ZL40212
Precision 1:2 LVDS Fanout Buffer
Data Sheet
November 2012
Ordering Information
Features
ZL40212LDG1
ZL40212LDF1
Inputs/Outputs
•
Accepts differential or single-ended input
• LVPECL, LVDS, CML, HCSL, LVCMOS
•
Two precision LVDS outputs
•
Operating frequency up to 750 MHz
16 Pin QFN
16 Pin QFN
Trays
Tape and Reel
Matte Tin
Package size: 3 x 3 mm
-40oC to +85oC
Applications
Power
•
General purpose clock distribution
•
Options for 2.5 V or 3.3 V power supply
•
Low jitter clock trees
•
Current consumption of 44 mA
•
Logic translation
•
On-chip Low Drop Out (LDO) Regulator for superior
power supply noise rejection
•
Clock and data signal restoration
•
Wired communications: OTN, SONET/SDH, GE,
10 GE, FC and 10G FC
Performance
•
Wireless communications
•
•
High performance micro-processor clock
distribution
Ultra low additive jitter of 92 fs RMS
out0_p
out0_n
clk_p
clk_n
Buffer
out1_p
out1_n
Figure 1 - Functional Block Diagram
1
Microsemi Corporation
Copyright 2012, Microsemi Corporation. All Rights Reserved.
ZL40212
Data Sheet
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.0 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Clock Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Device Additive Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.1 Sensitivity to power supply noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.0 AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.0 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.0 Typical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.0 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.0 Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2
Microsemi Corporation
ZL40212
Data Sheet
List of Figures
Figure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2 - Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3 - LVPECL Input DC Coupled Thevenin Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4 - LVPECL Input DC Coupled Parallel Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5 - LVPECL Input AC Coupled Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 6 - LVDS Input DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7 - LVDS Input AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 8 - CML Input AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 9 - HCSL Input AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 10 - CMOS Input DC Coupled Referenced to VDD/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 11 - CMOS Input DC Coupled Referenced to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 12 - Simplified LVDS Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 13 - LVDS DC Coupled Termination (Internal Receiver Termination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 14 - LVDS DC Coupled Termination (External Receiver Termination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 15 - LVDS AC Coupled Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 16 - LVDS AC Output Termination for CML Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 17 - Additive Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 18 - Decoupling Connections for Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 19 - Differential Output Voltage Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 20 - Input To Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3
Microsemi Corporation
ZL40212
1.0
Data Sheet
Package Description
12
out1_n
out1_p
out0_n
out0_p
The device is packaged in a 16 pin QFN
10
8
vdd
NC
NC
14
6
NC
gnd
vdd
16
NC
gnd
clk_n
NC
4
NC
clk_p
2
Figure 2 - Pin Connections
2.0
Pin Description
Pin #
Name
1, 4
clk_p, clk_n,
Description
Differential Input (Analog Input). Differential (or singled ended) input signals. For all
input signal configuration see “Clock Inputs” on page 5
12, 11, out0_p, out0_n Differential Output (Analog Output). Differential outputs.
10, 9 out1_p, out1_n
8, 13
vdd
Positive Supply Voltage. 2.5 VDC or 3.3 VDC nominal.
5, 16
gnd
Ground. 0 V.
2, 3,
6, 7,
14, 15
NC
No Connection. Leave unconnected.
4
Microsemi Corporation
ZL40212
3.0
Data Sheet
Functional Description
The ZL40212 is an LVDS clock fanout buffer with two identical output clock drivers capable of operating at
frequencies up to 750MHz.
Inputs to the ZL40212 are externally terminated to allow use of precision termination components and to allow full
flexibility of input termination. The ZL40212 can accept DC or AC coupled LVPECL, LVDS, CML or HCSL input
signals; single ended input signals can also be accepted. A pin compatible device with internal termination is also
available.
The ZL40212 is designed to fan out low-jitter reference clocks for wired or optical communications applications
while adding minimal jitter to the clock signal. An internal linear power supply regulator and bulk capacitors
minimize additive jitter due to power supply noise. The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its
operation is guaranteed over the industrial temperature range -40°C to +85°C.
