19-5180; Rev 0; 3/10
MAX9451 Evaluation Kit
Features
The MAX9451 evaluation kit (EV kit) is a fully assembled
and tested PCB that demonstrates the performance of
the MAX9451 high-precision clock generator for timing
in SONET/SDH systems or Gigabit Ethernet systems. The
EV kit is installed with a 155.52MHz crystal. For evaluating other frequencies, remove and replace the Y1 crystal
with a target crystal.
S Both I2C and SPI™ Interfaces Provided to Control
The MAX9451 EV kit includes WindowsM 98SE/2000 and
Windows XPM-compatible operating system software
that provides a simple GUI for exercising the MAX9451
features.
The EV kit comes with the MAX9451EHJ installed.
Windows and Windows XP are registered trademarks of
Microsoft Corp.
the MAX9451
S Proven PCB Layout
S Windows 98SE/2000/XP-Compatible Evaluation
Software
S Convenient Configuration Jumpers and Test
Points
S USB-PC Connection
Ordering Information
PART
TYPE
MAX9451EVKIT+
EV Kit
+Denotes lead(Pb)-free and RoHS compliant.
SPI is a trademark of Motorola, Inc.
Component List
DESIGNATION QTY
C1, C2, C30,
C31
4
DESCRIPTION
10FF Q10%, 10V X5R ceramic
capacitors (0805)
Murata GRM21BR61A106K or
TDK C2012X5R1A106K or
equivalent
0.1FF Q10%, 16V X7R ceramic
capacitors (0603)
TDK C1608X7R1C104K
C5, C6, C12C15, C22–C29,
C37
15
C7, C8, C10,
C17, C18, C21
0
Not installed, ceramic capacitors
(0603)
C9
1
0.01FF Q10%, 16V X7R ceramic
capacitor (0603)
Murata GRM188R71C103K
C32, C33
C34
C35, C36
2
1
2
22pF Q5%, 50V C0G ceramic
capacitors (0603)
TDK C1608C0G1H220J or
Murata GRM1885C1H220J or
equivalent
0.033FF Q10%, 25V X7R ceramic
capacitor (0603)
TDK C1608X7R1E333K or equivalent
10pF Q5%, 50V C0G ceramic
capacitors (0603)
Murata GRM1885C1H100J or
TDK C1608C0G1H100J or
equivalent
DESIGNATION QTY
DESCRIPTION
D1
1
Red LED (0603)
Lite-On LTST-C190CKT
D2
1
Green LED (0603)
Lite-On LTST-C190GKT
FB1
1
Ferrite bead
TDK MPZ1608S101A
INT, LOCK,
SDA, SCL,
GND, VDD,
VDDQ
7
Test points (red)
Keystone Electronics 5000 or
equivalent
J1–J8
8
SMA connectors, edge mount
Johnson 142-0701-851
J9
1
USB type B, right-angle PC mount
receptacle
J10
0
Not installed, vertical header,
2 x 5 pins
JU1–JU10
10
3-pin headers
JU13, JU14
2
2-pin headers
R1
1
200kI single-turn potentiometer
R2, R30
2
10kI Q1% resistor (0603)
R4, R10, R13,
R24
4
50I Q5% resistor (0603)
R6, R8, R16,
R21, R34, R35
6
100I Q5% resistors (0603)
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
Evaluates: MAX9451
General Description
Evaluates: MAX9451
MAX9451 Evaluation Kit
Component List (continued)
DESIGNATION QTY
DESCRIPTION
R11, R14, R17,
R22
4
51I Q5% resistors (0603)
R18, R19
2
4.7kI Q5% resistors (0603)
R25, R26
2
27I Q5% resistors (0603)
R27
1
470I Q5% resistor (0603)
R28
1
1.5kI Q5% resistor (0603)
R29
1
2.2kI Q5% resistor (0603)
R31, R32
2
130I Q5% resistors (0603)
R33
1
100kI Q5% resistor (0603)
U1
1
High-precision clock generator
(32 TQFP-EP*)
Maxim MAX9451EHJ+
1
Microcontroller (68 QFN)
Maxim MAXQ2000-RAX+
U3
1
LDO regulator (5 SC70)
Maxim MAX8511EXK25+
U4
1
USB-UART converter
FTDI FT232BL
U2
DESIGNATION QTY
DESCRIPTION
1
93C46 type 3-wire EEPROM
Atmel AT93C46A-10SU-2.7
Y1
1
125MHz crystal, fundamental mode,
loading capacitance 8pF, motional
capacitance > 6pF
KDS America DSX321S-125.00M8pF-30-30
Y2
0
Not installed, high-stability fundamental crystal
Y3
1
6MHz crystal
Citizen HCM49-6.000MABJ-UT
Y4
1
16MHz crystal
Citizen HCM49-16.000MABJ-UT
—
15
Shunts
—
1
PCB: MAX9451 EVALUATION KIT+,
REV C1
U5
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Component Suppliers
SUPPLIER
PHONE
WEBSITE
Murata Mfg. Co., Ltd.
