0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ZL40220LDG1

ZL40220LDG1

  • 厂商:

    MICROSEMI(美高森美)

  • 封装:

    VFQFN32_EP

  • 描述:

    IC CLK BUFFER 2:6 750MHZ 32QFN

  • 数据手册
  • 价格&库存
ZL40220LDG1 数据手册
ZL40220 Precision 2:6 LVDS Fanout Buffer with Glitch-free Input Reference Switching Data Sheet November 2012 Features Ordering Information ZL40220LDG1 32 Pin QFN Trays ZL40220LDF1 32 Pin QFN Tape and Reel Inputs/Outputs • Accepts two differential or single-ended inputs • LVPECL, LVDS, CML, HCSL, LVCMOS • Matte Tin Package size: 5 x 5 mm -40oC to +85oC Glitch-free switching of references • Six precision LVDS outputs • Operating frequency up to 750 MHz Applications • General purpose clock distribution Power • Low jitter clock trees • Option for 2.5 V or 3.3 V power supply • Logic translation • Current consumption of 95 mA • Clock and data signal restoration • On-chip Low Drop Out (LDO) Regulator for superior power supply rejection • Redundant clock distribution • Wired communications: OTN, SONET/SDH, GE, 10 GE, FC and 10G FC • Wireless communications • High performance micro-processor clock distribution Performance • Ultra low additive jitter of 194 fs RMS out0_p out0_n clk1_p clk1_n out1_p out1_n Control clk0_p clk0_n out2_p out2_n Buffer out3_p out3_n out4_p out4_n sel out5_p out5_n Figure 1 - Functional Block Diagram 1 Microsemi Corporation Copyright 2012, Microsemi Corporation, All Rights Reserved. ZL40220 Data Sheet Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.0 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 Clock Input Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Clock Input Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Device Additive Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.1 Sensitivity to power supply noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.2 Power supply filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.3 PCB layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.0 AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.0 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.0 Typical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.0 Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.0 Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Microsemi Corporation ZL40220 Data Sheet List of Figures Figure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3 - Output During Clock Switch - Both Clocks Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4 - LVPECL Input DC Coupled Thevenin Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5 - LVPECL Input DC Coupled Parallel Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 6 - LVPECL Input AC Coupled Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7 - LVDS Input DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 8 - LVDS Input AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 9 - CML Input AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 10 - HCSL Input AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 11 - CMOS Input DC Coupled Referenced to VDD/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 12 - CMOS Input DC Coupled Referenced to Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 13 - Simplified LVDS Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 14 - LVDS DC Coupled Termination (Internal Receiver Termination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 15 - LVDS DC Coupled Termination (External Receiver Termination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 16 - LVDS AC Coupled Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 17 - LVDS AC Output Termination for CML Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 