APTC60HM45SCTG
Full - Bridge Series & SiC parallel diodes Super Junction MOSFET Power Module
VBUS CR1A CR3A
VDSS = 600V RDSon = 45mΩ max @ Tj = 25°C ID = 49A @ Tc = 25°C
Application • Motor control • Switched Mode Power Supplies • Uninterruptible Power Supplies
Q1
CR1B
CR3B
Q3
Features •
G3 S3
G1 S1 CR2A OUT1 OUT2 CR4A
Q2
CR2B
CR4B
•
Ultra low RDSon Low Miller capacitance Ultra low gate charge Avalanche energy rated
Q4
G2 S2 NTC1 0/VBUS NTC2
G4 S4
Parallel SiC Schottky Diode - Zero reverse recovery - Zero forward recovery - Temperature Independent switching behavior - Positive temperature coefficient on VF Kelvin source for easy drive Very low stray inductance - Symmetrical design - Lead frames for power connections Internal thermistor for temperature monitoring High level of integration
• • • •
OUT2
G3 S3
G4 S4
These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com
www.microsemi.com
1–8
APTC60HM45SCTG – Rev 2
Benefits • Outstanding performance at high frequency operation OUT1 VBUS 0/VBUS • Direct mounting to heatsink (isolated package) • Low junction to case thermal resistance • Solderable terminals both for power and signal for S1 NTC2 S2 G1 NTC1 G2 easy PCB mounting • Low profile • RoHS compliant Absolute maximum ratings Symbol Parameter Max ratings Unit VDSS Drain - Source Breakdown Voltage 600 V Tc = 25°C 49 ID Continuous Drain Current A Tc = 80°C 38 IDM Pulsed Drain current 130 VGS Gate - Source Voltage ±20 V RDSon Drain - Source ON Resistance 45 mΩ PD Maximum Power Dissipation Tc = 25°C 250 W IAR Avalanche current (repetitive and non repetitive) 15 A EAR Repetitive Avalanche Energy 3 mJ EAS Single Pulse Avalanche Energy 1900
September, 2009
APTC60HM45SCTG
All ratings @ Tj = 25°C unless otherwise specified Electrical Characteristics
Symbol Characteristic IDSS RDS(on) VGS(th) IGSS Zero Gate Voltage Drain Current Drain – Source on Resistance Gate Threshold Voltage Gate – Source Leakage Current Test Conditions
VGS = 0V,VDS = 600V VGS = 0V,VDS = 600V
Min Tj = 25°C Tj = 125°C 2.1
Typ
VGS = 10V, ID = 22.5A VGS = VDS, ID = 3mA VGS = ±20 V, VDS = 0V
40 3
Max 25 250 45 3.9 100
Unit µA mΩ V nA
Dynamic Characteristics
Symbol Characteristic Ciss Input Capacitance Coss Output Capacitance Qg Qgs Qgd Td(on) Tr Td(off) Tf Eon Eoff Eon Eoff Total gate Charge Gate – Source Charge Gate – Drain Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Turn-on Switching Energy Turn-off Switching Energy Turn-on Switching Energy Turn-off Switching Energy Test Conditions VGS = 0V ; VDS = 25V f = 1MHz VGS = 10V VBus = 300V ID = 44A Inductive switching @ 125°C VGS = 10V VBus = 400V ID = 50A RG = 5Ω Inductive switching @ 25°C VGS = 10V ; VBus = 400V ID = 50A ; RG = 5Ω Inductive switching @ 125°C VGS = 10V ; VBus = 400V ID = 50A ; RG = 5Ω Min Typ 7.2 8.5 150 34 51 21 30 100 45 405 520 658 635 µJ ns nC Max Unit nF
µJ
Series diode ratings and characteristics
Symbol Characteristic Test Conditions VRRM Maximum Peak Repetitive Reverse Voltage IRM IF VF Maximum Reverse Leakage Current DC Forward Current Diode Forward Voltage IF = 30A IF = 60A IF = 30A IF = 30A VR = 133V VR=200V Tj = 25°C Tj = 125°C Tc = 85°C Min 200 Typ Max 250 500 30 1.1 1.4 0.9 24 48 33 150 1.15 V
September, 2009 2–8 APTC60HM45SCTG – Rev 2
Unit V µA A
Tj = 125°C Tj = 25°C Tj = 125°C Tj = 25°C Tj = 125°C
trr Qrr
Reverse Recovery Time Reverse Recovery Charge
ns nC
di/dt = 200A/µs
www.microsemi.com
APTC60HM45SCTG
Parallel diode ratings and characteristics
Symbol Characteristic VRRM Maximum Peak Repetitive Reverse Voltage IRM IF VF QC C Maximum Reverse Leakage Current DC Forward Current Diode Forward Voltage Total Capacitive Charge Total Capacitance Test Conditions Tj = 25°C Tj = 175°C Tc = 100°C Tj = 25°C IF = 20A Tj = 175°C IF = 20A, VR = 300V di/dt =800A/µs f = 1MHz, VR = 200V VR=600V f = 1MHz, VR = 400V Min 600 Typ 100 200 20 1.6 2.0 28 130 100 Max 400 2000 1.8 2.4 Unit V µA A V nC pF
