0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
APTCV60TLM45T3G

APTCV60TLM45T3G

  • 厂商:

    MICROSEMI(美高森美)

  • 封装:

    Module

  • 描述:

    POWER MODULE IGBT3 SP3

  • 数据手册
  • 价格&库存
APTCV60TLM45T3G 数据手册
APTCV60TLM45T3G Three level inverter CoolMOS & Trench + Field Stop IGBT3 Power Module Trench & Field Stop IGBT3 Q2, Q3: VCES = 600V ; IC = 75A @ Tc = 80°C CoolMOS™ Q1, Q4: VDSS = 600V ; ID = 38A @ Tc = 80°C Application  Solar converter  Uninterruptible Power Supplies Features  Q2, Q3 Trench + Field Stop IGBT3 Technology - Low voltage drop - Low tail current - Switching frequency up to 20 kHz - Soft recovery parallel diodes - Low diode VF - Low leakage current - RBSOA and SCSOA rated  - 28 27 26 25     20 19 18 23 22 29 16 30 15 31 14 13 32 2 3 4 7 8 10 11 12 Kelvin emitter for easy drive Very low stray inductance High level of integration Internal thermistor for temperature monitoring Benefits  Stable temperature behavior  Very rugged  Direct mounting to heatsink (isolated package)  Low junction to case thermal resistance  Easy paralleling due to positive TC of VCEsat  Low profile  RoHS Compliant All ratings @ Tj = 25°C unless otherwise specified These Devices are sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. See application note APT0502 on www.microsemi.com www.microsemi.com 1 - 12 APTCV60TLM45T3G – Rev 2 October, 2012 All multiple inputs and outputs must be shorted together Example: 10/11/12 ; 7/8 … Q1, Q4 CoolMOS™ Ultra low RDSon Low Miller capacitance Ultra low gate charge Avalanche energy rated Very rugged APTCV60TLM45T3G Q1 & Q4 Absolute maximum ratings (per CoolMOS™) Symbol VDSS ID IDM VGS RDSon PD IAR EAR EAS Parameter Drain - Source Breakdown Voltage Tc = 25°C Tc = 80°C Continuous Drain Current Pulsed Drain current Gate - Source Voltage Drain - Source ON Resistance Maximum Power Dissipation Avalanche current (repetitive and non repetitive) Repetitive Avalanche Energy Single Pulse Avalanche Energy Tc = 25°C Max ratings 600 49 38 130 ±20 45 250 15 3 1900 Unit V A V m W A mJ Q1 & Q4 Electrical Characteristics (per CoolMOS™) Symbol Characteristic IDSS RDS(on) VGS(th) IGSS Zero Gate Voltage Drain Current Drain – Source on Resistance Gate Threshold Voltage Gate – Source Leakage Current Test Conditions VGS = 0V,VDS = 600V VGS = 0V,VDS = 600V Min Typ Tj = 25°C Tj = 125°C VGS = 10V, ID = 24.5A VGS = VDS, ID = 3mA VGS = ±20 V, VDS = 0V 2.1 40 3 Max 250 500 45 3.9 100 Unit Max Unit µA m V nA Q1 & Q4 Dynamic Characteristics (per CoolMOS™) Total gate Charge Qgs Gate – Source Charge Qgd Gate – Drain Charge Td(on) Turn-on Delay Time Tr Td(off) Rise Time Turn-off Delay Time Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy Eon Turn-on Switching Energy Eoff Turn-off Switching Energy RthJC Junction to Case Thermal Resistance VGS = 10V VBus = 300V ID = 49A Inductive Switching (125°C) VGS = 10V VBus = 400V ID = 49A RG = 5 Inductive switching @ 25°C VGS = 10V ; VBus = 400V ID = 49A ; RG = 5 Inductive switching @ 125°C VGS = 10V ; VBus = 400V ID = 49A ; RG = 5 Min Typ 7.2 8.5 nF 150 nC 34 51 21 30 ns 100 45 675 µJ 520 1100 µJ 635 0.5 www.microsemi.com October, 2012 Qg Test Conditions VGS = 0V ; VDS = 25V f = 1MHz °C/W 2 - 12 APTCV60TLM45T3G – Rev 2 Symbol Characteristic Input Capacitance Ciss Coss Output Capacitance APTCV60TLM45T3G Q2 & Q3 Absolute maximum ratings (per IGBT) Symbol VCES IC ICM VGE PD RBSOA Parameter Collector - Emitter Breakdown Voltage TC = 25°C TC = 80°C TC = 25°C Continuous Collector