770-436-1300
www.murata.com
TDK Corp.
847-803-6100
www.component.tdk.com
Note: Indicate that you are using the MAX9451 when contacting these component suppliers.
MAX9451 EV Kit Files
FILE
DESCRIPTION
Quick Start
Recommended Equipment
• One 3.3V DC power supply
INSTALL.EXE
Installs the EV kit files on
your computer
MAX9450.EXE
Application program
• O
ne 8kHz to 500MHz function generator that can generate 15.625MHz (Q20ppm) square wave
FTD2XX.INF
USB device driver file
• One 2-channel 200MHz oscilloscope
UNINST.INI
Uninstalls the EV kit
software
• One digital voltmeter (DVM)
TROUBLESHOOTING_USB.PDF
USB driver installation
help file
• One USB cable
• A
user-supplied PC running Windows 98SE/2000/XP
OS with a spare USB port
2 _______________________________________________________________________________________
MAX9451 Evaluation Kit
Procedure
The MAX9451 EV kit is fully assembled and tested. Follow
the steps below to verify board operation. Caution: Do
not turn on the power supply until all connections are
completed.
1) Visit the Maxim website (www.maxim-ic.com/
evkitsoftware) to download the most recent version
of the EV kit software, 9450Rxx.ZIP.
2) Install the MAX9450 EV kit software on your computer by running the INSTALL.EXE program. The
program files are copied and icons are created in
the Windows Start menu.
3) Verify that all jumpers are in default positions, as
described in Table 1.
4) Connect the function-generator output to SMA connector IN0+, then connect jumper JU13. Adjust the
signal swing from 0 to 3.3V, square-wave frequency
to 15.625MHz, and duty cycle to 50%. Use scope to
verify.
5) Leave SMA connector IN1+ unconnected and connect jumper JU14.
6) Connect SMA connector CLK0+ to the oscilloscope
channel-1 input.
7) Connect SMA connector CLK1+ to the oscilloscope
channel-2 input.
8) Connect the USB cable from the PC to the MAX9451
EV kit board.
9) Unless installed previously, a Building Driver
Database window pops up in addition to a New
Hardware Found message. If you do not see a
window similar to the one described above after 30
seconds and the device is not functional, remove
the USB cable from the MAX9451 EV kit board and
reconnect it. Administrator privileges are required to
install the USB device driver on Windows 2000/XP.
Refer to the TROUBLESHOOTING_USB.PDF document included with the software if you have trouble
during this step.
10) Follow the directions of the Add New Hardware
Wizard to install the USB device driver. Choose
the Search for the Best Driver for your Device
option. Specify the location of the device driver as
C:\Program Files\MAX9450 (default installation
directory) using the Browse button.