The device block diagram is shown in Figure 1; its operation is described in the following sections.
3.1
Clock Inputs
The ZL40212 is adaptable to support different types of differential and single-ended input signals depending on the
passive components used in the input termination. The application diagrams in the following figures allow the
ZL40212 to accept LVPECL, LVDS, CML, HCSL and single-ended inputs.
VDD_driver
VDD
VDD_driver
R1
22 Ohms
R1
Z o = 50 Ohms
ZL40212
clk_p
LVPECL
Driver
clk_n
Z o = 50 Ohms
22 Ohms
R2
R2
VDD_driver=3.3V: R1=127 ohm, R2=82 ohm
VDD_driver=2.5V: R1=250 ohm, R2=62.5 ohm
Figure 3 - LVPECL Input DC Coupled Thevenin Equivalent
5
Microsemi Corporation
ZL40212
Data Sheet
VDD
VDD_driver
ZL40212
22 Ohm s
LVPECL
Driver
Z o = 50 Ohm s
clk_p
Z o = 50 Ohm s
clk_n
22 Ohm s
50
Ohm s
50
Ohm s
R1
VDD_driver=3.3V: R1 = 50 ohm
VDD_driver=2.5V: R1 = 20 ohm
Figure 4 - LVPECL Input DC Coupled Parallel Termination
VDD
VDD_driver=3.3V: R = 143 ohm
VDD_driver=2.5V: R = 82 ohm
2K
Ohm
VDD_driver
2K
Ohm
ZL40212
100 nF
Z o = 50 Ohm s
LVPECL
Driver
clk_p
100 nF
clk_n
Z o = 50 Ohm s
R
VDD
2K
Ohm
R
Figure 5 - LVPECL Input AC Coupled Termination
6
Microsemi Corporation
2K
Ohm
ZL40212
Data Sheet
VDD
VDD_driver
ZL40212
Z o = 50 Ohm s
LVDS
Driver
Z o = 50 Ohm s
clk_p
100
Ohm s
clk_n
Figure 6 - LVDS Input DC Coupled
VDD
VDD
2K
Ohm
100 nF
VDD_driver
2K
Ohm
Zo = 50 Ohms
LVDS
Driver
ZL40214
clk_p
100 Ohm
clk_n
Zo = 50 Ohms
100 nF
2K
Ohm
Figure 7 - LVDS Input AC Coupled
7
Microsemi Corporation
2K
Ohm
ZL40212
Data Sheet
VDD_driver
50
Ohm
VDD
VDD
VDD_driver
50
Ohm
2K
Ohm
2K
Ohm
Zo = 50 Ohms
clk_p
100 nF
100 nF
CML
Driver
ZL40212
clk_n
Zo = 50 Ohms
2K
Ohm
2K
Ohm
Figure 8 - CML Input AC Coupled
VDD
VDD
VDD_driver
100 nF
2K
Ohm
2K
Ohm
Zo = 50 Ohms
ZL40212
clk_p
HCSL
Driver
100 nF
clk_n
Zo = 50 Ohms
50
Ohm
50
Ohm
Figure 9 - HCSL Input AC Coupled
8
Microsemi Corporation
2K
Ohm
2K
Ohm
ZL40212
VDD_driver
Data Sheet
VDD
VDD_driver
ZL40212
CM OS
Driver
clk_p
R
Vref = VDD_driver/2
clk_n
C
R
R = 10 K ohm s, C = 100 nF
Figure 10 - CMOS Input DC Coupled Referenced to VDD/2
VDD
VDD
VDD_driver
ZL40212
R2
CMOS
Driver
clk_p
R1
RA
clk_n
R3
C
Figure 11 - CMOS Input DC Coupled Referenced to Ground
VDD_driver
R1 (kΩ)
R2 (kΩ)
R3 (kΩ)
RA (kΩ)
C (pF)
1.5
1.25
3.075
open
10
10
1.8
1
3.8
open
10
10
2.5
0.33
4.2
open
10
10
3.3
0.75
open
4.2
10
10
Table 1 - Component Values for Single Ended Input Reference to Ground
* For frequencies below 100 MHz, increase C to avoid signal integrity issues.