Thermal and package characteristics
Symbol Characteristic RthJC VISOL TJ TSTG TC Torque Wt Junction to Case Thermal Resistance Transistor Series diode 4000 -40 -40 -40 1.5 Min Typ Max 0.5 1.2 1.5 150 125 100 4.7 160 Unit
°C/W
Parallel diode RMS Isolation Voltage, any terminal to case t =1 min, I isol ID(on)xRDS(on)MAX 250µs pulse test @ < 0.5 duty cycle
6.5V 6V 5.5V
ID, DC Drain Current (A)
1.25
Normalized to VGS=10V @ 50A
VGS=10V
www.microsemi.com
5–8
APTC60HM45SCTG – Rev 2
September, 2009
DC Drain Current vs Case Temperature 50 45 40 35 30 25 20 15 10 5 0 25 50 75 100 125 150 TC, Case Temperature (°C)
RDS(on) Drain to Source ON Resistance
APTC60HM45SCTG
RDS(on), Drain to Source ON resistance (Normalized) Breakdown Voltage vs Temperature BVDSS, Drain to Source Breakdown Voltage (Normalized) 1.2 1.1 1.0 0.9 0.8 0.7 -50 -25 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) Threshold Voltage vs Temperature 1.2 VGS(TH), Threshold Voltage (Normalized) 1.1 1.0 0.9 0.8 0.7 0.6 -50 -25 0 25 50 75 100 125 150 TC, Case Temperature (°C) Capacitance vs Drain to Source Voltage 100000 Coss C, Capacitance (pF) 10000 Ciss 1000 ID, Drain Current (A) ON resistance vs Temperature
3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 -25 0 25 50 75 100 125 150 TJ, Junction Temperature (°C)
Maximum Safe Operating Area
VGS=10V ID= 50A
100
limited by RDSon
100 µs
10
Single pulse TJ=150°C TC=25°C
1 ms 10 ms
1 1 10 100 1000 VDS, Drain to Source Voltage (V) Gate Charge vs Gate to Source Voltage VGS, Gate to Source Voltage (V) 12 10 8 6 4 2 0 0 20 40
September, 2009 6–8 APTC60HM45SCTG – Rev 2
VDS=480V
ID=50A TJ=25°C
VDS=120V VDS=300V
1000 Crss
100
10 0 10 20 30 40 50 VDS, Drain to Source Voltage (V)
60 80 100 120 140 160 Gate Charge (nC)
www.microsemi.com
APTC60HM45SCTG
140 120
td(on) and td(off) (ns) Delay Times vs Current 70
td(off) VDS=400V RG=5Ω TJ=125°C L=100µH td(on)
Rise and Fall times vs Current 60 tr and tf (ns) 50 40 30 20 10 tr
VDS=400V RG=5Ω TJ=125°C L=100µH
100 80 60 40 20 0 0 10 20 30 40 50
tf
60 70 80
0 0 10 20 30 40 50 60 70 80 ID, Drain Current (A) Switching Energy vs Gate Resistance 2 Switching Energy (mJ)
VDS=400V ID=50A TJ=125°C L=100µH
ID, Drain Current (A) Switching Energy vs Current 1.6 Switching Energy (mJ)
VDS=400V RG=5Ω TJ=125°C L=100µH
Eoff
1.2
1.5
Eoff
0.8 0.4
Eon
1 Eon 0.5
0 0 10 20 30 40 50 60 ID, Drain Current (A) 70 80
0 0 10 20 30 40 50 Gate Resistance (Ohms) Source to Drain Diode Forward Voltage 1000
Operating Frequency vs Drain Current
VDS=400V D=50% RG=5Ω TJ=125°C TC=75°C ZCS
250 Frequency (kHz) 200 150 100 50 0 5
hard switching
ZVS
IDR, Reverse Drain Current (A)
300
100
TJ=150°C
10
TJ=25°C
1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
September, 2009 7–8 APTC60HM45SCTG – Rev 2
10 15 20 25 30 35 40 45 50 ID, Drain Current (A)
VSD, Source to Drain Voltage (V)
www.microsemi.com
APTC60HM45SCTG
Typical SiC Diode Performance Curve
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 1.6 Thermal Impedance (°C/W) 1.4 1.2 1 0.8 0.6 0.4 0.2 0.5 0.3 0.1 0.05 0.0001 0.001 Single Pulse 0.9 0.7
0 0.00001
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds) Forward Characteristics
TJ=25°C
Reverse Characteristics 400 IR Reverse Current (µA) 350 300 250 200 150 100 50 0 200 300 400 500 600 700 VR Reverse Voltage (V) 800
TJ=25°C TJ=125°C TJ=75°C TJ=175°C
40
IF Forward Current (A)
35 30 25 20 15 10 5 0 0 0.5 1
TJ=75°C
TJ=175°C TJ=125°C
1.5
2
2.5
3
3.5
VF Forward Voltage (V) Capacitance vs.Reverse Voltage
800 700 C, Capacitance (pF) 600 500 400 300 200 100 0 1 10 100 VR Reverse Voltage 1000
“COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. “COOLMOS” is a trademark of Infineon Technologies AG”.
Microsemi reserves the right to change, without notice, the specifications and information contained herein
Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.
www.microsemi.com
8–8
APTC60HM45SCTG – Rev 2
September, 2009