11) Connect the 3.3V DC power supply on the MAX9451
EV kit VDD, VDDQ, and GND pads.
12) Turn on the 3.3V DC power supply. Enable the output of the function generator.
13) Start the MAX9450 EV kit software by opening its
icon in the Start menu. A small window appears, as
shown in Figure 1.
14) The I2C button allows you to evaluate the MAX9451
in I2C control mode. The SPI button allows you to
evaluate the MAX9451 in SPI control mode. Click the
I2C button. A small notification window appears, as
shown in Figure 2.
15) Follow the instructions on the window and click OK.
The main software window appears, as shown in
Figure 3.
16) Verify that the status bar reads MAX9450 EVKIT
found and I2C Address Setting is 0xD0.
17) In the M Divider (1 - 32768) text field, type in 8 and
click the Set button.
18) Verify that the waveforms on oscilloscope channel-1
and channel-2 are 155.52MHz.
19) Use the DVM to verify that test point LOCK on the EV
kit board is in a logic-low state.
_______________________________________________________________________________________ 3
Evaluates: MAX9451
Note: In the following sections, software-related items
are identified by bolding. Text in bold refers to items
directly from the EV kit software. Text in bold and underlined refers to items from the Windows 98SE/2000/XP
operating system.
Evaluates: MAX9451
MAX9451 Evaluation Kit
Table 1. Jumper Settings
JUMPER
JU1
JU2
JU3
JU4
JU5
JU6
JU7, JU8
JU9
JU10
SHUNT
POSITION
DESCRIPTION
1-2*
Input clock IN0 activated (when CR5[3:2] = 00)
2-3
Input clock IN0 disabled (when CR5[3:2] = 00)
1-2*
Input clock IN1 activated (when CR5[3:2] = 00)
2-3
Input clock IN1 disabled (when CR5[3:2] = 00)
1-2*
Normal operation
2-3
Master reset
1-2*
I2C control mode. Connect MAX9451 pin 11 to ground.
2-3
1-2*
SPI control mode. Connect MAX9451 pin 11 to interface CS signal.
I2C control mode. Connect MAX9451 pin 12 to interface SCL signal.
2-3
SPI control mode. Connect MAX9451 pin 12 to interface SCLK signal.
1-2*
I2C control mode. Connect MAX9451 pin 13 to interface SDA signal.
2-3
SPI control mode. Connect MAX9451 pin 13 to interface MOSI signal.
2-3*
I2C slave address is 0xD0
Other
See Table 2 for AD0 and AD1 configurations
2-3*
Enable input clock monitor
1-2
Disable input clock monitor
2-3*
Enable clock output
1-2
Disable clock output
JU11
Open
JU11 pins 1-2 for testing purpose only
JU12
Open
JU12 pins 1-2 for testing purpose only
Open
Input clock IN0 uses differential signaling
JU13
JU14
1-2*
Open
1-2*
Input clock IN0 uses single-ended signaling
Input clock IN1 uses differential signaling
Input clock IN1 uses single-ended signaling
*Default position.
4 _______________________________________________________________________________________
MAX9451 Evaluation Kit
Figure 2. MAX9450 EV Kit Software—I2C Interface Notification
Window
Figure 3. MAX9450 EV Kit Software—I2C Interface Tab
_______________________________________________________________________________________ 5
Evaluates: MAX9451
Figure 1. MAX9450 EV Kit Software—Interface Selection
Window
Evaluates: MAX9451
MAX9451 Evaluation Kit
Detailed Description of Software
I2C Interface Tab
On the I2C Interface tab, a user sets the divider registers
(i.e., M, P, N0, and N1). The output frequency at CLKn (n
= 0, 1) is determined by the reference clock and dividing
factors M, Ni (i = 0, 1), and P, as shown in the following
equation:
fCLKn = fREF ×
M
Ni × P
Control registers CR5 and CR6 are set in the Control
Register Setting box.
