™
Le75183
Line Card Access Switch
VE750 Series
Data Sheet
Features
Document ID#:081126
•
Small size/surface-mount packaging
•
Monolithic IC reliability
•
Low impulse noise
•
Make-before-break, break-before-make operation
•
Clean, bounce-free switching
•
Low, matched ON-resistance
•
Built-in current limiting, thermal shutdown and
SLIC protection
Version
Device
Le75183BFQC
Le75183BFSC
•
No EMI
Le75183CZFSC
•
Latched logic level inputs, no drive circuitry
•
Only one external protector required
•
TTL logic control compatible
•
Default power up state
•
DAML
•
HFC/FITL
Tray
28 Pin SOIC (GULL)
Tube
1. The green package meets RoHS Directive 2002/95/EC of the
European Council to minimize the environmental impact of electrical
equipment.
2. For delivery using a tape and reel packing system, add a "T" suffix to
the OPN (Ordering Part Number) when placing an order.
Description
The VoiceEdge™ family VE750 series of Line Card
Access Switches (LCAS), which includes the Le75181,
Le75282 and Le75183 devices, is a family of
monolithic solid-state switches that is designed to
provide both power ringing access and test access on
the analog line card. These devices, while not a pinfor-pin
replacement
for
the
traditional
electromechanical relay (EMR) solution, provide the
equivalent switching functionality. The VE750 series of
LCAS is meant as a solid-state alternative to the
EMRs.
Related Literature
•
32 Pin QFN
LE75183AFSC
Applications
PBX
Tube
LE75183CFQC
Battery monitor, all OFF state upon loss of battery
•
20 Pin SOIC (GULL)
Le75183AFQC
•
DLC
Packing2
Le75183CDSC
5 V only operation, very low power consumption
•
Package Type
Le75183ADSC
•
Central office
April 2011
Ordering Information
Le75183BDSC
•
6
081123 Le75282 Dual Intelligent Line Card
Access Switch Data Sheet
•
081105 Le75181 Ringing Access Switch Data
Sheet
•
080754 Le58QL061/063 QLSLAC Data Sheet
•
080676 Le5711 Dual SLIC Data Sheet
•
081047 Le5712 Dual SLIC Data Sheet
The Le75183A/B/C devices are pin-for-pin compatible
with Zarlink’s L7583A/B/C devices.
Zarlink also offers a range of compatible SLIC devices
and codec/filters that can be used with the VE750
series LCAS for complete line card solutions that can
be used worldwide in analog line card applications.
1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2007-2010, Zarlink Semiconductor Inc. All Rights Reserved.
Le75183
Data Sheet
Table of Contents
1.0 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.0 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.0 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.0 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Environmental Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Electrical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 Handling Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.1 Summary of Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Supply Currents and Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.0 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.1 Device Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8.0 Zero Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.0 Switching Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.0 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11.0 Loss of Battery Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
12.0 Impulse Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.0 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1 Integrated SLIC Device Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1.1 Diode Bridge/SCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1.2 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
13.1.3 Temperature Shutdown Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13.1.4 External Secondary Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
14.0 Typical Performance Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
15.0 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
16.0 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
16.1 28-Pin, Plastic SOIC (GULL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
16.2 20-Pin, Plastic SOIC (GULL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
16.3 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
17.0 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.1 Revision A1 to B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.2 Revision B1 to C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.3 Revision C1 to C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.4 Revision C2 to Ver 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.5 Revision Ver 5 to Ver 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2
Zarlink Semiconductor Inc.
Le75183
Data Sheet
List of Figures
Figure 1 - Le75183A/C Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2 - Le75183B Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3 - Protection Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 4 - Switches 3, 7, 9, and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5 - Switch 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6 - Switches 1, 2, and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7 - Switches 6, 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8 - Typical LCAS Application, A/C Versions, Idle or Talk State Shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3
Zarlink Semiconductor Inc.
