0.43 6.14 5.02 3.28 3.47 8.37 7.26 ns –1 0.56 5.13 0.04 1.02 1.33 0.36 5.22 4.27 2.79 2.95 7.12 6.17 ns –2 0.49 4.50 0.03 0.90 1.17 0.32 4.58 3.75 2.45 2.59 6.25 5.42 ns Std. 0.66 5.62 0.04 1.20 1.57 0.43 5.72 4.72 3.32 3.58 7.96 6.96 ns –1 0.56 4.78 0.04 1.02 1.33 0.36 4.87 4.02 2.83 3.04 6.77 5.92 ns –2 0.49 4.20 0.03 0.90 1.17 0.32 4.27 3.53 2.48 2.67 5.94 5.20 ns Std. 0.66 5.24 0.04 1.20 1.57 0.43 5.34 4.69 3.39 3.96 7.58 6.93 ns –1 0.56 4.46 0.04 1.02 1.33 0.36 4.54 3.99 2.88 3.37 6.44 5.89 ns –2 0.49 3.92 0.03 0.90 1.17 0.32 3.99 3.50 2.53 2.96 5.66 5.17 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 27 3.3 V LVCMOS Wide Range Table 2-29 • Minimum and Maximum DC Input and Output Levels 3.3 V LVCMOS Wide Range Equivalent Software Default Drive Strength Option1 Min. V Max. V Min. V 100 µA 2 mA –0.3 0.8 100 µA 4 mA –0.3 0.8 100 µA 6 mA –0.3 100 µA 8 mA –0.3 Drive Strength VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Max. V Max. V Min. V µA µA Max. mA4 Max. mA4 µA5 µA5 2 3.6 0.2 VDD – 0.2 100 100 27 25 10 10 2 3.6 0.2 VDD – 0.2 100 100 27 25 10 10 0.8 2 3.6 0.2 VDD – 0.2 100 100 54 51 10 10 0.8 2 3.6 0.2 VDD – 0.2 100 100 54 51 10 10 VIL VIH 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 109 103 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 127 132 10 10 100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 181 268 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges. 4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Test Point Datapath Figure 2-7 • 35 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 35 pF for tZH / tZHS / tZL / tZLS 35 pF for tHZ / tLZ AC Loading Table 2-30 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF) 3.3 1.4 – 35 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. 28 R evis ion 16 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-31 • 3.3 V LVCMOS Wide Range High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Equivalent Software Default Drive Strength Drive Speed Strength Option1 Grade tDOUT 100 µA 100 µA 100 µA 100 µA 100 µA 4 mA 8 mA 12 mA 16 mA 24 mA tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 12.19 0.04 1.83 2.38 0.43 12.19 10.17 4.16 4.00 15.58 13.57 ns –1 0.56 10.37 0.04 1.55 2.02 0.36 10.37 8.66 3.54 3.41 13.26 11.54 ns –2 0.49 9.10 0.03 1.36 1.78 0.32 9.10 7.60 3.11 2.99 11.64 10.13 ns Std. 0.66 7.85 0.04 1.83 2.38 0.43 7.85 6.29 4.71 4.97 11.24 9.68 ns –1 0.56 6.68 0.04 1.55 2.02 0.36 6.68 5.35 4.01 4.22 9.57 8.24 ns –2 0.49 5.86 0.03 1.36 1.78 0.32 5.86 4.70 3.52 3.71 8.40 7.23 ns Std. 0.66 5.67 0.04 1.83 2.38 0.43 5.67 4.36 5.06 5.59 9.07 7.75 ns –1 0.56 4.82 0.04 1.55 2.02 0.36 4.82 3.71 4.31 4.75 7.71 6.59 ns –2 0.49 4.24 0.03 1.36 1.78 0.32 4.24 3.25 3.78 4.17 6.77 5.79 ns Std. 0.66 5.35 0.04 1.83 2.38 0.43 5.35 3.96 5.15 5.76 8.75 7.35 ns –1 0.56 4.55 0.04 1.55 2.02 0.36 4.55 3.36 4.38 4.90 7.44 6.25 ns –2 0.49 4.00 0.03 1.36 1.78 0.32 4.00 2.95 3.85 4.30 6.53 5.49 ns Std. 0.66 4.96 0.04 1.83 2.38 0.43 4.96 3.27 5.23 6.38 8.35 6.67 ns –1 0.56 4.22 0.04 1.55 2.02 0.36 4.22 2.78 4.45 5.43 7.11 5.67 ns –2 0.49 3.70 0.03 1.36 1.78 0.32 3.70 2.44 3.91 4.76 6.24 4.98 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 29 Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Equivalent Software Default Drive Strength Drive Speed Strength Option1 Grade tDOUT 100 µA 100 µA 100µA 100 µA 100 µA 4 mA 8 mA 12 mA 16 mA 24 mA tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 17.02 0.04 1.83 2.38 0.43 17.02 13.74 4.16 3.78 20.42 17.14 ns –1 0.56 14.48 0.04 1.55 2.02 0.36 14.48 11.69 3.54 3.21 17.37 14.58 ns –2 0.49 12.71 0.03 1.36 1.78 0.32 12.71 10.26 3.11 2.82 15.25 12.80 ns Std. 0.66 12.16 0.04 1.83 2.38 0.43 12.16 9.78 4.70 4.74 15.55 13.17 ns –1 0.56 10.34 0.04 1.55 2.02 0.36 10.34 8.32 4.00 4.03 13.23 11.20 ns –2 0.49 9.08 0.03 1.36 1.78 0.32 9.08 7.30 3.51 3.54 11.61 9.84 ns Std. 0.66 9.32 0.04 1.83 2.38 0.43 9.32 7.62 5.06 5.36 12.71 11.02 ns –1 0.56 7.93 0.04 1.55 2.02 0.36 7.93 6.48 4.31 4.56 10.81 9.37 ns –2 0.49 6.96 0.03 1.36 1.78 0.32 6.96 5.69 3.78 4.00 9.49 8.23 ns Std. 0.66 8.69 0.04 1.83 2.38 0.43 8.69 7.17 5.14 5.53 12.08 10.57 ns –1 0.56 7.39 0.04 1.55 2.02 0.36 7.39 6.10 4.37 4.71 10.28 8.99 ns –2 0.49 6.49 0.03 1.36 1.78 0.32 6.49 5.36 3.83 4.13 9.02 7.89 ns Std. 0.66 8.11 0.04 1.83 2.38 0.43 8.11 7.13 5.23 6.13 11.50 10.52 ns –1 0.56 6.90 0.04 1.55 2.02 0.36 6.90 6.06 4.45 5.21 9.78 8.95 ns –2 0.49 6.05 0.03 1.36 1.78 0.32 6.05 5.32 3.91 4.57 8.59 7.86 ns Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. Software default selection highlighted in gray. 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 30 R evis ion 16 ProASIC3E Flash Family FPGAs 2.5 V LVCMOS Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications. Table 2-33 • Minimum and Maximum DC Input and Output Levels 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max., V Min. V 4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 18 16 10 10 8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 37 32 10 10 12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10 16 mA –0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10 24 mA –0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath Figure 2-8 • 35 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 35 pF for tZH / tZHS / tZL / tZLS 35 pF for tHZ / tLZ AC Loading Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF) 2.5 1.2 – 35 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. R evisio n 16 31 Timing Characteristics Table 2-35 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 8.82 0.04 1.51 1.66 0.43 8.13 8.82 2.72 2.29 10.37 11.05 ns –1 0.56 7.50 0.04 1.29 1.41 0.36 6.92 7.50 2.31 1.95 8.82 9.40 ns –2 0.49 6.58 0.03 1.13 1.24 0.32 6.07 6.58 2.03 1.71 7.74 8.25 ns Std. 0.66 5.27 0.04 1.51 1.66 0.43 5.27 5.27 3.10 3.03 7.50 7.51 ns –1 0.56 4.48 0.04 1.29 1.41 0.36 4.48 4.48 2.64 2.58 6.38 6.38 ns –2 0.49 3.94 0.03 1.13 1.24 0.32 3.93 3.94 2.32 2.26 5.60 5.61 ns Std. 0.66 3.74 0.04 1.51 1.66 0.43 3.81 3.49 3.37 3.49 6.05 5.73 ns –1 0.56 3.18 0.04 1.29 1.41 0.36 3.24 2.97 2.86 2.97 5.15 4.87 ns –2 0.49 2.80 0.03 1.13 1.24 0.32 2.85 2.61 2.51 2.61 4.52 4.28 ns Std. 0.66 3.53 0.04 1.51 1.66 0.43 3.59 3.12 3.42 3.62 5.83 5.35 ns –1 0.56 3.00 0.04 1.29 1.41 0.36 3.06 2.65 2.91 3.08 4.96 4.55 ns –2 0.49 2.63 0.03 1.13 1.24 0.32 2.68 2.33 2.56 2.71 4.35 4.00 ns Std. 0.66 3.26 0.04 1.51 1.66 0.43 3.32 2.48 3.49 4.11 5.56 4.72 ns –1 0.56 2.77 0.04 1.29 1.41 0.36 2.83 2.11 2.97 3.49 4.73 4.01 ns –2 0.49 2.44 0.03 1.13 1.24 0.32 2.48 1.85 2.61 3.07 4.15 3.52 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 32 R evis ion 16 ProASIC3E Flash Family FPGAs Table 2-36 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Drive Strength 4 mA 8 mA 12 mA 16 mA 24 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 12.00 0.04 1.51 1.66 0.43 12.23 11.61 2.72 2.20 14.46 13.85 ns –1 0.56 10.21 0.04 1.29 1.41 0.36 10.40 9.88 2.31 1.87 12.30 11.78 ns –2 0.49 8.96 0.03 1.13 1.24 0.32 9.13 8.67 2.03 1.64 10.80 10.34 ns Std. 0.66 8.73 0.04 1.51 1.66 0.43 8.89 8.01 3.10 2.93 11.13 10.25 ns –1 0.56 7.43 0.04 1.29 1.41 0.36 7.57 6.82 2.64 2.49 9.47 8.72 ns –2 0.49 6.52 0.03 1.13 1.24 0.32 6.64 5.98 2.32 2.19 8.31 7.65 ns Std. 0.66 6.77 0.04 1.51 1.66 0.43 6.90 6.11 3.37 3.39 9.14 8.34 ns –1 0.56 5.76 0.04 1.29 1.41 0.36 5.87 5.20 2.86 2.89 7.77 7.10 ns –2 0.49 5.06 0.03 1.13 1.24 0.32 5.15 4.56 2.51 2.53 6.82 6.23 ns Std. 0.66 6.31 0.04 1.51 1.66 0.43 6.42 5.73 3.42 3.52 8.66 7.96 ns –1 0.56 5.37 0.04 1.29 1.41 0.36 5.46 4.87 2.91 3.00 7.37 6.77 ns –2 0.49 4.71 0.03 1.13 1.24 0.32 4.80 4.28 2.56 2.63 6.47 5.95 ns Std. 0.66 5.93 0.04 1.51 1.66 0.43 6.04 5.70 3.49 4.00 8.28 7.94 ns –1 0.56 5.05 0.04 1.29 1.41 0.36 5.14 4.85 2.97 3.40 7.04 6.75 ns –2 0.49 4.43 0.03 1.13 1.24 0.32 4.51 4.26 2.61 2.99 6.18 5.93 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 33 1.8 V LVCMOS Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-37 • Minimum and Maximum DC Input and Output Levels 1.8 V LVCMOS VIL VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 VIH Drive Strength Min. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 51 45 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 74 91 10 10 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 74 91 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath Figure 2-9 • 35 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 35 pF for tZH / tZHS / tZL / tZLS 35 pF for tHZ / tLZ AC Loading Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF) 1.8 0.9 – 35 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. 34 R evis ion 16 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-39 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 12.10 0.04 1.45 1.91 0.43 9.59 12.10 2.78 1.64 11.83 14.34 ns –1 0.56 10.30 0.04 1.23 1.62 0.36 8.16 10.30 2.37 1.39 10.06 12.20 ns –2 0.49 9.04 0.03 1.08 1.42 0.32 7.16 9.04 2.08 1.22 8.83 10.71 ns Std. 0.66 7.05 0.04 1.45 1.91 0.43 6.20 7.05 3.25 2.86 8.44 9.29 ns –1 0.56 6.00 0.04 1.23 1.62 0.36 5.28 6.00 2.76 2.44 7.18 7.90 ns –2 0.49 5.27 0.03 1.08 1.42 0.32 4.63 5.27 2.43 2.14 6.30 6.94 ns Std. 0.66 4.52 0.04 1.45 1.91 0.43 4.47 4.52 3.57 3.47 6.70 6.76 ns –1 0.56 3.85 0.04 1.23 1.62 0.36 3.80 3.85 3.04 2.95 5.70 5.75 ns –2 0.49 3.38 0.03 1.08 1.42 0.32 3.33 3.38 2.66 2.59 5.00 5.05 ns Std. 0.66 4.12 0.04 1.45 1.91 0.43 4.20 3.99 3.63 3.62 6.43 6.23 ns –1 0.56 3.51 0.04 1.23 1.62 0.36 3.57 3.40 3.09 3.08 5.47 5.30 ns –2 0.49 3.08 0.03 1.08 1.42 0.32 3.14 2.98 2.71 2.71 4.81 4.65 ns Std. 0.66 3.80 0.04 1.45 1.91 0.43 3.87 3.09 3.73 4.24 6.10 5.32 ns –1 0.56 3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53 ns –2 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns Std. 0.66 3.80 0.04 1.45 1.91 0.43 3.87 3.09 3.73 4.24 6.10 5.32 ns –1 0.56 3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53 ns –2 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 35 Table 2-40 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA 16 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 15.84 0.04 1.45 1.91 0.43 15.65 15.84 2.78 1.58 17.89 18.07 ns –1 0.56 13.47 0.04 1.23 1.62 0.36 13.31 13.47 2.37 1.35 15.22 15.37 ns –2 0.49 11.83 0.03 1.08 1.42 0.32 11.69 11.83 2.08 1.18 13.36 13.50 ns Std. 0.66 11.39 0.04 1.45 1.91 0.43 11.60 10.76 3.26 2.77 13.84 12.99 ns –1 0.56 9.69 0.04 1.23 1.62 0.36 9.87 9.15 2.77 2.36 11.77 11.05 ns –2 0.49 8.51 0.03 1.08 1.42 0.32 8.66 8.03 2.43 2.07 10.33 9.70 ns Std. 0.66 8.97 0.04 1.45 1.91 0.43 9.14 8.10 3.57 3.36 11.37 10.33 ns –1 0.56 7.63 0.04 1.23 1.62 0.36 7.77 6.89 3.04 2.86 9.67 8.79 ns –2 0.49 6.70 0.03 1.08 1.42 0.32 6.82 6.05 2.66 2.51 8.49 7.72 ns Std. 0.66 8.35 0.04 1.45 1.91 0.43 8.50 7.59 3.64 3.52 10.74 9.82 ns –1 0.56 7.10 0.04 1.23 1.62 0.36 7.23 6.45 3.10 3.00 9.14 8.35 ns –2 0.49 6.24 0.03 1.08 1.42 0.32 6.35 5.66 2.72 2.63 8.02 7.33 ns Std. 0.66 7.94 0.04 1.45 1.91 0.43 8.09 7.56 3.74 4.11 10.32 9.80 ns –1 0.56 6.75 0.04 1.23 1.62 0.36 6.88 6.43 3.18 3.49 8.78 8.33 ns –2 0.49 5.93 0.03 1.08 1.42 0.32 6.04 5.65 2.79 3.07 7.71 7.32 ns Std. 0.66 7.94 0.04 1.45 1.91 0.43 8.09 7.56 3.74 4.11 10.32 9.80 ns –1 0.56 6.75 0.04 1.23 1.62 0.36 6.88 6.43 3.18 3.49 8.78 8.33 ns –2 0.49 5.93 0.03 1.08 1.42 0.32 6.04 5.65 2.79 3.07 7.71 7.32 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 36 R evis ion 16 ProASIC3E Flash Family FPGAs 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-41 • Minimum and Maximum DC Input and Output Levels 1.5 V LVCMOS VIL VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 VIH Drive Strength Min. V Max. V Min. V 2 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10 4 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10 6 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10 8 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10 12 mA –0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath 35 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 35 pF for tZH / tZHS / tZL / tZLS 35 pF for tHZ / tLZ Figure 2-10 • AC Loading Table 2-42 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF) 1.5 0.75 – 35 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. R evisio n 16 37 Timing Characteristics Table 2-43 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 8.53 0.04 1.70 2.14 0.43 7.26 8.53 3.39 2.79 9.50 10.77 ns –1 0.56 7.26 0.04 1.44 1.82 0.36 6.18 7.26 2.89 2.37 8.08 9.16 ns –2 0.49 6.37 0.03 1.27 1.60 0.32 5.42 6.37 2.53 2.08 7.09 8.04 ns Std. 0.66 5.41 0.04 1.70 2.14 0.43 5.22 5.41 3.75 3.48 7.45 7.65 ns –1 0.56 4.60 0.04 1.44 1.82 0.36 4.44 4.60 3.19 2.96 6.34 6.50 ns –2 0.49 4.04 0.03 1.27 1.60 0.32 3.89 4.04 2.80 2.60 5.56 5.71 ns Std. 0.66 4.80 0.04 1.70 2.14 0.43 4.89 4.75 3.83 3.67 7.13 6.98 ns –1 0.56 4.09 0.04 1.44 1.82 0.36 4.16 4.04 3.26 3.12 6.06 5.94 ns –2 0.49 3.59 0.03 1.27 1.60 0.32 3.65 3.54 2.86 2.74 5.32 5.21 ns Std. 0.66 4.42 0.04 1.70 2.14 0.43 4.50 3.62 3.96 4.37 6.74 5.86 ns –1 0.56 3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73 4.98 ns –2 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns Std. 0.66 4.42 0.04 1.70 2.14 0.43 4.50 3.62 3.96 4.37 6.74 5.86 ns –1 0.56 3.76 0.04 1.44 1.82 0.36 3.83 3.08 3.37 3.72 5.73 4.98 ns –2 0.49 3.30 0.03 1.27 1.60 0.32 3.36 2.70 2.96 3.27 5.03 4.37 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-44 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Drive Strength 2 mA 4 mA 6 mA 8 mA 12 mA Speed Grade tDOUT tZL tZH tZLS tZHS Units Std. 0.66 14.11 tDP 0.04 1.70 2.14 tDIN tPY tPYS tEOUT 0.43 14.37 13.14 3.40 2.68 tLZ tHZ 16.61 15.37 ns –1 0.56 12.00 0.04 1.44 1.82 0.36 12.22 11.17 2.90 2.28 14.13 13.08 ns –2 0.49 10.54 0.03 1.27 1.60 0.32 10.73 9.81 2.54 2.00 12.40 11.48 ns Std. 0.66 11.23 0.04 1.70 2.14 0.43 11.44 9.87 3.77 3.36 13.68 12.10 ns –1 0.56 9.55 0.04 1.44 1.82 0.36 9.73 8.39 3.21 2.86 11.63 10.29 ns –2 0.49 8.39 0.03 1.27 1.60 0.32 8.54 7.37 2.81 2.51 10.21 9.04 ns Std. 0.66 10.45 0.04 1.70 2.14 0.43 10.65 9.24 3.84 3.55 12.88 11.48 ns –1 0.56 8.89 0.04 1.44 1.82 0.36 9.06 7.86 3.27 3.02 10.96 9.76 ns –2 0.49 7.81 0.03 1.27 1.60 0.32 7.95 6.90 2.87 2.65 9.62 8.57 ns Std. 0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47 ns –1 0.56 8.52 0.04 1.44 1.82 0.36 8.68 7.85 3.38 3.59 10.58 9.75 ns –2 0.49 7.48 0.03 1.27 1.60 0.32 7.62 6.89 2.97 3.15 9.29 8.56 ns Std. 0.66 10.02 0.04 1.70 2.14 0.43 10.20 9.23 3.97 4.22 12.44 11.47 ns –1 0.56 8.52 0.04 1.44 1.82 0.36 8.68 7.85 3.38 3.59 10.58 9.75 ns –2 0.49 7.48 0.03 1.27 1.60 0.32 7.62 6.89 2.97 3.15 9.29 8.56 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 38 R evis ion 16 ProASIC3E Flash Family FPGAs 3.3 V PCI, 3.3 V PCI-X Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications. Table 2-45 • Minimum and Maximum DC Input and Output Levels 3.3 V PCI/PCI-X Drive Strength VIL Min. V Max. V VIH Min. V Max. V Per PCI specification VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 Max. V Min. V Max. mA3 Max. mA3 µA4 µA4 mA mA Per PCI curves 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V< VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN< VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 4. Currents are measured at 85°C junction temperature. AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-11. R = 25 Test Point Datapath R to VCCI for tDP (F) R to GND for tDP (R) R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 10 pF for tZH / tZHS / tZL / tZLS 10 pF for tHZ / tLZ Figure 2-11 • AC Loading AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-46. Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF) 3.3 0.285 * VCCI for tDP(R) 0.615 * VCCI for tDP(F) – 10 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. R evisio n 16 39 Timing Characteristics Table 2-47 • 3.3 V PCI/PCI-X Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units Std. 0.66 2.81 0.04 1.05 1.67 0.43 2.86 2.00 3.28 3.61 5.09 4.23 ns –1 0.56 2.39 0.04 0.89 1.42 0.36 2.43 1.70 2.79 3.07 4.33 3.60 ns –2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Voltage-Referenced I/O Characteristics 3.3 V GTL Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V. Table 2-48 • Minimum and Maximum DC Input and Output Levels 3.3 V GTL VIL Drive Strength Min. V 20 mA3 –0.3 VIH Max. V Min. V VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.4 – 20 20 181 268 VREF – 0.05 VREF + 0.05 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. 3. Output drive strength is below JEDEC specification. VTT GTL 25 Test Point 10 pF Figure 2-12 • AC Loading Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.05 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.05 0.8 0.8 1.2 10 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. 40 R evis ion 16 10 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-50 • 3.3 V GTL Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.60 2.08 0.04 2.93 0.43 2.04 –1 0.51 1.77 0.04 2.50 0.36 –2 0.45 1.55 0.03 2.19 0.32 tLZ tHZ tZLS tZHS Units 2.08 4.27 4.31 ns 1.73 1.77 3.63 3.67 ns 1.52 1.55 3.19 3.22 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 41 2.5 V GTL Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V. Table 2-51 • Minimum and Maximum DC Input and Output Levels 2.5 GTL VIL Drive Strength Min., V 20 mA3 –0.3 VIH Max. V Min. V VREF – 0.05 VREF + 0.05 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.4 – 20 20 124 169 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. 