18 - Additive Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 19 - Decoupling Connections for Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 20 - Differential Voltage Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 21 - Input To Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Microsemi Corporation ZL40220 1.0 Data Sheet Package Description 24 22 20 gnd vdd out3_n out3_p out2_n out2_p vdd gnd The device is packaged in a 32 pin QFN 18 16 vdd out1_n out4_p 26 out1_p out0_n 14 12 gnd (E-pad) 10 32 NC gnd clk1_n 8 NC NC clk1_p 6 clk0_n 4 NC NC 2 clk0_p out5_n vdd 30 sel gnd out4_n out5_p 28 out0_p vdd vdd Figure 2 - Pin Connections 4 Microsemi Corporation ZL40220 2.0 Data Sheet Pin Description Pin # 1, 4, 5, 8 29, 28, 27, 26, 22, 21, 20, 19, 15, 14, 13, 12 Name Description clk0_p, clk0_n, Differential Input (Analog Input). Differential (or singled ended) input signals. For all clk1_p, clk1_n input signal configuration see Section 3.2, “Clock Input Termination“. out0_p, out0_n Differential Output (Analog Output). Differential outputs. out1_p, out1_n out2_p, out2_n out3_p, out3_n out4_p, out4_n out5_p, out5_n 11, 16, 18, 23, 25, 30 vdd Positive Supply Voltage. 2.5VDC or 3.3 VDC nominal. 9, 17, 24, 32 gnd Ground. 0 V. 31 sel Input Select (Input). Selects the reference input that is buffered; 0: clk0 1: clk1 This pin is internally pulled down to GND. 2, 3, 6, 7, 10 NC No Connection. Leave unconnected. 5 Microsemi Corporation ZL40220 3.0 Data Sheet Functional Description The ZL40220 is an LVDS clock fanout buffer with six identical output clock drivers capable of operating at frequencies up to 750MHz. The two Inputs to the ZL40220 are externally terminated to allow use of precision termination components and to allow full flexibility of input termination. The ZL40220 can accept DC or AC coupled LVPECL, LVDS, CML or HCSL input signals; single ended input signals can also be accepted. A pin compatible device with internal termination is also available. The ZL40220 is designed to fan out low-jitter reference clocks for wired or optical communications applications while adding minimal jitter to the clock signal. An internal linear power supply regulator and bulk capacitors minimize additive jitter due to power supply noise. The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C. The device block diagram is shown in Figure 1; its operation is described in the following sections. 3.1 Clock Input Selection The select line chooses which input clock is routed to the outputs. Sel Active Input 0 clk0 1 clk1 Table 1 - Input Selection The following figure shows the expected clock switching performance. The output stops at the first falling edge of the initial clock after the select pin changes state. During switching there will be a short time when the output clock is not toggling. After this delay, the output will start toggling again with a rising edge of the newly selected clock. This behavior is independent of the frequencies of the input clocks. For instance, the two clocks could be at different frequencies and the behavior would still be consistent with this figure. clk0 clk1 sel 1 0 2 µs outn Figure 3 - Output During Clock Switch - Both Clocks Running 6 Microsemi Corporation ZL40220 3.2 Data Sheet Clock Input Termination The ZL40220 is adaptable to support different types of differential and singled-ened input signals depending on the passive components used in the input termination. The application diagrams in the following figures allow the ZL40220 to accept LVPECL, LVDS, CML, HCSL and single-ended inputs. VDD_driver VDD VDD_driver R1 22 Ohms ZL40220 R1 Z o = 50 Ohms clk_p LVPECL Driver clk_n Z o = 50 Ohms 22 