Chip status CR7 can be monitored by clicking the Read
button in the Chip Status box. Checking the Auto Read
checkbox makes the software read the chip status
approximately once every second.
SPI Interface Tab
The SPI Interface tab (Figure 4) has the same function
as the I2C Interface tab. A user can set the divider registers (i.e., M, P, N0, and N1) and control registers CR5
and CR6 as well, but chip status CR7 is not accessible
in SPI control mode.
I2C Address Setting
2
The MAX9451 I C slave addresses are hardwareprogrammable by configuring jumpers JU7 and JU8,
Figure 4. MAX9450 EV Kit Software—SPI Interface Tab
6 _______________________________________________________________________________________
MAX9451 Evaluation Kit
Manually Sending I2C or SPI Commands
In addition to the controls on the main window, the
MAX9450 EV kit software allows the I2C or SPI commands to be entered manually. To bring up the Maxim
Command Module Interface window (see Figure 5),
click the Diagnose button. Enter the device address
(0xD0–0xDE) under Target Device Address, or click the
Hunt for active listeners button to automatically find the
I2C address. Under the General Commands tab, select
1 - SMBusWriteByte(addr,cmd,data8). At Command
byte: enter the register address, and at Data Out: enter
the data byte to write to the register. Note that the byte
can be entered in hexadecimal prefixed with “0x” or in
binary with no prefix. Similar operations can be done in
SPI control mode using the 3-wire interface tab.
Table 2. I2C Address Setting by AD0 and AD1
JU7
(AD0)
JU8
(AD1)
ADDRESS
2-3 (Low)
2-3 (Low)
1101 000x
2-3 (Low)
Open
1101 001x
2-3 (Low)
1-2 (High)
1101 010x
Open
2-3 (Low)
1101 011x
Open
Open
1101 100x
Open
1-2 (High)
1101 101x
1-2 (High)
2-3 (Low)
1101 110x
1-2 (High)
Open
1101 111x
1-2 (High)
1-2 (High)
Convert to SPI
Figure 5. MAX9450 EV Kit Software—Maxim Command Module Interface Window
_______________________________________________________________________________________ 7
Evaluates: MAX9451
as shown in Table 2. This configuration provides eight
selectable addresses for the MAX9451, allowing eight
devices to be connected to one master. Once jumpers
JU7 and JU8 are changed, the user should change the
I2C Address Setting dropdown menu on the right side
of the software window to match the correct address.
Evaluates: MAX9451
MAX9451 Evaluation Kit
Detailed Description of Hardware
The MAX9451 (U1) is a high-precision clock generator.
The digital power supply is VDD; the clock output power
supply is VDDQ. Both operate from 2.4V to 3.6V. The
device registers are controlled through an I2C or SPI
interface.
On the left portion of the EV kit PCB, I2C and SPI interfaces are provided. The MAXQ2000 microcontroller (U2)
generates both I2C and SPI control signals. A PC communicates with the microcontroller through a USB-UART
converter.
SMA connectors are provided for the clock input and
output connections. If clock input signals are differential, leave JU13 or JU14 open. If clock input signals are
single-ended, connect the input clock signal to IN0+ or
IN1+, and place a shunt on JU13 or JU14.
Clock Monitor Functions
To test the features of the clock monitor, apply the same
frequency at the input IN0+ to the input IN1+ and connect jumper JU14. To avoid using two clock generators,
use a T connector to split the input clock in two for IN0+
and IN1+. In such a case, you may need to increase the
clock signal swing to compensate the increase on the
load. Reset the clock monitor by connecting the shunt
on jumper JU9 in the 1-2 position and then back to the
2-3 position. Once the clock monitor is reset, it is ready
to test the monitor functions, such as the clock-condition
monitoring, input swapping, revert function, and holdover function. Clicking the Read button in the programming window provides status of the chip. After INT goes
high, resetting the clock monitor as described above
also resets INT.