3. Output drive strength is below JEDEC specification. VTT GTL 25 Test Point 10 pF Figure 2-13 • AC Loading Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.05 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.05 0.8 0.8 1.2 10 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-53 • 2.5 V GTL Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 0.8 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.60 2.13 0.04 2.46 0.43 2.16 –1 0.51 1.81 0.04 2.09 0.36 –2 0.45 1.59 0.03 1.83 0.32 tLZ tHZ tZLS tZHS Units 2.13 4.40 4.36 ns 1.84 1.81 3.74 3.71 ns 1.61 1.59 3.28 3.26 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 42 R evis ion 16 ProASIC3E Flash Family FPGAs 3.3 V GTL+ Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V. Table 2-54 • Minimum and Maximum DC Input and Output Levels 3.3 V GTL+ VIL Drive Strength Min. V 35 mA –0.3 VIH Max. V Min. V VREF – 0.1 VREF + 0.1 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.6 – 35 35 181 268 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT GTL+ 25 Test Point 10 pF Figure 2-14 • AC Loading Table 2-55 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 1.0 1.0 1.5 10 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-56 • 3.3 V GTL+ Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.0 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.60 2.06 0.04 1.59 0.43 2.09 –1 0.51 1.75 0.04 1.35 0.36 –2 0.45 1.53 0.03 1.19 0.32 tLZ tHZ tZLS tZHS Units 2.06 4.33 4.29 ns 1.78 1.75 3.68 3.65 ns 1.56 1.53 3.23 3.20 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 43 2.5 V GTL+ Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V. Table 2-57 • Minimum and Maximum DC Input and Output Levels 2.5 V GTL+ VIL VIH Drive Strength Min. V Max. V Min. V 33 mA –0.3 VREF – 0.1 VREF + 0.1 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.6 – 33 33 124 169 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT GTL+ 25 Test Point 10 pF Figure 2-15 • AC Loading Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 1.0 1.0 1.5 10 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-59 • 2.5 V GTL+ Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.0 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.60 2.21 0.04 1.51 0.43 2.25 –1 0.51 1.88 0.04 1.29 0.36 –2 0.45 1.65 0.03 1.13 0.32 tLZ tHZ tZLS tZHS Units 2.10 4.48 4.34 ns 1.91 1.79 3.81 3.69 ns 1.68 1.57 3.35 3.24 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 44 R evis ion 16 ProASIC3E Flash Family FPGAs HSTL Class I High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-60 • Minimum and Maximum DC Input and Output Levels HSTL Class I VIL VIH Drive Strength Min. V Max. V Min. V 8 mA –0.3 VREF – 0.1 VREF + 0.1 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.4 VCCI – 0.4 39 32 8 8 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT HSTL Class I 50 Test Point 20 pF Figure 2-16 • AC Loading Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 0.75 0.75 0.75 20 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-62 • HSTL Class I Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = .4 V, VREF = 0.75 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.66 3.18 0.04 2.12 0.43 3.24 –1 0.56 2.70 0.04 1.81 0.36 –2 0.49 2.37 0.03 1.59 0.32 tLZ tHZ tZLS tZHS Units 3.14 5.47 5.38 ns 2.75 2.67 4.66 4.58 ns 2.42 2.35 4.09 4.02 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 45 HSTL Class II High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-63 • Minimum and Maximum DC Input and Output Levels HSTL Class II VIL Drive Strength Min. V 15 mA3 –0.3 VIH Max. V Min. V VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max., V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.4 55 66 VREF – 0.1 VREF + 0.1 VCCI – 0.4 15 15 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. 3. Output drive strength is below JEDEC specification. VTT HSTL Class II 25 Test Point 20 pF Figure 2-17 • AC Loading Table 2-64 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.1 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.1 0.75 0.75 0.75 20 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-65 • HSTL Class II Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V, VREF = 0.75 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.66 3.02 0.04 2.12 0.43 3.08 –1 0.56 2.57 0.04 1.81 0.36 –2 0.49 2.26 0.03 1.59 0.32 tLZ tHZ tZLS tZHS Units 2.71 5.32 4.95 ns 2.62 2.31 4.52 4.21 ns 2.30 2.03 3.97 3.70 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 46 R evis ion 16 ProASIC3E Flash Family FPGAs SSTL2 Class I Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-66 • Minimum and Maximum DC Input and Output Levels SSTL2 Class I VIL VIH Drive Strength Min. V Max. V Min. V 15 mA –0.3 VREF – 0.2 VREF + 0.2 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.54 87 83 10 10 VCCI – 0.62 15 15 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT SSTL2 Class I 50 Test Point 25 30 pF Figure 2-18 • AC Loading Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.25 1.25 1.25 30 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-68 • SSTL 2 Class I Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.66 2.13 0.04 1.33 0.43 2.17 –1 0.56 1.81 0.04 1.14 0.36 –2 0.49 1.59 0.03 1.00 0.32 tLZ tHZ tZLS tZHS Units 1.85 4.40 4.08 ns 1.84 1.57 3.74 3.47 ns 1.62 1.38 3.29 3.05 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 47 SSTL2 Class II Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-69 • Minimum and Maximum DC Input and Output Levels SSTL2 Class II VIL VIH Drive Strength Min. V Max. V Min. V 18 mA –0.3 VREF – 0.2 VREF + 0.2 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.35 VCCI – 0.43 18 18 124 169 10 10 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT SSTL2 Class II 25 Test Point 25 30 pF Figure 2-19 • AC Loading Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.25 1.25 1.25 30 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-71 • SSTL 2 Class II Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V, VREF = 1.25 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ Std. 0.66 0.66 2.17 0.04 1.33 0.43 2.21 –1 0.56 0.56 1.84 0.04 1.14 0.36 –2 0.49 0.49 1.62 0.03 1.00 0.32 tHZ tZLS tZHS Units 1.77 4.44 ns 1.88 1.51 3.78 ns 1.65 1.32 3.32 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 48 R evis ion 16 ProASIC3E Flash Family FPGAs SSTL3 Class I Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-72 • Minimum and Maximum DC Input and Output Levels SSTL3 Class I VIL VIH Drive Strength Min. V Max. V Min. V 14 mA –0.3 VREF – 0.2 VREF + 0.2 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.7 54 51 10 10 VCCI – 1.1 14 14 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT SSTL3 Class I 50 Test Point 25 30 pF Figure 2-20 • AC Loading Table 2-73 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.5 1.5 1.485 30 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-74 • SSTL3 Class I Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.66 2.31 0.04 1.25 0.43 2.35 –1 0.56 1.96 0.04 1.06 0.36 –2 0.49 1.72 0.03 0.93 0.32 tLZ tHZ tZLS tZHS Units 1.84 4.59 4.07 ns 2.00 1.56 3.90 3.46 ns 1.75 1.37 3.42 3.04 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 49 SSTL3 Class II Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer. Table 2-75 • Minimum and Maximum DC Input and Output Levels SSTL3 Class II VIL Drive Strength Min. V 21 mA –0.3 VIH Max. V Min. V VREF – 0.2 VREF + 0.2 VOL VOH IOL IOH IOSL IOSH IIL IIH Max. V Max. V Min. V mA mA Max. mA1 Max. mA1 µA2 µA2 3.6 0.5 109 103 10 10 VCCI – 0.9 21 21 Notes: 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage. 2. Currents are measured at 85°C junction temperature. VTT SSTL3 Class II 25 Test Point 25 30 pF Figure 2-21 • AC Loading Table 2-76 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) VREF – 0.2 Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF) VREF + 0.2 1.5 1.5 1.485 30 Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. Timing Characteristics Table 2-77 • SSTL3 Class II Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V, VREF = 1.5 V Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH Std. 0.66 2.07 0.04 1.25 0.43 2.10 –1 0.56 1.76 0.04 1.06 0.36 –2 0.49 1.54 0.03 0.93 0.32 tLZ tHZ tZLS tZHS Units 1.67 4.34 3.91 ns 1.79 1.42 3.69 3.32 ns 1.57 1.25 3.24 2.92 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 50 R evis ion 16 ProASIC3E Flash Family FPGAs Differential I/O Characteristics Physical Implementation Configuration of the I/O modules as a differential pair is handled by the Designer software when the user instantiates a differential I/O macro in the design. Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for bidirectional I/Os or tristates with the LVPECL standards. LVDS Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-22. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different. Along with LVDS I/O, ProASIC3E also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes). Bourns Part Number: CAT16-LV4F12 OUTBUF_LVDS FPGA P 165 Ω Z0 = 50 Ω 140 Ω N 165 Ω P Z0 = 50 Ω FPGA + – 100 Ω INBUF_LVDS N Figure 2-22 • LVDS Circuit Diagram and Board-Level Implementation R evisio n 16 51 Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Typ. Max. Units 2.375 2.5 2.625 V VCCI Supply Voltage VOL Output Low Voltage 0.9 1.075 1.25 V VOH Output High Voltage 1.25 1.425 1.6 V 1 Output Lower Current 0.65 0.91 1.16 mA 1 IOH Output High Current 0.65 0.91 1.16 mA VI Input Voltage 2.925 V IOL 0 2 Input High Leakage Current 10 µA 2 IIL Input Low Leakage Current 10 µA VODIFF Differential Output Voltage VOCM VICM IIH VIDIFF 250 350 450 mV Output Common Mode Voltage 1.125 1.25 1.375 V Input Common Mode Voltage 0.05 1.25 2.35 V 100 350 Input Differential Voltage 2 mV Notes: 1. IOL/ IOH defined by VODIFF/(Resistor Network). 2. Currents are measured at 85°C junction temperature. Table 2-79 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 1.075 Input High (V) Measuring Point* (V) VREF (typ.) (V) 1.325 Cross point – Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. 52 R evis ion 16 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-80 • LVDS Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Speed Grade tDOUT tDP tDIN tPY Units Std. 0.66 1.87 0.04 1.82 ns –1 0.56 1.59 0.04 1.55 ns –2 0.49 1.40 0.03 1.36 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. B-LVDS/M-LVDS Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-23. The input and output buffer delays are available in the LVDS section in Table 2-80. Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60  and RT = 70 , given Z0 = 50  (2") and Zstub = 50  (~1.5"). Receiver Transceiver EN R + RS Zstub Z0 RT Z 0 D EN T - + RS Zstub Driver RS Zstub - Zstub RS Zstub EN + RS Zstub Transceiver EN R - + RS Receiver RS Zstub EN T - + RS Zstub RS BIBUF_LVDS - RS ... Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 Z0 RT Figure 2-23 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers R evisio n 16 53 LVPECL Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-24. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different. Bourns Part Number: CAT16-PC4F12 OUTBUF_LVPECL FPGA P 100 Ω Z0 = 50 Ω 100 Ω FPGA INBUF_LVPECL + – 100 Ω 187 W N P Z0 = 50 Ω N Figure 2-24 • LVPECL Circuit Diagram and Board-Level Implementation Table 2-81 • Minimum and Maximum DC Input and Output Levels DC Parameter Description Min. Max. Min. 3.0 Max. Min. 3.3 Max. Units VCCI Supply Voltage VOL Output Low Voltage 0.96 1.27 1.06 1.43 1.30 1.57 V VOH Output High Voltage 1.8 2.11 1.92 2.28 2.13 2.41 V VIL, VIH Input Low, Input High Voltages 0 3.6 0 3.6 0 3.6 V VODIFF Differential Output Voltage 0.625 0.97 0.625 0.97 0.625 0.97 V VOCM Output Common-Mode Voltage 1.762 1.98 1.762 1.98 1.762 1.98 V VICM Input Common-Mode Voltage 1.01 2.57 1.01 2.57 1.01 2.57 V VIDIFF Input Differential Voltage 300 300 3.6 V 300 mV Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 1.64 Input High (V) Measuring Point* (V) VREF (typ.) (V) 1.94 Cross point – Note: *Measuring point = Vtrip. See Table 2-15 on page 2-19 for a complete table of trip points. 54 R evis ion 16 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-83 • LVPECL Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Speed Grade tDOUT tDP tDIN tPY Units Std. 0.66 1.83 0.04 1.63 ns –1 0.56 1.55 0.04 1.39 ns –2 0.49 1.36 0.03 1.22 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. I/O Register Specifications Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset INBUF Preset L Pad Out D DOUT Data_out E Y F Core Array G PRE D Q DFN1E1P1 TRIBUF CLKBUF CLK INBUF Enable PRE D Q C DFN1E1P1 INBUF Data E E EOUT B H I A J K CLKBUF INBUF INBUF CLK Enable D_Enable Data Input I/O Register with: Active High Enable Active High Preset Positive-Edge Triggered PRE D Q DFN1E1P1 E Data Output Register and Enable Output Register with: Active High Enable Active High Preset Postive-Edge Triggered Figure 2-25 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset R evisio n 16 55 Table 2-84 • Parameter Definition and Measuring Nodes Parameter Name Parameter Definition tOCLKQ Clock-to-Q of the Output Data Register tOSUD Data Setup Time for the Output Data Register F, H tOHD Data Hold Time for the Output Data Register F, H tOSUE Enable Setup Time for the Output Data Register G, H tOHE Enable Hold Time for the Output Data Register G, H tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register tOREMPRE Asynchronous Preset Removal Time for the Output Data Register L, H tORECPRE Asynchronous Preset Recovery Time for the Output Data Register L, H tOECLKQ Clock-to-Q of the Output Enable Register tOESUD Data Setup Time for the Output Enable Register J, H tOEHD Data Hold Time for the Output Enable Register J, H tOESUE Enable Setup Time for the Output Enable Register K, H tOEHE Enable Hold Time for the Output Enable Register K, H tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register I, H tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register I, H tICLKQ Clock-to-Q of the Input Data Register A, E tISUD Data Setup Time for the Input Data Register C, A tIHD Data Hold Time for the Input Data Register C, A tISUE Enable Setup Time for the Input Data Register B, A tIHE Enable Hold Time for the Input Data Register B, A tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A Note: *See Figure 2-25 on page 2-55 for more information. 56 Measuring Nodes (from, to)* R evis ion 16 H, DOUT L, DOUT H, EOUT I, EOUT ProASIC3E Flash Family FPGAs Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear D CC Q DFN1E1C1 EE Data_out FF D Q DFN1E1C1 TRIBUF INBUF Data Core Array Pad Out DOUT Y GG INBUF Enable BB EOUT E E CLR CLR LL INBUF CLR CLKBUF CLK HH AA JJ DD KK Data Input I/O Register with Active High Enable Active High Clear Positive-Edge Triggered D Q DFN1E1C1 E INBUF INBUF CLKBUF Enable D_Enable CLK CLR Data Output Register and Enable Output Register with Active High Enable Active High Clear Positive-Edge Triggered Figure 2-26 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear R evisio n 16 57 Table 2-85 • Parameter Definition and Measuring Nodes Parameter Name Parameter Definition tOCLKQ Clock-to-Q of the Output Data Register tOSUD Data Setup Time for the Output Data Register FF, HH tOHD Data Hold Time for the Output Data Register FF, HH tOSUE Enable Setup Time for the Output Data Register GG, HH tOHE Enable Hold Time for the Output Data Register GG, HH tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register tOREMCLR Asynchronous Clear Removal Time for the Output Data Register LL, HH tORECCLR Asynchronous Clear Recovery Time for the Output Data Register LL, HH tOECLKQ Clock-to-Q of the Output Enable Register tOESUD Data Setup Time for the Output Enable Register JJ, HH tOEHD Data Hold Time for the Output Enable Register JJ, HH tOESUE Enable Setup Time for the Output Enable Register KK, HH tOEHE Enable Hold Time for the Output Enable Register KK, HH tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register II, EOUT tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register II, HH tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register II, HH tICLKQ Clock-to-Q of the Input Data Register AA, EE tISUD Data Setup Time for the Input Data Register CC, AA tIHD Data Hold Time for the Input Data Register CC, AA tISUE Enable Setup Time for the Input Data Register BB, AA tIHE Enable Hold Time for the Input Data Register BB, AA tICLR2Q Asynchronous Clear-to-Q of the Input Data Register DD, EE tIREMCLR Asynchronous Clear Removal Time for the Input Data Register DD, AA tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register DD, AA Note: *See Figure 2-26 on page 2-57 for more information. 