Le75183
1.0
Data Sheet
Product Description
The Le75183A/B/C Line Card Access Switch is a monolithic solid-state device providing the equivalent switching
functionality of three 2 form C switches. The Le75183 is designed to provide power ringing access, line test access
(test out), and SLIC test access (test in) to tip and ring in central office, digital loop carrier, private branch exchange,
digitally added main line, and hybrid fiber coax/fiber-in-the-loop analog line card applications. An additional pair of
solid-state contacts are also available to provide access for testing of the ringing generator.
The Le75183A/B has seven states: the idle talk state (line break switches closed, all other switches open), the
power ringing state (ringing access switches closed, all other switches open), loop access (test out) state (loop
access (test out) switches closed, all other switches open), SLIC test state (test in switches closed, all other
switches open), simultaneous loop and SLIC access state (loop and test in switches closed, all others open),
ringing generator test state (ring test switches closed, all others open), and an all OFF state. The seven states in
the Le75183A/B are also in the Le75183C, with an additional simultaneous test-out and ring-test state, making the
Le75183C appropriate for digital loop carrier and other Telcordia TR-57 applications.
The Le75183 offers break-before-make or make-before-break switching, with simple logic level input control.
Because of the solid-state construction, voltage transients generated when switching into an inductive ringing lead
during ring cadence or ring trip are minimized, possibly eliminating the need for external zero cross switching
circuitry. State control is via logic level inputs, so no additional driver circuitry is required.
The line break switch is a linear switch that has exceptionally low ON-resistance and an excellent ON-resistance
matching characteristic. The ringing access switch has a breakdown voltage rating >480 V which is sufficiently high,
with proper protection, to prevent breakdown in the presence of a transient fault condition (i.e., passing the
transient on to the ringing generator).
Incorporated into the Le75183A and Le75183C is a diode bridge/SCR clamping circuit, current-limiting circuitry, and
a thermal shutdown mechanism to provide protection to the SLIC device and subsequent circuitry during fault
conditions. This is shown in block diagram as version A/C. Positive and negative lightning is reduced by the
current-limiting circuitry and steered to ground via diodes and the integrated SCR. Power cross is also reduced by
the current-limiting and thermal shutdown circuits.
The Le75183B version provides only an integrated diode bridge along with current limiting and thermal shutdown
(see block diagram for version B). This will cause positive faults to be directed to ground and negative faults to
battery. In either polarity, faults are reduced by the current-limit and/or thermal shutdown mechanisms.
To protect the Le75183 from an overvoltage fault condition, use of a secondary protector is required. The
secondary protector must limit the voltage seen at the tip/ring terminals to prevent the breakdown voltage of the
switches from being exceeded. To minimize stress on the solid-state contacts, use of a foldback- or crowbar- type
secondary protector is recommended. With proper choice of secondary protection, a line card using the Le75183
will meet all relevant ITU-T, LSSGR, FCC, or UL* protection requirements.
The Le75183 operates off of a 5 V supply only. This gives the device extremely low idle and active power
dissipation and allows use with virtually any range of battery voltage. This makes the Le75183 especially
appropriate for remote power applications such as DAML or FOC/FITL or other Telcordia TA 909 applications
where power dissipation is particularly critical.
A battery voltage is also used by the Le75183, only as a reference for the integrated protection circuit. The Le75183
will enter an all OFF state upon loss of battery.
During power ringing, to turn on and maintain the ON state, the ring access switch and ring test switch will draw a
nominal 2 mA from the ring generator.
The default power up state of Le75183 is in all OFF state, unless otherwise being overwritten by external controls.
The Le75183 device is packaged in a 20-pin, plastic SOIC (GULL) (Le75183ADSC/BDSC/CDSC), a 32-pin QFN
(Le75183AFQC/BFQC/CFQC), and a 28-pin, plastic SOIC (GULL) (Le75183AFSC/BFSC/CZFSC). The 28-pin
package is available to support existing designs. For new designs, it may be advantageous to use the other two
smaller size packages.