Evaluating Other Frequencies
The EV kit is installed with a 125MHz crystal. For evaluating other frequencies, remove and replace the Y1 crystal
with a target crystal. For details, refer to Application Note
3920: Component Selection and Performance Test for
the MAX945x High-Precision CLK Generators.
8 _______________________________________________________________________________________
J4
SMA
J3
SMA
J2
SMA
J1
SMA
IN1-
IN0-
R22
51Ω
R17
51Ω
R14
51Ω
R11
51Ω
JU14
JU13
IN1-
IN0-
R35
100Ω
R34
100Ω
3
JU2
1
2
VDD
VDD
VDD
LOCK
C15
0.1µF
3
JU1
1
2
VDD
LOCK
IN1-
IN1+
VDD
IN0-
IN0+
SEL1
SEL0
INT
INT
9
LOCK
INT
8
7
6
5
4
3
2
1
2
10
MR
LP2
30
R19
4.7kΩ
R18
4.7kΩ
SCL
1
JU5
1
JU4
1
JU3
VDD
3
2
3
2
SCLK
SCL
SDA
SDA
13
SDA
1
JU6
3
2
MOSI
SCL
12
3
2
11
U1
14
AD0
X2
27
3
JU7
1
2
VDD
VDDA
28
C5
0.1µF
VDD
R2
10kΩ
1%
MAX9451
LP1
29
C9
0.01µF
C6
0.1µF
GND/CS
CS
GNDA
31
VDD
1
RJ
32
R33
100kΩ
R1
200kΩ
3
3
JU8
1
2
VDD
15
AD1
X1
26
C7
OPEN
3
JU9
1
2
17
18
19
20
21
22
23
24
3
JU10
1
2
VDD
OE
VDDQ
CLK0-
CLK0+
GND
CLK1-
CMON
16
VDD
VDDQ
C12
0.1µF
CLK1+
VDD
25
VDD
C8
OPEN
Y1
125MHz
VDDQ
VDDQ
C14
0.1µF
C13
0.1µF
C21
OPEN
R21
100Ω
C18
OPEN
C17
OPEN
R8
100Ω
C10
OPEN
R24
50Ω
R16
100Ω
R13
50Ω
R10
50Ω
R6
100Ω
R4
50Ω
J8
SMA
J7
SMA
J6
SMA
J5
SMA
VDDQ
VDD
C2
10µF
C1
10µF
GND
VDDQ
VDD
Evaluates: MAX9451
Y2
OPEN
MAX9451 Evaluation Kit
Figure 6a. MAX9451 EV Kit Schematic (Sheet 1 of 2)
_______________________________________________________________________________________ 9
C26
0.1µF
J9-4
J9-3
J9-2
VUSB
5
7
6
8
VCC
GND
N.C.