58 Measuring Nodes (from, to)* R evis ion 16 HH, DOUT LL, DOUT HH, EOUT ProASIC3E Flash Family FPGAs Input Register tICKMPWH tICKMPWL CLK 50% 50% Enable 50% 1 50% 50% 50% tIHD tISUD Data 50% 50% 50% 0 tIWPRE 50% tIRECPRE tIREMPRE 50% 50% tIHE Preset tISUE 50% tIWCLR 50% Clear tIRECCLR tIREMCLR 50% 50% tIPRE2Q 50% Out_1 50% tICLR2Q 50% tICLKQ Figure 2-27 • Input Register Timing Diagram Timing Characteristics Table 2-86 • Input Data Register Propagation Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tICLKQ Clock-to-Q of the Input Data Register 0.24 0.27 0.32 ns tISUD Data Setup Time for the Input Data Register 0.26 0.30 0.35 ns tIHD Data Hold Time for the Input Data Register 0.00 0.00 0.00 ns tISUE Enable Setup Time for the Input Data Register 0.37 0.42 0.50 ns tIHE Enable Hold Time for the Input Data Register 0.00 0.00 0.00 ns tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.45 0.52 0.61 ns tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.45 0.52 0.61 ns tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 0.00 ns tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.22 0.25 0.30 ns tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 0.00 ns tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.22 0.25 0.30 ns tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.36 0.41 0.48 ns tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.32 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 59 Output Register tOCKMPWH tOCKMPWL CLK 50% 50% 50% 50% 50% 50% 50% tOSUD tOHD 1 Data_out Enable 50% 50% 0 50% tOWPRE tOHE Preset tOSUE tOREMPRE tORECPRE 50% 50% 50% tOWCLR 50% Clear tOREMCLR tORECCLR 50% 50% tOPRE2Q 50% DOUT 50% tOCLR2Q 50% tOCLKQ Figure 2-28 • Output Register Timing Diagram Timing Characteristics Table 2-87 • Output Data Register Propagation Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tOCLKQ Clock-to-Q of the Output Data Register 0.59 0.67 0.79 ns tOSUD Data Setup Time for the Output Data Register 0.31 0.36 0.42 ns tOHD Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns tOSUE Enable Setup Time for the Output Data Register 0.44 0.50 0.59 ns tOHE Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.80 0.91 1.07 ns tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.80 0.91 1.07 ns tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.22 0.25 0.30 ns tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.22 0.25 0.30 ns tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 60 R evis ion 16 ProASIC3E Flash Family FPGAs Output Enable Register tOECKMPWH tOECKMPWL CLK 50% 50% 50% 50% 50% 50% 50% tOESUD tOEHD 1 D_Enable Enable Preset 50% 0 50% 50% tOEWPRE 50% tOESUEtOEHE tOEREMPRE tOERECPRE 50% 50% tOEWCLR 50% Clear tOEPRE2Q 50% EOUT 50% tOEREMCLR tOERECCLR 50% 50% tOECLR2Q 50% tOECLKQ Figure 2-29 • Output Enable Register Timing Diagram Timing Characteristics Table 2-88 • Output Enable Register Propagation Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tOECLKQ Clock-to-Q of the Output Enable Register 0.59 0.67 0.79 ns tOESUD Data Setup Time for the Output Enable Register 0.31 0.36 0.42 ns tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 0.00 ns tOESUE Enable Setup Time for the Output Enable Register 0.44 0.50 0.58 ns tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 0.00 ns tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.67 0.76 0.89 ns tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.67 0.76 0.89 ns tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 0.00 ns tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.22 0.25 0.30 ns tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 0.00 ns tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.22 0.25 0.30 ns tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable Register 0.22 0.25 0.30 ns tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable Register 0.22 0.25 0.30 ns tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.36 0.41 0.48 ns tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.32 0.37 0.43 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. DDR Module Specifications R evisio n 16 61 Input DDR Module Input DDR INBUF Data A D Out_QF (to core) E Out_QR (to core) FF1 B CLK CLKBUF FF2 C CLR INBUF DDR_IN Figure 2-30 • Input DDR Timing Model Table 2-89 • Parameter Definitions Parameter Name 62 Parameter Definition Measuring Nodes (from, to) tDDRICLKQ1 Clock-to-Out Out_QR B, D tDDRICLKQ2 Clock-to-Out Out_QF B, E tDDRISUD Data Setup Time of DDR input A, B tDDRIHD Data Hold Time of DDR input A, B tDDRICLR2Q1 Clear-to-Out Out_QR C, D tDDRICLR2Q2 Clear-to-Out Out_QF C, E tDDRIREMCLR Clear Removal C, B tDDRIRECCLR Clear Recovery C, B R evis ion 16 ProASIC3E Flash Family FPGAs CLK tDDRISUD Data 1 2 3 4 5 6 tDDRIHD 7 8 9 tDDRIRECCLR CLR tDDRIREMCLR tDDRICLKQ1 tDDRICLR2Q1 Out_QF 2 6 4 tDDRICLKQ2 tDDRICLR2Q2 Out_QR 3 7 5 Figure 2-31 • Input DDR Timing Diagram Timing Characteristics Table 2-90 • Input DDR Propagation Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tDDRICLKQ1 Clock-to-Out Out_QR for Input DDR 0.39 0.44 0.52 ns tDDRICLKQ2 Clock-to-Out Out_QF for Input DDR 0.27 0.31 0.37 ns tDDRISUD Data Setup for Input DDR 0.28 0.32 0.38 ns tDDRIHD Data Hold for Input DDR 0.00 0.00 0.00 ns tDDRICLR2Q1 Asynchronous Clear to Out Out_QR for Input DDR 0.57 0.65 0.76 ns tDDRICLR2Q2 Asynchronous Clear-to-Out Out_QF for Input DDR 0.46 0.53 0.62 ns tDDRIREMCLR Asynchronous Clear Removal Time for Input DDR 0.00 0.00 0.00 ns tDDRIRECCLR Asynchronous Clear Recovery Time for Input DDR 0.22 0.25 0.30 ns tDDRIWCLR Asynchronous Clear Minimum Pulse Width for Input DDR 0.22 0.25 0.30 ns tDDRICKMPWH Clock Minimum Pulse Width High for Input DDR 0.36 0.41 0.48 ns tDDRICKMPWL Clock Minimum Pulse Width Low for Input DDR 0.32 0.37 0.43 ns FDDRIMAX Maximum Frequency for Input DDR 1404 1232 1048 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 63 Output DDR Module Output DDR A Data_F (from core) X FF1 B CLK CLKBUF E X C X D Data_R (from core) Out 0 X 1 X OUTBUF FF2 B X CLR INBUF C X DDR_OUT Figure 2-32 • Output DDR Timing Model Table 2-91 • Parameter Definitions Parameter Name 64 Parameter Definition Measuring Nodes (from, to) tDDROCLKQ Clock-to-Out B, E tDDROCLR2Q Asynchronous Clear-to-Out C, E tDDROREMCLR Clear Removal C, B tDDRORECCLR Clear Recovery C, B tDDROSUD1 Data Setup Data_F A, B tDDROSUD2 Data Setup Data_R D, B tDDROHD1 Data Hold Data_F A, B tDDROHD2 Data Hold Data_R D, B R evis ion 16 ProASIC3E Flash Family FPGAs CLK tDDROSUD2 tDDROHD2 1 Data_F 2 tDDROREMCLR Data_R 6 4 3 5 tDDROHD1 7 8 9 10 11 tDDRORECCLR tDDROREMCLR CLR tDDROCLR2Q Out tDDROCLKQ 7 2 8 3 4 9 10 Figure 2-33 • Output DDR Timing Diagram Timing Characteristics Table 2-92 • Output DDR Propagation Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter –2 –1 Std. Units tDDROCLKQ Clock-to-Out of DDR for Output DDR Description 0.70 0.80 0.94 ns tDDROSUD1 Data_F Data Setup for Output DDR 0.38 0.43 0.51 ns tDDROSUD2 Data_R Data Setup for Output DDR 0.38 0.43 0.51 ns tDDROHD1 Data_F Data Hold for Output DDR 0.00 0.00 0.00 ns tDDROHD2 Data_R Data Hold for Output DDR 0.00 0.00 0.00 ns tDDROCLR2Q Asynchronous Clear-to-Out for Output DDR 0.80 0.91 1.07 ns tDDROREMCLR Asynchronous Clear Removal Time for Output DDR 0.00 0.00 0.00 ns tDDRORECCLR Asynchronous Clear Recovery Time for Output DDR 0.22 0.25 0.30 ns tDDROWCLR1 Asynchronous Clear Minimum Pulse Width for Output DDR 0.22 0.25 0.30 ns tDDROCKMPWH Clock Minimum Pulse Width High for the Output DDR 0.36 0.41 0.48 ns tDDROCKMPWL Clock Minimum Pulse Width Low for the Output DDR 0.32 0.37 0.43 ns FDDOMAX Maximum Frequency for the Output DDR 1404 1232 1048 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 65 VersaTile Characteristics VersaTile Specifications as a Combinatorial Module The ProASIC3E library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the Fusion, IGLOO®/e, and ProASIC3/E Macro Library Guide. A A B A OR2 Y AND2 A Y B B B XOR2 A B C Y A A B C NAND3 A MAJ3 B Y C Figure 2-34 • Sample of Combinatorial Cells R evis ion 16 NAND2 XOR3 Y Y Y 0 MUX2 B S 66 NOR2 B A A Y INV 1 Y ProASIC3E Flash Family FPGAs tPD A NAND2 or Any Combinatorial Logic B Y tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)) where edges are applicable for the particular combinatorial cell VCC 50% 50% A, B, C GND VCC 50% 50% OUT GND VCC tPD tPD (FF) (RR) OUT tPD (FR) 50% tPD 50% GND (RF) Figure 2-35 • Timing Model and Waveforms R evisio n 16 67 Timing Characteristics Table 2-93 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Combinatorial Cell Equation Parameter –2 –1 Std. Units Y = !A tPD 0.40 0.46 0.54 ns Y=A· B tPD 0.47 0.54 0.63 ns Y = !(A · B) tPD 0.47 0.54 0.63 ns Y=A+B tPD 0.49 0.55 0.65 ns NOR2 Y = !(A + B) 0.49 0.55 0.65 ns XOR2 Y = A B tPD tPD 0.74 0.84 0.99 ns MAJ3 Y = MAJ(A , B, C) 0.70 0.79 0.93 ns XOR3 Y = A  B C tPD tPD 0.87 1.00 1.17 ns MUX2 Y = A !S + B S tPD 0.51 0.58 0.68 ns AND3 Y=A· B· C tPD 0.56 0.64 0.75 ns INV AND2 NAND2 OR2 Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. VersaTile Specifications as a Sequential Module The ProASIC3E library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide. Data D Q Out Data En DFN1 D Out Q DFN1E1 CLK CLK PRE Data D Q Out En DFN1C1 CLK CLK CLR Figure 2-36 • Sample of Sequential Cells 68 Data R evis ion 16 D Q DFI1E1P1 Out ProASIC3E Flash Family FPGAs tCKMPWH tCKMPWL CLK 50% 50% tSUD 50% Data EN PRE 50% tRECPRE tREMPRE 50% 50% tRECCLR tWCLR 50% CLR tPRE2Q 50% Out 50% 50% 0 tWPRE tHE 50% 50% tHD 50% tSUE 50% 50% 50% tREMCLR 50% tCLR2Q 50% 50% tCLKQ Figure 2-37 • Timing Model and Waveforms R evisio n 16 69 Timing Characteristics Table 2-94 • Register Delays Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tCLKQ Clock-to-Q of the Core Register 0.55 0.63 0.74 ns tSUD Data Setup Time for the Core Register 0.43 0.49 0.57 ns tHD Data Hold Time for the Core Register 0.00 0.00 0.00 ns tSUE Enable Setup Time for the Core Register 0.45 0.52 0.61 ns tHE Enable Hold Time for the Core Register 0.00 0.00 0.00 ns tCLR2Q Asynchronous Clear-to-Q of the Core Register 0.40 0.45 0.53 ns tPRE2Q Asynchronous Preset-to-Q of the Core Register 0.40 0.45 0.53 ns tREMCLR Asynchronous Clear Removal Time for the Core Register 0.00 0.00 0.00 ns tRECCLR Asynchronous Clear Recovery Time for the Core Register 0.22 0.25 0.30 ns tREMPRE Asynchronous Preset Removal Time for the Core Register 0.00 0.00 0.00 ns tRECPRE Asynchronous Preset Recovery Time for the Core Register 0.22 0.25 0.30 ns tWCLR Asynchronous Clear Minimum Pulse Width for the Core Register 0.22 0.25 0.30 ns tWPRE Asynchronous Preset Minimum Pulse Width for the Core Register 0.22 0.25 0.30 ns tCKMPWH Clock Minimum Pulse Width High for the Core Register 0.32 0.37 0.43 ns tCKMPWL Clock Minimum Pulse Width Low for the Core Register 0.36 0.41 0.48 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Global Resource Characteristics A3PE600 Clock Tree Topology Clock delays are device-specific. Figure 2-38 is an example of a global tree used for clock routing. The global tree presented in Figure 2-38 is driven by a CCC located on the west side of the A3PE600 device. It is used to drive all D- 70 R evis ion 16 ProASIC3E Flash Family FPGAs flip-flops in the device. Central Global Rib VersaTile Rows CCC Global Spine Figure 2-38 • Example of Global Tree Use in an A3PE600 Device for Clock Routing Global Tree Timing Characteristics Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-73. Table 2-95 on page 2-72, Table 2-96 on page 2-72, and Table 2-97 on page 2-72 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading. R evisio n 16 71 Timing Characteristics Table 2-95 • A3PE600 Global Resource Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V –2 Description 1 Min. tRCKL Input Low Delay for Global Clock tRCKH tRCKMPWH –1 Std. Max. 1 Min. Max. 0.83 1.04 0.94 1.18 Input High Delay for Global Clock 0.81 1.06 0.93 1.21 Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns tRCKSW Maximum Skew for Global Clock Parameter 2 2 0.25 Min.1 Max.2 Units 1.11 1.39 1.09 1.42 0.28 0.33 ns ns ns Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-96 • A3PE1500 Global Resource Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V –2 –1 Std. Description Min. Max.2 tRCKL Input Low Delay for Global Clock 1.07 1.29 1.22 1.47 1.43 1.72 ns tRCKH Input High Delay for Global Clock 1.06 1.32 1.21 1.50 1.42 1.76 ns tRCKMPWH Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns tRCKSW Maximum Skew for Global Clock Parameter 1 Min.1 Max.2 0.26 Min.1 Max.2 Units 0.29 0.34 ns Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. Table 2-97 • A3PE3000 Global Resource Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V –2 Parameter Description –1 Std. Min.1 Max.2 Min.1 Max.2 Min.1 Max.2 Units tRCKL Input Low Delay for Global Clock 1.41 1.62 1.60 1.85 1.88 2.17 ns tRCKH Input High Delay for Global Clock 1.40 1.66 1.59 1.89 1.87 2.22 ns tRCKMPWH Minimum Pulse Width High for Global Clock 0.75 0.85 1.00 ns tRCKMPWL Minimum Pulse Width Low for Global Clock 0.85 0.96 1.13 ns tRCKSW Maximum Skew for Global Clock 0.26 0.29 0.35 ns Notes: 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 72 R evis ion 16 ProASIC3E Flash Family FPGAs Clock Conditioning Circuits CCC Electrical Specifications Timing Characteristics Table 2-98 • ProASIC3E CCC/PLL Specification Parameter Minimum Clock Conditioning Circuitry Input Frequency fIN_CCC 1.5 Clock Conditioning Circuitry Output Frequency fOUT_CCC 0.75 Delay Increments in Programmable Delay Blocks 1, 2 Typical Maximum Units 350 MHz 350 MHz 1603 4 ps Serial Clock (SCLK) for Dynamic PLL 125 Number of Programmable Values in Each Programmable Delay Block 32 Input Period Jitter 1.5 1 Global Network Used 3 Global Networks Used 0.75 MHz to 24 MHz 0.50% 0.70% 24 MHz to 100 MHz 1.00% 1.20% 100 MHz to 250 MHz 1.75% 2.00% 250 MHz to 350 MHz 2.50% 5.60% Tracking Jitter 5 ns Max Peak-to-Peak Period Jitter CCC Output Peak-to-Peak Period Jitter FCCC_OUT Acquisition Time MHz LockControl = 0 300 µs LockControl = 1 6.0 ms LockControl = 0 1.6 ns LockControl = 1 0.8 ns Output Duty Cycle 48.5 51.5 % Delay Range in Block: Programmable Delay 1 1, 2 0.6 5.56 ns Delay Range in Block: Programmable Delay 2 1,2 0.025 5.56 ns Delay Range in Block: Fixed Delay1,4 2.2 ns Notes: 1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings 2. TJ = 25°C, VCC = 1.5 V. 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help for more information. 4. Maximum value obtained for a –2 speed-grade device in worst-case commercial conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter. R evisio n 16 73 Output Signal Tperiod_max Tperiod_min Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min. Figure 2-39 • Peak-to-Peak Jitter Definition 74 R evis ion 16 ProASIC3E Flash Family FPGAs Embedded SRAM and FIFO Characteristics SRAM RAM512X18 RAM4K9 ADDRA11 ADDRA10 DOUTA8 DOUTA7 RADDR8 RADDR7 RD17 RD16 ADDRA0 DINA8 DINA7 DOUTA0 RADDR0 RD0 RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPEA WMODEA BLKA WENA CLKA PIPE REN RCLK ADDRB11 ADDRB10 DOUTB8 DOUTB7 ADDRB0 DOUTB0 DINB8 DINB7 WADDR8 WADDR7 WADDR0 WD17 WD16 WD0 DINB0 WW1 WW0 WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB WENB CLKB WEN WCLK RESET RESET Figure 2-40 • RAM Models R evisio n 16 75 Timing Waveforms tCYC tCKH tCKL CLK tAS tAH A1 A0 [R|W]ADDR A2 tBKS tBKH BLK tENS tENH WEN tCKQ1 DOUT|RD Dn D0 D1 D2 tDOH1 Figure 2-41 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18. tCYC tCKH tCKL CLK t AS tAH A1 A0 [R|W]ADDR A2 tBKS tBKH BLK tENH tENS WEN tCKQ2 DOUT|RD Dn D0 D1 tDOH2 Figure 2-42 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18. 76 R evis ion 16 ProASIC3E Flash Family FPGAs tCYC tCKH tCKL CLK tAS tAH A0 [R|W]ADDR A1 A2 tBKS tBKH BLK tENS tENH WEN tDS DI0 DIN|WD tDH DI1 Dn DOUT|RD D2 Figure 2-43 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18. tCYC tCKH tCKL CLK tAS tAH A0 ADDR A1 A2 tBKS tBKH BLK tENS WEN tDS DI0 DIN DOUT (pass-through) DOUT (pipelined) tDH DI1 Dn DI2 DI0 Dn DI1 DI0 DI1 Figure 2-44 • RAM Write, Output as Write Data. Applicable to RAM4K9 Only. R evisio n 16 77 tCYC tCKH tCKL CLK RESET tRSTBQ DOUT|RD Dm Dn Figure 2-45 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18. 78 R evis ion 16 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-99 • RAM4K9 Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tAS Address setup time 0.25 0.28 0.33 ns tAH Address hold time 0.00 0.00 0.00 ns tENS REN, WEN setup time 0.14 0.16 0.19 ns tENH REN, WEN hold time 0.10 0.11 0.13 ns tBKS BLK setup time 0.23 0.27 0.31 ns tBKH BLK hold time 0.02 0.02 0.02 ns tDS Input data (DIN) setup time 0.18 0.21 0.25 ns tDH Input data (DIN) hold time 0.00 0.00 0.00 ns tCKQ1 Clock High to new data valid on DOUT (output retained, WMODE = 0) 1.79 2.03 2.39 ns Clock High to new data valid on DOUT (flow-through, WMODE = 1) 2.36 2.68 3.15 ns Clock High to new data valid on DOUT (pipelined) 0.89 1.02 1.20 ns 1 Address collision clk-to-clk delay for reliable write after write on same 0.33 0.28 0.25 address—Applicable to Closing Edge ns tC2CWWH1 Address collision clk-to-clk delay for reliable write after write on same 0.30 0.26 0.23 address—Applicable to Rising Edge ns tC2CRWH1 Address collision clk-to-clk delay for reliable read access after write on same 0.45 0.38 0.34 address—Applicable to Opening Edge ns tC2CWRH1 Address collision clk-to-clk delay for reliable write access after read on same 0.49 0.42 0.37 address— Applicable to Opening Edge ns tRSTBQ RESET Low to data out Low on DO (flow-through) 0.92 1.05 1.23 ns RESET Low to Data Out Low on DO (pipelined) 0.92 1.05 1.23 ns tREMRSTB RESET removal 0.29 0.33 0.38 ns tRECRSTB RESET recovery 1.50 1.71 2.01 ns tMPWRSTB RESET minimum pulse width 0.21 0.24 0.29 ns tCYC Clock cycle time 3.23 3.68 4.32 ns FMAX Maximum frequency 310 tCKQ2 tC2CWWL 272 231 MHz Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 79 Table 2-100 • RAM512X18 Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V Parameter Description –2 –1 Std. Units tAS Address setup time 0.25 0.28 0.33 ns tAH Address hold time 0.00 0.00 0.00 ns tENS REN, WEN setup time 0.18 0.20 0.24 ns tENH REN, WEN hold time 0.06 0.07 0.08 ns tDS Input data (WD) setup time 0.18 0.21 0.25 ns tDH Input data (WD) hold time 0.00 0.00 0.00 ns tCKQ1 Clock High to new data valid on RD (output retained) 2.16 2.46 2.89 ns Clock High to new data valid on RD (pipelined) 0.90 1.02 1.20 ns 1 Address collision clk-to-clk delay for reliable read access after write on same 0.50 0.43 0.38 address—Applicable to Opening Edge ns tC2CWRH1 Address collision clk-to-clk delay for reliable write access after read on same 0.59 0.50 0.44 address— Applicable to Opening Edge ns tRSTBQ RESET Low to data out Low on RD (flow-through) 0.92 1.05 1.23 ns RESET Low to data out Low on RD (pipelined) 0.92 1.05 1.23 ns tREMRSTB RESET removal 0.29 0.33 0.38 ns tRECRSTB RESET recovery 1.50 1.71 2.01 ns tMPWRSTB RESET minimum pulse width 0.21 0.24 0.29 ns tCYC Clock cycle time 3.23 3.68 4.32 ns FMAX Maximum frequency 310 tCKQ2 tC2CRWH 272 231 MHz Notes: 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for FlashBased cSoCs and FPGAs. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. 