4
Zarlink Semiconductor Inc.
Le75183
2.0
Data Sheet
Block Diagrams
Le75183A/C
VBAT
FGND
SCR
& Trip
Circuit
SW1
SW2
TTESTin
RTESTin
RBAT
TBAT
SW3
TLINE
SW4
SW5
SW6
TRINGING
RLINE
RRINGING
SW7
TTESTout
SW8
RTESTout
SW10
SW9
LATCH
VDD
INTESTin
Control
Logic
TSD
INRING
INTESTout
DGND
Figure 1 - Le75183A/C Block Diagram
Le75183B
VBAT
FGND
TTESTin
SW1
SW2
RBAT
TBAT
TLINE
SW3
SW4
SW5
SW6
RLINE
RRINGING
TRINGING
SW7
TTESTout
RTESTin
SW8
SW9
SW10
RTESTout
LATCH
VDD
Control
Logic
TSD
INTESTin
INRING
INTESTout
DGND
Figure 2 - Le75183B Block Diagram
5
Zarlink Semiconductor Inc.
Le75183
NC
VBAT
NC
RTESTin
31
30
29
28
27
26
NC
NC
32
1
FGND
Top View
NC
TTESTin
Connection Diagrams
25
24
RBAT
23
NC
3
22
RLINE
4
21
NC
TBAT
2
NC
TLINE
32-pin QFN
NC
5
TRINGING
6
10
11
12
13
14
15
INTESTout
INRING
INTESTin
NC
NC 2
27
NC
18
RBAT
NC 3
26
NC
17
RLINE
NC 4
25
NC
16
RRINGING
TTESTin 5
24
RTESTin
15
RTESTout
TBAT 6
23
RBAT
14
LATCH
TLINE 7
22
RLINE
TRINGING 8
21
NC
NC 9
20
RRINGING
TTESTout 10
19
RTESTout
NC 11
18
LATCH
VDD 12
17
INTESTin
TSD 13
16
INRING
DGND 14
15
INTESTout
TTESTin
2
19
TBAT
3
TLINE
4
TRINGING
5
7
RTESTout
17
16
RTESTin
VBAT
NC
18
VBAT
20
6
NC
28
1
TTESTout
19
FGND 1
FGND
20-Pin SOIC
RRINGING
LATCH
9
DGND
8
TSD
7
EXPOSED PAD
NC
NC
TTESTout
20
VDD
3.0
Data Sheet
VDD
8
13
INTESTin
TSD
9
12
INRING
DGND
10
11
INTESTout
28-Pin SOIC
6
Zarlink Semiconductor Inc.
Le75183
3.1
Data Sheet
Pin Descriptions
Pin Name
Type
Description
DGND
Ground
Digital ground.
FGND
Ground
Fault ground.
INRING
Input
Logic level switch input control. Internally 75 kΩ typical pull up.
INTESTIN
Input
Logic level switch input control. Internally 75 kΩ typical pull down.
INTESTOUT
Input
Logic level switch input control. Internally 75 kΩ typical pull up.
LATCH
Input
Data input control, active-high, transparent low. Internally 75 kΩ typical pull
down.
NC
—
No connection.
RBAT
Input/Output
Connect to RING on SLIC side.
RLINE
Input/Output
Connect to RING on line side.
RRINGING
Input/Output
Connect to ringing generator.
RTESTin
Input/Output
Test (in) access on RING.
RTESTout
Input/Output
Test (out) access on RING.
TBAT
Input/Output
Connect to TIP on SLIC side.
TLINE
Input/Output
Connect to TIP on line side.
TRINGING
Input/Output
Connect to return ground for ringing generator.
TTESTin
Input/Output
Test (in) access on TIP.
TTESTout
Input/Output
Test (out) access on TIP.