9
Microsemi Corporation
ZL40212
3.2
Data Sheet
Clock Outputs
LVDS has lower signal swing than LVPECL which results in a low power consumption. A simplified diagram for the
LVDS output stage is shown in Figure 12.
VDD
3 mA
-
+
Output
+
-
Figure 12 - Simplified LVDS Output Driver
The methods to terminate the ZL40212 drivers are shown in the following figures.
VDD_Rx
VDD
ZL40212
clk_p
clk_n
Z o = 50 Ohms
LVDS
Receiver
Z o = 50 Ohms
Figure 13 - LVDS DC Coupled Termination (Internal Receiver Termination)
10
Microsemi Corporation
ZL40212
Data Sheet
VDD_Rx
VDD
ZL40212
clk_p
Zo = 50 Ohms
100 Ohms
clk_n
LVDS
Receiver
Zo = 50 Ohms
Figure 14 - LVDS DC Coupled Termination (External Receiver Termination)
VDD
VDD_Rx
R1
ZL40212
clk_p
R1
Zo = 50 Ohms
LVDS
Receiver
100 Ohms
clk_n
Zo = 50 Ohms
R2
R2
Note: R1 and R2 values and need for external termination
depend on the specification of the LVDS receiver
Figure 15 - LVDS AC Coupled Termination
11
Microsemi Corporation
VDD_Rx
ZL40212
Data Sheet
VDD_Rx
VDD
ZL40212
clk_p
clk_n
50 Ohms
Zo = 50 Ohms
50 Ohms
CML
Receiver
Zo = 50 Ohms
Figure 16 - LVDS AC Output Termination for CML Inputs
12
Microsemi Corporation
ZL40212
3.3
Data Sheet
Device Additive Jitter
The ZL40212 clock fanout buffer is not intended to filter clock jitter. The jitter performance of this type of device is
characterized by its additive jitter. Additive jitter is the jitter the device would add to a hypothetical jitter-free clock as
it passes through the device. The additive jitter of the ZL40212 is random and as such it is not correlated to the jitter
of the input clock signal.
The square of the resultant random RMS jitter at the output of the ZL40212 is equal to the sum of the squares of the
various random RMS jitter sources including: input clock jitter; additive jitter of the buffer; and additive jitter due to
power supply noise. There may be additional deterministic jitter sources, but they are not shown in Figure 17.
Jadd2
Jin2
Jps2
+
Jin
Jadd
Jps
Jout
+
= Random input clock jitter (RMS)
= Additive jitter due to the device (RMS)
= Additive jitter due to power supply noise (RMS)
= Resultant random output clock jitter (RMS)
Figure 17 - Additive Jitter
13
Microsemi Corporation
Jout2= Jin2+Jadd2+Jps2
ZL40212
3.4
Data Sheet
Power Supply
This device operates with either a 2.5V supply or 3.3V supply.
3.4.1
Sensitivity to power supply noise
Power supply noise from sources such as switching power supplies and high-power digital components such as
FPGAs can induce additive jitter on clock buffer outputs. The ZL40212 is equipped with a low drop out (LDO) power
regulator and on-chip bulk capacitors to minimize additive jitter due to power supply noise. The LDO regulator on
the ZL40212 allows this device to have superior performance even in the presence of external noise sources. The
on-chip measures in combination with the simple recommended power supply filtering and PCB layout minimize the
additive jitter from power supply noise.
The performance of these clock buffers in the presence of power supply noise is detailed in ZLAN-403, “Power
Supply Rejection in Clock Buffers” which is available from Applications Engineering.
3.4.2
Power supply filtering
For optimal jitter performance, the device should be isolated from the power planes connected to its power supply
pins as shown in Figure 18.