80 R evis ion 16 ProASIC3E Flash Family FPGAs FIFO FIFO4K18 RW2 RW1 RW0 WW2 WW1 WW0 ESTOP FSTOP RD17 RD16 RD0 FULL AFULL EMPTY AEMPTY AEVAL11 AEVAL10 AEVAL0 AFVAL11 AFVAL10 AFVAL0 REN RBLK RCLK WD17 WD16 WD0 WEN WBLK WCLK RPIPE RESET Figure 2-46 • FIFO Model R evisio n 16 81 Timing Waveforms tCYC RCLK tENH tENS REN tBKH tBKS RBLK tCKQ1 RD (flow-through) Dn D0 D1 D2 D0 D1 tCKQ2 RD (pipelined) Dn Figure 2-47 • FIFO Read tCYC WCLK tENS tENH WEN WBLK tBKS tBKH tDS WD DI0 tDH DI1 Figure 2-48 • FIFO Write 82 R evis ion 16 ProASIC3E Flash Family FPGAs RCLK/ WCLK tMPWRSTB tRSTCK RESET tRSTFG EMPTY tRSTAF AEMPTY tRSTFG FULL tRSTAF AFULL WA/RA (Address Counter) MATCH (A0) Figure 2-49 • FIFO Reset tCYC RCLK tRCKEF EMPTY tCKAF AEMPTY WA/RA (Address Counter) NO MATCH NO MATCH Dist = AEF_TH MATCH (EMPTY) Figure 2-50 • FIFO EMPTY Flag and AEMPTY Flag Assertion R evisio n 16 83 tCYC WCLK tWCKFF FULL tCKAF AFULL WA/RA NO MATCH (Address Counter) NO MATCH Dist = AFF_TH MATCH (FULL) Figure 2-51 • FIFO FULL Flag and AFULL Flag Assertion WCLK WA/RA MATCH (Address Counter) (EMPTY) RCLK NO MATCH 1st Rising Edge After 1st Write NO MATCH NO MATCH NO MATCH Dist = AEF_TH + 1 2nd Rising Edge After 1st Write tRCKEF EMPTY tCKAF AEMPTY Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Deassertion RCLK WA/RA (Address Counter) WCLK MATCH (FULL) NO MATCH 1st Rising Edge After 1st Read NO MATCH NO MATCH NO MATCH Dist = AFF_TH – 1 1st Rising Edge After 2nd Read tWCKF FULL tCKAF AFULL Figure 2-53 • FIFO FULL Flag and AFULL Flag Deassertion 84 R evis ion 16 ProASIC3E Flash Family FPGAs Timing Characteristics Table 2-101 • FIFO Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V Parameter Description –2 –1 Std. Units tENS REN, WEN Setup Time 1.38 1.57 1.84 ns tENH REN, WEN Hold Time 0.02 0.02 0.02 ns tBKS BLK Setup Time 0.19 0.22 0.26 ns tBKH BLK Hold Time 0.00 0.00 0.00 ns tDS Input Data (WD) Setup Time 0.18 0.21 0.25 ns tDH Input Data (WD) Hold Time 0.00 0.00 0.00 ns tCKQ1 Clock High to New Data Valid on RD (pass-through) 2.36 2.68 3.15 ns tCKQ2 Clock High to New Data Valid on RD (pipelined) 0.89 1.02 1.20 ns tRCKEF RCLK High to Empty Flag Valid 1.72 1.96 2.30 ns tWCKFF WCLK High to Full Flag Valid 1.63 1.86 2.18 ns tCKAF Clock High to Almost Empty/Full Flag Valid 6.19 7.05 8.29 ns tRSTFG RESET Low to Empty/Full Flag Valid 1.69 1.93 2.27 ns tRSTAF RESET Low to Almost Empty/Full Flag Valid 6.13 6.98 8.20 ns tRSTBQ RESET Low to Data Out Low on RD (pass-through) 0.92 1.05 1.23 ns RESET Low to Data Out Low on RD (pipelined) 0.92 1.05 1.23 ns tREMRSTB RESET Removal 0.29 0.33 0.38 ns tRECRSTB RESET Recovery 1.50 1.71 2.01 ns tMPWRSTB RESET Minimum Pulse Width 0.21 0.24 0.29 ns tCYC Clock Cycle Time 3.23 3.68 4.32 ns FMAX Maximum Frequency 310 272 231 MHz Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values. R evisio n 16 85 3 – Pin Descriptions and Packaging Supply Pins GND Ground GNDQ Ground (quiet) VCC Core Supply Voltage VCCIBx I/O Supply Voltage VMVx I/O Supply Voltage (quiet) VCCPLA/B/C/D/E/F PLL Supply Voltage Ground supply voltage to the core, I/O outputs, and I/O logic. Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board. Supply voltage to the FPGA core, nominally 1.5 V. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device. Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. In general, unused I/O banks should have their corresponding VCCIX pins tied to GND. If an output pad is terminated to ground through any resistor and if the corresponding VCCIX is left floating, then the leakage current to ground is ~ 0uA. However, if an output pad is terminated to ground through any resistor and the corresponding VCCIX grounded, then the leakage current to ground is ~ 3 uA. For unused banks the aforementioned behavior is to be taken into account while deciding if it’s better to float VCCIX of unused bank or tie it to GND. Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.). Supply voltage to analog PLL, nominally 1.5 V. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the ProASIC3E FPGA Fabric User’s Guide for a complete board solution for the PLL analog power supply and ground. There are six VCCPLX pins on ProASIC3E devices. VCOMPLA/B/C/D/E/F PLL Ground Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. There are six VCOMPL pins (PLL ground) on ProASIC3E devices. VJTAG JTAG Supply Voltage Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG R evisio n 16 3-1 ProASIC3E Flash Family FPGAs interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. VPUMP Programming Supply Voltage For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet. When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry. For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible. Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail. User-Defined Supply Pins VREF I/O Voltage Reference Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank. User Pins I/O User Input/Output The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration. Unused I/Os are configured as follows: GL • Output buffer is disabled (with tristate value of high impedance) • Input buffer is disabled (with tristate value of high impedance) • Weak pull-up is programmed Globals GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the ProASIC3E FPGA Fabric User’s Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input. Refer to the I/O Structure section of the ProASIC3E FPGA Fabric User’s Guide for an explanation of the naming of global pins. R evisio n 16 2 JTAG Pins Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. TCK Test Clock Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state. Note that to operate at all VJTAG voltages, 500 W to 1 k will satisfy the requirements. Refer to Table 3-1 for more information. Table 3-1 • Recommended Tie-Off Values for the TCK and TRST Pins VJTAG Tie-Off Resistance VJTAG at 3.3 V 200  to 1 k VJTAG at 2.5 V 200  to 1 k VJTAG at 1.8 V 500  to 1 k VJTAG at 1.5 V 500  to 1 k Notes: 1. Equivalent parallel resistance if more than one device is on the JTAG chain 2. The TCK pin can be pulled up/down. 3. The TRST pin is pulled down. TDI Test Data Input TDO Test Data Output TMS Test Mode Select TRST Boundary Scan Reset Pin Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin. Serial output for JTAG boundary scan, ISP, and UJTAG usage. The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin. The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pulldown resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-1 and must satisfy the parallel resistance value requirement. The values in Table 3-1 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain. In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin. Note that to operate at all VJTAG voltages, 500  to 1 k will satisfy the requirements. 3 R evis ion 16 ProASIC3E Flash Family FPGAs Special Function Pins NC No Connect DC Do Not Connect This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device. This pin should not be connected to any signals on the PCB. These pins should be left unconnected. Packaging Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility. Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems. Related Documents User’s Guides ProASIC3E FPGA Fabric User’s Guide http://www.microsemi.com/document-portal/doc_download/130883-proasic3e-fpga-fabric-user-s-guide Packaging The following documents provide packaging information and device selection for low power flash devices. Product Catalog http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use. Package Mechanical Drawings http://www.microsemi.com/document-portal/doc_download/131095-package-mechanical-drawings This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings. Additional packaging materials: http://www.microsemi.com/products/fpga-soc/solutions. R evisio n 16 4 4 – Package Pin Assignments PQ208 1 208 208-Pin PQFP Note: This is the top view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions. R evisio n 16 4-1 Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-2 1 GND 37 IO184PDB6V2 73 IO145NDB5V1 2 GNDQ 38 IO184NDB6V2 74 IO145PDB5V1 3 VMV7 39 IO180PSB6V1 75 IO143NDB5V1 4 GAB2/IO220PSB7V3 40 VCCIB6 76 IO143PDB5V1 5 GAA2/IO221PDB7V3 41 GND 77 IO137NDB5V0 6 IO221NDB7V3 42 IO176PDB6V1 78 IO137PDB5V0 7 GAC2/IO219PDB7V3 43 IO176NDB6V1 79 IO135NDB5V0 8 IO219NDB7V3 44 GEC1/IO169PDB6V0 80 IO135PDB5V0 9 IO215PDB7V3 45 GEC0/IO169NDB6V0 81 GND 10 IO215NDB7V3 46 GEB1/IO168PPB6V0 82 IO131NDB4V2 11 IO212PDB7V2 47 GEA1/IO167PPB6V0 83 IO131PDB4V2 12 IO212NDB7V2 48 GEB0/IO168NPB6V0 84 IO129NDB4V2 13 IO208PDB7V2 49 GEA0/IO167NPB6V0 85 IO129PDB4V2 14 IO208NDB7V2 50 VMV6 86 IO127NDB4V2 15 IO204PSB7V1 51 GNDQ 87 IO127PDB4V2 16 VCC 52 GND 88 VCC 17 GND 53 VMV5 89 VCCIB4 18 VCCIB7 54 GNDQ 90 IO121NDB4V1 19 IO200PDB7V1 55 IO166NDB5V3 91 IO121PDB4V1 20 IO200NDB7V1 56 GEA2/IO166PDB5V3 92 IO119NDB4V1 21 IO196PSB7V0 57 IO165NDB5V3 93 IO119PDB4V1 22 GFC1/IO192PSB7V0 58 GEB2/IO165PDB5V3 94 IO113NDB4V0 23 GFB1/IO191PDB7V0 59 IO164NDB5V3 95 GDC2/IO113PDB4V0 24 GFB0/IO191NDB7V0 60 GEC2/IO164PDB5V3 96 IO112NDB4V0 25 VCOMPLF 61 IO163PSB5V3 97 GND 26 GFA0/IO190NPB6V2 62 VCCIB5 98 GDB2/IO112PDB4V0 27 VCCPLF 63 IO161PSB5V3 99 GDA2/IO111PSB4V0 28 GFA1/IO190PPB6V2 64 IO157NDB5V2 100 GNDQ 29 GND 65 GND 101 TCK 30 GFA2/IO189PDB6V2 66 IO157PDB5V2 102 TDI 31 IO189NDB6V2 67 IO153NDB5V2 103 TMS 32 GFB2/IO188PPB6V2 68 IO153PDB5V2 104 VMV4 33 GFC2/IO187PPB6V2 69 IO149NDB5V1 105 GND 34 IO188NPB6V2 70 IO149PDB5V1 106 VPUMP 35 IO187NPB6V2 71 VCC 107 GNDQ 36 VCC 72 VCCIB5 108 TDO R evisio n 16 ProASIC3E Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 109 TRST 145 IO71NDB2V2 181 IO29NDB0V3 110 VJTAG 146 IO71PDB2V2 182 IO27PDB0V3 111 VMV3 147 IO67NDB2V1 183 IO27NDB0V3 112 GDA0/IO110NPB3V2 148 IO67PDB2V1 184 IO23PDB0V2 113 GDB0/IO109NPB3V2 149 IO65NDB2V1 185 IO23NDB0V2 114 GDA1/IO110PPB3V2 150 IO65PDB2V1 186 VCCIB0 115 GDB1/IO109PPB3V2 151 GBC2/IO60PSB2V0 187 VCC 116 GDC0/IO108NDB3V2 152 GBA2/IO58PSB2V0 188 IO18PDB0V2 117 GDC1/IO108PDB3V2 153 GBB2/IO59PSB2V0 189 IO18NDB0V2 118 IO105NDB3V2 154 VMV2 190 IO15PDB0V1 119 IO105PDB3V2 155 GNDQ 191 IO15NDB0V1 120 IO101NDB3V1 156 GND 192 IO12PSB0V1 121 IO101PDB3V1 157 VMV1 193 IO11PDB0V1 122 GND 158 GNDQ 194 IO11NDB0V1 123 VCCIB3 159 GBA1/IO57PDB1V3 195 GND 124 GCC2/IO90PSB3V0 160 GBA0/IO57NDB1V3 196 IO08PDB0V1 125 GCB2/IO89PSB3V0 161 GBB1/IO56PDB1V3 197 IO08NDB0V1 126 NC 162 GND 198 IO05PDB0V0 127 IO88NDB3V0 163 GBB0/IO56NDB1V3 199 IO05NDB0V0 128 GCA2/IO88PDB3V0 164 GBC1/IO55PDB1V3 200 VCCIB0 129 GCA1/IO87PPB3V0 165 GBC0/IO55NDB1V3 201 GAC1/IO02PDB0V0 130 GND 166 IO51PDB1V2 202 GAC0/IO02NDB0V0 131 VCCPLC 167 IO51NDB1V2 203 GAB1/IO01PDB0V0 132 GCA0/IO87NPB3V0 168 IO47PDB1V1 204 GAB0/IO01NDB0V0 133 VCOMPLC 169 IO47NDB1V1 205 GAA1/IO00PDB0V0 134 GCB0/IO86NDB2V3 170 VCCIB1 206 GAA0/IO00NDB0V0 135 GCB1/IO86PDB2V3 171 VCC 207 GNDQ 136 GCC1/IO85PSB2V3 172 IO43PSB1V1 208 VMV0 137 IO83NDB2V3 173 IO41PDB1V1 138 IO83PDB2V3 174 IO41NDB1V1 139 IO81PSB2V3 175 IO35PDB1V0 140 VCCIB2 176 IO35NDB1V0 141 GND 177 IO31PDB0V3 142 VCC 178 GND 143 IO73NDB2V2 179 IO31NDB0V3 144 IO73PDB2V2 180 IO29PDB0V3 R evisio n 16 4-3 Package Pin Assignments PQ208 PQ208 PQ208 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function 4-4 1 GND 40 VCCIB6 79 IO194NDB5V0 2 GNDQ 41 GND 80 IO194PDB5V0 3 VMV7 42 IO244PDB6V1 81 GND 4 GAB2/IO308PSB7V4 43 IO244NDB6V1 82 IO184NDB4V3 5 GAA2/IO309PDB7V4 44 GEC1/IO236PDB6V0 83 IO184PDB4V3 6 IO309NDB7V4 45 GEC0/IO236NDB6V0 84 IO180NDB4V3 7 GAC2/IO307PDB7V4 46 GEB1/IO235PPB6V0 85 IO180PDB4V3 8 IO307NDB7V4 47 GEA1/IO234PPB6V0 86 IO176NDB4V2 9 IO303PDB7V3 48 GEB0/IO235NPB6V0 87 IO176PDB4V2 10 IO303NDB7V3 49 GEA0/IO234NPB6V0 88 VCC 11 IO299PDB7V3 50 VMV6 89 VCCIB4 12 IO299NDB7V3 51 GNDQ 90 IO170NDB4V2 13 IO295PDB7V2 52 GND 91 IO170PDB4V2 14 IO295NDB7V2 53 VMV5 92 IO166NDB4V1 15 IO291PSB7V2 54 GNDQ 93 IO166PDB4V1 16 VCC 55 IO233NDB5V4 94 IO156NDB4V0 17 GND 56 GEA2/IO233PDB5V4 95 GDC2/IO156PDB4V0 18 VCCIB7 57 IO232NDB5V4 96 IO154NPB4V0 19 IO285PDB7V1 58 GEB2/IO232PDB5V4 97 GND 20 IO285NDB7V1 59 IO231NDB5V4 98 GDB2/IO155PSB4V0 21 IO279PSB7V0 60 GEC2/IO231PDB5V4 99 GDA2/IO154PPB4V0 22 GFC1/IO275PSB7V0 61 IO230PSB5V4 100 GNDQ 23 GFB1/IO274PDB7V0 62 VCCIB5 101 TCK 24 GFB0/IO274NDB7V0 63 IO218NDB5V3 102 TDI 25 VCOMPLF 64 IO218PDB5V3 103 TMS 26 GFA0/IO273NPB6V4 65 GND 104 VMV4 27 VCCPLF 66 IO214PSB5V2 105 GND 28 GFA1/IO273PPB6V4 67 IO212NDB5V2 106 VPUMP 29 GND 68 IO212PDB5V2 107 GNDQ 30 GFA2/IO272PDB6V4 69 IO208NDB5V1 108 TDO 31 IO272NDB6V4 70 IO208PDB5V1 109 TRST 32 GFB2/IO271PPB6V4 71 VCC 110 VJTAG 33 GFC2/IO270PPB6V4 72 VCCIB5 111 VMV3 34 IO271NPB6V4 73 IO202NDB5V1 112 GDA0/IO153NPB3V4 35 IO270NPB6V4 74 IO202PDB5V1 113 GDB0/IO152NPB3V4 36 VCC 75 IO198NDB5V0 114 GDA1/IO153PPB3V4 37 IO252PDB6V2 76 IO198PDB5V0 115 GDB1/IO152PPB3V4 38 IO252NDB6V2 77 IO197NDB5V0 116 GDC0/IO151NDB3V4 39 IO248PSB6V1 78 IO197PDB5V0 117 GDC1/IO151PDB3V4 R evisio n 16 ProASIC3E Flash Family FPGAs PQ208 PQ208 PQ208 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function 118 IO134NDB3V2 157 VMV1 196 IO11PDB0V1 119 IO134PDB3V2 158 GNDQ 197 IO11NDB0V1 120 IO132NDB3V2 159 GBA1/IO81PDB1V4 198 IO08PDB0V0 121 IO132PDB3V2 160 GBA0/IO81NDB1V4 199 IO08NDB0V0 122 GND 161 GBB1/IO80PDB1V4 200 VCCIB0 123 VCCIB3 162 GND 201 GAC1/IO02PDB0V0 124 GCC2/IO117PSB3V0 163 GBB0/IO80NDB1V4 202 GAC0/IO02NDB0V0 125 GCB2/IO116PSB3V0 164 GBC1/IO79PDB1V4 203 GAB1/IO01PDB0V0 126 NC 165 GBC0/IO79NDB1V4 204 GAB0/IO01NDB0V0 127 IO115NDB3V0 166 IO74PDB1V4 205 GAA1/IO00PDB0V0 128 GCA2/IO115PDB3V0 167 IO74NDB1V4 206 GAA0/IO00NDB0V0 129 GCA1/IO114PPB3V0 168 IO70PDB1V3 207 GNDQ 130 GND 169 IO70NDB1V3 208 VMV0 131 VCCPLC 170 VCCIB1 132 GCA0/IO114NPB3V0 171 VCC 133 VCOMPLC 172 IO56PSB1V1 134 GCB0/IO113NDB2V3 173 IO55PDB1V1 135 GCB1/IO113PDB2V3 174 IO55NDB1V1 136 GCC1/IO112PSB2V3 175 IO54PDB1V1 137 IO110NDB2V3 176 IO54NDB1V1 138 IO110PDB2V3 177 IO40PDB0V4 139 IO106PSB2V3 178 GND 140 VCCIB2 179 IO40NDB0V4 141 GND 180 IO37PDB0V4 142 VCC 181 IO37NDB0V4 143 IO99NDB2V2 182 IO35PDB0V4 144 IO99PDB2V2 183 IO35NDB0V4 145 IO96NDB2V1 184 IO32PDB0V3 146 IO96PDB2V1 185 IO32NDB0V3 147 IO91NDB2V1 186 VCCIB0 148 IO91PDB2V1 187 VCC 149 IO88NDB2V0 188 IO28PDB0V3 150 IO88PDB2V0 189 IO28NDB0V3 151 GBC2/IO84PSB2V0 190 IO24PDB0V2 152 GBA2/IO82PSB2V0 191 IO24NDB0V2 153 GBB2/IO83PSB2V0 192 IO21PSB0V2 154 VMV2 193 IO16PDB0V1 155 GNDQ 194 IO16NDB0V1 156 GND 195 GND R evisio n 16 4-5 Package Pin Assignments FG256 A1 Ball Pad Corner 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions. 4-6 R evisio n 16 ProASIC3E Flash Family FPGAs FG256 FG256 FG256 Pin Number A3PE600 Function Pin Number A3PE600 Function Pin Number A3PE600 Function A1 GND C5 GAC0/IO02NDB0V0 E9 IO21NDB1V0 A2 GAA0/IO00NDB0V0 C6 GAC1/IO02PDB0V0 E10 VCCIB1 A3 GAA1/IO00PDB0V0 C7 IO15NDB0V2 E11 VCCIB1 A4 GAB0/IO01NDB0V0 C8 IO15PDB0V2 E12 VMV1 A5 IO05PDB0V0 C9 IO20PDB1V0 E13 GBC2/IO38PDB2V0 A6 IO10PDB0V1 C10 IO25NDB1V0 E14 IO37NDB2V0 A7 IO12PDB0V2 C11 IO27PDB1V0 E15 IO41NDB2V0 A8 IO16NDB0V2 C12 GBC0/IO33NDB1V1 E16 IO41PDB2V0 A9 IO23NDB1V0 C13 VCCPLB F1 IO124PDB7V0 A10 IO23PDB1V0 C14 VMV2 F2 IO125PDB7V0 A11 IO28NDB1V1 C15 IO36NDB2V0 F3 IO126PDB7V0 A12 IO28PDB1V1 C16 IO42PDB2V0 F4 IO130NDB7V1 A13 GBB1/IO34PDB1V1 D1 IO128PDB7V1 F5 VCCIB7 A14 GBA0/IO35NDB1V1 D2 IO129PDB7V1 F6 GND A15 GBA1/IO35PDB1V1 D3 GAC2/IO132PDB7V1 F7 VCC A16 GND D4 VCOMPLA F8 VCC B1 GAB2/IO133PDB7V1 D5 GNDQ F9 VCC B2 GAA2/IO134PDB7V1 D6 IO09NDB0V1 F10 VCC B3 GNDQ D7 IO09PDB0V1 F11 GND B4 GAB1/IO01PDB0V0 D8 IO13PDB0V2 F12 VCCIB2 B5 IO05NDB0V0 D9 IO21PDB1V0 F13 IO38NDB2V0 B6 IO10NDB0V1 D10 IO25PDB1V0 F14 IO40NDB2V0 B7 IO12NDB0V2 D11 IO27NDB1V0 F15 IO40PDB2V0 B8 IO16PDB0V2 D12 GNDQ F16 IO45PSB2V1 B9 IO20NDB1V0 D13 VCOMPLB G1 IO124NDB7V0 B10 IO24NDB1V0 D14 GBB2/IO37PDB2V0 G2 IO125NDB7V0 B11 IO24PDB1V0 D15 IO39PDB2V0 G3 IO126NDB7V0 B12 GBC1/IO33PDB1V1 D16 IO39NDB2V0 G4 GFC1/IO120PPB7V0 B13 GBB0/IO34NDB1V1 E1 IO128NDB7V1 G5 VCCIB7 B14 GNDQ E2 IO129NDB7V1 G6 VCC B15 GBA2/IO36PDB2V0 E3 IO132NDB7V1 G7 GND B16 IO42NDB2V0 E4 IO130PDB7V1 G8 GND C1 IO133NDB7V1 E5 VMV0 G9 GND C2 IO134NDB7V1 E6 VCCIB0 G10 GND C3 VMV7 E7 VCCIB0 G11 VCC C4 VCCPLA E8 IO13NDB0V2 G12 VCCIB2 R evisio n 16 4-7 Package Pin Assignments FG256 FG256 FG256 Pin Number A3PE600 Function Pin Number A3PE600 Function Pin Number A3PE600 Function G13 GCC1/IO50PPB2V1 K1 GFC2/IO115PSB6V1 M5 VMV5 G14 IO44NDB2V1 K2 IO113PPB6V1 M6 VCCIB5 G15 IO44PDB2V1 K3 IO112PDB6V1 M7 VCCIB5 G16 IO49NSB2V1 K4 IO112NDB6V1 M8 IO84NDB5V0 H1 GFB0/IO119NPB7V0 K5 VCCIB6 M9 IO84PDB5V0 H2 GFA0/IO118NDB6V1 K6 VCC M10 VCCIB4 H3 GFB1/IO119PPB7V0 K7 GND M11 VCCIB4 H4 VCOMPLF K8 GND M12 VMV3 H5 GFC0/IO120NPB7V0 K9 GND M13 VCCPLD H6 VCC K10 GND M14 GDB1/IO66PPB3V1 H7 GND K11 VCC M15 GDC1/IO65PDB3V1 H8 GND K12 VCCIB3 M16 IO61NDB3V1 H9 GND K13 IO54NPB3V0 N1 IO105PDB6V0 H10 GND K14 IO57NPB3V0 N2 IO105NDB6V0 H11 VCC K15 IO55NPB3V0 N3 GEC1/IO104PPB6V0 H12 GCC0/IO50NPB2V1 K16 IO57PPB3V0 N4 VCOMPLE H13 GCB1/IO51PPB2V1 L1 IO113NPB6V1 N5 GNDQ H14 GCA0/IO52NPB3V0 L2 IO109PPB6V0 N6 GEA2/IO101PPB5V2 H15 VCOMPLC L3 IO108PDB6V0 N7 IO92NDB5V1 H16 GCB0/IO51NPB2V1 L4 IO108NDB6V0 N8 IO90NDB5V1 J1 GFA2/IO117PSB6V1 L5 VCCIB6 N9 IO82NDB5V0 J2 GFA1/IO118PDB6V1 L6 GND N10 IO74NDB4V1 J3 VCCPLF L7 VCC N11 IO74PDB4V1 J4 IO116NDB6V1 L8 VCC N12 GNDQ J5 GFB2/IO116PDB6V1 L9 VCC N13 VCOMPLD J6 VCC L10 VCC N14 VJTAG J7 GND L11 GND N15 GDC0/IO65NDB3V1 J8 GND L12 VCCIB3 N16 GDA1/IO67PDB3V1 J9 GND L13 GDB0/IO66NPB3V1 P1 GEB1/IO103PDB6V0 J10 GND L14 IO60NDB3V1 P2 GEB0/IO103NDB6V0 J11 VCC L15 IO60PDB3V1 P3 VMV6 J12 GCB2/IO54PPB3V0 L16 IO61PDB3V1 P4 VCCPLE J13 GCA1/IO52PPB3V0 M1 IO109NPB6V0 P5 IO101NPB5V2 J14 GCC2/IO55PPB3V0 M2 IO106NDB6V0 P6 IO95PPB5V1 J15 VCCPLC M3 IO106PDB6V0 P7 IO92PDB5V1 J16 GCA2/IO53PSB3V0 M4 GEC0/IO104NPB6V0 P8 IO90PDB5V1 4-8 R evisio n 16 ProASIC3E Flash Family FPGAs FG256 FG256 Pin Number A3PE600 Function Pin Number A3PE600 Function P9 IO82PDB5V0 T13 IO68NDB4V0 P10 IO76NDB4V1 T14 GDA2/IO68PDB4V0 P11 IO76PDB4V1 T15 TMS P12 VMV4 T16 GND P13 TCK P14 VPUMP P15 TRST P16 GDA0/IO67NDB3V1 R1 GEA1/IO102PDB6V0 R2 GEA0/IO102NDB6V0 R3 GNDQ R4 GEC2/IO99PDB5V2 R5 IO95NPB5V1 R6 IO91NDB5V1 R7 IO91PDB5V1 R8 IO83NDB5V0 R9 IO83PDB5V0 R10 IO77NDB4V1 R11 IO77PDB4V1 R12 IO69NDB4V0 R13 GDB2/IO69PDB4V0 R14 TDI R15 GNDQ R16 TDO T1 GND T2 IO100NDB5V2 T3 GEB2/IO100PDB5V2 T4 IO99NDB5V2 T5 IO88NDB5V0 T6 IO88PDB5V0 T7 IO89NSB5V0 T8 IO80NSB4V1 T9 IO81NDB4V1 T10 IO81PDB4V1 T11 IO70NDB4V0 T12 GDC2/IO70PDB4V0 R evisio n 16 4-9 Package Pin Assignments FG324 A1 Ball Pad Corner 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions. 4-1 0 R evisio n 16 ProASIC3E Flash Family FPGAs FG324 FG324 FG324 Pin Number A3PE3000 FBGA Pin Number A3PE3000 FBGA Pin Number A3PE3000 FBGA A1 GND C1 IO305NDB7V3 E1 IO303NDB7V3 A2 IO08NDB0V0 C2 IO308NDB7V4 E2 GNDQ A3 IO08PDB0V0 C3 GAA2/IO309PPB7V4 E3 VMV7 A4 IO10NDB0V1 C4 GAA1/IO00PPB0V0 E4 IO307NPB7V4 A5 IO10PDB0V1 C5 VMV0 E5 VCCPLA A6 IO12PDB0V1 C6 IO14NDB0V1 E6 GAB0/IO01NPB0V0 A7 GND C7 IO18PDB0V2 E7 VCCIB0 A8 IO32NDB0V3 C8 IO40NDB0V4 E8 GND A9 IO32PDB0V3 C9 IO40PDB0V4 E9 IO28NDB0V3 A10 IO42PPB1V0 C10 IO44PDB1V0 E10 IO48PDB1V0 A11 IO52NPB1V1 C11 IO56NDB1V1 E11 GND A12 GND C12 IO64NDB1V2 E12 VCCIB1 A13 IO66NDB1V3 C13 IO64PDB1V2 E13 IO60NPB1V2 A14 IO72NDB1V3 C14 VMV1 E14 VCCPLB A15 IO72PDB1V3 C15 GBC0/IO79NDB1V4 E15 IO82NDB2V0 A16 IO74NDB1V4 C16 GBC1/IO79PDB1V4 E16 VMV2 A17 IO74PDB1V4 C17 GBB2/IO83PPB2V0 E17 GNDQ A18 GND C18 IO88NDB2V0 E18 IO90NDB2V1 B1 IO305PDB7V3 D1 IO303PDB7V3 F1 IO299NDB7V3 B2 GAB2/IO308PDB7V4 