TSD
Input/Output
Temperature shutdown pin. Can be used as a logic level input or an output. See
Tables 12 and 13, Truth Tables, and the Switching Behavior section of this data
sheet for input pin description. As an output flag, will read HIGH when the
device is in its operational mode and LOW in the thermal shutdown mode. To
disable the thermal shutdown mechanism, tie this pin to HIGH (not
recommended)
VBAT
Battery
Battery voltage. Used as a reference for protection circuit.
VDD
Power
5 V supply.
EPAD
—
Exposed pad in QFN package. No internal electrical connection. Not
recommended to make any external electrical connection (such as VBAT or
ground) to the EPAD.
D: Internally 75 kΩ typical pull down.
U: Internally 75 kΩ typical pull up.
7
Zarlink Semiconductor Inc.
Le75183
4.0
Data Sheet
Absolute Maximum Ratings
Stresses above those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at
or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device
reliability.
Parameter
Min.
Max.
Unit
Operating Temperature Range
–40
110
°C
Storage Temperature Range
–40
150
°C
Relative Humidity Range
5
95
%
Pin Soldering Temperature (t=10s max)
—
260
°C
-0.3
7
V
—
–85
V
-0.3
VDD+0.3
V
Input-to-output Isolation
—
330
V
Pole-to-pole Isolation (All except SW6, SW8)
—
330
V
Pole-to-pole Isolation (Ringing Access Switch, SW8)
—
480
V
Pole-to-pole Isolation (Ringing Test Switch, SW6)
—
260
V
5 V Power Supply
Battery Supply
Logic Input Voltage
ESD Immunity (Human Body Model)
JESD22 Class 1C compliant
Note:
For LCAS in the QFN package, it is desirable that the exposed pad be soldered to an equally sized exposed copper surface (with no
further electrical connection such as VBAT or ground) for mechanical stability.
8
Zarlink Semiconductor Inc.
Le75183
5.0
Data Sheet
Operating Ranges
Package Assembly
Green package devices are assembled with enhanced, environmental compatible lead-free, halogen-free, and
antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board
assembly processes or newer lead-free board assembly processes. The peak soldering temperature should not
exceed 245°C during printed circuit board assembly.
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile.
5.1
Environmental Ranges
Zarlink guarantees the performance of this device over commercial (0 to 70º C) and industrial (-40 to 85ºC)
temperature ranges by conducting electrical characterization over each range and by conducting a production test
with single insertion coupled to periodic sampling. These characterization and test procedures comply with section
4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications
Equipment.
−40° to 85°C
Ambient Temperature
5.2
Electrical Ranges
Supply
VDD
VBAT*
Min.
Typ.
Max.
Unit
4.5
–19
5
—
5.5
–72
V
V
*VBAT is used only as a reference for internal protection circuitry. If VBAT rises above typically –10 V, the device will enter an all OFF state and
remain in this state until the battery voltage drops below typically –15 V.
*Applied voltage is 100 Vp-p square wave at 100 Hz.
5.3
Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid
exposure to electrostatic discharge (ESD) during handling and mounting. Zarlink employs a human-body model
(HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD
voltage thresholds are dependent on the circuit parameters used to define the model. No industry-wide standard
has been adopted for CDM. However, a standard HBM (resistance = 1500Ω, capacitance = 100 pF) is widely used
and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained by
using these circuit parameters.
9
Zarlink Semiconductor Inc.
Le75183
6.0
Electrical Characteristics
6.1
Summary of Assumptions
Data Sheet
Unless otherwise noted, the test conditions are defined by the Le75183 device application circuit shown in Figure 8
on page 23 with:
VBAT = −48 V, VDD = 5.0 V.
6.2
Supply Currents and Power Dissipation
Operational
State
IDD mA
Condition
LCAS Device Power
mW
IBAT µA
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
All OFF
VDD=5V, VBAT=-48V
—
0.760
1.1
—
4
10
—
3.8
6
Power Ringing
or Access
VDD=5V, VBAT=-48V
—
0.850
2.1
—
4
10
—
4.4
11
Idle/Talk
VDD=5V, VBAT=-48V
—
0.860
1.3
—
4
10
—
4.5
7
Measure
Min.
