0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LE58083ABGCT

LE58083ABGCT

  • 厂商:

    MICROSEMI(美高森美)

  • 封装:

    121-LFBGA

  • 描述:

    IC TELECOM INTERFACE 121BGA

  • 数据手册
  • 价格&库存
LE58083ABGCT 数据手册
™ Le58083 Low Voltage Subscriber Line Audio-processing Circuit VE580 Series APPLICATIONS RELATED LITERATURE ■ Codec function on telephone switch line cards ■ 080753 Le58QL02/021/031 QLSLAC™ Data Sheet ■ 080754 Le58QL061/063 QLSLAC™ Data Sheet ■ 080761 QSLAC™ to QLSLAC™ Design Conversion FEATURES ■ Low-power, 3.3 V CMOS technology with 5 V tolerant digital inputs ■ Pin programmable PCM/MPI or GCI interface ■ Software and coefficient compatible to the VE580 series QLSLAC™ devices ■ Standard PCM/microprocessor interface (PCM/MPI mode) — — — — — Single or Dual PCM ports available Time slot assigner (up to 128 channels per port) Clock slot and transmit clock edge options Optional supervision on the PCM highway 1.536, 1.544, 2.048, 3.072, 3.088, 4.096, 6.144, 6.176, or 8.192 MHz master clock derived from MCLK or PCLK — µP access to PCM data — Real Time Data with interrupt (open drain or TTL) — Broadcast mode ■ General Circuit Interface (GCI mode) — Control and PCM data on a single port — 2.048 Mbits/s data rate — 2.048 MHz or 4.096 MHz clock option ■ Performs the functions of eight codec/filters ■ Software programmable: — SLIC device input impedance and Transhybrid balance — Transmit and receive gains and Equalization — Programmable Digital I/O pins with debouncing ■ A-law, µ-law, or linear coding ■ Built-in test modes with loopback, tone generation, and µP access to PCM data ■ ■ ■ ■ Mixed state (analog and digital) impedance scaling Guide ■ 080758 QSLAC™ to QLSLAC™ Guide to New Designs DESCRIPTION The Le58083 Octal Low Voltage Subscriber Line AudioProcessing Circuit (Octal SLAC™) devices integrate the key functions of analog line cards into high-performance, veryprogrammable, eight-channel codec-filter devices. The Le58083 Octal SLAC devices are based on the proven design of Zarlink’s reliable SLAC device families. The advanced architecture of the Le58083 Octal SLAC devices implements eight independent channels and employs digital filters to allow software control of transmission, thus providing a cost-effective solution for the audio-processing function of programmable line cards. The Le58083 Octal SLAC devices are software and coefficient compatible to the VE580 series QLSLAC™ devices. Advanced submicron CMOS technology makes the Le58083 Octal SLAC devices economical, with both the functionality and the low power consumption needed in line card designs to maximize line card density at minimum cost. When used with multiple Zarlink SLIC devices, an Le58083 Octal SLAC device provides a complete software-configurable solution to the BORSCHT functions. BLOCK DIAGRAM GCI/PCM Interface ANALOG DXA/DU DRA/DD VIN(1-8) VOUT (1-8) TSCA Signal Processing Channels 1-8 PCM & GCI Interface & Time Slot Assigner (TSA) Performance guaranteed over a 12 dB gain range DXB DRB TSCB Supports multiplexed SLIC device outputs 256 kHz or 293 kHz chopper clock for Zarlink SLIC devices with switching regulator ■ Maximum channel bandwidth for V.90 modems ORDERING INFORMATION Device Le58083ABGC Package 121-pin BGA (Green package)* VREF_1, VREF_2 SLIC CONTROLS Clock & Reference Circuits CD1(1-8) CD2(1-8) C3(1-8) C4(1-8) FS/FSC PCLK/DCL MCLK_1, MCLK_2 SLIC Interface (SLI) DCLK-S0_1, DCLK-SO_2 C5(1-8) CS/PG_1, CS/PG_2 C6(1-8) C7(1-8) GCI Control Logic & Microprocessor Interface (MPI) DIO-S1_1, DIO-S1_2 INT_1, INT_2 *Green package meets RoHS Directive 2002/95/EC of the European Council to minimize the environmental impact of electrical equipment. RST Document ID# 080921 Date: Rev: E Version: Distribution: Public Document Sep 18, 2007 2 Le58083 Data Sheet TABLE OF CONTENTS Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Device Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Block Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Clock and Reference Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Microprocessor Interface (MPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Time Slot Assigner (TSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Signal Processing Channels (CHx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 SLIC Device Interface (SLI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 121-Pin BGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Environmental Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Electrical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Transmission Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Attenuation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Group Delay Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Gain Linearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Total Distortion Including Quantizing Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Discrimination Against Out-of-Band Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Discrimination Against 12- and 16-kHz Metering Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Spurious Out-of-Band Signals at the Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Overload Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 