D2 VCCIB7 F2 IO299PDB7V3 B3 GAA0/IO00NPB0V0 D3 GAC2/IO307PPB7V4 F3 IO295PDB7V2 B4 VCCIB0 D4 IO309NPB7V4 F4 IO295NDB7V2 B5 GNDQ D5 GAB1/IO01PPB0V0 F5 VCOMPLA B6 IO12NDB0V1 D6 IO14PDB0V1 F6 IO291PPB7V2 B7 IO18NDB0V2 D7 IO24NDB0V2 F7 GAC0/IO02NDB0V0 B8 VCCIB0 D8 IO24PDB0V2 F8 GAC1/IO02PDB0V0 B9 IO42NPB1V0 D9 IO28PDB0V3 F9 IO26PDB0V3 B10 IO44NDB1V0 D10 IO48NDB1V0 F10 IO34PDB0V4 B11 VCCIB1 D11 IO56PDB1V1 F11 IO58NDB1V2 B12 IO52PPB1V1 D12 IO60PPB1V2 F12 IO58PDB1V2 B13 IO66PDB1V3 D13 GBB0/IO80NDB1V4 F13 IO94PPB2V1 B14 GNDQ D14 GBB1/IO80PDB1V4 F14 VCOMPLB B15 VCCIB1 D15 GBA2/IO82PDB2V0 F15 GBC2/IO84PDB2V0 B16 GBA0/IO81NDB1V4 D16 IO83NPB2V0 F16 IO84NDB2V0 B17 GBA1/IO81PDB1V4 D17 VCCIB2 F17 IO92NDB2V1 B18 IO88PDB2V0 D18 IO90PDB2V1 F18 IO92PDB2V1 R evisio n 16 4-11 Package Pin Assignments FG324 FG324 FG324 Pin Number A3PE3000 FBGA Pin Number A3PE3000 FBGA Pin Number A3PE3000 FBGA G1 GND J1 IO267NDB6V4 L1 IO263NDB6V3 G2 IO287PDB7V1 J2 GFA0/IO273NDB6V4 L2 VCCIB6 G3 IO287NDB7V1 J3 VCOMPLF L3 IO259PDB6V3 G4 IO283PPB7V1 J4 GFA2/IO272PDB6V4 L4 IO259NDB6V3 G5 VCCIB7 J5 GFB0/IO274NPB7V0 L5 GND G6 IO279PDB7V0 J6 GFC0/IO275NDB7V0 L6 IO270NPB6V4 G7 IO291NPB7V2 J7 GFC1/IO275PDB7V0 L7 VCC G8 VCC J8 GND L8 VCC G9 IO26NDB0V3 J9 GND L9 GND G10 IO34NDB0V4 J10 GND L10 GND G11 VCC J11 GND L11 VCC G12 IO94NPB2V1 J12 GCA2/IO115PDB3V0 L12 VCC G13 IO98PDB2V2 J13 GCA1/IO114PDB3V0 L13 IO132PDB3V2 G14 VCCIB2 J14 GCA0/IO114NDB3V0 L14 GND G15 GCC0/IO112NPB2V3 J15 GCB0/IO113NDB2V3 L15 IO117NDB3V0 G16 IO104PDB2V2 J16 VCOMPLC L16 IO128NPB3V1 G17 IO104NDB2V2 J17 IO120NPB3V0 L17 VCCIB3 G18 GND J18 IO108NDB2V3 L18 IO124PPB3V1 H1 IO267PDB6V4 K1 IO263PDB6V3 M1 GND H2 VCCIB7 K2 GFA1/IO273PDB6V4 M2 IO255PDB6V2 H3 IO283NPB7V1 K3 VCCPLF M3 IO255NDB6V2 H4 GFB1/IO274PPB7V0 K4 IO272NDB6V4 M4 IO251PPB6V2 H5 GND K5 GFC2/IO270PPB6V4 M5 VCCIB6 H6 IO279NDB7V0 K6 GFB2/IO271PDB6V4 M6 GEB0/IO235NDB6V0 H7 VCC K7 IO271NDB6V4 M7 GEB1/IO235PDB6V0 H8 VCC K8 GND M8 VCC H9 GND K9 GND M9 IO192PPB4V4 H10 GND K10 GND M10 IO154NPB4V0 H11 VCC K11 GND M11 VCC H12 VCC K12 IO115NDB3V0 M12 GDA0/IO153NPB3V4 H13 IO98NDB2V2 K13 GCB2/IO116PDB3V0 M13 IO132NDB3V2 H14 GND K14 IO116NDB3V0 M14 VCCIB3 H15 GCB1/IO113PDB2V3 K15 GCC2/IO117PDB3V0 M15 IO134NDB3V2 H16 GCC1/IO112PPB2V3 K16 VCCPLC M16 IO134PDB3V2 H17 VCCIB2 K17 IO124NPB3V1 M17 IO128PPB3V1 H18 IO108PDB2V3 K18 IO120PPB3V0 M18 GND 4-1 2 R evisio n 16 ProASIC3E Flash Family FPGAs FG324 FG324 FG324 Pin Number A3PE3000 FBGA Pin Number A3PE3000 FBGA Pin Number A3PE3000 FBGA N1 IO247NDB6V1 R1 IO245NDB6V1 U1 IO241NDB6V0 N2 IO247PDB6V1 R2 VCCIB6 U2 GEA2/IO233PPB5V4 N3 IO251NPB6V2 R3 GEA1/IO234PPB6V0 U3 GEC2/IO231PPB5V4 N4 GEC0/IO236NDB6V0 R4 IO232NDB5V4 U4 VCCIB5 N5 VCOMPLE R5 GEB2/IO232PDB5V4 U5 GNDQ N6 IO212NDB5V2 R6 IO214NDB5V2 U6 IO208PDB5V1 N7 IO212PDB5V2 R7 IO202PDB5V1 U7 IO198PPB5V0 N8 IO192NPB4V4 R8 IO194PDB5V0 U8 VCCIB5 N9 IO174PDB4V2 R9 IO186PDB4V4 U9 IO182NPB4V3 N10 IO170PDB4V2 R10 IO178PDB4V3 U10 IO180NPB4V3 N11 GDA2/IO154PPB4V0 R11 IO168NSB4V1 U11 VCCIB4 N12 GDB2/IO155PPB4V0 R12 IO164PDB4V1 U12 IO166PPB4V1 N13 GDA1/IO153PPB3V4 R13 GDC2/IO156PDB4V0 U13 IO162PDB4V1 N14 VCOMPLD R14 TCK U14 GNDQ N15 GDB0/IO152NDB3V4 R15 VPUMP U15 VCCIB4 N16 GDB1/IO152PDB3V4 R16 TRST U16 TMS N17 IO138NDB3V3 R17 VCCIB3 U17 VMV3 N18 IO138PDB3V3 R18 IO142NDB3V3 U18 IO146NDB3V4 P1 IO245PDB6V1 T1 IO241PDB6V0 V1 GND P2 GNDQ T2 GEA0/IO234NPB6V0 V2 IO218NDB5V3 P3 VMV6 T3 IO233NPB5V4 V3 IO218PDB5V3 P4 GEC1/IO236PDB6V0 T4 IO231NPB5V4 V4 IO206NDB5V1 P5 VCCPLE T5 VMV5 V5 IO206PDB5V1 P6 IO214PDB5V2 T6 IO208NDB5V1 V6 IO198NPB5V0 P7 VCCIB5 T7 IO202NDB5V1 V7 GND P8 GND T8 IO194NDB5V0 V8 IO190NDB4V4 P9 IO174NDB4V2 T9 IO186NDB4V4 V9 IO190PDB4V4 P10 IO170NDB4V2 T10 IO178NDB4V3 V10 IO182PPB4V3 P11 GND T11 IO166NPB4V1 V11 IO180PPB4V3 P12 VCCIB4 T12 IO164NDB4V1 V12 GND P13 IO155NPB4V0 T13 IO156NDB4V0 V13 IO162NDB4V1 P14 VCCPLD T14 VMV4 V14 IO160NDB4V0 P15 VJTAG T15 TDI V15 IO160PDB4V0 P16 GDC0/IO151NDB3V4 T16 GNDQ V16 IO158NDB4V0 P17 GDC1/IO151PDB3V4 T17 TDO V17 IO158PDB4V0 P18 IO142PDB3V3 T18 IO146PDB3V4 V18 GND R evisio n 16 4-13 Package Pin Assignments FG484 A1 Ball Pad Corner 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions. 4-1 4 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 FG484 Pin Number A3PE600 Function Pin Number A3PE600 Function Pin Number A3PE600 Function A1 GND AA15 NC B7 IO07PDB0V1 A2 GND AA16 IO71NDB4V0 B8 IO11NDB0V1 A3 VCCIB0 AA17 IO71PDB4V0 B9 IO17NDB0V2 A4 IO06NDB0V1 AA18 NC B10 IO14PDB0V2 A5 IO06PDB0V1 AA19 NC B11 IO19PDB0V2 A6 IO08NDB0V1 AA20 NC B12 IO22NDB1V0 A7 IO08PDB0V1 AA21 VCCIB3 B13 IO26NDB1V0 A8 IO11PDB0V1 AA22 GND B14 NC A9 IO17PDB0V2 AB1 GND B15 NC A10 IO18NDB0V2 AB2 GND B16 IO30NDB1V1 A11 IO18PDB0V2 AB3 VCCIB5 B17 IO30PDB1V1 A12 IO22PDB1V0 AB4 IO97NDB5V2 B18 IO32PDB1V1 A13 IO26PDB1V0 AB5 IO97PDB5V2 B19 NC A14 IO29NDB1V1 AB6 IO93NDB5V1 B20 NC A15 IO29PDB1V1 AB7 IO93PDB5V1 B21 VCCIB2 A16 IO31NDB1V1 AB8 IO87NDB5V0 B22 GND A17 IO31PDB1V1 AB9 IO87PDB5V0 C1 VCCIB7 A18 IO32NDB1V1 AB10 NC C2 NC A19 NC AB11 NC C3 NC A20 VCCIB1 AB12 IO75NDB4V1 C4 NC A21 GND AB13 IO75PDB4V1 C5 GND A22 GND AB14 IO72NDB4V0 C6 IO04NDB0V0 AA1 GND AB15 IO72PDB4V0 C7 IO04PDB0V0 AA2 VCCIB6 AB16 IO73NDB4V0 C8 VCC AA3 NC AB17 IO73PDB4V0 C9 VCC AA4 IO98PDB5V2 AB18 NC C10 IO14NDB0V2 AA5 IO96NDB5V2 AB19 NC C11 IO19NDB0V2 AA6 IO96PDB5V2 AB20 VCCIB4 C12 NC AA7 IO86NDB5V0 AB21 GND C13 NC AA8 IO86PDB5V0 AB22 GND C14 VCC AA9 IO85PDB5V0 B1 GND C15 VCC AA10 IO85NDB5V0 B2 VCCIB7 C16 NC AA11 IO78PPB4V1 B3 NC C17 NC AA12 IO79NDB4V1 B4 IO03NDB0V0 C18 GND AA13 IO79PDB4V1 B5 IO03PDB0V0 C19 NC AA14 NC B6 IO07NDB0V1 C20 NC R evisio n 16 4-15 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE600 Function Pin Number A3PE600 Function Pin Number A3PE600 Function C21 NC E13 IO24NDB1V0 G5 IO129PDB7V1 C22 VCCIB2 E14 IO24PDB1V0 G6 GAC2/IO132PDB7V1 D1 NC E15 GBC1/IO33PDB1V1 G7 VCOMPLA D2 NC E16 GBB0/IO34NDB1V1 G8 GNDQ D3 NC E17 GNDQ G9 IO09NDB0V1 D4 GND E18 GBA2/IO36PDB2V0 G10 IO09PDB0V1 D5 GAA0/IO00NDB0V0 E19 IO42NDB2V0 G11 IO13PDB0V2 D6 GAA1/IO00PDB0V0 E20 GND G12 IO21PDB1V0 D7 GAB0/IO01NDB0V0 E21 NC G13 IO25PDB1V0 D8 IO05PDB0V0 E22 NC G14 IO27NDB1V0 D9 IO10PDB0V1 F1 NC G15 GNDQ D10 IO12PDB0V2 F2 IO131NDB7V1 G16 VCOMPLB D11 IO16NDB0V2 F3 IO131PDB7V1 G17 GBB2/IO37PDB2V0 D12 IO23NDB1V0 F4 IO133NDB7V1 G18 IO39PDB2V0 D13 IO23PDB1V0 F5 IO134NDB7V1 G19 IO39NDB2V0 D14 IO28NDB1V1 F6 VMV7 G20 IO43PDB2V0 D15 IO28PDB1V1 F7 VCCPLA G21 IO43NDB2V0 D16 GBB1/IO34PDB1V1 F8 GAC0/IO02NDB0V0 G22 NC D17 GBA0/IO35NDB1V1 F9 GAC1/IO02PDB0V0 H1 NC D18 GBA1/IO35PDB1V1 F10 IO15NDB0V2 H2 NC D19 GND F11 IO15PDB0V2 H3 VCC D20 NC F12 IO20PDB1V0 H4 IO128NDB7V1 D21 NC F13 IO25NDB1V0 H5 IO129NDB7V1 D22 NC F14 IO27PDB1V0 H6 IO132NDB7V1 E1 NC F15 GBC0/IO33NDB1V1 H7 IO130PDB7V1 E2 NC F16 VCCPLB H8 VMV0 E3 GND F17 VMV2 H9 VCCIB0 E4 GAB2/IO133PDB7V1 F18 IO36NDB2V0 H10 VCCIB0 E5 GAA2/IO134PDB7V1 F19 IO42PDB2V0 H11 IO13NDB0V2 E6 GNDQ F20 NC H12 IO21NDB1V0 E7 GAB1/IO01PDB0V0 F21 NC H13 VCCIB1 E8 IO05NDB0V0 F22 NC H14 VCCIB1 E9 IO10NDB0V1 G1 IO127NDB7V1 H15 VMV1 E10 IO12NDB0V2 G2 IO127PDB7V1 H16 GBC2/IO38PDB2V0 E11 IO16PDB0V2 G3 NC H17 IO37NDB2V0 E12 IO20NDB1V0 G4 IO128PDB7V1 H18 IO41NDB2V0 4-1 6 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 FG484 Pin Number A3PE600 Function Pin Number A3PE600 Function Pin Number A3PE600 Function H19 IO41PDB2V0 K11 GND M3 IO117NDB6V1 H20 VCC K12 GND M4 GFA2/IO117PDB6V1 H21 NC K13 GND M5 GFA1/IO118PDB6V1 H22 NC K14 VCC M6 VCCPLF J1 IO123NDB7V0 K15 VCCIB2 M7 IO116NDB6V1 J2 IO123PDB7V0 K16 GCC1/IO50PPB2V1 M8 GFB2/IO116PDB6V1 J3 NC K17 IO44NDB2V1 M9 VCC J4 IO124PDB7V0 K18 IO44PDB2V1 M10 GND J5 IO125PDB7V0 K19 IO49NPB2V1 M11 GND J6 IO126PDB7V0 K20 IO45NPB2V1 M12 GND J7 IO130NDB7V1 K21 IO48NDB2V1 M13 GND J8 VCCIB7 K22 IO46NDB2V1 M14 VCC J9 GND L1 NC M15 GCB2/IO54PPB3V0 J10 VCC L2 IO122PDB7V0 M16 GCA1/IO52PPB3V0 J11 VCC L3 IO122NDB7V0 M17 GCC2/IO55PPB3V0 J12 VCC L4 GFB0/IO119NPB7V0 M18 VCCPLC J13 VCC L5 GFA0/IO118NDB6V1 M19 GCA2/IO53PDB3V0 J14 GND L6 GFB1/IO119PPB7V0 M20 IO53NDB3V0 J15 VCCIB2 L7 VCOMPLF M21 IO56PDB3V0 J16 IO38NDB2V0 L8 GFC0/IO120NPB7V0 M22 NC J17 IO40NDB2V0 L9 VCC N1 IO114PPB6V1 J18 IO40PDB2V0 L10 GND N2 IO111NDB6V1 J19 IO45PPB2V1 L11 GND N3 NC J20 NC L12 GND N4 GFC2/IO115PPB6V1 J21 IO48PDB2V1 L13 GND N5 IO113PPB6V1 J22 IO46PDB2V1 L14 VCC N6 IO112PDB6V1 K1 IO121NDB7V0 L15 GCC0/IO50NPB2V1 N7 IO112NDB6V1 K2 IO121PDB7V0 L16 GCB1/IO51PPB2V1 N8 VCCIB6 K3 NC L17 GCA0/IO52NPB3V0 N9 VCC K4 IO124NDB7V0 L18 VCOMPLC N10 GND K5 IO125NDB7V0 L19 GCB0/IO51NPB2V1 N11 GND K6 IO126NDB7V0 L20 IO49PPB2V1 N12 GND K7 GFC1/IO120PPB7V0 L21 IO47NDB2V1 N13 GND K8 VCCIB7 L22 IO47PDB2V1 N14 VCC K9 VCC M1 NC N15 VCCIB3 K10 GND M2 IO114NPB6V1 N16 IO54NPB3V0 R evisio n 16 4-17 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE600 Function Pin Number A3PE600 Function Pin Number A3PE600 Function N17 IO57NPB3V0 R9 VCCIB5 U1 NC N18 IO55NPB3V0 R10 VCCIB5 U2 IO107PDB6V0 N19 IO57PPB3V0 R11 IO84NDB5V0 U3 IO107NDB6V0 N20 NC R12 IO84PDB5V0 U4 GEB1/IO103PDB6V0 N21 IO56NDB3V0 R13 VCCIB4 U5 GEB0/IO103NDB6V0 N22 IO58PDB3V0 R14 VCCIB4 U6 VMV6 P1 NC R15 VMV3 U7 VCCPLE P2 IO111PDB6V1 R16 VCCPLD U8 IO101NPB5V2 P3 IO115NPB6V1 R17 GDB1/IO66PPB3V1 U9 IO95PPB5V1 P4 IO113NPB6V1 R18 GDC1/IO65PDB3V1 U10 IO92PDB5V1 P5 IO109PPB6V0 R19 IO61NDB3V1 U11 IO90PDB5V1 P6 IO108PDB6V0 R20 VCC U12 IO82PDB5V0 P7 IO108NDB6V0 R21 IO59NDB3V0 U13 IO76NDB4V1 P8 VCCIB6 R22 IO62PDB3V1 U14 IO76PDB4V1 P9 GND T1 NC U15 VMV4 P10 VCC T2 IO110NDB6V0 U16 TCK P11 VCC T3 NC U17 VPUMP P12 VCC T4 IO105PDB6V0 U18 TRST P13 VCC T5 IO105NDB6V0 U19 GDA0/IO67NDB3V1 P14 GND T6 GEC1/IO104PPB6V0 U20 NC P15 VCCIB3 T7 VCOMPLE U21 IO64NDB3V1 P16 GDB0/IO66NPB3V1 T8 GNDQ U22 IO63PDB3V1 P17 IO60NDB3V1 T9 GEA2/IO101PPB5V2 V1 NC P18 IO60PDB3V1 T10 IO92NDB5V1 V2 NC P19 IO61PDB3V1 T11 IO90NDB5V1 V3 GND P20 NC T12 IO82NDB5V0 V4 GEA1/IO102PDB6V0 P21 IO59PDB3V0 T13 IO74NDB4V1 V5 GEA0/IO102NDB6V0 P22 IO58NDB3V0 T14 IO74PDB4V1 V6 GNDQ R1 NC T15 GNDQ V7 GEC2/IO99PDB5V2 R2 IO110PDB6V0 T16 VCOMPLD V8 IO95NPB5V1 R3 VCC T17 VJTAG V9 IO91NDB5V1 R4 IO109NPB6V0 T18 GDC0/IO65NDB3V1 V10 IO91PDB5V1 R5 IO106NDB6V0 T19 GDA1/IO67PDB3V1 V11 IO83NDB5V0 R6 IO106PDB6V0 T20 NC V12 IO83PDB5V0 R7 GEC0/IO104NPB6V0 T21 IO64PDB3V1 V13 IO77NDB4V1 R8 VMV5 T22 IO62NDB3V1 V14 IO77PDB4V1 4-1 8 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 Pin Number A3PE600 Function Pin Number A3PE600 Function V15 IO69NDB4V0 Y7 IO94PDB5V1 V16 GDB2/IO69PDB4V0 Y8 VCC V17 TDI Y9 VCC V18 GNDQ Y10 IO89PDB5V0 V19 TDO Y11 IO80PDB4V1 V20 GND Y12 IO78NPB4V1 V21 NC Y13 NC V22 IO63NDB3V1 Y14 VCC W1 NC Y15 VCC W2 NC Y16 NC W3 NC Y17 NC W4 GND Y18 GND W5 IO100NDB5V2 Y19 NC W6 GEB2/IO100PDB5V2 Y20 NC W7 IO99NDB5V2 Y21 NC W8 IO88NDB5V0 Y22 VCCIB3 W9 IO88PDB5V0 W10 IO89NDB5V0 W11 IO80NDB4V1 W12 IO81NDB4V1 W13 IO81PDB4V1 W14 IO70NDB4V0 W15 GDC2/IO70PDB4V0 W16 IO68NDB4V0 W17 GDA2/IO68PDB4V0 W18 TMS W19 GND W20 NC W21 NC W22 NC Y1 VCCIB6 Y2 NC Y3 NC Y4 IO98NDB5V2 Y5 GND Y6 IO94NDB5V1 R evisio n 16 4-19 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-2 0 A1 GND AA15 NC B7 IO10PDB0V1 A2 GND AA16 IO117NDB4V0 B8 IO15NDB0V1 A3 VCCIB0 AA17 IO117PDB4V0 B9 IO17NDB0V2 A4 IO05NDB0V0 AA18 IO115NDB4V0 B10 IO20PDB0V2 A5 IO05PDB0V0 AA19 IO115PDB4V0 B11 IO29PDB0V3 A6 IO11NDB0V1 AA20 NC B12 IO32NDB1V0 A7 IO11PDB0V1 AA21 VCCIB3 B13 IO43NDB1V1 A8 IO15PDB0V1 AA22 GND B14 NC A9 IO17PDB0V2 AB1 GND B15 NC A10 IO27NDB0V3 AB2 GND B16 IO53NDB1V2 A11 IO27PDB0V3 AB3 VCCIB5 B17 IO53PDB1V2 A12 IO32PDB1V0 AB4 IO159NDB5V3 B18 IO54PDB1V3 A13 IO43PDB1V1 AB5 IO159PDB5V3 B19 NC A14 IO47NDB1V1 AB6 IO149NDB5V1 B20 NC A15 IO47PDB1V1 AB7 IO149PDB5V1 B21 VCCIB2 A16 IO51NDB1V2 AB8 IO138NDB5V0 B22 GND A17 IO51PDB1V2 AB9 IO138PDB5V0 C1 VCCIB7 A18 IO54NDB1V3 AB10 NC C2 NC A19 NC AB11 NC C3 NC A20 VCCIB1 AB12 IO127NDB4V2 C4 NC A21 GND AB13 IO127PDB4V2 C5 GND A22 GND AB14 IO125NDB4V1 C6 IO07NDB0V0 AA1 GND AB15 IO125PDB4V1 C7 IO07PDB0V0 AA2 VCCIB6 AB16 IO122NDB4V1 C8 VCC AA3 NC AB17 IO122PDB4V1 C9 VCC AA4 IO161PDB5V3 AB18 NC C10 IO20NDB0V2 AA5 IO155NDB5V2 AB19 NC C11 IO29NDB0V3 AA6 IO155PDB5V2 AB20 VCCIB4 C12 NC AA7 IO154NDB5V2 AB21 GND C13 NC AA8 IO154PDB5V2 AB22 GND C14 VCC AA9 IO143PDB5V1 B1 GND C15 VCC AA10 IO143NDB5V1 B2 VCCIB7 C16 NC AA11 IO131PPB4V2 B3 NC C17 NC AA12 IO129NDB4V2 B4 IO03NDB0V0 C18 GND AA13 IO129PDB4V2 B5 IO03PDB0V0 C19 NC AA14 NC B6 IO10NDB0V1 C20 NC R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 FG484 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function C21 NC E13 IO41NDB1V1 G5 IO217PDB7V3 C22 VCCIB2 E14 IO41PDB1V1 G6 GAC2/IO219PDB7V3 D1 NC E15 GBC1/IO55PDB1V3 G7 VCOMPLA D2 NC E16 GBB0/IO56NDB1V3 G8 GNDQ D3 NC E17 GNDQ G9 IO19NDB0V2 D4 GND E18 GBA2/IO58PDB2V0 G10 IO19PDB0V2 D5 GAA0/IO00NDB0V0 E19 IO63NDB2V0 G11 IO25PDB0V3 D6 GAA1/IO00PDB0V0 E20 GND G12 IO33PDB1V0 D7 GAB0/IO01NDB0V0 E21 IO69NDB2V1 G13 IO39PDB1V0 D8 IO09PDB0V1 E22 NC G14 IO45NDB1V1 D9 IO13PDB0V1 F1 IO218NPB7V3 G15 GNDQ D10 IO21PDB0V2 F2 IO216NDB7V3 G16 VCOMPLB D11 IO31NDB0V3 F3 IO216PDB7V3 G17 GBB2/IO59PDB2V0 D12 IO37NDB1V0 F4 IO220NDB7V3 G18 IO62PDB2V0 D13 IO37PDB1V0 F5 IO221NDB7V3 G19 IO62NDB2V0 D14 IO49NDB1V2 F6 VMV7 G20 IO71PDB2V2 D15 IO49PDB1V2 F7 VCCPLA G21 IO71NDB2V2 D16 GBB1/IO56PDB1V3 F8 GAC0/IO02NDB0V0 G22 NC D17 GBA0/IO57NDB1V3 F9 GAC1/IO02PDB0V0 H1 IO209PSB7V2 D18 GBA1/IO57PDB1V3 F10 IO23NDB0V2 H2 NC D19 GND F11 IO23PDB0V2 H3 VCC D20 NC F12 IO35PDB1V0 H4 IO214NDB7V3 D21 IO69PDB2V1 F13 IO39NDB1V0 H5 IO217NDB7V3 D22 NC F14 IO45PDB1V1 H6 IO219NDB7V3 E1 NC F15 GBC0/IO55NDB1V3 H7 IO215PDB7V3 E2 IO218PPB7V3 F16 VCCPLB H8 VMV0 E3 GND F17 VMV2 H9 VCCIB0 E4 GAB2/IO220PDB7V3 F18 IO58NDB2V0 H10 VCCIB0 E5 GAA2/IO221PDB7V3 F19 IO63PDB2V0 H11 IO25NDB0V3 E6 GNDQ F20 NC H12 IO33NDB1V0 E7 GAB1/IO01PDB0V0 F21 NC H13 VCCIB1 E8 IO09NDB0V1 F22 NC H14 VCCIB1 E9 IO13NDB0V1 G1 IO211NDB7V2 H15 VMV1 E10 IO21NDB0V2 G2 IO211PDB7V2 H16 GBC2/IO60PDB2V0 E11 IO31PDB0V3 G3 NC H17 IO59NDB2V0 E12 IO35NDB1V0 G4 IO214PDB7V3 H18 IO67NDB2V1 R evisio n 16 4-21 Package Pin Assignments FG484 FG484 FG484 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-2 2 H19 IO67PDB2V1 K11 GND M3 IO189NDB6V2 H20 VCC K12 GND M4 GFA2/IO189PDB6V2 H21 VMV2 K13 GND M5 GFA1/IO190PDB6V2 H22 IO74PSB2V2 K14 VCC M6 VCCPLF J1 IO212NDB7V2 K15 VCCIB2 M7 IO188NDB6V2 J2 IO212PDB7V2 K16 GCC1/IO85PPB2V3 M8 GFB2/IO188PDB6V2 J3 VMV7 K17 IO73NDB2V2 M9 VCC J4 IO206PDB7V1 K18 IO73PDB2V2 M10 GND J5 IO204PDB7V1 K19 IO81NPB2V3 M11 GND J6 IO210PDB7V2 K20 IO75NPB2V2 M12 GND J7 IO215NDB7V3 K21 IO77NDB2V2 M13 GND J8 VCCIB7 K22 IO79NDB2V3 M14 VCC J9 GND L1 NC M15 GCB2/IO89PPB3V0 J10 VCC L2 IO196PDB7V0 M16 GCA1/IO87PPB3V0 J11 VCC L3 IO196NDB7V0 M17 GCC2/IO90PPB3V0 J12 VCC L4 GFB0/IO191NPB7V0 M18 VCCPLC J13 VCC L5 GFA0/IO190NDB6V2 M19 GCA2/IO88PDB3V0 J14 GND L6 GFB1/IO191PPB7V0 M20 IO88NDB3V0 J15 VCCIB2 L7 VCOMPLF M21 IO93PDB3V0 J16 IO60NDB2V0 L8 GFC0/IO192NPB7V0 M22 NC J17 IO65NDB2V1 L9 VCC N1 IO185PPB6V2 J18 IO65PDB2V1 L10 GND N2 IO183NDB6V2 J19 IO75PPB2V2 L11 GND N3 VMV6 J20 GNDQ L12 GND N4 GFC2/IO187PPB6V2 J21 IO77PDB2V2 L13 GND N5 IO184PPB6V2 J22 IO79PDB2V3 L14 VCC N6 IO186PDB6V2 K1 IO200NDB7V1 L15 GCC0/IO85NPB2V3 N7 IO186NDB6V2 K2 IO200PDB7V1 L16 GCB1/IO86PPB2V3 N8 VCCIB6 K3 GNDQ L17 GCA0/IO87NPB3V0 N9 VCC K4 IO206NDB7V1 L18 VCOMPLC N10 GND K5 IO204NDB7V1 L19 GCB0/IO86NPB2V3 N11 GND K6 IO210NDB7V2 L20 IO81PPB2V3 N12 GND K7 GFC1/IO192PPB7V0 L21 IO83NDB2V3 N13 GND K8 VCCIB7 L22 IO83PDB2V3 N14 VCC K9 VCC M1 GNDQ N15 VCCIB3 K10 GND M2 IO185NPB6V2 N16 IO89NPB3V0 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 FG484 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function N17 IO91NPB3V0 R9 VCCIB5 U1 IO175PPB6V1 N18 IO90NPB3V0 R10 VCCIB5 U2 IO173PDB6V0 N19 IO91PPB3V0 R11 IO135NDB5V0 U3 IO173NDB6V0 N20 GNDQ R12 IO135PDB5V0 U4 GEB1/IO168PDB6V0 N21 IO93NDB3V0 R13 VCCIB4 U5 GEB0/IO168NDB6V0 N22 IO95PDB3V1 R14 VCCIB4 U6 VMV6 P1 NC R15 VMV3 U7 VCCPLE P2 IO183PDB6V2 R16 VCCPLD U8 IO166NPB5V3 P3 IO187NPB6V2 R17 GDB1/IO109PPB3V2 U9 IO157PPB5V2 P4 IO184NPB6V2 R18 GDC1/IO108PDB3V2 U10 IO145PDB5V1 P5 IO176PPB6V1 R19 IO99NDB3V1 U11 IO141PDB5V0 P6 IO182PDB6V1 R20 VCC U12 IO139PDB5V0 P7 IO182NDB6V1 R21 IO98NDB3V1 U13 IO121NDB4V1 P8 VCCIB6 R22 IO101PDB3V1 U14 IO121PDB4V1 P9 GND T1 NC U15 VMV4 P10 VCC T2 IO177NDB6V1 U16 TCK P11 VCC T3 NC U17 VPUMP P12 VCC T4 IO171PDB6V0 U18 TRST P13 VCC T5 IO171NDB6V0 U19 GDA0/IO110NDB3V2 P14 GND T6 GEC1/IO169PPB6V0 U20 NC P15 VCCIB3 T7 VCOMPLE U21 IO103NDB3V2 P16 GDB0/IO109NPB3V2 T8 GNDQ U22 IO105PDB3V2 P17 IO97NDB3V1 T9 GEA2/IO166PPB5V3 V1 NC P18 IO97PDB3V1 T10 IO145NDB5V1 V2 IO175NPB6V1 P19 IO99PDB3V1 T11 IO141NDB5V0 V3 GND P20 VMV3 T12 IO139NDB5V0 V4 GEA1/IO167PDB6V0 P21 IO98PDB3V1 T13 IO119NDB4V1 V5 GEA0/IO167NDB6V0 P22 IO95NDB3V1 T14 IO119PDB4V1 V6 GNDQ R1 NC T15 GNDQ V7 GEC2/IO164PDB5V3 R2 IO177PDB6V1 T16 VCOMPLD V8 IO157NPB5V2 R3 VCC T17 VJTAG V9 IO151NDB5V2 R4 IO176NPB6V1 T18 GDC0/IO108NDB3V2 V10 IO151PDB5V2 R5 IO174NDB6V0 T19 GDA1/IO110PDB3V2 V11 IO137NDB5V0 R6 IO174PDB6V0 T20 NC V12 IO137PDB5V0 R7 GEC0/IO169NPB6V0 T21 IO103PDB3V2 V13 IO123NDB4V1 R8 VMV5 T22 IO101NDB3V1 V14 IO123PDB4V1 R evisio n 16 4-23 Package Pin Assignments FG484 FG484 Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-2 4 V15 IO112NDB4V0 Y7 IO163PDB5V3 V16 GDB2/IO112PDB4V0 Y8 VCC V17 TDI Y9 VCC V18 GNDQ Y10 IO147PDB5V1 V19 TDO Y11 IO133PDB4V2 V20 GND Y12 IO131NPB4V2 V21 NC Y13 NC V22 IO105NDB3V2 Y14 VCC W1 NC Y15 VCC W2 NC Y16 NC W3 NC Y17 NC W4 GND Y18 GND W5 IO165NDB5V3 Y19 NC W6 GEB2/IO165PDB5V3 Y20 NC W7 IO164NDB5V3 Y21 NC W8 IO153NDB5V2 Y22 VCCIB3 W9 IO153PDB5V2 W10 IO147NDB5V1 W11 IO133NDB4V2 W12 IO130NDB4V2 W13 IO130PDB4V2 W14 IO113NDB4V0 W15 GDC2/IO113PDB4V0 W16 IO111NDB4V0 W17 GDA2/IO111PDB4V0 W18 TMS W19 GND W20 NC W21 NC W22 NC Y1 VCCIB6 Y2 NC Y3 NC Y4 IO161NDB5V3 Y5 GND Y6 IO163NDB5V3 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 Pin Number A3PE3000 Function FG484 Pin Number A3PE3000 Function Pin Number A3PE3000 Function A1 GND AA15 IO170PDB4V2 B7 IO14PDB0V1 A2 GND AA16 IO166NDB4V1 B8 IO18NDB0V2 A3 VCCIB0 AA17 IO166PDB4V1 B9 IO24NDB0V2 A4 IO10NDB0V1 AA18 IO160NDB4V0 B10 IO34PDB0V4 A5 IO10PDB0V1 AA19 IO160PDB4V0 B11 IO40PDB0V4 A6 IO16NDB0V1 AA20 IO158NPB4V0 B12 IO46NDB1V0 A7 IO16PDB0V1 AA21 VCCIB3 B13 IO54NDB1V1 A8 IO18PDB0V2 AA22 GND B14 IO62NDB1V2 A9 IO24PDB0V2 AB1 GND B15 