Ohms R2 R2 VDD_driver=3.3V: R1=127 ohm, R2=82 ohm VDD_driver=2.5V: R1=250 ohm, R2=62.5 ohm Figure 4 - LVPECL Input DC Coupled Thevenin Equivalent VDD VDD_driver ZL40220 22 Ohm s LVPECL Driver Z o = 50 Ohm s clk_p Z o = 50 Ohm s clk_n 22 Ohm s 50 Ohm s 50 Ohm s R1 VDD_driver=3.3V: R1 = 50 ohm VDD_driver=2.5V: R1 = 20 ohm Figure 5 - LVPECL Input DC Coupled Parallel Termination 7 Microsemi Corporation ZL40220 Data Sheet VDD VDD_driver=3.3V: R = 143 ohm VDD_driver=2.5V: R = 82 ohm 2K Ohm VDD_driver 2K Ohm ZL40220 100 nF Z o = 50 Ohm s LVPECL Driver clk_p 100 nF clk_n Z o = 50 Ohm s R VDD 2K Ohm R 2K Ohm Figure 6 - LVPECL Input AC Coupled Termination VDD VDD_driver ZL40220 Z o = 50 Ohm s LVDS Driver Z o = 50 Ohm s Figure 7 - LVDS Input DC Coupled 8 Microsemi Corporation 100 Ohm s clk_p clk_n ZL40220 Data Sheet VDD VDD 2K Ohm 2K Ohm 100 nF VDD_driver Zo = 50 Ohms LVDS Driver ZL40220 clk_p 100 Ohm clk_n Zo = 50 Ohms 100 nF 2K Ohm 2K Ohm Figure 8 - LVDS Input AC Coupled VDD_driver 50 Ohm VDD VDD VDD_driver 50 Ohm 2K Ohm 2K Ohm Zo = 50 Ohms clk_p 100 nF 100 nF CML Driver clk_n Zo = 50 Ohms 2K Ohm Figure 9 - CML Input AC Coupled 9 Microsemi Corporation ZL40220 2K Ohm ZL40220 Data Sheet VDD VDD VDD_driver 100 nF 2K Ohm 2K Ohm Zo = 50 Ohms ZL40220 clk_p HCSL Driver 100 nF clk_n Zo = 50 Ohms 50 Ohm 50 Ohm 2K Ohm 2K Ohm Figure 10 - HCSL Input AC Coupled VDD_driver VDD VDD_driver R ZL40220 CM OS Driver clk_p Vref = VDD_driver/2 R C R= 10 K ohm s, C = 100 nF Figure 11 - CMOS Input DC Coupled Referenced to VDD/2 10 Microsemi Corporation clk_n ZL40220 Data Sheet VDD VDD VDD_driver ZL40220 R2 CMOS Driver clk_p R1 RA clk_n R3 C Figure 12 - CMOS Input DC Coupled Referenced to Ground VDD_driver R1 (kΩ) R2 (kΩ) R3 (kΩ) RA (kΩ) C (pF) 1.5 1.25 3.075 open 10 10 1.8 1 3.8 open 10 10 2.5 0.33 4.2 open 10 10 3.3 0.75 open 4.2 10 10 Table 2 - Component Values for Single Ended Input Reference to Ground * For frequencies below 100 MHz, increase C to avoid signal integrity issues. 11 Microsemi Corporation ZL40220 3.3 Data Sheet Clock Outputs LVDS has lower signal swing than LVPECL which results in a low power consumption. A simplified diagram for the LVDS output stage is shown in Figure 13. VDD 3 mA - + Output + - Figure 13 - Simplified LVDS Output Driver The methods to terminate the ZL40220 drivers are shown in the following figures. VDD_Rx VDD ZL40220 clk_p clk_n Zo = 50 Ohms LVDS Receiver Zo = 50 Ohms Figure 14 - LVDS DC Coupled Termination (Internal Receiver Termination) 12 Microsemi Corporation ZL40220 Data Sheet VDD_Rx VDD ZL40220 clk_p Zo = 50 Ohms 100 Ohms clk_n LVDS Receiver Zo = 50 Ohms Figure 15 - LVDS DC Coupled Termination (External Receiver Termination) VDD VDD_Rx R1 ZL40220 clk_p R1 Zo = 50 Ohms LVDS Receiver 100 Ohms clk_n Zo = 50 Ohms R2 R2 Note: R1 and R2 values and need for external termination depend on the specification of the LVDS receiver Figure 16 - LVDS AC Coupled Termination 13 Microsemi Corporation VDD_Rx ZL40220 VDD ZL40220 clk_p clk_n Data Sheet VDD_Rx 50 Ohms Zo = 50 Ohms 50 Ohms CML Receiver Zo = 50 Ohms Figure 17 - LVDS AC Output Termination for CML Inputs 14 Microsemi Corporation ZL40220 3.4 Data Sheet Device Additive Jitter The ZL40220 clock fanout buffer is not intended to filter clock jitter. The jitter performance of this type of device is characterized by its additive jitter. Additive jitter is the jitter the device would add to a hypothetical jitter-free clock as it passes through the device. The additive jitter of the ZL40220 is random and as such it is not correlated to the jitter of the input clock signal. The square of the resultant random RMS jitter at the output of the ZL40220 is equal to the sum of the squares