•
•
•
•
10 µF capacitors should be size 0603 or size 0805 X5R or X7R ceramic, 6.3 V minimum rating
0.1 µF capacitors should be size 0402 X5R ceramic, 6.3 V minimum rating
Capacitors should be placed next to the connected device power pins
a 0.3 ohm resistor is recommended for the filter shown in Figure 18
VDD
0.3 Ohm s
0.1 µF
8
ZL40212
10 µF
13
Figure 18 - Decoupling Connections for Power Pins
3.4.3
PCB layout considerations
The power nets in Figure 18 can be implemented either as a plane island or routed power topology without
changing the overall jitter performance of the device.
14
Microsemi Corporation
ZL40212
4.0
Data Sheet
AC and DC Electrical Characteristics
Absolute Maximum Ratings*
Parameter
Sym.
Min.
Max.
Units
VDD_R
-0.5
4.6
V
VPIN
-0.5
VDD
V
260
°C
125
°C
1
Supply voltage
2
Voltage on any digital pin
3
Soldering temperature
4
Storage temperature
TST
5
Junction temperature
Tj
125
°C
6
Voltage on input pin
Vinput
VDD
V
7
Input capacitance each pin
Cp
500
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.
* Voltages are with respect to ground (GND) unless otherwise stated
fF
T
-55
Recommended Operating Conditions*
Characteristics
Sym.
Min.
Typ.
Max.
Units
1
Supply voltage 2.5 V mode
VDD25
2.375
2.5
2.625
V
2
Supply voltage 3.3 V mode
VDD33
3.135
3.3
3.465
V
3
Operating temperature
TA
-40
25
85
°C
* Voltages are with respect to ground (GND) unless otherwise stated
DC Electrical Characteristics - Current Consumption
Characteristics
1
Supply current LVDS drivers
loaded (all outputs are active)
Sym.
-
Min.
Typ.
Idd_load
Max.
44
Units
Notes
mA
DC Electrical Characteristics - Inputs and outputs - for 2.5/3.3 V supply
Characteristics
Sym.
Min.
Typ.
Max.
Units
Notes
1
LVDS Differential input common
mode supply voltage
VICM
1.1
1.6
V
for 2.5 V
2
LVDS Differential input common
mode supply voltage
VICM
1.1
2.0
V
for 3.3 V
3
LVDS Differential input voltage
VID
0.25
1
V
4
LVDS output differential voltage*
VOD
0.25
0.30
0.40
V
5
LVDS output common mode voltage
VCM
1.1
1.25
1.375
V
* The VOD parameter was measured from 125 to 750 MHz.
15
Microsemi Corporation
ZL40212
Data Sheet
VOD
2*VOD
Figure 19 - Differential Output Voltage Parameter
AC Electrical Characteristics* - Inputs and Outputs (see Figure 20) - for 2.5/3.3 V supply.
Characteristics
Sym.
Min.
Typ.
Max.