IO62PDB1V2 A10 IO28NDB0V3 AB2 GND B16 IO68NDB1V3 A11 IO28PDB0V3 AB3 VCCIB5 B17 IO68PDB1V3 A12 IO46PDB1V0 AB4 IO216NDB5V2 B18 IO72PDB1V3 A13 IO54PDB1V1 AB5 IO216PDB5V2 B19 IO74PDB1V4 A14 IO56NDB1V1 AB6 IO210NDB5V2 B20 IO76NPB1V4 A15 IO56PDB1V1 AB7 IO210PDB5V2 B21 VCCIB2 A16 IO64NDB1V2 AB8 IO208NDB5V1 B22 GND A17 IO64PDB1V2 AB9 IO208PDB5V1 C1 VCCIB7 A18 IO72NDB1V3 AB10 IO197NDB5V0 C2 IO303PDB7V3 A19 IO74NDB1V4 AB11 IO197PDB5V0 C3 IO305PDB7V3 A20 VCCIB1 AB12 IO174NDB4V2 C4 IO06NPB0V0 A21 GND AB13 IO174PDB4V2 C5 GND A22 GND AB14 IO172NDB4V2 C6 IO12NDB0V1 AA1 GND AB15 IO172PDB4V2 C7 IO12PDB0V1 AA2 VCCIB6 AB16 IO168NDB4V1 C8 VCC AA3 IO228PDB5V4 AB17 IO168PDB4V1 C9 VCC AA4 IO224PDB5V3 AB18 IO162NDB4V1 C10 IO34NDB0V4 AA5 IO218NDB5V3 AB19 IO162PDB4V1 C11 IO40NDB0V4 AA6 IO218PDB5V3 AB20 VCCIB4 C12 IO48NDB1V0 AA7 IO212NDB5V2 AB21 GND C13 IO48PDB1V0 AA8 IO212PDB5V2 AB22 GND C14 VCC AA9 IO198PDB5V0 B1 GND C15 VCC AA10 IO198NDB5V0 B2 VCCIB7 C16 IO70NDB1V3 AA11 IO188PPB4V4 B3 IO06PPB0V0 C17 IO70PDB1V3 AA12 IO180NDB4V3 B4 IO08NDB0V0 C18 GND AA13 IO180PDB4V3 B5 IO08PDB0V0 C19 IO76PPB1V4 AA14 IO170NDB4V2 B6 IO14NDB0V1 C20 IO88NDB2V0 R evisio n 16 4-25 Package Pin Assignments FG484 FG484 Pin Number A3PE3000 Function 4-2 6 FG484 Pin Number A3PE3000 Function Pin Number A3PE3000 Function C21 IO94PPB2V1 E13 IO58NDB1V2 G5 IO297PDB7V2 C22 VCCIB2 E14 IO58PDB1V2 G6 GAC2/IO307PDB7V4 D1 IO293PDB7V2 E15 GBC1/IO79PDB1V4 G7 VCOMPLA D2 IO303NDB7V3 E16 GBB0/IO80NDB1V4 G8 GNDQ D3 IO305NDB7V3 E17 GNDQ G9 IO26NDB0V3 D4 GND E18 GBA2/IO82PDB2V0 G10 IO26PDB0V3 D5 GAA0/IO00NDB0V0 E19 IO86NDB2V0 G11 IO36PDB0V4 D6 GAA1/IO00PDB0V0 E20 GND G12 IO42PDB1V0 D7 GAB0/IO01NDB0V0 E21 IO90NDB2V1 G13 IO50PDB1V1 D8 IO20PDB0V2 E22 IO98PDB2V2 G14 IO60NDB1V2 D9 IO22PDB0V2 F1 IO299NPB7V3 G15 GNDQ D10 IO30PDB0V3 F2 IO301NDB7V3 G16 VCOMPLB D11 IO38NDB0V4 F3 IO301PDB7V3 G17 GBB2/IO83PDB2V0 D12 IO52NDB1V1 F4 IO308NDB7V4 G18 IO92PDB2V1 D13 IO52PDB1V1 F5 IO309NDB7V4 G19 IO92NDB2V1 D14 IO66NDB1V3 F6 VMV7 G20 IO102PDB2V2 D15 IO66PDB1V3 F7 VCCPLA G21 IO102NDB2V2 D16 GBB1/IO80PDB1V4 F8 GAC0/IO02NDB0V0 G22 IO105NDB2V2 D17 GBA0/IO81NDB1V4 F9 GAC1/IO02PDB0V0 H1 IO286PSB7V1 D18 GBA1/IO81PDB1V4 F10 IO32NDB0V3 H2 IO291NPB7V2 D19 GND F11 IO32PDB0V3 H3 VCC D20 IO88PDB2V0 F12 IO44PDB1V0 H4 IO295NDB7V2 D21 IO90PDB2V1 F13 IO50NDB1V1 H5 IO297NDB7V2 D22 IO94NPB2V1 F14 IO60PDB1V2 H6 IO307NDB7V4 E1 IO293NDB7V2 F15 GBC0/IO79NDB1V4 H7 IO287PDB7V1 E2 IO299PPB7V3 F16 VCCPLB H8 VMV0 E3 GND F17 VMV2 H9 VCCIB0 E4 GAB2/IO308PDB7V4 F18 IO82NDB2V0 H10 VCCIB0 E5 GAA2/IO309PDB7V4 F19 IO86PDB2V0 H11 IO36NDB0V4 E6 GNDQ F20 IO96PDB2V1 H12 IO42NDB1V0 E7 GAB1/IO01PDB0V0 F21 IO96NDB2V1 H13 VCCIB1 E8 IO20NDB0V2 F22 IO98NDB2V2 H14 VCCIB1 E9 IO22NDB0V2 G1 IO289NDB7V1 H15 VMV1 E10 IO30NDB0V3 G2 IO289PDB7V1 H16 GBC2/IO84PDB2V0 E11 IO38PDB0V4 G3 IO291PPB7V2 H17 IO83NDB2V0 E12 IO44NDB1V0 G4 IO295PDB7V2 H18 IO100NDB2V2 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 Pin Number A3PE3000 Function FG484 Pin Number A3PE3000 Function Pin Number A3PE3000 Function H19 IO100PDB2V2 K11 GND M3 IO272NDB6V4 H20 VCC K12 GND M4 GFA2/IO272PDB6V4 H21 VMV2 K13 GND M5 GFA1/IO273PDB6V4 H22 IO105PDB2V2 K14 VCC M6 VCCPLF J1 IO285NDB7V1 K15 VCCIB2 M7 IO271NDB6V4 J2 IO285PDB7V1 K16 GCC1/IO112PPB2V3 M8 GFB2/IO271PDB6V4 J3 VMV7 K17 IO108NDB2V3 M9 VCC J4 IO279PDB7V0 K18 IO108PDB2V3 M10 GND J5 IO283PDB7V1 K19 IO110NPB2V3 M11 GND J6 IO281PDB7V0 K20 IO106NPB2V3 M12 GND J7 IO287NDB7V1 K21 IO109NDB2V3 M13 GND J8 VCCIB7 K22 IO107NDB2V3 M14 VCC J9 GND L1 IO257PSB6V2 M15 GCB2/IO116PPB3V0 J10 VCC L2 IO276PDB7V0 M16 GCA1/IO114PPB3V0 J11 VCC L3 IO276NDB7V0 M17 GCC2/IO117PPB3V0 J12 VCC L4 GFB0/IO274NPB7V0 M18 VCCPLC J13 VCC L5 GFA0/IO273NDB6V4 M19 GCA2/IO115PDB3V0 J14 GND L6 GFB1/IO274PPB7V0 M20 IO115NDB3V0 J15 VCCIB2 L7 VCOMPLF M21 IO126PDB3V1 J16 IO84NDB2V0 L8 GFC0/IO275NPB7V0 M22 IO124PSB3V1 J17 IO104NDB2V2 L9 VCC N1 IO255PPB6V2 J18 IO104PDB2V2 L10 GND N2 IO253NDB6V2 J19 IO106PPB2V3 L11 GND N3 VMV6 J20 GNDQ L12 GND N4 GFC2/IO270PPB6V4 J21 IO109PDB2V3 L13 GND N5 IO261PPB6V3 J22 IO107PDB2V3 L14 VCC N6 IO263PDB6V3 K1 IO277NDB7V0 L15 GCC0/IO112NPB2V3 N7 IO263NDB6V3 K2 IO277PDB7V0 L16 GCB1/IO113PPB2V3 N8 VCCIB6 K3 GNDQ L17 GCA0/IO114NPB3V0 N9 VCC K4 IO279NDB7V0 L18 VCOMPLC N10 GND K5 IO283NDB7V1 L19 GCB0/IO113NPB2V3 N11 GND K6 IO281NDB7V0 L20 IO110PPB2V3 N12 GND K7 GFC1/IO275PPB7V0 L21 IO111NDB2V3 N13 GND K8 VCCIB7 L22 IO111PDB2V3 N14 VCC K9 VCC M1 GNDQ N15 VCCIB3 K10 GND M2 IO255NPB6V2 N16 IO116NPB3V0 R evisio n 16 4-27 Package Pin Assignments FG484 FG484 Pin Number A3PE3000 Function 4-2 8 FG484 Pin Number A3PE3000 Function Pin Number A3PE3000 Function N17 IO132NPB3V2 R9 VCCIB5 U1 IO240PPB6V0 N18 IO117NPB3V0 R10 VCCIB5 U2 IO238PDB6V0 N19 IO132PPB3V2 R11 IO196NDB5V0 U3 IO238NDB6V0 N20 GNDQ R12 IO196PDB5V0 U4 GEB1/IO235PDB6V0 N21 IO126NDB3V1 R13 VCCIB4 U5 GEB0/IO235NDB6V0 N22 IO128PDB3V1 R14 VCCIB4 U6 VMV6 P1 IO247PDB6V1 R15 VMV3 U7 VCCPLE P2 IO253PDB6V2 R16 VCCPLD U8 IO233NPB5V4 P3 IO270NPB6V4 R17 GDB1/IO152PPB3V4 U9 IO222PPB5V3 P4 IO261NPB6V3 R18 GDC1/IO151PDB3V4 U10 IO206PDB5V1 P5 IO249PPB6V1 R19 IO138NDB3V3 U11 IO202PDB5V1 P6 IO259PDB6V3 R20 VCC U12 IO194PDB5V0 P7 IO259NDB6V3 R21 IO130NDB3V2 U13 IO176NDB4V2 P8 VCCIB6 R22 IO134PDB3V2 U14 IO176PDB4V2 P9 GND T1 IO243PPB6V1 U15 VMV4 P10 VCC T2 IO245NDB6V1 U16 TCK P11 VCC T3 IO243NPB6V1 U17 VPUMP P12 VCC T4 IO241PDB6V0 U18 TRST P13 VCC T5 IO241NDB6V0 U19 GDA0/IO153NDB3V4 P14 GND T6 GEC1/IO236PPB6V0 U20 IO144NDB3V3 P15 VCCIB3 T7 VCOMPLE U21 IO140NDB3V3 P16 GDB0/IO152NPB3V4 T8 GNDQ U22 IO142PDB3V3 P17 IO136NDB3V2 T9 GEA2/IO233PPB5V4 V1 IO239PDB6V0 P18 IO136PDB3V2 T10 IO206NDB5V1 V2 IO240NPB6V0 P19 IO138PDB3V3 T11 IO202NDB5V1 V3 GND P20 VMV3 T12 IO194NDB5V0 V4 GEA1/IO234PDB6V0 P21 IO130PDB3V2 T13 IO186NDB4V4 V5 GEA0/IO234NDB6V0 P22 IO128NDB3V1 T14 IO186PDB4V4 V6 GNDQ R1 IO247NDB6V1 T15 GNDQ V7 GEC2/IO231PDB5V4 R2 IO245PDB6V1 T16 VCOMPLD V8 IO222NPB5V3 R3 VCC T17 VJTAG V9 IO204NDB5V1 R4 IO249NPB6V1 T18 GDC0/IO151NDB3V4 V10 IO204PDB5V1 R5 IO251NDB6V2 T19 GDA1/IO153PDB3V4 V11 IO195NDB5V0 R6 IO251PDB6V2 T20 IO144PDB3V3 V12 IO195PDB5V0 R7 GEC0/IO236NPB6V0 T21 IO140PDB3V3 V13 IO178NDB4V3 R8 VMV5 T22 IO134NDB3V2 V14 IO178PDB4V3 R evisio n 16 ProASIC3E Flash Family FPGAs FG484 FG484 Pin Number A3PE3000 Function Pin Number A3PE3000 Function V15 IO155NDB4V0 Y7 IO220PDB5V3 V16 GDB2/IO155PDB4V0 Y8 VCC V17 TDI Y9 VCC V18 GNDQ Y10 IO200PDB5V0 V19 TDO Y11 IO192PDB4V4 V20 GND Y12 IO188NPB4V4 V21 IO146PDB3V4 Y13 IO187PSB4V4 V22 IO142NDB3V3 Y14 VCC W1 IO239NDB6V0 Y15 VCC W2 IO237PDB6V0 Y16 IO164NDB4V1 W3 IO230PSB5V4 Y17 IO164PDB4V1 W4 GND Y18 GND W5 IO232NDB5V4 Y19 IO158PPB4V0 W6 GEB2/IO232PDB5V4 Y20 IO150PDB3V4 W7 IO231NDB5V4 Y21 IO148NPB3V4 W8 IO214NDB5V2 Y22 VCCIB3 W9 IO214PDB5V2 W10 IO200NDB5V0 W11 IO192NDB4V4 W12 IO184NDB4V3 W13 IO184PDB4V3 W14 IO156NDB4V0 W15 GDC2/IO156PDB4V0 W16 IO154NDB4V0 W17 GDA2/IO154PDB4V0 W18 TMS W19 GND W20 IO150NDB3V4 W21 IO146NDB3V4 W22 IO148PPB3V4 Y1 VCCIB6 Y2 IO237NDB6V0 Y3 IO228NDB5V4 Y4 IO224NDB5V3 Y5 GND Y6 IO220NDB5V3 R evisio n 16 4-29 Package Pin Assignments FG676 A1 Ball Pad Corner 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions. 4-3 0 R evisio n 16 ProASIC3E Flash Family FPGAs FG676 FG676 FG676 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function A1 GND AA11 IO153NDB5V2 AB21 TCK A2 GND AA12 IO147NDB5V1 AB22 TRST A3 GAA0/IO00NDB0V0 AA13 IO139NDB5V0 AB23 GDC0/IO108NDB3V2 A4 GAA1/IO00PDB0V0 AA14 IO137NDB5V0 AB24 GDC1/IO108PDB3V2 A5 IO06NDB0V0 AA15 IO123NDB4V1 AB25 IO104NDB3V2 A6 IO09NDB0V1 AA16 IO123PDB4V1 AB26 IO104PDB3V2 A7 IO09PDB0V1 AA17 IO117NDB4V0 AC1 IO170PDB6V0 A8 IO14NDB0V1 AA18 IO117PDB4V0 AC2 GEB0/IO168NPB6V0 A9 IO14PDB0V1 AA19 GDB2/IO112PDB4V0 AC3 IO166NPB5V3 A10 IO22NDB0V2 AA20 GNDQ AC4 GNDQ A11 IO22PDB0V2 AA21 TDO AC5 GND A12 IO26NDB0V3 AA22 GND AC6 IO160PDB5V3 A13 IO26PDB0V3 AA23 GND AC7 IO161PDB5V3 A14 IO30NDB0V3 AA24 IO102NDB3V1 AC8 IO154PDB5V2 A15 IO30PDB0V3 AA25 IO102PDB3V1 AC9 GND A16 IO34NDB1V0 AA26 IO98NDB3V1 AC10 IO150NDB5V1 A17 IO34PDB1V0 AB1 IO174NDB6V0 AC11 IO155NDB5V2 A18 IO38NDB1V0 AB2 IO171NDB6V0 AC12 IO142NDB5V0 A19 IO38PDB1V0 AB3 GEB1/IO168PPB6V0 AC13 IO138NDB5V0 A20 IO41PDB1V1 AB4 GEA0/IO167NPB6V0 AC14 IO138PDB5V0 A21 IO44PDB1V1 AB5 VCCPLE AC15 IO132NDB4V2 A22 IO49PDB1V2 AB6 GND AC16 IO129NDB4V2 A23 IO50PDB1V2 AB7 GND AC17 IO121NDB4V1 A24 GBC1/IO55PDB1V3 AB8 IO156NDB5V2 AC18 IO119PDB4V1 A25 GND AB9 IO156PDB5V2 AC19 IO118NDB4V0 A26 GND AB10 IO150PDB5V1 AC20 IO118PDB4V0 AA1 IO174PDB6V0 AB11 IO155PDB5V2 AC21 IO114PPB4V0 AA2 IO171PDB6V0 AB12 IO142PDB5V0 AC22 TMS AA3 GEA1/IO167PPB6V0 AB13 IO135NDB5V0 AC23 VJTAG AA4 GEC0/IO169NPB6V0 AB14 IO135PDB5V0 AC24 VMV3 AA5 VCOMPLE AB15 IO132PDB4V2 AC25 IO106NDB3V2 AA6 GND AB16 IO129PDB4V2 AC26 IO106PDB3V2 AA7 IO165NDB5V3 AB17 IO121PDB4V1 AD1 IO170NDB6V0 AA8 GEB2/IO165PDB5V3 AB18 IO119NDB4V1 AD2 GEA2/IO166PPB5V3 AA9 IO163PDB5V3 AB19 IO112NDB4V0 AD3 VMV5 AA10 IO159NDB5V3 AB20 VMV4 AD4 GEC2/IO164PDB5V3 R evisio n 16 4-31 Package Pin Assignments FG676 FG676 FG676 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-3 2 AD5 IO162PDB5V3 AE15 IO134NDB4V2 AF25 GND AD6 IO160NDB5V3 AE16 IO133NDB4V2 AF26 GND AD7 IO161NDB5V3 AE17 IO127NDB4V2 B1 GND AD8 IO154NDB5V2 AE18 IO130NDB4V2 B2 GND AD9 IO148PDB5V1 AE19 IO126NDB4V1 B3 GND AD10 IO151PDB5V2 AE20 IO124NDB4V1 B4 GND AD11 IO144PDB5V1 AE21 IO120NDB4V1 B5 IO06PDB0V0 AD12 IO140PDB5V0 AE22 IO116PDB4V0 B6 IO04NDB0V0 AD13 IO143PDB5V1 AE23 GDC2/IO113PDB4V0 B7 IO07NDB0V0 AD14 IO141PDB5V0 AE24 GDA2/IO111PDB4V0 B8 IO11NDB0V1 AD15 IO134PDB4V2 AE25 GND B9 IO10NDB0V1 AD16 IO133PDB4V2 AE26 GND B10 IO16NDB0V2 AD17 IO127PDB4V2 AF1 GND B11 IO20NDB0V2 AD18 IO130PDB4V2 AF2 GND B12 IO24NDB0V3 AD19 IO126PDB4V1 AF3 GND B13 IO23NDB0V2 AD20 IO124PDB4V1 AF4 GND B14 IO28NDB0V3 AD21 IO120PDB4V1 AF5 IO158NPB5V2 B15 IO31NDB0V3 AD22 IO114NPB4V0 AF6 IO157NPB5V2 B16 IO32PDB1V0 AD23 TDI AF7 IO152NPB5V2 B17 IO36PDB1V0 AD24 GNDQ AF8 IO146NDB5V1 B18 IO37PDB1V0 AD25 GDA0/IO110NDB3V2 AF9 IO146PDB5V1 B19 IO42NPB1V1 AD26 GDA1/IO110PDB3V2 AF10 IO149NDB5V1 B20 IO41NDB1V1 AE1 GND AF11 IO149PDB5V1 B21 IO44NDB1V1 AE2 GND AF12 IO145NDB5V1 B22 IO49NDB1V2 AE3 GND AF13 IO145PDB5V1 B23 IO50NDB1V2 AE4 IO164NDB5V3 AF14 IO136NDB5V0 B24 GBC0/IO55NDB1V3 AE5 IO162NDB5V3 AF15 IO136PDB5V0 B25 GND AE6 IO158PPB5V2 AF16 IO131NDB4V2 B26 GND AE7 IO157PPB5V2 AF17 IO131PDB4V2 C1 GND AE8 IO152PPB5V2 AF18 IO128NDB4V2 C2 GND AE9 IO148NDB5V1 AF19 IO128PDB4V2 C3 GND AE10 IO151NDB5V2 AF20 IO122NDB4V1 C4 GND AE11 IO144NDB5V1 AF21 IO122PDB4V1 C5 GAA2/IO221PDB7V3 AE12 IO140NDB5V0 AF22 IO116NDB4V0 C6 IO04PDB0V0 AE13 IO143NDB5V1 AF23 IO113NDB4V0 C7 IO07PDB0V0 AE14 IO141NDB5V0 AF24 IO111NDB4V0 C8 IO11PDB0V1 R evisio n 16 ProASIC3E Flash Family FPGAs FG676 FG676 FG676 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function C9 IO10PDB0V1 D19 IO45PDB1V1 F3 IO213NDB7V2 C10 IO16PDB0V2 D20 IO46PPB1V1 F4 IO213PDB7V2 C11 IO20PDB0V2 D21 IO48PPB1V2 F5 GND C12 IO24PDB0V3 D22 GBA0/IO57NPB1V3 F6 VCCPLA C13 IO23PDB0V2 D23 GNDQ F7 GAB0/IO01NDB0V0 C14 IO28PDB0V3 D24 GBB1/IO56PPB1V3 F8 GNDQ C15 IO31PDB0V3 D25 GBB2/IO59PDB2V0 F9 IO03PDB0V0 C16 IO32NDB1V0 D26 IO59NDB2V0 F10 IO13PDB0V1 C17 IO36NDB1V0 E1 IO212PDB7V2 F11 IO15PDB0V1 C18 IO37NDB1V0 E2 IO211NDB7V2 F12 IO19PDB0V2 C19 IO45NDB1V1 E3 IO211PDB7V2 F13 IO21PDB0V2 C20 IO42PPB1V1 E4 IO220NPB7V3 F14 IO27NDB0V3 C21 IO46NPB1V1 E5 GNDQ F15 IO35PDB1V0 C22 IO48NPB1V2 E6 GAB2/IO220PPB7V3 F16 IO39NDB1V0 C23 GBB0/IO56NPB1V3 E7 GAB1/IO01PDB0V0 F17 IO51PDB1V2 C24 VMV1 E8 IO05PDB0V0 F18 IO53PDB1V2 C25 GBC2/IO60PDB2V0 E9 IO08NDB0V1 F19 IO54PDB1V3 C26 IO60NDB2V0 E10 IO12PDB0V1 F20 VMV2 D1 IO218NDB7V3 E11 IO18PDB0V2 F21 VCOMPLB D2 IO218PDB7V3 E12 IO17PDB0V2 F22 IO61PDB2V0 D3 GND E13 IO25PDB0V3 F23 IO61NDB2V0 D4 VMV7 E14 IO29PDB0V3 F24 IO66PDB2V1 D5 IO221NDB7V3 E15 IO33PDB1V0 F25 IO66NDB2V1 D6 GAC0/IO02NDB0V0 E16 IO40NDB1V1 F26 IO68NDB2V1 D7 GAC1/IO02PDB0V0 E17 IO43PDB1V1 G1 IO203NPB7V1 D8 IO05NDB0V0 E18 IO47NDB1V1 G2 IO207NDB7V2 D9 IO08PDB0V1 E19 IO54NDB1V3 G3 IO207PDB7V2 D10 IO12NDB0V1 E20 IO52NDB1V2 G4 IO216NDB7V3 D11 IO18NDB0V2 E21 IO52PDB1V2 G5 IO216PDB7V3 D12 IO17NDB0V2 E22 VCCPLB G6 VCOMPLA D13 IO25NDB0V3 E23 GBA1/IO57PPB1V3 G7 VMV0 D14 IO29NDB0V3 E24 IO63PDB2V0 G8 VCC D15 IO33NDB1V0 E25 IO63NDB2V0 G9 IO03NDB0V0 D16 IO40PDB1V1 E26 IO68PDB2V1 G10 IO13NDB0V1 D17 IO43NDB1V1 F1 IO212NDB7V2 G11 IO15NDB0V1 D18 IO47PDB1V1 F2 IO203PPB7V1 G12 IO19NDB0V2 R evisio n 16 4-33 Package Pin Assignments FG676 FG676 FG676 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-3 4 G13 IO21NDB0V2 H23 IO69PDB2V1 K7 IO217NDB7V3 G14 IO27PDB0V3 H24 IO76PDB2V2 K8 VCCIB7 G15 IO35NDB1V0 H25 IO76NDB2V2 K9 VCC G16 IO39PDB1V0 H26 IO78NDB2V2 K10 GND G17 IO51NDB1V2 J1 IO197NDB7V0 K11 GND G18 IO53NDB1V2 J2 IO197PDB7V0 K12 GND G19 VCCIB1 J3 VMV7 K13 GND G20 GBA2/IO58PPB2V0 J4 IO215NDB7V3 K14 GND G21 GNDQ J5 IO215PDB7V3 K15 GND G22 IO64NDB2V1 J6 IO214PDB7V3 K16 GND G23 IO64PDB2V1 J7 IO214NDB7V3 K17 GND G24 IO72PDB2V2 J8 VCCIB7 K18 VCC G25 IO72NDB2V2 J9 VCC K19 VCCIB2 G26 IO78PDB2V2 J10 VCC K20 IO65PDB2V1 H1 IO208NDB7V2 J11 VCC K21 IO65NDB2V1 H2 IO208PDB7V2 J12 VCC K22 IO74PDB2V2 H3 IO209NDB7V2 J13 VCC K23 IO74NDB2V2 H4 IO209PDB7V2 J14 VCC K24 IO75PDB2V2 H5 IO219NDB7V3 J15 VCC K25 IO75NDB2V2 H6 GAC2/IO219PDB7V3 J16 VCC K26 IO84PDB2V3 H7 VCCIB7 J17 VCC L1 IO195NDB7V0 H8 VCC J18 VCC L2 IO198PPB7V0 H9 VCCIB0 J19 VCCIB2 L3 GNDQ H10 VCCIB0 J20 IO62PDB2V0 L4 IO201PDB7V1 H11 VCCIB0 J21 IO62NDB2V0 L5 IO201NDB7V1 H12 VCCIB0 J22 IO70NDB2V1 L6 IO210NDB7V2 H13 VCCIB0 J23 IO69NDB2V1 L7 IO210PDB7V2 H14 VCCIB1 J24 VMV2 L8 VCCIB7 H15 VCCIB1 J25 IO80PDB2V3 L9 VCC H16 VCCIB1 J26 IO80NDB2V3 L10 GND H17 VCCIB1 K1 IO195PDB7V0 L11 GND H18 VCCIB1 K2 IO199NDB7V1 L12 GND H19 VCC K3 IO199PDB7V1 L13 GND H20 VCC K4 IO205NDB7V1 L14 GND H21 IO58NPB2V0 K5 IO205PDB7V1 L15 GND H22 IO70PDB2V1 K6 IO217PDB7V3 L16 GND R evisio n 16 ProASIC3E Flash Family FPGAs FG676 FG676 FG676 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function L17 GND N1 GFB0/IO191NPB7V0 P11 GND L18 VCC N2 VCOMPLF P12 GND L19 VCCIB2 N3 GFB1/IO191PPB7V0 P13 GND L20 IO67PDB2V1 N4 IO196PDB7V0 P14 GND L21 IO67NDB2V1 N5 GFA0/IO190NDB6V2 P15 GND L22 IO71PDB2V2 N6 IO200PDB7V1 P16 GND L23 IO71NDB2V2 N7 IO200NDB7V1 P17 GND L24 GNDQ N8 VCCIB7 P18 VCC L25 IO82PDB2V3 N9 VCC P19 VCCIB3 L26 IO84NDB2V3 N10 GND P20 GCC0/IO85NDB2V3 M1 IO198NPB7V0 N11 GND P21 GCC1/IO85PDB2V3 M2 IO202PDB7V1 N12 GND P22 GCB1/IO86PPB2V3 M3 IO202NDB7V1 N13 GND P23 IO88NPB3V0 M4 IO206NDB7V1 N14 GND P24 GCA1/IO87PDB3V0 M5 IO206PDB7V1 N15 GND P25 VCCPLC M6 IO204NDB7V1 N16 GND P26 VCOMPLC M7 IO204PDB7V1 N17 GND R1 IO189NDB6V2 M8 VCCIB7 N18 VCC R2 IO185PDB6V2 M9 VCC N19 VCCIB2 R3 IO187NPB6V2 M10 GND N20 IO79PDB2V3 R4 IO193NPB7V0 M11 GND N21 IO79NDB2V3 R5 GFC2/IO187PPB6V2 M12 GND N22 GCA2/IO88PPB3V0 R6 GFC1/IO192PDB7V0 M13 GND N23 IO81NPB2V3 R7 GFC0/IO192NDB7V0 M14 GND N24 GCA0/IO87NDB3V0 R8 VCCIB6 M15 GND N25 GCB0/IO86NPB2V3 R9 VCC M16 GND N26 IO83NDB2V3 R10 GND M17 GND P1 GFA2/IO189PDB6V2 R11 GND M18 VCC P2 VCCPLF R12 GND M19 VCCIB2 P3 IO193PPB7V0 R13 GND M20 IO73NDB2V2 P4 IO196NDB7V0 R14 GND M21 IO73PDB2V2 P5 GFA1/IO190PDB6V2 R15 GND M22 IO81PPB2V3 P6 IO194PDB7V0 R16 GND M23 IO77PDB2V2 P7 IO194NDB7V0 R17 GND M24 IO77NDB2V2 P8 VCCIB6 R18 VCC M25 IO82NDB2V3 P9 VCC R19 VCCIB3 M26 IO83PDB2V3 P10 GND R20 NC R evisio n 16 4-35 Package Pin Assignments FG676 FG676 FG676 Pin Number A3PE1500 Function Pin Number A3PE1500 Function Pin Number A3PE1500 Function 4-3 6 R21 IO89NDB3V0 U5 IO182PDB6V1 V15 VCC R22 GCB2/IO89PDB3V0 U6 IO178PDB6V1 V16 VCC R23 IO90NDB3V0 U7 IO178NDB6V1 V17 VCC R24 GCC2/IO90PDB3V0 U8 VCCIB6 V18 VCC R25 IO91PDB3V0 U9 VCC V19 VCCIB3 R26 IO91NDB3V0 U10 GND V20 IO107PDB3V2 T1 IO186PDB6V2 U11 GND V21 IO107NDB3V2 T2 IO185NDB6V2 U12 GND V22 IO103NDB3V2 T3 GNDQ U13 GND V23 IO103PDB3V2 T4 IO180PDB6V1 U14 GND V24 VMV3 T5 IO180NDB6V1 U15 GND V25 IO95NDB3V1 T6 IO188NDB6V2 U16 GND V26 IO94PDB3V0 T7 GFB2/IO188PDB6V2 U17 GND W1 IO179NDB6V1 T8 VCCIB6 U18 VCC W2 IO179PDB6V1 T9 VCC U19 VCCIB3 W3 IO177NDB6V1 T10 GND U20 NC W4 IO177PDB6V1 T11 GND U21 IO101NDB3V1 W5 IO172PDB6V0 T12 GND U22 IO101PDB3V1 W6 IO172NDB6V0 T13 GND U23 IO92NDB3V0 W7 VCC T14 GND U24 IO92PDB3V0 W8 VCC T15 GND U25 IO95PDB3V1 W9 VCCIB5 T16 GND U26 IO93NPB3V0 W10 VCCIB5 T17 GND V1 IO183PDB6V2 W11 VCCIB5 T18 VCC V2 IO183NDB6V2 W12 VCCIB5 T19 VCCIB3 V3 VMV6 W13 VCCIB5 T20 IO99PDB3V1 V4 IO181PDB6V1 W14 VCCIB4 T21 IO99NDB3V1 V5 IO181NDB6V1 W15 VCCIB4 T22 IO97PDB3V1 V6 IO176PDB6V1 W16 VCCIB4 T23 IO97NDB3V1 V7 IO176NDB6V1 W17 VCCIB4 T24 GNDQ V8 VCCIB6 W18 VCCIB4 T25 IO93PPB3V0 V9 VCC W19 VCC T26 NC V10 VCC W20 VCCIB3 U1 IO186NDB6V2 V11 VCC W21 GDB0/IO109NDB3V2 U2 IO184NDB6V2 V12 VCC W22 GDB1/IO109PDB3V2 U3 IO184PDB6V2 V13 VCC W23 IO105NDB3V2 U4 IO182NDB6V1 V14 VCC W24 IO105PDB3V2 R evisio n 16 ProASIC3E Flash Family FPGAs FG676 Pin Number A3PE1500 Function W25 IO96PDB3V1 W26 IO94NDB3V0 Y1 IO175NDB6V1 Y2 IO175PDB6V1 Y3 IO173NDB6V0 Y4 IO173PDB6V0 Y5 GEC1/IO169PPB6V0 Y6 GNDQ Y7 VMV6 Y8 VCCIB5 Y9 IO163NDB5V3 Y10 IO159PDB5V3 Y11 IO153PDB5V2 Y12 IO147PDB5V1 Y13 IO139PDB5V0 Y14 IO137PDB5V0 Y15 IO125NDB4V1 Y16 IO125PDB4V1 Y17 IO115NDB4V0 Y18 IO115PDB4V0 Y19 VCC Y20 VPUMP Y21 VCOMPLD Y22 VCCPLD Y23 IO100NDB3V1 Y24 IO100PDB3V1 Y25 IO96NDB3V1 Y26 IO98PDB3V1 R evisio n 16 4-37 Package Pin Assignments FG896 A1 Ball Pad Corner 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK Note: This is the bottom view of the package. Note For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/products/fpga-soc/solutions. 