ORG
D0
D1
SK
CS
U5
AT93C46A
R26
27Ω
R25
27Ω
C27
0.1µF
R30
10kΩ
4
3
2
1
C33
22pF
C32
22pF
VUSB
4
5
7
8
6
31
2
1
32
28
Y3
6MHz
27
C22
0.1µF
R27
470Ω
C34
0.033µF
R28
1.5kΩ
R29
2.2kΩ
C31
10µF
RESET
RSTOUT
USBDP
USBDM
3V3OUT
TEST
3
VCC
26
GND
17
GND
9
29
U4
FT232BL
VCC
AGND
EEDATA
EESK
EECS
XTOUT
XTIN
C23
0.1µF
AVCC
30
VUSB
DSR
DTR
CTS
RTS
RXD
TXD
SLEEP
PWREN
PWRCTL
RXLED
TXLED
TXDEN
RI
DCD
VCCIO
13
VCPU
C24
0.1µF
C25
0.1µF
SHDN
IN
10
15
14
11
12
16
18
19
20
21
22
23
24
25
3
1
U3
GND
OUT
SLEEP
R31
130Ω
R32
130Ω
DSR
DTR
CTS
RTS
RXD
TXD
MAX8511
2
5
RED
D1
GREEN
D2
VCPU
VCPU
C30
10µF
C29
0.1µF
TDI
TMS
TDO
TCK
42
28
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
49
VCPU
68
GND
GND
SEG27/P3.3
SEG26/P3.2
SEG25/P3.1
SEG24/P3.0
SEG23/P2.7
SEG22/P2.6
SEG21/P2.5
SEG20/P2.4
SEG19/P2.3
SEG18/P2.2
SEG17/P2.1
SEG16/P2.0
SEG15/P1.7
SEG14/P1.6
SEG13/P1.5
SEG12/P1.4
SEG11/P1.3
VDD
66
65
J10-2
J10-6
J10-8
J10-4
J10-9 J10-10
J10-7
J10-5
J10-3
J10-1
SLEEP
VCPU
61
MAXQ2000
U2
SEG2/P0.2
RESET
INT
59
SEG1/P0.1
LOCK
58
SEG0/P0.0
J9-1
FB1
67
SEG9/P1.1
SEG28/P3.4/INT4
18
SEG8/P1.0
SEG29/P3.5/INT5
19
63
SEG32
22
SEG7/P0.7/INT3
SEG30/P3.6/INT6
20
64
SEG6/P0.6/INT2
SEG31/P3.7/INT7
21
SEG5/P0.5/INT1
SEG33/COM3
23
SEG3/P0.3
25
62
SEG4/P0.4/INT0
SEG34/COM2
24
60
SEG35/COM1
57
TCK
COM0
26
56
VADJ
P4.0/TCK/INTB
29
VLCD2
P4.1/TDI/INT9
30
55
TMS
C28
0.1µF
32
TDO
RXD
52
TXD
HFXOUT
HFXIN
VDDIO
32KOUT
32KIN
P5.2/RX1/INT10
P5.3/TX1/INT11
P5.4/SS
P5.5/MOSI
P5.6/SCLK
P5.7/MISO
P6.0/T1B/INT12
P6.1/T1/INT13
P6.2/T2B/OW_OUT
P6.3/T2/OW_IN
P6.4/T0B/WKOUT0
P6.5/T0/WKOUT1
P7.0/TXO/INT14
J9
USB
33
VLCD1
P4.2/TMS
31
TDI
54
VLCD
P4.3/TDO
53
P7.1/RXO/INT15
RESET
RESET
SEG10/P1.2
35
34
36
37
38
39
40
41
43
44
45
46
47
48
50
51
27
C37
0.1µF
Y4
16MHz
VCPU
RTS
DTR
CS
MOSI
SCLK
SCL
SDA
DSR
CTS
C36
10pF
C35
10pF
Evaluates: MAX9451
MAX9451 Evaluation Kit
Figure 6b. MAX9451 EV Kit Schematic (Sheet 2 of 2)
10
�������������������������������������������������������������������������������������
MAX9451 Evaluation Kit
Evaluates: MAX9451
Figure 7. MAX9451 EV Kit Component Placement Guide—Component Side
______________________________________________________________________________________ 11
Evaluates: MAX9451
MAX9451 Evaluation Kit
Figure 8. MAX9451 EV Kit PCB Layout—Component Side
12
�������������������������������������������������������������������������������������
MAX9451 Evaluation Kit
Evaluates: MAX9451
Figure 9. MAX9451 EV Kit PCB Layout—Ground Plane
______________________________________________________________________________________ 13
Evaluates: MAX9451
MAX9451 Evaluation Kit
Figure 10. MAX9451 EV Kit PCB Layout—Power Plane
14
�������������������������������������������������������������������������������������
MAX9451 Evaluation Kit
Evaluates: MAX9451
Figure 11. MAX9451 EV Kit PCB Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2010
Maxim Integrated Products
15
Maxim is a registered trademark of Maxim Integrated Products, Inc.