GCI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 GCI Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Operating the Le58083 Octal SLAC Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 PCM and GCI State Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Channel Enable (EC) Register (PCM/MPI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 SLIC Device Control and Data Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Clock Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 E1 Multiplex Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Debounce Filters Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Real-Time Data Register Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Active State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Inactive State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Chopper Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Overview of Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Two-Wire Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Frequency Response Correction and Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 2 Zarlink Semiconductor Inc. Le58083 Data Sheet Transhybrid Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Gain Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Transmit Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Transmit PCM Interface (PCM/MPI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Data Upstream Interface (GCI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Receive Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Receive PCM Interface (PCM/MPI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Data Downstream Interface (GCI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Analog Impedance Scaling Network (AISN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Speech Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Double PCLK (DPCK) Operation (PCM/MPI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Signaling on the PCM Highway (PCM/MPI Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Robbed-Bit Signaling Compatibility (PCM/MPI Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Default Filter Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Command Description and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Command Field Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Microprocessor Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Summary of MPI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 MPI Command Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 00h Deactivate (Standby State) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 02h Software Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 04h Hardware Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 06h No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 0Eh Activate Channel (Operational State) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 40/41h Write/Read Transmit Time Slot and PCM Highway Selection . . . . . . . . . . . . . . . . . . . . . .47 42/43h Write/Read Receive Time Slot and PCM Highway Selection . . . . . . . . . . . . . . . . . . . . . .47 44/45h Write/Read Transmit Clock Slot, Receive Clock Slot, and Transmit Clock Edge . . . . . . .48 46/47h Write/Read Chip Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 4A/4Bh Write/Read Channel Enable and Operating Mode Register . . . . . . . . . . . . . . . . . . . . . . .49 4D/4Fh Read Real-Time Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 50/51h Write/Read AISN and Analog Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 52/53h Write/Read SLIC Device Input/Output Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 54/55h Write/Read SLIC Device Input/Output Direction, Read Status Bits . . . . . . . . . . . . . . . . . .51 60/61h Write/Read Operating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 6C/6Dh Write/Read Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 70/71h Write/Read Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 73h Read Revision Code Number (RCN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 80/81h Write/Read GX Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 82/83h Write/Read GR Filter Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 84/85h Write/Read Z Filter Coefficients (FIR and IIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 86/87h Write/Read B1 Filter Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 88/89h Write/Read X Filter Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 8A/8Bh Write/Read R Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 96/97h Write/Read B2 Filter Coefficients (IIR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 98/99h Write/Read FIR Z Filter Coefficients (FIR only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 9A/9Bh Write/Read IIR Z Filter Coefficients (IIR only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 C8/C9h Write/Read Debounce Time Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 CDh Read Transmit PCM Data (PCM/MPI Mode Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 E8/E9h Write/Read Ground Key Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 