4-3 8 R evisio n 16 ProASIC3E Flash Family FPGAs FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function A2 GND AA9 GEB1/IO235PPB6V0 AB15 IO198PDB5V0 A3 GND AA10 VCC AB16 IO192NDB4V4 A4 IO14NPB0V1 AA11 IO226PPB5V4 AB17 IO192PDB4V4 A5 GND AA12 VCCIB5 AB18 IO178NDB4V3 A6 IO07NPB0V0 AA13 VCCIB5 AB19 IO178PDB4V3 A7 GND AA14 VCCIB5 AB20 IO174NDB4V2 A8 IO09NDB0V1 AA15 VCCIB5 AB21 IO162NPB4V1 A9 IO17NDB0V2 AA16 VCCIB4 AB22 VCC A10 IO17PDB0V2 AA17 VCCIB4 AB23 VCCPLD A11 IO21NDB0V2 AA18 VCCIB4 AB24 VCCIB3 A12 IO21PDB0V2 AA19 VCCIB4 AB25 IO150PDB3V4 A13 IO33NDB0V4 AA20 IO174PDB4V2 AB26 IO148PDB3V4 A14 IO33PDB0V4 AA21 VCC AB27 IO147NDB3V4 A15 IO35NDB0V4 AA22 IO142NPB3V3 AB28 IO145PDB3V3 A16 IO35PDB0V4 AA23 IO144NDB3V3 AB29 IO143PDB3V3 A17 IO41NDB1V0 AA24 IO144PDB3V3 AB30 IO137PDB3V2 A18 IO43NDB1V0 AA25 IO146NDB3V4 AC1 IO254PDB6V2 A19 IO43PDB1V0 AA26 IO146PDB3V4 AC2 IO254NDB6V2 A20 IO45NDB1V0 AA27 IO147PDB3V4 AC3 IO240PDB6V0 A21 IO45PDB1V0 AA28 IO139NDB3V3 AC4 GEC1/IO236PDB6V0 A22 IO57NDB1V2 AA29 IO139PDB3V3 AC5 IO237PDB6V0 A23 IO57PDB1V2 AA30 IO133NDB3V2 AC6 IO237NDB6V0 A24 GND AB1 IO256NDB6V2 AC7 VCOMPLE A25 IO69PPB1V3 AB2 IO244PDB6V1 AC8 GND A26 GND AB3 IO244NDB6V1 AC9 IO226NPB5V4 A27 GBC1/IO79PPB1V4 AB4 IO241PDB6V0 AC10 IO222NDB5V3 A28 GND AB5 IO241NDB6V0 AC11 IO216NPB5V2 A29 GND AB6 IO243NPB6V1 AC12 IO210NPB5V2 AA1 IO256PDB6V2 AB7 VCCIB6 AC13 IO204NDB5V1 AA2 IO248PDB6V1 AB8 VCCPLE AC14 IO204PDB5V1 AA3 IO248NDB6V1 AB9 VCC AC15 IO194NDB5V0 AA4 IO246NDB6V1 AB10 IO222PDB5V3 AC16 IO188NDB4V4 AA5 GEA1/IO234PDB6V0 AB11 IO218PPB5V3 AC17 IO188PDB4V4 AA6 GEA0/IO234NDB6V0 AB12 IO206NDB5V1 AC18 IO182PPB4V3 AA7 IO243PPB6V1 AB13 IO206PDB5V1 AC19 IO170NPB4V2 AA8 IO245NDB6V1 AB14 IO198NDB5V0 AC20 IO164NDB4V1 R evisio n 16 4-39 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function 4-4 0 AC21 IO164PDB4V1 AD27 GDA0/IO153NDB3V4 AF3 VCCIB6 AC22 IO162PPB4V1 AD28 GDC0/IO151NDB3V4 AF4 IO220NPB5V3 AC23 GND AD29 GDC1/IO151PDB3V4 AF5 VCC AC24 VCOMPLD AD30 GND AF6 IO228NDB5V4 AC25 IO150NDB3V4 AE1 IO242PPB6V1 AF7 VCCIB5 AC26 IO148NDB3V4 AE2 VCC AF8 IO230PDB5V4 AC27 GDA1/IO153PDB3V4 AE3 IO239PDB6V0 AF9 IO229NDB5V4 AC28 IO145NDB3V3 AE4 IO239NDB6V0 AF10 IO229PDB5V4 AC29 IO143NDB3V3 AE5 VMV6 AF11 IO214PPB5V2 AC30 IO137NDB3V2 AE6 GND AF12 IO208NDB5V1 AD1 GND AE7 GNDQ AF13 IO208PDB5V1 AD2 IO242NPB6V1 AE8 IO230NDB5V4 AF14 IO200PDB5V0 AD3 IO240NDB6V0 AE9 IO224NPB5V3 AF15 IO196NDB5V0 AD4 GEC0/IO236NDB6V0 AE10 IO214NPB5V2 AF16 IO186NDB4V4 AD5 VCCIB6 AE11 IO212NDB5V2 AF17 IO186PDB4V4 AD6 GNDQ AE12 IO212PDB5V2 AF18 IO180NDB4V3 AD7 VCC AE13 IO202NPB5V1 AF19 IO180PDB4V3 AD8 VMV5 AE14 IO200NDB5V0 AF20 IO168NDB4V1 AD9 VCCIB5 AE15 IO196PDB5V0 AF21 IO168PDB4V1 AD10 IO224PPB5V3 AE16 IO190NDB4V4 AF22 IO160NDB4V0 AD11 IO218NPB5V3 AE17 IO184PDB4V3 AF23 IO158NPB4V0 AD12 IO216PPB5V2 AE18 IO184NDB4V3 AF24 VCCIB4 AD13 IO210PPB5V2 AE19 IO172PDB4V2 AF25 IO154NPB4V0 AD14 IO202PPB5V1 AE20 IO172NDB4V2 AF26 VCC AD15 IO194PDB5V0 AE21 IO166NDB4V1 AF27 TDO AD16 IO190PDB4V4 AE22 IO160PDB4V0 AF28 VCCIB3 AD17 IO182NPB4V3 AE23 GNDQ AF29 GNDQ AD18 IO176NDB4V2 AE24 VMV4 AF30 GND AD19 IO176PDB4V2 AE25 GND AG1 IO238NPB6V0 AD20 IO170PPB4V2 AE26 GDB0/IO152NDB3V4 AG2 VCC AD21 IO166PDB4V1 AE27 GDB1/IO152PDB3V4 AG3 IO232NPB5V4 AD22 VCCIB4 AE28 VMV3 AG4 GND AD23 TCK AE29 VCC AG5 IO220PPB5V3 AD24 VCC AE30 IO149PDB3V4 AG6 IO228PDB5V4 AD25 TRST AF1 GND AG7 IO231NDB5V4 AD26 VCCIB3 AF2 IO238PPB6V0 AG8 GEC2/IO231PDB5V4 R evisio n 16 ProASIC3E Flash Family FPGAs FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function AG9 IO225NPB5V3 AH15 IO195NDB5V0 AJ21 IO173PDB4V2 AG10 IO223NPB5V3 AH16 IO185NDB4V3 AJ22 IO163NDB4V1 AG11 IO221PDB5V3 AH17 IO185PDB4V3 AJ23 IO163PDB4V1 AG12 IO221NDB5V3 AH18 IO181PDB4V3 AJ24 IO167NPB4V1 AG13 IO205NPB5V1 AH19 IO177NDB4V2 AJ25 VCC AG14 IO199NDB5V0 AH20 IO171NPB4V2 AJ26 IO156NPB4V0 AG15 IO199PDB5V0 AH21 IO165PPB4V1 AJ27 VCC AG16 IO187NDB4V4 AH22 IO161PPB4V0 AJ28 TMS AG17 IO187PDB4V4 AH23 IO157NDB4V0 AJ29 GND AG18 IO181NDB4V3 AH24 IO157PDB4V0 AJ30 GND AG19 IO171PPB4V2 AH25 IO155NDB4V0 AK2 GND AG20 IO165NPB4V1 AH26 VCCIB4 AK3 GND AG21 IO161NPB4V0 AH27 TDI AK4 IO217PPB5V2 AG22 IO159NDB4V0 AH28 VCC AK5 GND AG23 IO159PDB4V0 AH29 VPUMP AK6 IO215PPB5V2 AG24 IO158PPB4V0 AH30 GND AK7 GND AG25 GDB2/IO155PDB4V0 AJ1 GND AK8 IO207NDB5V1 AG26 GDA2/IO154PPB4V0 AJ2 GND AK9 IO207PDB5V1 AG27 GND AJ3 GEA2/IO233PPB5V4 AK10 IO201NDB5V0 AG28 VJTAG AJ4 VCC AK11 IO201PDB5V0 AG29 VCC AJ5 IO217NPB5V2 AK12 IO193NDB4V4 AG30 IO149NDB3V4 AJ6 VCC AK13 IO193PDB4V4 AH1 GND AJ7 IO215NPB5V2 AK14 IO197PDB5V0 AH2 IO233NPB5V4 AJ8 IO213NDB5V2 AK15 IO191NDB4V4 AH3 VCC AJ9 IO213PDB5V2 AK16 IO191PDB4V4 AH4 GEB2/IO232PPB5V4 AJ10 IO209NDB5V1 AK17 IO189NDB4V4 AH5 VCCIB5 AJ11 IO209PDB5V1 AK18 IO189PDB4V4 AH6 IO219NDB5V3 AJ12 IO203NDB5V1 AK19 IO179PPB4V3 AH7 IO219PDB5V3 AJ13 IO203PDB5V1 AK20 IO175NDB4V2 AH8 IO227NDB5V4 AJ14 IO197NDB5V0 AK21 IO175PDB4V2 AH9 IO227PDB5V4 AJ15 IO195PDB5V0 AK22 IO169NDB4V1 AH10 IO225PPB5V3 AJ16 IO183NDB4V3 AK23 IO169PDB4V1 AH11 IO223PPB5V3 AJ17 IO183PDB4V3 AK24 GND AH12 IO211NDB5V2 AJ18 IO179NPB4V3 AK25 IO167PPB4V1 AH13 IO211PDB5V2 AJ19 IO177PDB4V2 AK26 GND AH14 IO205PPB5V1 AJ20 IO173NDB4V2 AK27 GDC2/IO156PPB4V0 R evisio n 16 4-41 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function 4-4 2 AK28 GND C5 VCCIB0 D11 IO11PDB0V1 AK29 GND C6 IO03PDB0V0 D12 IO23NDB0V2 B1 GND C7 IO03NDB0V0 D13 IO23PDB0V2 B2 GND C8 GAB1/IO01PDB0V0 D14 IO27PDB0V3 B3 GAA2/IO309PPB7V4 C9 IO05PDB0V0 D15 IO40PDB0V4 B4 VCC C10 IO15NPB0V1 D16 IO47NDB1V0 B5 IO14PPB0V1 C11 IO25NDB0V3 D17 IO47PDB1V0 B6 VCC C12 IO25PDB0V3 D18 IO55NPB1V1 B7 IO07PPB0V0 C13 IO31NPB0V3 D19 IO65NDB1V3 B8 IO09PDB0V1 C14 IO27NDB0V3 D20 IO65PDB1V3 B9 IO15PPB0V1 C15 IO39NDB0V4 D21 IO71NDB1V3 B10 IO19NDB0V2 C16 IO39PDB0V4 D22 IO71PDB1V3 B11 IO19PDB0V2 C17 IO55PPB1V1 D23 IO73NDB1V4 B12 IO29NDB0V3 C18 IO51PDB1V1 D24 IO73PDB1V4 B13 IO29PDB0V3 C19 IO59NDB1V2 D25 IO74NDB1V4 B14 IO31PPB0V3 C20 IO63NDB1V2 D26 GBB0/IO80NPB1V4 B15 IO37NDB0V4 C21 IO63PDB1V2 D27 GND B16 IO37PDB0V4 C22 IO67NDB1V3 D28 GBA0/IO81NPB1V4 B17 IO41PDB1V0 C23 IO67PDB1V3 D29 VCC B18 IO51NDB1V1 C24 IO75NDB1V4 D30 GBA2/IO82PPB2V0 B19 IO59PDB1V2 C25 IO75PDB1V4 E1 GND B20 IO53PDB1V1 C26 VCCIB1 E2 IO303NPB7V3 B21 IO53NDB1V1 C27 IO64PPB1V2 E3 VCCIB7 B22 IO61NDB1V2 C28 VCC E4 IO305PPB7V3 B23 IO61PDB1V2 C29 GBA1/IO81PPB1V4 E5 VCC B24 IO69NPB1V3 C30 GND E6 GAC0/IO02NDB0V0 B25 VCC D1 IO303PPB7V3 E7 VCCIB0 B26 GBC0/IO79NPB1V4 D2 VCC E8 IO06PPB0V0 B27 VCC D3 IO305NPB7V3 E9 IO24NDB0V2 B28 IO64NPB1V2 D4 GND E10 IO24PDB0V2 B29 GND D5 GAA1/IO00PPB0V0 E11 IO13NDB0V1 B30 GND D6 GAC1/IO02PDB0V0 E12 IO13PDB0V1 C1 GND D7 IO06NPB0V0 E13 IO34NDB0V4 C2 IO309NPB7V4 D8 GAB0/IO01NDB0V0 E14 IO34PDB0V4 C3 VCC D9 IO05NDB0V0 E15 IO40NDB0V4 C4 GAA0/IO00NPB0V0 D10 IO11NDB0V1 E16 IO49NDB1V1 R evisio n 16 ProASIC3E Flash Family FPGAs FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function E17 IO49PDB1V1 F23 IO72PDB1V3 G29 IO100PPB2V2 E18 IO50PDB1V1 F24 GNDQ G30 GND E19 IO58PDB1V2 F25 GND H1 IO294PDB7V2 E20 IO60NDB1V2 F26 VMV2 H2 IO294NDB7V2 E21 IO77PDB1V4 F27 IO86PDB2V0 H3 IO300NDB7V3 E22 IO68NDB1V3 F28 IO92PDB2V1 H4 IO300PDB7V3 E23 IO68PDB1V3 F29 VCC H5 IO295PDB7V2 E24 VCCIB1 F30 IO100NPB2V2 H6 IO299PDB7V3 E25 IO74PDB1V4 G1 GND H7 VCOMPLA E26 VCC G2 IO296NPB7V2 H8 GND E27 GBB1/IO80PPB1V4 G3 IO306NDB7V4 H9 IO08NDB0V0 E28 VCCIB2 G4 IO297NDB7V2 H10 IO08PDB0V0 E29 IO82NPB2V0 G5 VCCIB7 H11 IO18PDB0V2 E30 GND G6 GNDQ H12 IO26NPB0V3 F1 IO296PPB7V2 G7 VCC H13 IO28NDB0V3 F2 VCC G8 VMV0 H14 IO28PDB0V3 F3 IO306PDB7V4 G9 VCCIB0 H15 IO38PPB0V4 F4 IO297PDB7V2 G10 IO10NDB0V1 H16 IO42NDB1V0 F5 VMV7 G11 IO16NDB0V1 H17 IO52NDB1V1 F6 GND G12 IO22PDB0V2 H18 IO52PDB1V1 F7 GNDQ G13 IO26PPB0V3 H19 IO62NDB1V2 F8 IO12NDB0V1 G14 IO38NPB0V4 H20 IO62PDB1V2 F9 IO12PDB0V1 G15 IO36NDB0V4 H21 IO70NDB1V3 F10 IO10PDB0V1 G16 IO46NDB1V0 H22 IO70PDB1V3 F11 IO16PDB0V1 G17 IO46PDB1V0 H23 GND F12 IO22NDB0V2 G18 IO56NDB1V1 H24 VCOMPLB F13 IO30NDB0V3 G19 IO56PDB1V1 H25 GBC2/IO84PDB2V0 F14 IO30PDB0V3 G20 IO66NDB1V3 H26 IO84NDB2V0 F15 IO36PDB0V4 G21 IO66PDB1V3 H27 IO96PDB2V1 F16 IO48NDB1V0 G22 VCCIB1 H28 IO96NDB2V1 F17 IO48PDB1V0 G23 VMV1 H29 IO89PDB2V0 F18 IO50NDB1V1 G24 VCC H30 IO89NDB2V0 F19 IO58NDB1V2 G25 GNDQ J1 IO290NDB7V2 F20 IO60PDB1V2 G26 VCCIB2 J2 IO290PDB7V2 F21 IO77NDB1V4 G27 IO86NDB2V0 J3 IO302NDB7V3 F22 IO72NDB1V3 G28 IO92NDB2V1 J4 IO302PDB7V3 R evisio n 16 4-43 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function 4-4 4 J5 IO295NDB7V2 K11 IO04PPB0V0 L17 VCC J6 IO299NDB7V3 K12 VCCIB0 L18 VCC J7 VCCIB7 K13 VCCIB0 L19 VCC J8 VCCPLA K14 VCCIB0 L20 VCC J9 VCC K15 VCCIB0 L21 IO78NPB1V4 J10 IO04NPB0V0 K16 VCCIB1 L22 IO104NPB2V2 J11 IO18NDB0V2 K17 VCCIB1 L23 IO98NDB2V2 J12 IO20NDB0V2 K18 VCCIB1 L24 IO98PDB2V2 J13 IO20PDB0V2 K19 VCCIB1 L25 IO87PDB2V0 J14 IO32NDB0V3 K20 IO76PPB1V4 L26 IO87NDB2V0 J15 IO32PDB0V3 K21 VCC L27 IO97PDB2V1 J16 IO42PDB1V0 K22 IO78PPB1V4 L28 IO101PDB2V2 J17 IO44NDB1V0 K23 IO88NDB2V0 L29 IO103PDB2V2 J18 IO44PDB1V0 K24 IO88PDB2V0 L30 IO119NDB3V0 J19 IO54NDB1V1 K25 IO94PDB2V1 M1 IO282NDB7V1 J20 IO54PDB1V1 K26 IO94NDB2V1 M2 IO282PDB7V1 J21 IO76NPB1V4 K27 IO85PDB2V0 M3 IO292NDB7V2 J22 VCC K28 IO85NDB2V0 M4 IO292PDB7V2 J23 VCCPLB K29 IO93PDB2V1 M5 IO283NDB7V1 J24 VCCIB2 K30 IO93NDB2V1 M6 IO285PDB7V1 J25 IO90PDB2V1 L1 IO286NDB7V1 M7 IO287PDB7V1 J26 IO90NDB2V1 L2 IO286PDB7V1 M8 IO289PDB7V1 J27 GBB2/IO83PDB2V0 L3 IO298NDB7V3 M9 IO289NDB7V1 J28 IO83NDB2V0 L4 IO298PDB7V3 M10 VCCIB7 J29 IO91PDB2V1 L5 IO283PDB7V1 M11 VCC J30 IO91NDB2V1 L6 IO291NDB7V2 M12 GND K1 IO288NDB7V1 L7 IO291PDB7V2 M13 GND K2 IO288PDB7V1 L8 IO293PDB7V2 M14 GND K3 IO304NDB7V3 L9 IO293NDB7V2 M15 GND K4 IO304PDB7V3 L10 IO307NPB7V4 M16 GND K5 GAB2/IO308PDB7V4 L11 VCC M17 GND K6 IO308NDB7V4 L12 VCC M18 GND K7 IO301PDB7V3 L13 VCC M19 GND K8 IO301NDB7V3 L14 VCC M20 VCC K9 GAC2/IO307PPB7V4 L15 VCC M21 VCCIB2 K10 VCC L16 VCC M22 NC R evisio n 16 ProASIC3E Flash Family FPGAs FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function M23 IO104PPB2V2 N29 IO107PDB2V3 R5 GFB0/IO274NPB7V0 M24 IO102PDB2V2 N30 IO107NDB2V3 R6 IO271NDB6V4 M25 IO102NDB2V2 P1 IO276NDB7V0 R7 GFB2/IO271PDB6V4 M26 IO95PDB2V1 P2 IO278NDB7V0 R8 IO269PDB6V4 M27 IO97NDB2V1 P3 IO280NDB7V0 R9 IO269NDB6V4 M28 IO101NDB2V2 P4 IO284NDB7V1 R10 VCCIB7 M29 IO103NDB2V2 P5 IO279NDB7V0 R11 VCC M30 IO119PDB3V0 P6 GFC1/IO275PDB7V0 R12 GND N1 IO276PDB7V0 P7 GFC0/IO275NDB7V0 R13 GND N2 IO278PDB7V0 P8 IO277PDB7V0 R14 GND N3 IO280PDB7V0 P9 IO277NDB7V0 R15 GND N4 IO284PDB7V1 P10 VCCIB7 R16 GND N5 IO279PDB7V0 P11 VCC R17 GND N6 IO285NDB7V1 P12 GND R18 GND N7 IO287NDB7V1 P13 GND R19 GND N8 IO281NDB7V0 P14 GND R20 VCC N9 IO281PDB7V0 P15 GND R21 VCCIB2 N10 VCCIB7 P16 GND R22 GCC0/IO112NDB2V3 N11 VCC P17 GND R23 GCB2/IO116PDB3V0 N12 GND P18 GND R24 IO118PDB3V0 N13 GND P19 GND R25 IO111PPB2V3 N14 GND P20 VCC R26 IO122PPB3V1 N15 GND P21 VCCIB2 R27 GCA0/IO114NPB3V0 N16 GND P22 GCC1/IO112PDB2V3 R28 VCOMPLC N17 GND P23 IO110PDB2V3 R29 GCB1/IO113PPB2V3 N18 GND P24 IO110NDB2V3 R30 IO115NPB3V0 N19 GND P25 IO109PPB2V3 T1 IO270NDB6V4 N20 VCC P26 IO111NPB2V3 T2 VCCPLF N21 VCCIB2 P27 IO105PDB2V2 T3 GFA2/IO272PPB6V4 N22 IO106NDB2V3 P28 IO105NDB2V2 T4 GFA1/IO273PDB6V4 N23 IO106PDB2V3 P29 GCC2/IO117PDB3V0 T5 IO272NPB6V4 N24 IO108PDB2V3 P30 IO117NDB3V0 T6 IO267NDB6V4 N25 IO108NDB2V3 R1 GFC2/IO270PDB6V4 T7 IO267PDB6V4 N26 IO95NDB2V1 R2 GFB1/IO274PPB7V0 T8 IO265PDB6V3 N27 IO99NDB2V2 R3 VCOMPLF T9 IO263PDB6V3 N28 IO99PDB2V2 R4 GFA0/IO273NDB6V4 T10 VCCIB6 R evisio n 16 4-45 Package Pin Assignments FG896 FG896 FG896 Pin Number A3PE3000 Function Pin Number A3PE3000 Function Pin Number A3PE3000 Function 4-4 6 T11 VCC U17 GND V23 IO128NDB3V1 T12 GND U18 GND V24 IO132PDB3V2 T13 GND U19 GND V25 IO130PPB3V2 T14 GND U20 VCC V26 IO126NDB3V1 T15 GND U21 VCCIB3 V27 IO129NDB3V1 T16 GND U22 IO120PDB3V0 V28 IO127NDB3V1 T17 GND U23 IO128PDB3V1 V29 IO125NDB3V1 T18 GND U24 IO124PDB3V1 V30 IO123PDB3V1 T19 GND U25 IO124NDB3V1 W1 IO266NDB6V4 T20 VCC U26 IO126PDB3V1 W2 IO262NDB6V3 T21 VCCIB3 U27 IO129PDB3V1 W3 IO260NDB6V3 T22 IO109NPB2V3 U28 IO127PDB3V1 W4 IO252NDB6V2 T23 IO116NDB3V0 U29 IO125PDB3V1 W5 IO251NDB6V2 T24 IO118NDB3V0 U30 IO121NDB3V0 W6 IO251PDB6V2 T25 IO122NPB3V1 V1 IO268NDB6V4 W7 IO255NDB6V2 T26 GCA1/IO114PPB3V0 V2 IO262PDB6V3 W8 IO249PPB6V1 T27 GCB0/IO113NPB2V3 V3 IO260PDB6V3 W9 IO253PDB6V2 T28 GCA2/IO115PPB3V0 V4 IO252PDB6V2 W10 VCCIB6 T29 VCCPLC V5 IO257NPB6V2 W11 VCC T30 IO121PDB3V0 V6 IO261NPB6V3 W12 GND U1 IO268PDB6V4 V7 IO255PDB6V2 W13 GND U2 IO264NDB6V3 V8 IO259PDB6V3 W14 GND U3 IO264PDB6V3 V9 IO259NDB6V3 W15 GND U4 IO258PDB6V3 V10 VCCIB6 W16 GND U5 IO258NDB6V3 V11 VCC W17 GND U6 IO257PPB6V2 V12 GND W18 GND U7 IO261PPB6V3 V13 GND W19 GND U8 IO265NDB6V3 V14 GND W20 VCC U9 IO263NDB6V3 V15 GND W21 VCCIB3 U10 VCCIB6 V16 GND W22 IO134PDB3V2 U11 VCC V17 GND W23 IO138PDB3V3 U12 GND V18 GND W24 IO132NDB3V2 U13 GND V19 GND W25 IO136NPB3V2 U14 GND V20 VCC W26 IO130NPB3V2 U15 GND V21 VCCIB3 W27 IO141PDB3V3 U16 GND V22 IO120NDB3V0 W28 IO135PDB3V2 R evisio n 16 ProASIC3E Flash Family FPGAs FG896 Pin Number A3PE3000 Function W29 IO131PDB3V2 W30 IO123NDB3V1 Y1 IO266PDB6V4 Y2 IO250PDB6V2 Y3 IO250NDB6V2 Y4 IO246PDB6V1 Y5 IO247NDB6V1 Y6 IO247PDB6V1 Y7 IO249NPB6V1 Y8 IO245PDB6V1 Y9 IO253NDB6V2 Y10 GEB0/IO235NPB6V0 Y11 VCC Y12 VCC Y13 VCC Y14 VCC Y15 VCC Y16 VCC Y17 VCC Y18 VCC Y19 VCC Y20 VCC Y21 IO142PPB3V3 Y22 IO134NDB3V2 Y23 IO138NDB3V3 Y24 IO140NDB3V3 Y25 IO140PDB3V3 Y26 IO136PPB3V2 Y27 IO141NDB3V3 Y28 IO135NDB3V2 Y29 IO131NDB3V2 Y30 IO133PDB3V2 R evisio n 16 4-47 Package Pin Assignments 4-4 8 R evisio n 16 ProASIC3E Flash Family FPGAs R evisio n 16 4-49 5 – Datasheet Information List of Changes The following table lists critical changes that were made in each revision of the ProASIC3E datasheet. Table 1 • Revision Revision 16 (November 2019) Revision 15 (June 2015) Changes Page Updated the template change with Microchip-Microsemi logo across the document. NA Removed PQ208 from the A3PE600 device and its related information across the document. NA Updated "ProASIC3E Ordering Information". Interchanged the positions of YSecurity Feature and I- Application (Temperature Range) (SAR 67296). 1-III Added Note "Only devices with package size greater than or equal to 5x5 are supported". Updated Commercial and Industrial Junction Temperatures (SAR 67588). Revision 14 (May 2014) Added the A3PE3000 package to Table 2-5 (SARs 52320 and 58737). 2-5 Updated "VCCIBx I/O Supply Voltage" (SAR 43323). 3-1 Added 2 mA and 6 mA I/O short currents values in"I/O Short Currents IOSH/IOSL" (SAR 56295). 2-23 2-25 2-26 2-26 Added 2 mA and 6 mA minimum and maximum DC input and output levels in "Minimum and Maximum DC Input and Output Levels"(SAR 56295). Added 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions for 2 mA and 6 mA in "3.3 V LVTTL / 3.3 V LVCMOS High Slew" (SAR 56295). Added 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions for 2 mA and 6 mA in "3.3 V LVTTL / 3.3 V LVCMOS Low Slew" (SAR 56295). Revision 13 (January 2013) In the "Features and Benefits" section, updated the Clock Conditioning Circuit (CCC) and PLL Wide Input Frequency Range from ’1.5 MHz to 200 MHz’ to ’1.5MHz to 350 MHz’ based on Table 2-98 (SAR 22196). 1-I The "ProASIC3E Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43220). 1-III Added a note to "Recommended Operating Conditions 1" table (SAR 42716): The programming temperature range supported is Tambient = 0°C to 85°C. 2-2 The note in "ProASIC3E CCC/PLL Specification" table referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42571). 2-73 Libero Integrated Design Environment (IDE) was changed to Libero System-onChip (SoC) throughout the document (SAR 40285). NA Live at Power-Up (LAPU) has been replaced with ’Instant On’. Revision 12 (September 2012) The "Security" section was modified to clarify that Microsemi does not support read-back of programmed data. R evisio n 16 1-1 5-1 Table 1 • Revision Revision 11 (August 2012) Changes Page Added a Note stating "VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information." to Table 2-1 • Absolute Maximum Ratings and Table 2-2 2-1 3-1 2-1 • Recommended Operating Conditions 1 (SAR 38322). The drive strength, IOL, and IOH value for 3.3 V GTL and 2.5 V GTL was changed from 25 mA to 20 mA in the following tables (SAR 31924): "Summary of Maximum and Minimum DC Input and Output Levels" table "Summary of I/O Timing Characteristics—Software Default Settings" table "I/O Output Buffer Maximum Resistances1" table "Minimum and Maximum DC Input and Output Levels" table) "Minimum and Maximum DC Input and Output Levels" table 2-17 2-20 2-21 2-40 2-42 Also added note stating "Output drive strength is below JEDEC specification" for Tables 2-17 and 2-19. Additionally, the IOL and IOH values for 3.3 V GTL+ and 2.5 V GTL+ were corrected from 51 to 35 (for 3.3 V GTL+) and from 40 to 33 (for 2.5 V GTL+) in table Table 2-13 (SAR 39714). "Duration of Short Circuit Event Before Failure" table was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 37934). 2-23 The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34796): 2-31 "It uses a 5 V–tolerant input buffer and push-pull output buffer." This change was made in revision 10 and omitted from the change table in error. Revision 11 (continued) 2 Figure 2-11 was updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889). 2-39 In Table 2-81 VIL and VIH were revised so that the maximum is 3.6 V for all listed values of VCCI (SAR 37222). 2-54 Figure 2-47and Figure 2-48 are new (SAR 34848). 2-82 The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" chapter: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with “Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks” (SAR 38322). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement. 3-1 R evis ion 16 ProASIC3E Flash Family FPGAs Table 1 • Revision Revision 10 (March 2012) Changes Page The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34669). I, 1-1 The Y security option and Licensed DPA Logo were added to the "ProASIC3E Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34727). III The following sentence was removed from the "Advanced Architecture" section: 1-3 "In addition, extensive on-chip programming circuitry allows for rapid, singlevoltage (3.3 V) programming of IGLOOe devices via an IEEE 1532 JTAG interface" (SAR 34689). The "Specifying I/O States During Programming" section is new (SAR 34699). Conditions 1 VCCPLL in Table 2-2 • Recommended Operating from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 33851). was corrected 1-6 2-2 The TJ symbol was added to the table and notes regarding TA and TJ were removed. The second of two parameters in the VCCI and VMV row, called "3.3 V DC supply voltage," was corrected to "3.0 V DC supply voltage" (SAR 37227). The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the ProASIC3E FPGA Fabric User's Guide (SAR 34735). 2-10 tDOUT was corrected to tDIN in Figure 2-3 • Input Buffer Timing Model and Delays (example) (SAR 37109). 