Typ.
Max.
ISWITCH
—
—
1
7.0
Specifications
7.1
Device Specifications
Parameter
Test Condition
Unit
Off-state Leakage Current:
+25°C
Vswitch (differential) = –320 V to Gnd
Vswitch (differential) = –60 V to +260 V
+85°C
Vswitch (differential) = –330 V to Gnd
Vswitch (differential) = –60 V to +270 V
ISWITCH
—
—
1
–40°C
Vswitch (differential) = –310 V to Gnd
Vswitch (differential) = –60 V to +250 V
ISWITCH
—
—
1
ISWITCH (on) = ±5 mA, ±10 mA
ISWITCH (on) = ±5 mA, ±10 mA
ISWITCH (on) = ±5 mA, ±10 mA
∆ VON
∆ VON
∆ VON
—
—
—
49
—
37
—
77
—
Ω
Isolation:
+25 °C
+85 °C
–40 °C
Vswitch (both poles) = ±320 V, Logic inputs = Gnd
Vswitch (both poles) = ±330 V, Logic inputs = Gnd
Vswitch (both poles) = ±310 V, Logic inputs = Gnd
Iswitch
Iswitch
Iswitch
—
—
—
—
—
—
1
1
1
µA
dV/dt Sensitivity*
—
—
200
—
V/µs
ON-resistance (SW1, SW2):
+25 °C
+85 °C
–40 °C
—
*Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.
Table 1 - Test-In Switches, 1 and 2
10
Zarlink Semiconductor Inc.
µA
Le75183
Parameter
OFF-state Leakage Current:
+25°C
Test Condition
Vswitch (differential) = –320 V to Gnd
Vswitch (differential) = –60 V to +260 V
Data Sheet
Measure
Min.
Typ.
Max.
ISWITCH
—
—
1
Unit
µA
+85°C
Vswitch (differential) = –330 V to Gnd
Vswitch (differential) = –60 V to +270 V
ISWITCH
—
—
1
–40°C
Vswitch (differential) = –310 V to Gnd
Vswitch (differential) = –60 V to +250 V
ISWITCH
—
—
1
ON-resistance (SW3, SW4):
+25 °C
+85 °C
–40 °C
TLINE = ±10 mA, ±40 mA, TBAT = –2 V
TLINE = ±10 mA, ±40 mA, TBAT = –2 V
TLINE = ±10 mA, ±40 mA, TBAT = –2 V
∆ VON
∆ VON
∆ VON
—
—
—
21.5
—
16
—
31
—
Ω
ON-resistance Match
All except Le75183CZFSC
Per ON-resistance test condition of SW3,
SW4
Magnitude
RON_SW3 –
RON_SW4
—
0.2
1.0
Ω
ON-resistance Match
Le75183CZFSC
Per ON-resistance test condition of SW3,
SW4
Magnitude
RON_SW3 –
RON_SW4
—
0.2
0.55
Ω
ON-state Voltage*
(Figure 2, Switch 3)
Iswitch = ILIMIT @ 50 Hz/60 Hz
VON
—
—
220
V
ON-state Voltage*
(Figure 3, Switch 4)
Maximum Differential Voltage (Vmax)
Foldback Voltage Breakpoint 1 (V1)
Foldback Voltage Breakpoint 2 (V2)
VON
VON
VON
—
100
V1+0.5
—
—
—
320
—
—
V
Vswitch (on) = ±10 V
Vswitch (on) = ±10 V
Iswitch
Iswitch
80
—
—
—
—
250
ILIMIT1
Iswitch
Iswitch
80
2
—
—
250
—
mA
DC Current Limit
(Figure 2, Switch 3):
+85 °C
–40 °C
DC Current Limit
(Figure 3, Switch 4):
ILIMIT2
mA
Dynamic Current Limit
(t =