900V 36A APT36N90BC3G*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
C OLMOS O
Power Semiconductors
Super Junction MOSFET
TO
-24
7
D3
• Ultra Low RDS(ON) • Low Miller Capacitance • Ultra Low Gate Charge, Qg • Avalanche Energy Rated • Extreme dv/dt Rated • Dual die (parallel) • Popular T-MAX Package
Unless stated otherwise, Microsemi discrete MOSFETs contain a single MOSFET die. This device is made with two parallel MOSFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
D G S
MAXIMUM RATINGS
Symbol Parameter VDSS ID IDM VGS PD Drain-Source Voltage Continuous Drain Current @ TC = 25°C Continuous Drain Current @ TC = 100°C Pulsed Drain Current
1
All Ratings per die: TC = 25°C unless otherwise specified.
APT36N90BC3G 900 36 23 96 ±20 390 Volts Watts Amps UNIT Volts
Gate-Source Voltage Continuous Total Power Dissipation @ TC = 25°C
TJ,TSTG Operating and Storage Junction Temperature Range TL dv/ dt IAR EAR EAS Lead Temperature: 0.063" from Case for 10 Sec. Drain-Source Voltage slope (VDS = 400V, ID = 36A, TJ = 125°C) Avalanche Current
2 2 ( Id = 8.8A, Vdd = 50V ) ( Id = 8.8A, Vdd = 50V )
-55 to 150 260 50 8.8 2.9 1940
°C V/ns Amps mJ
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
STATIC ELECTRICAL CHARACTERISTICS
Symbol BV(DSS) RDS(on) IDSS IGSS VGS(th) Characteristic / Test Conditions Drain-Source Breakdown Voltage (VGS = 0V, ID = 250μA) Drain-Source On-State Resistance
3
MIN 900
TYP
MAX
UNIT Volts
(VGS = 10V, ID = 18A) 2.5
0.10 50 3
0.12 100 100 3.5
Ohms μA nA Volts
12-2010 050-8068 Rev B
Zero Gate Voltage Drain Current (VDS = 900V, VGS = 0V) Zero Gate Voltage Drain Current (VDS = 900V, VGS = 0V, TC = 150°C) Gate-Source Leakage Current (VGS = ±20V, VDS = 0V) Gate Threshold Voltage (VDS = VGS, ID = 2.9mA)
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
"COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG." Microsemi Website - http://www.microsemi.com
APT36N90BC3G
Symbol Ciss Coss Crss Qg Qgs Qgd td(on) tr td(off) tf Eon Eoff Eon Eoff Symbol IS ISM VSD
dv
Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge
4
Test Conditions
VGS = 0V VDS = 25V f = 1 MHz VGS = 10V VDD = 450V ID = 36A @ 25°C INDUCTIVE SWITCHING VGS = 15V VDD = 600V ID = 36A @ 25°C RG = 4.3Ω
5
MIN
TYP
MAX
UNIT pF
7463 6827 167 252 38 112 70 20 400 25 1500 750 2130 867
MIN TYP MAX
Gate-Source Charge Gate-Drain ("Miller ") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Turn-on Switching Energy Turn-off Switching Energy Turn-on Switching Energy Turn-off Switching Energy Characteristic / Test Conditions Continuous Source Current (Body Diode) Pulsed Source Current Diode Forward Voltage Peak Diode Recovery Reverse Recovery Time (IS = -36A, di/dt = 100A/ μs) Reverse Recovery Charge (IS = -36A, di/dt = 100A/ μs) Peak Recovery Current (IS = -36A, di/dt = 100A/ μs) Characteristic Junction to Case Junction to Ambient
1 3
nC
ns
INDUCTIVE SWITCHING @ 25°C VDD = 600V, VGS = 15V ID = 36A, RG = 4.3Ω INDUCTIVE SWITCHING @ 125°C VDD = 600V, VGS = 15V ID = 36A, RG = 4.3Ω
μJ
5
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
UNIT Amps
36 96 0.8
Tj = 25°C Tj = 125°C Tj = 25°C Tj = 125°C Tj = 25°C Tj = 125°C MIN
(Body Diode) (VGS = 0V, IS = 18A)
6
/dt
dv
1.2
10
Volts V/ns ns μC
/dt
t rr Q rr IRRM
930 1230 35 44 70
68 TYP MAX
Amps
THERMAL CHARACTERISTICS Symbol RθJC RθJA UNIT °C/W
0.3 31
4 See MIL-STD-750 Method 3471 5 Eon includes diode reverse recovery. 6 Maximum 125°C diode commutation speed = di/dt 600A/μs
1 Repetitive Rating: Pulse width limited by maximum junction temperature 2 Repetitive avalanche causes additional power losses that can be calculated as PAV = EAR*f . Pulse width tp limited by Tj max. 3 Pulse Test: Pulse width < 380 μs, Duty Cycle < 2%
0.35 ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 0.25 0.7 0.20 0.15 0.10 0.05 0 0.5 0.3 D = 0.9
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
12-2010
Note:
PDM
t1 t2
050-8068 Rev B
0.1 0.05 10
-5
SINGLE PULSE 10
-4
Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC
t
10-2 0.1 10-3 RECTANGULAR PULSE DURATION (SECONDS) Figure 1, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
Typical Performance Curves
120 10 &15V 100 IC, DRAIN CURRENT (A) 80 60 5V 40 20 0 4.5V 4V 5 10 15 20 25 30 VDS, DRAIN-TO-SOURCE VOLTAGE (V) FIGURE 2, Low Voltage Output Characteristics
NORMALIZED TO V
GS
APT36N90BC3G
100 6.5V ID, DRAIN CURRENT (A) 90 80 5.5V 70 60 50 40 30 20 10 0 0 1 TJ= -55°C TJ= 25°C TJ= 125°C 2 3 4 5 6
VDS> ID (ON) x RDS (ON)MAX. 250 μSEC. PULSE TEST @
很抱歉,暂时无法提供与“APT36N90BC3G_10”相匹配的价格&库存,您可以联系我们找货
免费人工找货