Units
750
MHz
1
2
ns
1
Maximum Operating Frequency
1/tp
2
input to output clock propagation delay
tpd
3
output to output skew
tout2out
50
100
ps
4
part to part output skew
tpart2part
80
300
ps
5
Output clock Duty Cycle degradation
0
5
Percent
6
LVDS Output clock slew rate
0
tPWH/ tPWL
-5
rsl
0.55
* Supply voltage and operating temperature are as per Recommended Operating Conditions
tP
tREFW
tREFW
Input
tpd
Output
Figure 20 - Input To Output Timing
16
Microsemi Corporation
V/ns
Notes
ZL40212
5.0
Data Sheet
Performance Characterization
Additive Jitter at 2.5 V*
Output Frequency (MHz)
Jitter
Measurement
Filter
Typical
(fs)
1
125
12 kHz - 20 MHz
134
2
212.5
12 kHz - 20 MHz
120
3
311.04
12 kHz - 20 MHz
104
4
425
12 kHz - 20 MHz
105
5
500
12 kHz - 20 MHz
91
6
622.08
12 kHz - 20 MHz
91
7
750
12 kHz - 20 MHz
92
Notes
*The values in this table were taken with an approximate input slew rate of 0.8 V/ns
Additive Jitter at 3.3 V*
Output Frequency (MHz)
Jitter
Measurement
Filter
Typical
(fs)
1
125
12 kHz - 20 MHz
135
2
212.5
12 kHz - 20 MHz
122
3
311.04
12 kHz - 20 MHz
106
4
425
12 kHz - 20 MHz
106
5
500
12 kHz - 20 MHz
94
6
622.08
12 kHz - 20 MHz
92
7
750
12 kHz - 20 MHz
93
Notes
*The values in this table were taken with an approximate input slew rate of 0.8 V/ns
Additive jitter in the presence of power supply noise*
Carrier
frequency
Parameter
Typical
Units
125
25 mV
at 100 kHz
48
fs RMS
750
25 mV
at 100 kHz
53
fs RMS
Notes
* The values in this table are the additive periodic jitter caused by an interfering tone typically caused by a switching power supply. For this test,
measurements were taken over the full temperature and voltage range for VDD = 3.3 V. The magnitude of the interfering tone is measured at the
DUT.
17
Microsemi Corporation
ZL40212
6.0
Data Sheet
Typical Behavior
0.33
0.2
0.15
0.325
0.1
Voltage
Voltage
0.05
0
-0.05
0.32
0.315
-0.1
0.31
-0.15
-0.2
0
5
10
15
0.305
20
0
100
200
Time (ns)
400
500
600
700
800
Frequency (MHz)
Typical Waveform at 155.52 MHz
VOD versus Frequency
-60
125 MHz
-55
212.5 MHz
425 MHz
-65
-60
750 MHz
-65
PSRR (dBc)
-70
PSRR (dBc)
300
-75
-80
-70
-75
-80
-85
125 MHz
212.5 MHz
-85
425 MHz
750 MHz
-90
-90
100
150
200
250
300
350
400
450
20
500
Power Supply Tone Frequency versus PSRR
Propagation Delay (ns)
0.55
0.5
0.45
0.4
0.35
-40
-20
0
20
40
60
40
50
60
70
80
90
Power Supply Tone Magnitude versus PSRR
0.6
0.3
30
Power Supply Tone magnitude (mV) at 100 kHz
Power Supply Tone Frequency with 25 mV (kHz)
80
100
Temperature (°C)
Propagation Delay versus Temperature
Note: This is for a single device. For more details see the
characterization section.
18
Microsemi Corporation
100
ZL40212
7.0
Data Sheet
Package Thermal Characteristics
Thermal Data
Parameter
Symbol
Test Condition
Value
Junction to Ambient Thermal Resistance
ΘJA
Still Air
1 m/s
2 m/s
67.9
61.6
58.1
o
Junction to Case Thermal Resistance
ΘJC
Still Air
44.1
o
23.2
o
Junction to Board Thermal Resistance
Maximum Junction Temperature*
ΘJB
Still Air
Tjmax
Maximum Ambient Temperature
TA
* Proper thermal management must be practiced to ensure that Tjmax is not exceeded.
19
Microsemi Corporation
Unit
C/W
C/W
C/W
125
o
85
o
C
C
ZL40212
8.0
Mechanical Drawing
20
Microsemi Corporation
Data Sheet
For more information about all Microsemi products
visit our Web Site at
www.microsemi.com
Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively “Microsemi”) is believed to be reliable.
However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual
property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product
in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by
Microsemi.
This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form
part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and
other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding
the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not
constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the
performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded.
Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose
failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi’s conditions of
sale which are available on request.
Purchase of Microsemi’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system
conforms to the I2C Standard Specification as defined by Philips.
Microsemi, ZL, and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Microsemi Corporation.
TECHNICAL DOCUMENTATION - NOT FOR RESALE