General Circuit Interface (GCI) Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 GCI General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 GCI Format and Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Signaling and Control (SC) Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Programming with the Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Channel Identification Command (CIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 General Structure of Other Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 3 Zarlink Semiconductor Inc. Le58083 Data Sheet Summary of Monitor Channel Commands (GCI Commands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 TOP (Transfer Operation) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 SOP (Status Operation) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 SOP Control Byte Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 COP (Coefficient Operation) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Details of COP, CSD Data Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Programmable Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 General Description of CSD Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 User Test States and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 A-Law and µ-Law Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 Line card parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 LFBGA (121 Balls) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Revision A to B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Revision B to C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Revision C1 to D1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Revision D1 to E1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Revision E1 to E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 LIST OF FIGURES Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Transmit Path Attenuation vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Receive Path Attenuation vs. Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Group Delay Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 A-law Gain Linearity with Tone Input (Both Paths) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 µ-law Gain Linearity with Tone Input (Both Paths) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Total Distortion with Tone Input (Both Paths) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Discrimination Against Out-of-Band Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Spurious Out-of-Band Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Analog-to-Analog Overload Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Input and Output Waveforms for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Microprocessor Interface (Input Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Microprocessor Interface (Output Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 PCM Highway Timing for XE = 0 (Transmit on Negative PCLK Edge) . . . . . . . . . . . . .24 PCM Highway Timing for XE = 1 (Transmit on Positive PCLK Edge) . . . . . . . . . . . . . .25 Double PCLK PCM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Master Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 4.096 MHz DCL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2.048 MHz DCL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Clock Mode Options (PCM/MPI Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 SLIC Device I/O, E1 Multiplex and Real-Time Data Register Operation. . . . . . . . . . . .34 E1 Multiplex Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 MPI Real-Time Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Le58083 Octal SLAC Transmission Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Robbed-Bit Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Time Slot Control and GCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Multiplexed GCI Time Slot Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Security Procedure for C/I Downstream Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Maximum Speed Monitor Handshake Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Monitor Transmitter Mode Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Monitor Receiver State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Le57D11 SLIC/Le58083 Octal SLAC™ Application Circuit . . . . . . . . . . . . . . . . . . . . .91 4 Zarlink Semiconductor Inc. Le58083 Data Sheet LIST OF TABLES Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Le58083 Octal SLAC™ Device Pin Names and Numbers . . . . . . . . . . . . . . . . . . . . . . . .8 0 dBm0 Voltage Definitions with Unity Gain in X, R, GX, GR, AX, and AR . . . . . . . . . . .14 PCM/GCI Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Channel Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Channel Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Global Chip Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Global Chip Status Monitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 GCI Channel Assignment Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Generic Byte Transmission Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Byte Transmission Sequence for TOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 General Transmission Sequence of SOP Command . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Generic Transmission Sequence for COP Command . . . . . . . . . . . . . . . . . . . . . . . . . .79 A-Law: Positive Input Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 µ-Law: Positive Input Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 5 Zarlink Semiconductor Inc. Le58083 Data Sheet PRODUCT DESCRIPTION The Le58083 Octal SLAC device performs the codec/filter and two-to-four-wire conversion functions required of the subscriber line interface circuitry in telecommunications equipment. These functions involve converting audio signals into digital PCM samples and converting digital PCM samples back into audio signals. During conversion, digital filters are used to band limit the voice signals. All of the digital filtering is performed in digital signal processors operating from a master clock, which can be derived either from PCLK or MCLK in the PCM/MPI mode and DCL in the GCI mode. The Le58083 Octal SLAC device is configured as two four-channel groups that share a common reset and PCM/GCI interface. Each four-channel group has its own chip select for individual programming. The signal names for each four-channel SLAC device are differentiated by _1 or _2. Generic naming of each signal is C_X, where the subscript C equals the channel number 1 through 4 and the _X equals the four-channel group number 1 or 2. For example, VIN3_2 would identify channel 3 of the second four-channel group. Eight independent channels allow the Le58083 Octal SLAC device to function as eight SLAC devices. In PCM/MPI mode, each channel has its own enable bit (EC1, EC2, EC3, etc.) to allow individual channel programming. If more than one Channel Enable bit is High or if all Channel Enable bits are High, all channels enabled will receive the programming information written; therefore, a Broadcast mode can be implemented by simply enabling all channels in the device to receive the information and enabling both chip selects. The Channel Enable bits are contained in the Channel Enable (EC) register, which is written and read using Commands 4A/4Bh. The Broadcast mode is useful in initializing Le58083 Octal SLAC devices in a large system. In GCI mode, one GCI channel controls two channels of the Le58083 Octal SLAC device. The Monitor channel and SC channel within the GCI channel are used to read/write filter coefficient data, read/write operating conditions and to read/write data to/from the programmable I/O ports of the two channels. Two pairs of GCI channels control the two four-channel groups in the Le58083 Octal SLAC device. The four GCI channels used, of the eight total available, are determined by S0 and S1 inputs. The user-programmable filters set the receive and transmit gain, perform the transhybrid balancing function, permit adjustment of the two-wire termination impedance, and provide equalization of the receive and transmit paths. All programmable digital filter coefficients can be calculated using the WinSLAC™ software. In PCM/MPI mode, Data transmitted or received on the PCM highway can be 8-bit companded code (with an optional 8-bit signaling byte in the transmit direction) or 16-bit linear code. The 8-bit codes appear 1 byte per time slot, while the 16-bit code appears in two consecutive time slots. The compressed PCM codes can be either 8-bit companded A-law or µ-law. The PCM data is read from and written to the PCM highway in user-programmable time slots at rates of 128 kHz to 8.192 MHz. The transmit clock edge and clock slot can be selected for compatibility with other devices that can be connected to the PCM highway. In GCI mode, two 8-bit companded codes are received or transmitted per GCI channel. The compressed PCM codes can be either 8-bit companded A-law or µ-law. There is no Signaling or Linear mode available when GCI mode is selected. The programming software is backward compatible to the Zarlink Le58000 SLAC family of devices. DEVICE DESCRIPTION PCM/GCI Highway Programmable I/O per Channel Dual/single Chopper Clock Package Part Number Yes BGA Le58083GC Five I/O Two Output BLOCK DESCRIPTIONS Clock and Reference Circuits This block generates a master clock and a frame sync signal for the digital circuits. It also generates an analog reference voltage for the analog circuits. Microprocessor Interface (MPI) This block communicates with the external control microprocessor over a serial interface. It passes user control information to the other blocks, and it passes status information from the blocks to the user. In addition, this block contains the reset circuitry. When GCI is selected, this block is combined with the TSA block. Time Slot Assigner (TSA) This block communicates with the PCM highway, where the PCM highway is a time division mutiplexed bus carrying the digitized voice samples. The block implements programmable time slots and clocking arrangements in order to achieve a first layer of switching. Internally, this block communicates with the Signal Processing Channels (CHx). When GCI is selected, this block is combined with the TSA block. 