of the various random RMS jitter sources including: input clock jitter; additive jitter of the buffer; and additive jitter due to power supply noise. There may be additional deterministic jitter sources, but they are not shown in Figure 18. Jadd2 Jin2 Jps2 + Jin Jadd Jps Jout + = Random input clock jitter (RMS) = Additive jitter due to the device (RMS) = Additive jitter due to power supply noise (RMS) = Resultant random output clock jitter (RMS) Figure 18 - Additive Jitter 15 Microsemi Corporation Jout2= Jin2+Jadd2+Jps2 ZL40220 3.5 Data Sheet Power Supply This device operates with either a 2.5V supply or 3.3V supply. 3.5.1 Sensitivity to power supply noise Power supply noise from sources such as switching power supplies and high-power digital components such as FPGAs can induce additive jitter on clock buffer outputs. The ZL40220 is equipped with a low drop out (LDO) linear power regulator and on-chip bulk capacitors to minimize additive jitter due to power supply noise. The on-chip measures in combination with the simple recommended power supply filtering and PCB layout minimize additive jitter from power supply noise. 3.5.2 Power supply filtering For optimal jitter performance, the ZL40220 should be isolated from the power planes connected to its power supply pins as shown in Figure 19. • • • 10 µF capacitors should be size 0603 or size 0805 X5R or X7R ceramic, 6.3 V minimum rating 0.1 µF capacitors should be size 0402 X5R ceramic, 6.3 V minimum rating Capacitors should be placed next to the connected device power pins VDD 0.15 Ohms 10 µF 11 0.1 µF 16 0.1 µF 18 ZL40220 0.1 µF 23 0.1 µF 25 10 µF 30 Figure 19 - Decoupling Connections for Power Pins 3.5.3 PCB layout considerations The power supply filtering shown in Figure 19 can be implemented either as a plane island, or as a routed power topology with similar performance. 16 Microsemi Corporation ZL40220 4.0 Data Sheet AC and DC Electrical Characteristics Absolute Maximum Ratings* Parameter Sym. Min. Max. Units VDD_R -0.5 4.6 V VPIN -0.5 VDD V 260 °C 125 °C 1 Supply voltage 2 Voltage on any digital pin 3 Soldering temperature 4 Storage temperature TST 5 Junction temperature Tj 125 °C 6 Voltage on input pin Vinput VDD V 7 Input capacitance each pin Cp 500 * Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. * Voltages are with respect to ground (GND) unless otherwise stated fF T -55 Recommended Operating Conditions* Characteristics Sym. Min. Typ. Max. Units 1 Supply voltage 2.5 V mode VDD25 2.375 2.5 2.625 V 2 Supply voltage 3.3 V mode VDD33 3.135 3.3 3.465 V 3 Operating temperature TA -40 25 85 °C * Voltages are with respect to ground (GND) unless otherwise stated DC Electrical Characteristics - Current Consumption Characteristics 1 Supply current LVDS drivers loaded (all outputs are active) Sym. - Min. Typ. Idd_load Max. 95 Units Notes mA DC Electrical Characteristics - Inputs and outputs - for 2.5/3.3 V supply Characteristics Sym. Min. Typ. Max. 1 CMOS control logic high-level input VCIH 0.7*VDD 2 CMOS control logic low-level input VCIL 3 CMOS control logic Input leakage current IIL 4 Differential input voltage VID 0.25 1 V 5 Differential input common mode VICM 1.1 1.6 V for 2.5 V 6 Differential input common mode VICM 1.1 2.0 V for 3.3 V 7 LVDS output differential voltage* VOD 0.25 0.30 0.40 V 8 LVDS output common mode VCM 1.1 1.25 1.375 V 1 17 Microsemi Corporation Notes V 0.3*VDD * The VOD parameter was measured from 125 MHz to 750 MHz. Units V µA VI = VDD or 0 V ZL40220 Data Sheet VOD 2*VOD Figure 20 - Differential Voltage Parameter AC Electrical Characteristics* - Inputs and Outputs (see Figure 21) - for 2.5/3.3 V supply. Characteristics Sym. Min. Typ. Max. Units 