2-14 The typo related to the values for 3.3 V LVCMOS Wide Range in Table 2-17 • Summary of I/O Timing Characteristics—Software Default Settings was corrected (SAR 37227). 2-20 The notes regarding drive strength in the "Summary of I/O Timing Characteristics 2-19, 2-28 – Default I/O Software Settings" section and "3.3 V LVCMOS Wide Range" section and tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is ±100 µA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 34763). R evisio n 16 3 Table 1 • Revision Revision 10 (continued) Changes Page "TBD" for 3.3 V LVCMOS Wide Range in Table 2-19 • I/O Output Buffer Maximum Resistances1 and Table 2-21 • I/O Short Currents IOSH/IOSL was replaced by "Same as regular 3.3 V LVCMOS" (SAR 33853). 2-21, 2-28 3.3 V LVCMOS Wide Range information was separated from regular 3.3 V LVCMOS and placed into its own new section, "3.3 V LVCMOS Wide Range". Values of IOSH and IOSL were added in Table 2-29 • Minimum and Maximum DC Input and Output Levels (SAR 33853). The formulas in the table notes for Table 2-20 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 34755). 2-22 The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34889). 2-25 The titles and subtitles for Table 2-31 • 3.3 V LVCMOS Wide Range High Slew 2-29, 2-30 and Table 2-32 • 3.3 V LVCMOS Wide Range Low Slew were corrected (SAR 37227). The following notes were removed from Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels (SAR 34812): 2-52 ±5% Differential input voltage = ±350 mV Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36957). 2-71 A note was added to Table 2-98 • ProASIC3E CCC/PLL Specification indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34824). 2-73 The following figures were deleted. Reference was made to a new application note, Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs, which covers these cases in detail (SAR 34872). 2-77, 2-78, 2-82, 2-85 Figure 2-44 • Write Access after Write onto Same Address Figure 2-45 • Read Access after Write onto Same Address Figure 2-46 • Write Access after Read onto Same Address The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-49 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35750). July 2010 4 The "Pin Descriptions and Packaging" chapter is new (SAR 34771). 3-1 Package names used in the "Package Pin Assignments" section were revised to match standards given in Package Mechanical Drawings (SAR 34771). 4-1 Pin E6 for the FG256 package was corrected from VvB0 to VCCIB0 (SARs 30364, 31597, 26243). 4-9 The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "ProASIC3E Device Status" table on page II indicates the status for each device in the device family. N/A R evis ion 16 ProASIC3E Flash Family FPGAs Revision Changes Page Revision 9 (Aug 2009) All references to speed grade –F have been removed from this document. N/A Product Brief v1.2 The "Pro I/Os with Advanced I/O Standards" section was revised to add definitions of hot-swap and cold-sparing. 1-6 DC and Switching 3.3 V LVCMOS and 1.2 V LVCMOS Wide Range support was added to the Characteristics v1.3 datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data. N/A IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables. N/A –F was removed from the datasheet. The speed grade is no longer supported. N/A In the Table 2-2 • Recommended Operating voltage" and note 4 are new. Conditions 1 "3.0 V DC supply 2-2 The Table 2-4 • Overshoot and Undershoot Limits 1 table was updated. 2-3 The Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays table was updated. 2-6 There are new parameters and data was updated in the Table 2-99 • RAM4K9 table. 2-79 There are new parameters and data was updated in the Table 2-100 • RAM512X18 table. 2-80 Revision 8 (Feb 2008) Table 1-2 • ProASIC3E FPGAs Package Sizes Dimensions is new. 1-II Product Brief v1.1 Revision 7 (Jun 2008) The title of Table 2-4 • Overshoot and Undershoot Limits 1 was modified to DC and Switching remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted. Characteristics v1.2 2-3 Table 2-78 • LVDS Minimum and Maximum DC Input and Output Levels was updated. 2-52 Revision 6 (Jun 2008) The A3PE600 "FG484" table was missing G22. The pin and its function were added to the table. 4-25 Revision 5 (Jun 2008) The naming conventions changed for the following pins in the "FG484" for the A3PE600: Packaging v1.4 4-20 Pin Number New Function Name J19 IO45PPB2V1 K20 IO45NPB2V1 M2 IO114NPB6V1 N1 IO114PPB6V1 N4 GFC2/IO115PPB6V1 P3 IO115NPB6V1 Revision 4 (Apr 2008) The product brief portion of the datasheet was divided into two sections and given a version number, starting at v1.0. The first section of the document includes Product Brief v1.0 features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview. N/A Packaging v1.3 4-10 The "FG324" package diagram was replaced. R evisio n 16 5 Revision Changes Revision 3 (Apr 2008) The following pins had duplicates and the extra pins were deleted from the "PQ208" A3PE3000 table: Packaging v1.2 Page 4-2 36, 62, 171 Note: There were no pin function changes in this update. The following pins had duplicates and the extra pins were deleted from the "FG324" table: 4-10 E2, E3, E16, E17, P2, P3, T16, U17 Note: There were no pin function changes in this update. The "FG256" pin table was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version. 4-7 The "FG484" was updated for the A3PE600 device because the old PAT were based on the IFX die, and this is the final UMC die version. 4-20 The following pins had duplicates and the extra pins were deleted from the "FG896" table: 4-39 AD6, AE5, AE28, AF29, F5, F26, G6, G25 Note: There were no pin function changes in this update. Revision 2 (Mar 2008) The FG324 package was added to the "ProASIC3E Product Family" table, the "I/Os Per Package1" table, and the "Temperature Grade Offerings" table for Product Brief rev. 1 A3PE3000. I, II, IV Revision 1 (Feb 2008) In Table 2-3 • Flash Programming Limits – Retention, Storage and Operating DC and Switching Temperature 1, Maximum Operating Junction Temperature was changed from 110°C to 100°C for both commercial and industrial grades. Characteristics v1.1 2 The "PLL Behavior at Brownout Condition" section is new. 2-4 In the "PLL Contribution—PPLL" section, the following was deleted: 2-11 FCLKIN is the input clock frequency. In Table 2-14 • Summary of Maximum and Minimum DC Input Levels, the note was incorrect. It previously said TJ and it was corrected and changed to TA. 2-18 In Table 2-98 • ProASIC3E CCC/PLL Specification, the SCLK parameter and note 1 are new. 2-73 Table 2-103 • JTAG 1532 was populated with the parameter data, which was not in the previous version of the document. 2-83 Revision 1 (cont’d) The "PQ208" pin table for A3PE3000 was updated. 4-2 Packaging v1.1 The "FG324" pin table for A3PE3000 is new. 4-11 The "FG484" pin table for A3PE3000 is new. 4-15 The "FG896" pin table for A3PE3000 is new. 4-39 Revision 0 (Jan 2008) This document was previously in datasheet v2.1. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is 51700098-001-0. N/A v2.1 (July 2007) CoreMP7 information was removed from the "Features and Benefits" section. 1-I The M1 device part numbers have been updated in ProASIC3E Product Family, "Packaging Tables", "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix". 1-I 6 R evis ion 16 ProASIC3E Flash Family FPGAs Revision v2.1 (continued) v2.0 (April 2007) Changes Page The words "ambient temperature" were added to the temperature range in the "Temperature Grade Offerings", "Speed Grade and Temperature Grade Matrix", and "Speed Grade and Temperature Grade Matrix" sections. 1-I The "Clock Conditioning Circuit (CCC) and PLL" section was updated. 1-I The caption "Main (chip)" in Figure 2-9 • Overview of Automotive ProASIC3 VersaNet Global Network was changed to "Chip (main)." 2-9 The TJ parameter in Table 3-2 • Recommended Operating Conditions was changed to TA, ambient temperature, and table notes 4–6 were added. 3-2 The "PLL Macro" section was updated to add information on the VCO and PLL outputs during power-up. 2-15 In the "Temperature Grade Offerings" section, Ambient was deleted. iii Ambient was deleted from "Temperature Grade Offerings". iii Ambient was deleted from the "Speed Grade and Temperature Grade Matrix". iv The "PLL Macro" section was updated to include power-up information. 2-15 Table 2-13 • ProASIC3E CCC/PLL Specification was updated. 2-30 Figure 2-19 • Peak-to-Peak Jitter Definition is new. 2-18 The "SRAM and FIFO" section was updated with operation and timing requirement information. 2-21 The "RESET" section was updated with read and write information. 2-25 The "RESET" section was updated with read and write information. 2-25 The "Introduction" in the "Advanced I/Os" section was updated to include information on input and output buffers being disabled. 2-28 In the Table 2-15 • Levels of Hot-Swap Support, the ProASIC3 compliance descriptions were updated for levels 3 and 4. 2-34 Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated. 2-64 Notes 3, 4, and 5 were added to Table 2-17 • Comparison Table for 5 V– Compliant Receiver Scheme. 5 x 52.72 was changed to 52.7 and the Maximum current was updated from 4 x 52.7 to 5 x 52.7. 2-40 The "VCCPLF PLL Supply Voltage" section was updated. 2-50 The "VPUMP Programming Supply Voltage" section was updated. 2-50 The "GL Globals" section was updated to include information about direct input into quadrant clocks. 2-51 VJTAG was deleted from the "TCK Test Clock" section. 2-51 In Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins, TSK was changed to TCK in note 2. Note 3 was also updated. 2-51 Ambient was deleted from Table 3-2 • Recommended Operating Conditions. VPUMP programming mode was changed from "3.0 to 3.6" to "3.15 to 3.45". 3-2 Note 3 is new in Table 3-4 • Overshoot and Undershoot Limits (as measured on quiet I/Os). 3-2 In EQ 3-2, 150 was changed to 110 and the result changed to 5.88. 3-5 R evisio n 16 7 Revision v2.0 (continued) Changes Page Table 3-6 • Temperature and Voltage Derating Factors for Timing Delays was updated. 3-5 Table 3-5 • Package Thermal Resistivities was updated. 3-5 Table 3-10 • Different Components Contributing to the Dynamic Power Consumption in ProASIC3E Devices was updated. 3-8 tWRO and tCCKH were 3-95 • RAM512X18. added to Table 3-94 • RAM4K9 and Table The note in Table 3-24 • I/O Input Rise Time, Fall Time, and Related I/O Reliability was updated. 3-74 to 3-74 3-23 Figure 3-43 • Write Access After Write onto Same Address, Figure 3-44 • Read 3-71 to 3Access After Write onto Same Address, and Figure 3-45 • Write Access After 73 Read onto Same Address are new. Figure 3-53 • Timing Diagram was updated. 3-80 Notes were added to the package diagrams identifying if they were top or bottom view. N/A The A3PE1500 "208-Pin PQFP" table is new. 4-4 The A3PE1500 "484-Pin FBGA" table is new. 4-18 The A3PE1500 "A3PE1500 Function" table is new. 4-24 Advance v0.6 (January 2007) In the "Packaging Tables" table, the number of I/Os for the A3PE1500 was changed for the FG484 and FG676 packages. Advance v0.5 (April 2006) B-LVDS and M-LDVS are new I/O standards added to the datasheet. N/A The term flow-through was changed to pass-through. N/A Figure 2-8 • Very-Long-Line Resources was updated. 2-8 The footnotes in Figure 2-27 • CCC/PLL Macro were updated. 2-28 The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options. 2-24 The "SRAM and FIFO" section was updated. 2-21 The "RESET" section was updated. 2-25 The "WCLK and RCLK" section was updated. 2-25 The "RESET" section was updated. 2-25 The "RESET" section was updated. 2-27 B-LVDS and M-LDVS are new I/O standards added to the datasheet. N/A The term flow-through was changed to pass-through. N/A Figure 2-8 • Very-Long-Line Resources was updated. 2-8 The footnotes in Figure 2-27 • CCC/PLL Macro were updated. 2-28 The Delay Increments in the Programmable Delay Blocks specification in Figure 2-24 • ProASIC3E CCC Options. 2-24 The "SRAM and FIFO" section was updated. 2-21 The "RESET" section was updated. 2-25 The "WCLK and RCLK" section was updated. 2-25 8 R evis ion 16 ii ProASIC3E Flash Family FPGAs Revision Advance v0.5 (continued) Changes Page The "RESET" section was updated. 2-25 The "RESET" section was updated. 2-27 The "Introduction" of the "Introduction" section was updated. 2-28 PCI-X 3.3 V was added to the Compatible Standards for 3.3 V in Table 211 • VCCI Voltages and Compatible Standards 2-29 Table 2-35 • ProASIC3E I/O Features was updated. 2-54 The "Double Data Rate (DDR) Support" section was updated to include information concerning implementation of the feature. 2-32 The "Electrostatic Discharge (ESD) Protection" section was updated to include testing information. 2-35 Level 3 and 4 descriptions were updated in Table 2-43 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3 Devices. 2-64 The notes in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices were updated. 2-64 The "Simultaneous Switching Outputs (SSOs) and Printed Circuit Board Layout" section is new. 2-41 A footnote was added to Table 2-37 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in ProASIC3E Devices (maximum drive strength and high slew selected). 2-55 Table 2-48 • ProASIC3E I/O Attributes vs. I/O Standard Applications 2-81 Table 2-55 • ProASIC3 I/O Standards—SLEW and Output Drive (OUT_DRIVE) Settings 2-85 The "x" was updated in the "Pin Descriptions" section. 2-50 The "VCC Core Supply Voltage" pin description was updated. 2-50 The "VMVx I/O Supply Voltage (quiet)" pin description was updated to include information concerning leaving the pin unconnected. 2-50 EXTFB was removed from Figure 2-24 • ProASIC3E CCC Options. 2-24 The CCC Output Peak-to-Peak Period Jitter FCCC_OUT was updated in Table 2-13 • ProASIC3E CCC/PLL Specification. 2-30 EXTFB was removed from Figure 2-27 • CCC/PLL Macro. 2-28 The LVPECL specification in Table 2-45 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in ProASIC3E Devices was updated. 2-64 Table 2-15 • Levels of Hot-Swap Support was updated. 2-34 The "Cold-Sparing Support" section was updated. 2-34 "Electrostatic Discharge (ESD) Protection" section was updated. 2-35 The VJTAG and I/O pin descriptions were updated in the "Pin Descriptions" section. 2-50 The "VJTAG JTAG Supply Voltage" pin description was updated. 2-50 The "VPUMP Programming Supply Voltage" pin description was updated to include information on what happens when the pin is tied to ground. 2-50 R evisio n 16 9 Revision Advance v0.5 (continued) Changes Page The "I/O User Input/Output" pin description was updated to include information on what happens when the pin is unused. 2-50 The "JTAG Pins" section was updated to include information on what happens when the pin is unused. 2-51 The "Programming" section was updated to include information concerning serialization. 2-53 The "JTAG 1532" section was updated to include SAMPLE/PRELOAD information. 2-54 The "DC and Switching Characteristics" chapter was updated with new information. Starting on page 3-1 Table 3-6 was updated. 3-5 In Table 3-10, PAC4 was updated. 3-8 Table 3-19 was updated. 3-20 The note in Table 3-24 was updated. 3-23 All Timing Characteristics tables were updated from LVTTL to Register Delays 3-26 to 3-64 The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated. 3-74 to 3-79 FTCKMAX was updated in Table 3-98. 3-80 Advance v0.4 (October 2005) The "Packaging Tables" table was updated. Advance v0.3 Figure 2-11 was updated. 2-9 The "Clock Resources (VersaNets)" section was updated. 2-9 The "VersaNet Global Networks and Spine Access" section was updated. 2-9 The "PLL Macro" section was updated. 2-15 Figure 2-27 was updated. 2-28 Figure 2-20 was updated. 2-19 Table 2-5 was updated. 2-25 Table 2-6 was updated. 2-25 The "FIFO Flag Usage Considerations" section was updated. 2-27 Table 2-33 was updated. 2-51 Figure 2-24 was updated. 2-31 The "Cold-Sparing Support" section is new. 2-34 Table 2-45 was updated. 2-64 Table 2-48 was updated. 2-81 Pin descriptions in the "JTAG Pins" section were updated. 2-51 The "Pin Descriptions" section was updated. 2-50 Table 3-7 was updated. 3-6 10 R evis ion 16 ii ProASIC3E Flash Family FPGAs Revision Advance v0.3 (continued) Changes Page The "Methodology" section was updated. 3-9 The A3PE3000 "208-Pin PQFP" pin table was updated. 4-6 R evisio n 16 11 Datasheet Categories Categories In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "ProASIC3E Device Status" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows: Product Brief The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information. Advance This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized. Preliminary The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible. Production This version contains information that is considered to be final. Export Administration Regulations (EAR) The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States. Safety Critical, Life Support, and High-Reliability Applications Policy The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group’s products is available at Microsemi SoC Reliability Report. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information. 12 R evis ion 16 ProASIC3E Flash Family FPGAs R evisio n 16 13 Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com ©2019 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. About Microsemi Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com. 51700098-16/11.19
A3PE600-PQG208I
物料型号:A3PE3000

器件简介:Microsemi的ProASIC3E Flash Family FPGAs,具体型号为A3PE3000。

引脚分配:文档提供了详细的引脚分配表,例如: - C8和C9引脚分配为VCC。 - C10至C17引脚分配为不同的IO信号,具有不同的电压等级和方向(NDB代表Normal Double Buffer,PDB代表Pull-Down Buffer)。 - C18引脚分配为GND(地)。

参数特性:文档中列出了不同引脚的电学特性,包括但不限于: - 电源电压(如VCC)。 - 输入/输出电压等级(如0V4代表0.4V)。 - 特殊功能引脚(如GND代表地线,VCCIB2代表I/O Bank 2的电源)。

功能详解:文档中对每个引脚的功能进行了详细说明,例如: - IO引脚可以配置为输入或输出。 - 某些引脚具有特定的功能,如VCC是电源引脚,GND是地线。

应用信息:虽然文档没有直接提供应用信息,但从引脚分配和功能描述可以推断,这些FPGA适用于需要多种电压级别和I/O配置的复杂数字电路设计。

封装信息:文档提供了不同封装类型的引脚分配,例如FG484、FG676和FG896,这些封装类型具有不同数量的引脚和不同的物理尺寸。
A3PE600-PQG208I 价格&库存

很抱歉,暂时无法提供与“A3PE600-PQG208I”相匹配的价格&库存,您可以联系我们找货

免费人工找货