6 Zarlink Semiconductor Inc. Le58083 Data Sheet Signal Processing Channels (CHx) These blocks do the transmission processing for the voice channels. Part of the processing is analog and is interfaced to the VIN and VOUT pins. The remainder of the processing is digital and is interfaced to the Time Slot Assigner (TSA) block. SLIC Device Interface (SLI) This block communicates digitally with the SLIC device circuits. It sends control bits to the SLIC devices to control modes and to operate LEDs and optocouplers. It also accepts supervision information from the SLIC devices and performs some filtering. CONNECTION DIAGRAM 121-Pin BGA L VIN 4 _1 VIN 4 _2 NC C5 3 _1 C4 3 _2 DGND C5 4 _1 C3 4 _2 C7 4 _2 DRA/DD DXB K VOUT 4 _1 VOUT 4 _2 VCCA C4 3 _1 C3 3 _2 VCCD C4 4 _1 CD2 4 _2 C6 4 _2 DRB DXA/DU J NC NC AGND C3 3 _1 CD2 3 _2 C7 3 _2 C3 4 _1 CD1 4 _2 C5 4 _2 FS/FSC TSCB H VREF_2 AGND AGND CD2 3 _1 CD1 3 _2 C6 3 _2 CD2 4 _1 NC C4 4 _2 RST TSCA G VREF_1 VCCA VCCA CD1 3 _1 C7 3 _1 C5 3 _2 CD1 4 _1 C7 4 _1 INT_2 NC PCLK/ DCL F VIN 3 _1 VIN 2 _2 VIN 3 _2 NC C6 3 _1 NC CD1 1 _1 C6 4 _1 INT_1 VCCD DIO_1/ S1_1 E VOUT 3 _1 VOUT 2 _2 VOUT 3 _2 CD1 2 _1 NC C3 2 _2 CD2 1 _1 C5 1 _1 C3 1 _2 DGND DCLK_1/ S0_1 D NC NC NC CD2 2 _1 C6 2 _1 C4 2 _2 C3 1 _1 C6 1 _1 C4 1 _2 CS_1/ PG_1 DIO_2/ S1_2 C NC NC NC C3 2 _1 C7 2 _1 C5 2 _2 C4 1 _1 C7 1 _1 C5 1 _2 CS_2/ PG_2 DCLK_2/ S0_2 B VOUT 1 _1 VOUT 2 _1 VOUT 1 _2 C4 2 _1 CD1 2 _2 C6 2 _2 VCCD CD1 1 _2 C6 1 _2 MCLK_1/ E1_1 MCLK_2/ E1_2 A VIN 1 _1 VIN 2 _1 VIN 1 _2 C5 2 _1 CD2 2 _2 C7 2 _2 DGND CD2 1 _2 C7 1 _2 CHCLK_1 CHCLK_2 1 2 3 6 7 4 5 7 Zarlink Semiconductor Inc. 8 9 10 11 Le58083 Data Sheet Table 1. Le58083 Octal SLAC™ Device Pin Names and Numbers Pin Name Pin # Pin Name Pin # Pin Name Pin # VIN1_1 A1 CD14_2 J8 C51_1 E8 VIN2_1 A2 CD21_1 E7 C52_1 VIN3_1 F1 CD22_1 D4 VIN4_1 L1 CD23_1 VIN1_2 A3 VIN2_2 Pin Name Pin # Pin Name Pin # CHCLK_1 A10 VCCD B7 A4 CHCLK_2 A11 VCCD F10 C53_1 L4 MCLK_1/E1_1 B10 AGND H2 H4 C54_1 L7 MCLK_2/E1_2 B11 AGND H3 CD24_1 H7 C51_2 C9 CS_1/PG_1 D10 AGND J3 F2 CD21_2 A8 C52_2 C6 CS_2/PG_2 C10 DGND L6 VIN3_2 F3 CD22_2 A5 C53_2 G6 DCLK_1/S0_1 E11 DGND A7 VIN4_2 L2 CD23_2 J5 C54_2 J9 DCLK_2/S0_2 C11 DGND E10 VOUT1_1 B1 CD24_2 K8 C61_1 D8 DIO_1/S1_1 F11 NC C1 VOUT2_1 B2 C31_1 D7 C62_1 D5 DIO_2/S1_2 D11 NC C2 VOUT3_1 E1 C32_1 C4 C63_1 F5 INT_1 F9 NC C3 VOUT4_1 K1 C33_1 J4 C64_1 F8 INT_2 G9 NC D1 VOUT1_2 B3 C34_1 J7 C61_2 B9 PCLK/DCL G11 NC D2 VOUT2_2 E2 C31_2 E9 C62_2 B6 FS/FSC J10 NC D3 VOUT3_2 E3 C32_2 E6 C63_2 H6 DRA/DD L10 NC J1 VOUT4_2 K2 C33_2 K5 C64_2 K9 DRB K10 NC J2 VREF_1 G1 C34_2 L8 C71_1 C8 DXA/DU K11 NC L3 VREF_2 H1 C41_1 C7 C72_1 C5 DXB L11 NC F4 CD11_1 F7 C42_1 B4 C73_1 G5 TSCA H11 NC E5 CD12_1 E4 C43_1 K4 C74_1 G8 TSCB J11 NC F6 CD13_1 G4 C44_1 K7 C71_2 A9 RST H10 NC H8 CD14_1 G7 C41_2 D9 C72_2 A6 VCCA G2 NC G10 CD11_2 B8 C42_2 D6 C73_2 J6 VCCA G3 CD12_2 B5 C43_2 L5 C74_2 L9 VCCA K3 CD13_2 H5 C44_2 H9 VCCD K6 8 Zarlink Semiconductor Inc. Le58083 Data Sheet PIN DESCRIPTIONS Pin Names AGND, DGND CD1C_X, CD2C_X Type Power Inputs/Outputs Description Separate analog and digital grounds are provided to allow noise isolation; however, the two grounds are connected inside the part, and the grounds must also be connected together on the circuit board. Control and Data. CD1 and CD2 are TTL compatible programmable Input or Output (I/O) ports. They can be used to monitor or control the state of SLIC device or any other device associated with the subscriber line interface. The direction, input or output, is programmed using MPI Command 54/55h or GCI Command SOP 8. As outputs, CD1 and CD2 can be used to control relays, illuminate LEDs, or perform any other function requiring a latched TTL compatible signal for control. In PCM/MPI mode, the output state of CD1 and CD2 is written using MPI Command 52h. In GCI mode, the output state of CD1 and CD2 is determined by the C1 and C2 bits contained in the down stream C/I channel for the respective channel. As inputs, CD1 and CD2 can be processed by the Le58083 Octal SLAC device (if programmed to do so). CD1 can be debounced before it is made available to the system. The debounce time is programmable from 0 to 15 ms in 1 ms increments using MPI Command C8/C9h and GCI Command SOP 11. CD2 can be filtered using the up/down counter facility and programming the sampling interval using MPI Command E8/E9h or GCI Command SOP 12. Additionally, CD1 can be demultiplexed into two separate inputs using the E1 demultiplexing function. The E1 demultiplexing function of the Le58083 Octal SLAC device was designed to interface directly to Zarlink SLIC devices supporting the ground key function. With the proper Zarlink SLIC device and the E1 function of the Le58083 Octal SLAC device enabled, the CD1 bit can be demultiplexed into an Off-Hook/Ring Trip signal and Ground Key signal. In the demultiplex mode, the second bit, Ground Key, takes the place of the CD2 as an input. The demultiplexed bits can be debounced (CD1) or filtered (CD2) as explained previously. A more complete description of CD1, CD2, debouncing, and filtering functions is contained in the Operating the Le58083 Octal SLAC Device section on page 30. Once the CD1 and CD2 inputs are processed (Debounced, Filtered