750 MHz 1 2 ns 1 Maximum Operating Frequency 1/tp 2 Input to output clock propagation delay tpd 3 Output to output skew tout2out 80 150 ps 4 Part to part output skew tpart2part 120 300 ps 5 Output clock Duty Cycle degradation 0 5 Percent 6 LVDS Output slew rate 7 Reference transition time 0 tPWH/ tPWL -5 rSL 0.55 tswitch V/ns 2 * Supply voltage and operating temperature are as per Recommended Operating Conditions tP tREFW tREFW Input tpd Output Figure 21 - Input To Output Timing 18 Microsemi Corporation 3 us Notes ZL40220 5.0 Data Sheet Performance Characterization Additive Jitter at 2.5 V* Output Frequency (MHz) Jitter Measurement Filter Typical RMS (fs) 1 125 12 kHz - 20 MHz 261 2 212.5 12 kHz - 20 MHz 249 3 311.04 12 kHz - 20 MHz 215 4 425 12 kHz - 20 MHz 189 5 500 12 kHz - 20 MHz 201 6 622.08 12 kHz - 20 MHz 194 7 750 12 kHz - 20 MHz 205 Notes *The values in this table were taken with an approximate slew rate of 0.8 V/ns. Additive Jitter at 3.3 V* Output Frequency (MHz) Jitter Measurement Filter Typical RMS (fs) 1 125 12 kHz - 20 MHz 268 2 212.5 12 kHz - 20 MHz 251 3 311.04 12 kHz - 20 MHz 229 4 425 12 kHz - 20 MHz 220 5 500 12 kHz - 20 MHz 197 6 622.08 12 kHz - 20 MHz 194 7 750 12 kHz - 20 MHz 203 Notes *The values in this table were taken with an approximate slew rate of 0.8 V/ns. Additive jitter from a power supply tone* Carrier frequency Parameter Typical Units 125 25 mV at 100 kHz 37 fs RMS 750 25 mV at 100 kHz 40 fs RMS Notes * The values in this table are the additive periodic jitter caused by an interfering tone typically caused by a switching power supply. For this test, measurements were taken over the full temperature and voltage range for VDD = 3.3 V. The magnitude of the interfering tone is measured at the DUT. 19 Microsemi Corporation ZL40220 6.0 Data Sheet Typical Behavior 0.35 0.2 0.15 0.34 0.1 0.33 VOD Voltage 0.05 0 0.32 -0.05 -0.1 0.31 -0.15 -0.2 0 5 10 15 0.3 20 0 Time (ns) 200 300 400 500 600 -50 125 MHz -55 212.5 MHz -65 -60 425 MHz 750 MHz -65 PSRR (dBc) -70 -75 -80 -70 -75 -80 125 MHz -85 212.5 MHz -90 -85 425 MHz -95 750 MHz -100 100 150 200 250 300 350 400 450 20 500 Power Supply Tone Frequency versus PSRR 0.85 0.8 0.75 0.7 0.65 -40 -20 0 20 40 40 50 60 70 80 Power Supply Tone Magnitude versus PSRR 0.9 0.6 30 Tone Magnitude (mV) Tone Frequency (kHz) Delay (ns) 800 VOD vs Frequency -60 -90 700 Frequency (MHz) Typical Waveform at 155.52 MHz PSRR (dBc) 100 60 80 100 Temperature ( C) Propogation Delay versus Temperature Note: This is for a single device. For more details, see the characterization section. 20 Microsemi Corporation 90 100 ZL40220 7.0 Data Sheet Package Characteristics Thermal Data Parameter Symbol Test Condition Value Junction to Ambient Thermal Resistance ΘJA Still Air 1 m/s 2 m/s 37.4 33.1 31.5 o Junction to Case Thermal Resistance ΘJC 24.4 oC/W Junction to Board Thermal Resistance ΘJB 19.5 oC/W Maximum Junction Temperature* Tjmax 125 oC Maximum Ambient Temperature TA 85 oC 21 Microsemi Corporation Unit C/W ZL40220 8.0 Mechanical Drawing 22 Microsemi Corporation Data Sheet For more information about all Microsemi productsvisit our Web Site at www.microsemi.com Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively “Microsemi”) is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi. This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi’s conditions of sale which are available on request. Purchase of Microsemi’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Microsemi, ZL, and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Microsemi Corporation. TECHNICAL DOCUMENTATION - NOT FOR RESALE
ZL40220LDG1 价格&库存

很抱歉,暂时无法提供与“ZL40220LDG1”相匹配的价格&库存,您可以联系我们找货

免费人工找货