Current Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation Reverse Bias Safe Operating Area TC = 25°C TJ = 150°C Max ratings 600 100 75 140 ±20 250 150A @ 550V Unit V A V W Q2 & Q3 Electrical Characteristics (per IGBT) Symbol Characteristic ICES Zero Gate Voltage Collector Current VCE(sat) Collector Emitter Saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current Test Conditions VGE = 0V, VCE = 600V Tj = 25°C VGE =15V IC = 75A Tj = 150°C VGE = VCE, IC = 600µA VGE = 20V, VCE = 0V Min Typ 5.0 1.5 1.7 5.8 Min Typ Max Unit 250 1.9 µA 6.5 600 V nA Max Unit V Q2 & Q3 Dynamic Characteristics (per IGBT) Input Capacitance Output Capacitance Reverse Transfer Capacitance QG Gate charge Td(on) Tr Td(off) Tf Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Td(on) Turn-on Delay Time Tr Td(off) Tf Rise Time Turn-off Delay Time Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy Isc Short Circuit data RthJC VGE = 0V VCE = 25V f = 1MHz VGE=±15V, IC=75A VCE=300V Inductive Switching (25°C) VGE = ±15V VBus = 300V IC = 75A RG = 4.7 Inductive Switching (150°C) VGE = ±15V VBus = 300V IC = 75A RG = 4.7 VGE = ±15V Tj = 25°C VBus = 300V Tj = 150°C IC = 75A Tj = 25°C RG = 4.7 Tj = 150°C VGE ≤15V ; VBus = 360V tp ≤ 6µs ; Tj = 150°C Junction to Case Thermal Resistance 4620 300 140 pF 0.8 µC 110 45 200 40 ns 120 50 250 60 0.35 0.6 2.2 2.6 ns mJ mJ 380 A 0.60 www.microsemi.com °C/W 3 - 12 October, 2012 Cies Coes Cres Test Conditions APTCV60TLM45T3G – Rev 2 Symbol Characteristic APTCV60TLM45T3G CR2 & CR3 diode ratings and characteristics (per device) Symbol Characteristic VF RthJC Test Conditions Diode + tranzorb Forward Voltage Min IF = 10A Typ Max 10 Junction to Case Thermal Resistance Unit V 8 °C/W Max Unit V µA A CR5 & CR6 diode ratings and characteristics (per diode) Symbol VRRM IRM IF VF Characteristic Test Conditions Min 600 Maximum Peak Repetitive Reverse Voltage Maximum Reverse Leakage Current DC Forward Current VR=600V 25 Tc = 80°C IF = 30A IF = 60A IF = 30A Diode Forward Voltage Typ trr Reverse Recovery Time Qrr Reverse Recovery Charge di/dt =200A/µs Err Reverse Recovery Energy IF = 30A VR = 400V IF = 30A VR = 400V Tj = 125°C Tj = 25°C Tj = 125°C Tj = 25°C 30 1.8 2.2 1.5 25 160 35 Tj = 125°C 480 Tj = 125°C 0.6 2.2 V ns nC mJ di/dt =1000A/µs RthJC Junction to Case Thermal Resistance 1.2 °C/W Max Unit V µA A CR7 & CR8 diode ratings and characteristics (per diode) Symbol VRRM IRM IF VF Characteristic Test Conditions Min 1200 Maximum Peak Repetitive Reverse Voltage Maximum Reverse Leakage Current DC Forward Current VR=1200V 100 Tc = 80°C IF = 30A IF = 60A IF = 30A Diode Forward Voltage Typ trr Reverse Recovery Time Qrr Reverse Recovery Charge di/dt =200A/µs Err Reverse Recovery Energy IF = 30A VR = 800V IF = 30A VR = 800V Tj = 125°C Tj = 25°C Tj = 125°C Tj = 25°C 30 2.6 3.2 1.8 300 380 360 Tj = 125°C 1700 Tj = 125°C 1.6 3.1 V ns nC mJ di/dt =1000A/µs 1.2 °C/W October, 2012 Junction to Case Thermal Resistance Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information). Symbol R25 ∆R25/R25 B25/85 ∆B/B Characteristic Resistance @ 25°C Min T25 = 298.15 K TC=100°C RT  R25 Typ 50 5 3952 4 Max Unit k % K % T: Thermistor temperature   1 1  RT: Thermistor value at T   exp  B25 / 85  T T  25   www.microsemi.com 4 - 12 APTCV60TLM45T3G – Rev 2 RthJC APTCV60TLM45T3G Thermal and package characteristics Symbol VISOL TJ TSTG TC Torque Wt Characteristic RMS Isolation Voltage, any terminal to case t =1 min, 50/60Hz Operating junction temperature range Storage