and/or Demultiplexed) by the Le58083 Octal SLAC device, the information can be accessed by the system in two ways in the PCM/MPI mode: 1) on a per channel basis along with C3, C4, and C5 of the specific channel using MPI Command 53h, or 2) by using MPI Command 4D/4Fh, which obtain the CD1 and CD2 bits from all four channels, of a selected four-channel, simultaneously. This feature reduces the processor overhead and the time required to retrieve time-critical signals from the line circuits, such as off-hook and ring trip. With this feature, hookswitch status and ring trip information, for example, can be obtained from four channels of a Le58083 Octal SLAC device with one read command. C3C_X, C4C_X, Inputs/Outputs C5C_X C6C_X, C7C_X CHCLK_X In the GCI mode, the processed CD1 and CD2 inputs are transmitted upstream on the CD1 and CD2 bits for the respective analog channel, 1 or 2, using the C/I channel. Control. C3, C4, and C5 are TTL-compatible programmable Input or Output (I/O) ports. They can be used to monitor or control the state of the SLIC device or any other device associated with subscriber line interface. The direction, input or output, is programmed using MPI Command 54/55h or GCI Command SOP 8. As outputs, C3, C4, and C5 can be used to control relays, illuminate LEDs, or perform any other function requiring a latched TTL compatible signal for control. In PCM/MPI mode, the output state of C3, C4, and C5 is written using MPI Command 52h. In GCI mode, the output state of C3, C4, and C5 is determined by the C3, C4, and C5 bits contained in the down stream C/I channel for the respective analog channel. As inputs, C3, C4, and C5 can be accessed by the system in PCM/MPI mode by using MPI Command 53h. In GCI mode, C3 is transmitted upstream, along with CD1 and CD2, for the respective analog channel using C3 of the C/I channel. Also, in GCI mode, C3, C4, and C5 can be read along with CD1 and CD2 using GCI Command SOP 10. Outputs Additional Control outputs. Output Chopper Clock. This output provides a 256 kHz or a 292.57 kHz, 50% duty cycle, TTLcompatible clock for use by up to four SLIC devices with built-in switching regulators. The CHCLK frequency is synchronous to the master clock, but the phase relationship to the master clock is random. 9 Zarlink Semiconductor Inc. Le58083 Pin Names Type Data Sheet Description Chip Select/PCM-GCI. The CS/PG input along with the DCLK/S0 input are used to determine the operating state of the programmable PCM/GCI interface. On power up, the Le58083 Octal SLAC device will initialize to GCI mode if CS/PG is low and there is no toggling (no high to low or low to high transitions) of the DCLK/S0 input. The device will initialize to the PCM/MPI mode if either CS is high or DCLK is toggling. CS_X/PG_X Input Input DCLK_X/S0_X Input DIO_X/S1_X Input/Output Input Inputs DRA/DD, DRB Input Outputs DXA/DU, DXB Output Input FS/FSC Input Once the device is in PCM/MPI mode, it is ready to receive commands through its serial interface pins, DIO and DCLK. Once a valid command has been sent through the MPI serial interface, GCI mode cannot be entered unless a hardware reset is asserted or power is removed from the part. If a valid command has not been sent since the last hardware reset or power up, then GCI mode can be re-entered (after a delay of one PCM frame) by holding CS/ PG low and keeping DCLK static. While the part is in GCI mode, then CS/PG going high or DCLK toggling will immediately place the device in PCM/MPI mode. In the PCM/MPI mode, the Chip Select input (active Low) enables the device so that control data can be written to or read from the part. The channels selected for the write or read operation are enabled by writing 1s to the appropriate bits in the Channel Enable Registers of the Le58083 Octal SLAC device prior to the command. See EC1, EC2, EC3, EC4. of the Channel Enable Register and Command 4A/4Bh for more information. If Chip Select is held Low for 16 rising edges of DCLK, a hardware reset is executed when Chip Select returns High. Data Clock. In addition to providing both a data clock input and an S0 GCI address input, DCLK/S0 acts in conjunction with CS/PG to determine the operational mode of the system interface, PCM/MPI or GCI. See CS/PG for details. In the PCM/MPI mode, the Data Clock input shifts data into and out of the microprocessor interface of the Le58083 Octal SLAC device. The maximum clock rate is 8.192 MHz. Select Bit 0. In GCI mode, S0 is one of two inputs (S0, S1) that is decoded to determine on which GCI channel pair a four-channel group of the Le58083 Octal SLAC device transmits and receives data. Data Input/Output. In the PCM/MPI mode, control data is serially written into and read out of the Le58083 Octal SLAC device via the DIO pin, most significant bit first. The Data Clock determines the data rate. DIO is high impedance except when data is being transmitted from the Le58083 Octal SLAC device. Select Bit 1. In GCI mode, S1 is the second of two inputs (S0, S1) that is decoded to determine on which GCI channel pair a four-channel group of the Le58083 Octal SLAC device transmits and receives data. PCM Data Receive (A/B). In the PCM/MPI mode, the PCM data is serially received on either the DRA or DRB port during user-programmed time slots. Data is always received with the most significant bit first. For compressed signals, 1 byte of data for each channel is received every 125 µs at the PCLK rate. In the Linear mode, 2 consecutive bytes of data for each channel are received every 125 µs at the PCLK rate. GCI Data Downstream. In GCI mode, the B1, B2, Monitor and SC channel data is serially received, from the individual channels, on the Data Downstream input for all four channels of the Le58083 Octal SLAC device. The Le58083 Octal SLAC device requires four of the eight GCI channels for operation. The four GCI Channels, out of the eight possible, are determined by the S0 and S1 inputs. Data is always received with the most significant bit first. 4 bytes of data for each GCI channel is received every 125 µs at the 2.048 Mbit/s data rate. PCM Data Transmit. In the PCM/MPI mode, the transmit data, from the individual channels, is sent serially out on either the DXA or DXB port or on both ports during user-programmed time slots. Data is always transmitted with the most significant bit first. The output is available every 125 µs and the data is shifted out in 8-bit (16-bit in Linear or PCM Signaling mode) bursts at the PCLK rate. DXA and DXB are High impedance between time slots, while the device is in the Inactive mode with no PCM signaling, or while the Cutoff Transmit Path bit (CTP) is on. GCI Data Upstream. In the GCI mode, the B1, B2, Monitor and SC channel data is serially transmitted on the Data Upstream output of the Le58083 Octal SLAC device. Which GCI channels the device uses is determined by the S0 and S1 inputs. Data is always transmitted with the most significant bit first. 4 bytes of data for each GCI channel is transmitted every 125 µs at the DCL rate. Frame Sync. In the PCM/MPI mode, the Frame Sync (FS) pulse is an 8 kHz signal that identifies Time Slot 0 and Clock Slot 0 of a system’s PCM frame. The Le58083 Octal SLAC device references individual time slots with respect to this input, which must be synchronized to PCLK. Frame Sync. In GCI mode, the Frame Sync (FSC) pulse is an 8 kHz signal that identifies the beginning of GCI channel 0 of a system’s GCI frame. The Le58083 Octal SLAC device references individual GCI channels with respect to this input, which must be synchronized to DCL. 10 Zarlink Semiconductor Inc. Le58083 Pin Names INT_X MCLK_X/E1_X Type Output Input/Output NC — Input PCLK/DCL Input RST Input TSCA, TSCB Outputs VCCA, VCCD Power VINC_X Inputs VOUTC_X Outputs VREF_X Output Data Sheet Description Interrupt. INT is an active Low output signal, which is programmable as either TTL-compatible or open drain. The INT output goes Low any time one of the input bits in the Real Time Data register changes state and is not masked. It also goes Low any time new transmit data appears if this interrupt is armed. INT remains Low until the appropriate register is read via the microprocessor interface, or the Le58083 Octal SLAC device receives either a software or hardware reset. The individual CDxC bits in the Real Time Data register can be masked from causing an interrupt by using MPI Command 6C/6Dh or GCI Command SOP 14. The transmit data interrupt must be armed with a bit in the Operating Conditions Register. Master Clock/Enable CD1 Multiplex. In PCM/MPI mode only, the Master Clock can be a 1.536 MHz, 1.544 MHz, or 2.048 MHz (times 1, 2, or 4) clock for use by the digital signal processor. If the internal clock is derived from the PCM Clock Input (PCLK) or if GCI mode is selected, this pin can be used as an E1 output to control Zarlink SLIC devices having multiplexed hook switch and ground key detector outputs. No connect. This pin is not internally connected. PCM Clock. In the PCM/MPI mode, the PCM clock determines the rate at which PCM data is serially shifted into or out of the PCM ports. PCLK is an integer multiple of the frame sync frequency. The maximum clock frequency is 8.192 MHz and the minimum clock frequency is 128 kHz for dual PCM highway versions and 256 kHz for single PCM highway versions. The minimum clock rate must be doubled if Linear mode or PCM signaling is used. PCLK frequencies between 1.03 MHz and 1.53 MHz are not allowed. Optionally, the digital signal processor clock can be derived from PCLK rather than MCLK. In PCM/MPI mode, PCLK can be operated at twice the PCM data rate in the Double PCLK mode (bit 1 of PCM/MPI Command C8/C9h). GCI Data Clock. In GCI mode, DCL is either 2.048 MHz or 4.096 MHz, which is an integer multiple of the frame sync frequency. Circuitry internal to the Le58083 Octal SLAC device monitors this input to determine which frequency is being used, 2.048 MHz or 4.096 MHz. When 4.096 MHz clock operation is detected, internal timing is adjusted so that DU and DD operate at the 2.048 Mbit/s rate. Reset. A logic Low signal at this pin resets both four-channel groups of the Le58083 Octal SLAC device to their default state. Time Slot Control. The Time Slot Control outputs are open-drain outputs (requiring pull-up resistors to VCCD) and are normally inactive (high impedance). In the PCM/MPI mode, TSCA or TSCB is active (low) when