Temperature Range Operating Case Temperature Mounting torque Package Weight To heatsink M4 Min 4000 -40 -40 -40 2 Typ Max 175* 125 100 3 110 Unit V °C N.m g * Tjmax = 150°C for Q1 & Q4 SP3 Package outline (dimensions in mm) See application note 1901 - Mounting Instructions for SP3 Power Modules on www.microsemi.com 60 VCE=300V D=50% R G=4.7Ω T J=150°C 45 T c =85°C 30 October, 2012 Operating Frequency vs Collector Current 75 Hard switching 15 0 0 20 40 60 80 100 IC (A) www.microsemi.com 5 - 12 APTCV60TLM45T3G – Rev 2 Fmax, Operating Frequency (kHz) Q2 & Q3 Typical performance curve APTCV60TLM45T3G Output Characteristics (VGE=15V) Output Characteristics 150 150 TJ=25°C TJ = 150°C VGE=13V 100 TJ=150°C IC (A) IC (A) 100 75 VGE=15V 75 50 50 25 25 VGE=9V TJ=25°C 0 0 0.5 1 1.5 VCE (V) 0 2 2.5 0 3 5 TJ=25°C 125 1 1.5 2 VCE (V) VCE = 300V VGE = 15V RG = 4.7Ω TJ = 150°C 4 E (mJ) 100 75 TJ=150°C 50 0.5 2.5 3 3.5 Energy losses vs Collector Current Transfert Characteristics 150 IC (A) VGE=19V 125 125 3 Eoff 2 Eon 1 25 TJ=25°C 0 0 5 6 7 8 9 10 11 0 12 25 50 75 100 125 150 IC (A) VGE (V) Switching Energy Losses vs Gate Resistance Reverse Bias Safe Operating Area 5 175 Eoff 150 125 Eon 3 IC (A) E (mJ) 4 2 VCE = 300V VGE =15V IC = 75A TJ = 150°C 1 100 75 50 VGE=15V TJ=150°C RG=4.7Ω 25 0 0 0 5 10 15 20 25 30 Gate Resistance (ohms) 35 40 0 100 200 300 400 VCE (V) 500 600 700 maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 0.5 0.4 0.3 0.2 0.1 0.9 0.7 0.5 October, 2012 0.6 0.3 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration in Seconds www.microsemi.com 6 - 12 APTCV60TLM45T3G – Rev 2 Thermal Impedance (°C/W) 0.7 APTCV60TLM45T3G Q1 & Q4 Typical performance curve Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.6 0.5 0.9 0.4 0.7 0.3 0.5 0.2 0.3 0.1 0.1 Single Pulse 0.05 0 0.00001 0.0001 0.001 0.01 0.1 1 10 rectangular Pulse Duration (Seconds) Transfert Characteristics Low Voltage Output Characteristics 140 360 VGS=15&10V 6.5V 280 ID, Drain Current (A) 6V 240 200 5.5V 160 120 5V 80 4.5V 40 4V 0 100 80 60 40 TJ=125°C 20 TJ=25°C 0 0 5 10 15 20 VDS, Drain to Source Voltage (V) 25 0 Normalized to VGS=10V @ 50A 1.25 1.2 VGS=10V 1.15 1.1 1 2 3 4 5 6 VGS, Gate to Source Voltage (V) 7 DC Drain Current vs Case Temperature 50 RDS(on) vs Drain Current 1.3 VGS=20V 1.05 1 0.95 ID, DC Drain Current (A) 0.9 40 30 20 10 0 0 20 40 60 80 100 120 140 ID, Drain Current (A) www.microsemi.com 25 50 75 100 125 TC, Case Temperature (°C) October, 2012 RDS(on) Drain to Source ON Resistance VDS > ID(on)xRDS(on)MAX 250µs pulse test @ < 0.5 duty cycle 120 150 7 - 12 APTCV60TLM45T3G – Rev 2 ID, Drain Current (A) 320 1.1 1.0 0.9 0.8 25 50 75 100 125 150 ON resistance vs Temperature 3.0 2.0 1.5 1.0 0.5 0.0 25 TJ, Junction Temperature (°C) 1000 1.0 ID, Drain Current (A) 0.9 0.8 0.7 limited by RDSon 100 100 µs 0.6 1 ms Single pulse TJ=150°C TC=25°C 10 10 ms 1 25 50 75 100 125 150 1 Coss Ciss 1000 Crss 100 10 0 100 1000 Gate Charge vs Gate to Source Voltage VGS, Gate to Source Voltage (V) Capacitance vs Drain to Source Voltage 100000 10000 10 VDS, Drain to Source Voltage (V) TC, Case Temperature (°C) 10 20 30 40 50 VDS, Drain to Source Voltage (V) www.microsemi.com 12 ID=50A TJ=25°C 10 VDS=120V VDS=300V 8 VDS=480V 6 4 2 0 0 20 40 60 80 100 120 140 160 Gate Charge (nC) October, 2012 VGS(TH), Threshold Voltage (Normalized) 50 75 100 125 150 TJ, Junction Temperature (°C) Maximum Safe Operating Area Threshold Voltage vs Temperature 1.1 C, Capacitance (pF) VGS=10V ID= 50A 2.5 8 - 12 APTCV60TLM45T3G – Rev 2 BVDSS, Drain to Source Breakdown Voltage (Normalized) Breakdown Voltage vs Temperature 1.2 RDS(on), Drain to Source ON resistance (Normalized) APTCV60TLM45T3G APTCV60TLM45T3G Delay Times vs Current 140 Rise and Fall times vs Current 70 td(off) 100 VDS=400V RG=5Ω TJ=125°C L=100µH 80 60 40 VDS=400V RG=5Ω TJ=125°C L=100µH 60 50 tr and tf (ns) tf 40 30 tr 20 td(on) 20 10 0 0 0 10 20 30 40 50 60 70 80 0 10 20 ID, Drain Current (A) 1.6 Eon 1.2 Eoff 0.8 0.4 VDS=400V ID=50A TJ=125°C L=100µH 2 1.5 60 70 80 Eoff Eon 1 0.5 0 0 10 20 30 40 50 60 ID, Drain Current (A) 70 80 VDS=400V D=50% RG=5Ω TJ=125°C TC=75°C 150 hard switching 100 50 0 5 10 15 20 25 30 35 ID, Drain Current (A) 20 30 40 50 Source to Drain Diode Forward Voltage 1000 IDR, Reverse Drain Current (A) 300 200 10 Gate Resistance (Ohms) Operating Frequency vs Drain Current 250 0 40 45 TJ=150°C 100 TJ=25°C 10 1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 VSD, Source to Drain Voltage (V) www.microsemi.com October, 2012 0 Frequency (kHz) 50 Switching Energy vs Gate Resistance 2.5 Switching Energy (mJ) Switching Energy (mJ) VDS=400V RG=5Ω TJ=125°C L=100µH 40 ID, Drain Current (A) Switching Energy vs Current 2 30 9 - 12 APTCV60TLM45T3G – Rev 2 td(on) and td(off) (ns) 120 APTCV60TLM45T3G CR5 & CR6 Typical performance curve Forward Characteristic of diode 80 IF (A) 60 TJ=125°C 40 TJ=25°C 20 0 0.0 0.4 0.8 1.2 VF (V) 1.6 2.0 2.4 Switching Energy Losses vs Gate Resistance 1 0.75 0.75 0.5 E (mJ) E (mJ) Energy losses vs Collector Current 1 VCE = 400V VGE = 15V RG = 2.5Ω TJ = 125°C 0.25 20 40 60 VCE = 400V VGE =15V IC = 30A TJ = 125°C 0.25 0 0 0.5 0 80 0 2 4 6 8 Gate Resistance (ohms) IC (A) 10 1 0.8 0.6 0.4 0.2 0.9 0.7 0.5 0.3 0.1 Single Pulse 0.05 0 0.00001 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration (Seconds) www.microsemi.com October, 2012 1.2 10 - 12 APTCV60TLM45T3G – Rev 2 Thermal Impedance (°C/W) Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 1.4 APTCV60TLM45T3G CR7 & CR8 Typical performance curve Forward Current vs Forward Voltage IF, Forward Current (A) 80 TJ=125°C 60 40 20 TJ=25°C 0 0.0 1.0 2.0 3.0 4.0 VF, Anode to Cathode Voltage (V) Switching Energy Losses vs Gate Resistance 1.8 2 1.6 1.4 1.5 E (mJ) E (mJ) Energy losses vs Collector Current 2.5 VCE = 800V VGE = 15V RG = 5Ω TJ = 125°C 1 0.5 20 40 60 VCE = 800V VGE =15V IC = 30A TJ = 125°C 1 0.8 0 0 1.2 0.6 80 0 10 IC (A) 20 30 Gate resistance (ohms) Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration 1.2 1 0.8 0.9 0.7 0.5 0.6 0.2 0.3 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 October, 2012 0.4 Rectangular Pulse Duration (Seconds) www.microsemi.com 11 - 12 APTCV60TLM45T3G – Rev 2 Thermal Impedance (°C/W) 1.4 APTCV60TLM45T3G DISCLAIMER The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi. Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with lifesupport or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer’s and user’s responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided “AS IS, WHERE IS” and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp Life Support Application Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications"). Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods. www.microsemi.com 12 - 12 APTCV60TLM45T3G – Rev 2 October, 2012 Buyer must notify Seller in writing before using Seller’s Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.
APTCV60TLM45T3G 价格&库存

很抱歉,暂时无法提供与“APTCV60TLM45T3G”相匹配的价格&库存,您可以联系我们找货

免费人工找货