PCM data is transmitted on the DXA or DXB pin, respectively. In GCI mode, TSCA is active (low) during the two GCI time slots selected by the S1 and S0. Analog and digital power supply inputs. VCCA and VCCD are provided to allow for noise isolation and proper power supply decoupling techniques. For best performance, all of the VCC power supply pins should be connected together at the connector of the printed circuit board. Analog Input. The analog voice band signal is applied to the VIN input of the Le58083 Octal SLAC device. The VIN input is biased at VREF by a large internal resistor. The audio signal is sampled, digitally processed and encoded, and then made available at the TTL-compatible PCM output (DXA or DXB) or in the B1 and B2 of the GCI channel. If the digitizer saturates in the positive or negative direction, VIN is pulled by a reduced resistance toward AGND or VCCD, respectively. Analog Output. The received digital data at DRA/DRB or DD (GCI mode) is processed and converted to an analog signal at the VOUT pin.The VOUT voltages are referenced to VREF. Analog Voltage Reference. The VREF output is provided in order for an external capacitor to be connected from VREF to ground, filtering noise present on the internal voltage reference. VREF is buffered before it is used by internal circuitry. The voltage on VREF and the output resistance are given in Electrical Characteristics, on page 13. The leakage current in the capacitor must be low. 11 Zarlink Semiconductor Inc. Le58083 Data Sheet ABSOLUTE MAXIMUM RATINGS Stresses above those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods can affect device reliability. Storage Temperature –60° C < TA < +125° C Ambient Temperature, under Bias Ambient relative humidity (non condensing) VCCA with respect to AGND 5 to 95% –0.4 to + 4.0 V VCCA with respect to VCCD ±0.4 V VCCD with respect to DGND –0.4 to + 4.0 V –0.4 V to (VCCA + 0.4 V) –40° C < TA < +85° C VIN with respect to AGND AGND with respect to DGND Digital pins with respect to DGND Total combined CD1–C7 current for each four-channel group: Source from VCCD Sink into DGND Latch up immunity (any pin) Total VCC current if rise rate of VCC > 0.4 V/µs ±50 mV –0.4 to 5.5 V or VCCD + 2.37 V, whichever is smaller 40 mA 40 mA ± 100 mA 1.0 A Package Assembly The green package devices are assembled with enhanced environmental, compatible lead-free, halogen-free, and antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer leadfree board assembly processes. The peak soldering temperature should not exceed 245°C during printed circuit board assembly. Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile. OPERATING RANGES Zarlink guarantees the performance of this device over commercial (0º C to 70º C) and industrial (−40º C to 85º C) temperature ranges by conducting electrical characterization over each range and by conducting a production test with single insertion coupled to periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications Equipment Environmental Ranges Ambient Temperature −40° C < TA < +85° C Ambient Relative Humidity 15 to 85% Electrical Ranges +3.3 V ± 5% VCCD ± 50 mV Analog Supply VCCA Digital Supply VCCD +3.3 V ± 5% DGND AGND CFIL Capacitance: VREF_X to AGND Digital Pins 0V ±10 mV 0.1 µF ± 20% DGND to +5.25 V 12 Zarlink Semiconductor Inc. Le58083 Data Sheet ELECTRICAL CHARACTERISTICS Typical values are for TA = 25º C and nominal supply voltages. Minimum and maximum values are over the temperature and supply voltage ranges shown in Operating Ranges, except where noted. Symbol VIL Digital Input Low voltage Parameter Descriptions VIH Digital Input High voltage IIL Digital Input leakage current Pins connected to one channel group 0 < V < VCCD Otherwise Pins connected to both channel groups 0 < V < VCCD Otherwise VOL Digital Output Low voltage CD1–C7 (IOL = 4 mA) CD1–C7 (IOL = 8 mA) TSCA/ TSCB (IOL =14 mA) Other digital outputs (IOL = 2 mA) VOH Digital Output High voltage CD1–C7 (IOH = 4 mA) CD1–C7 (IOH = 8 mA) Other digital outputs (IOH = 400 µA) VIR VIOS Max 2.0 Digital Input hysteresis GIN Typ 0.8 VHYS IOL Min –7 –120 +7 +180 –14 –240 +14 +360 0.16 0.25 0.34 0.4 0.8 0.4 0.4 VCCD – 0.4 V VCCD – 0.8 V 2.4 Digital Output leakage current (Hi-Z state) Pins connected to one channel group 0 < V < VCCD Otherwise Pins connected to both channel groups 0 < V < VCCD Otherwise Input attenuator gain DGIN = 0 DGIN = 1 Analog input voltage range (Relative to VREF) AX = 0 dB, attenuator on (DGIN = 0) AX = 6.02 dB, attenuator on (DGIN = 0) AX = 0 dB, attenuator off (DGIN = 1) AX = 6.02 dB, attenuator off (DGIN = 1) –7 –120 +7 +180 –14 –240 +14 +360 0.6438 1 Unit V µA V 1 V 1 µA 6 V/V ±1.584 ±0.792 ±1.02 ±0.51 Vpk Offset voltage allowed on VIN –50 50 mV Analog input impedance to VREF, 300 to 3400 Hz 600 1400 kΩ IIP Current into analog input for an input voltage of 3.3 V 50 115 IIN Current out of analog input for an input voltage of –0.3 V 50 130 ZOUT VOUT output impedance 1 Allowable capacitance, VOUT to AGND 10 Ω pF 4 mApk IOUT VOUT output current (F< 3400 Hz) VREF_X output open circuit voltage (leakage < 20 nA) ZREF VREF_X output impedance (F
LE58083ABGCT 价格&库存

很抱歉,暂时无法提供与“LE58083ABGCT”相匹配的价格&库存,您可以联系我们找货

免费人工找货