MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR10PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR10PM
OUTLINE DRAWING
10.5 MAX 5.2
Dimensions in mm
2.8
17 5.0
1.2
TYPE NAME VOLTAGE CLASS
φ3.2±0.2
13.5 MIN
3.6
1.3 MAX
0.8
2.54
2.54
8.5
0.5
2.6
• • • • •
IT (RMS) ...................................................................... 10A VDRM ..............................................................400V/600V IFGT !, IRGT !, IRGT # ......................... 30mA (20mA) V5 Viso ........................................................................ 1500V UL Recognized: File No. E80276
123 2
∗ Measurement point of case temperature
1
1 T1 TERMINAL 2 T2 TERMINAL 3 3 GATE TERMINAL
TO-220F
APPLICATION Switching mode power supply, light dimmer, electric flasher unit, hair drier, control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet, small motor control, copying machine, electric tool, solenoid drivers, other general purpose control applications
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltage V1 Non-repetitive peak off-state voltage V1 Voltage class 8 400 500 12 600 720 Unit V V
Symbol IT (RMS) ITSM I2t PGM PG (AV) VGM IGM Tj Tstg — Viso
Parameter RMS on-state current Surge on-state current I2t for fusing
Conditions Commercial power frequency, sine full wave 360° conduction, Tc=85° C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
4.5
Ratings 10 100 41.6 5 0.5 10 2 –40 ~ +125 –40 ~ +125
Unit A A A2s W W V A °C °C g V
Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Isolation voltage Typical value Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case
2.0 1500
V1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR10PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IDRM VTM VFGT ! VRGT ! VRGT # IFGT ! IRGT ! IRGT # VGD R th (j-c) (dv/dt) c Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage Gate trigger current V 2 Gate trigger voltage V2 Parameter Repetitive peak off-state current On-state voltage ! @ # ! @ # Tj=125°C, VD=1/2VDRM Junction to case V4 Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Test conditions Tj=125°C, V DRM applied Tc=25 °C, ITM=15A, Instantaneous measurement Limits Min. — — — — — — — — 0.2 —
V3
Typ. — — — — — — — — — — —
Max. 2.0 1.5 1.5 1.5 1.5 30 V 5 30 V 5 30 V 5 — 3.5 —
Unit mA V V V V mA mA mA V °C/ W V/µ s
V2. Measurement using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W. V5. High sensitivity (I GT≤20mA) is also available. (IGT item 1 ) (dv/dt) c Symbol R 8 400 L 10 V/µ s R 12 600 L 10 — Min. — 1. Junction temperature Tj =125° C 2. Rate of decay of on-state commutating current (di/dt)c=–5.0A/ms 3. Peak off-state voltage VD =400V Unit Test conditions
Voltage class
VDRM (V)
Commutating voltage and current waveforms (inductive load)
SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c (di/dt)c
TIME
TIME TIME VD
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS RATED SURGE ON-STATE CURRENT 100
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
90 80 70 60 50 40 30 20 10 0 100 2 3 4 5 7 101 2 3 4 5 7 102
Tj = 125°C
Tj = 25°C
10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR10PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE CHARACTERISTICS
100 (%)
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 TYPICAL EXAMPLE
GATE VOLTAGE (V)
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
102 7 5 3 2 VGM = 10V 101 7 5 3 2 100 7 5 3 2 VGD = 0.2V IRGT I IFGT I, IRGT III 10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE CURRENT (mA) PGM = 5W PG(AV) = 0.5W VGT = 1.5V IGM = 2A
IRGT I, IRGT III
IFGT I
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
GATE TRIGGER VOLTAGE (Tj = t °C) GATE TRIGGER VOLTAGE (Tj = 25°C)
103 7 5 4 3 2 102 7 5 4 3 2
TYPICAL EXAMPLE
TRANSIENT THERMAL IMPEDANCE (°C/W)
102 2 3 5 7 103 2 3 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT)
TRANSIENT THERMAL IMPEDANCE (°C/W)
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
MAXIMUM ON-STATE POWER DISSIPATION
ON-STATE POWER DISSIPATION (W)
103
NO FINS
16 14 12 360° CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16
102
101
100
10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz)
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR10PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160
CASE TEMPERATURE (°C)
140 120 100 80 60
AMBIENT TEMPERATURE (°C)
CURVES APPLY REGARDLESS OF CONDUCTION ANGLE
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 120 120 t2.3 100 100 100 t2.3 80 60 60 t2.3 60 RESISTIVE, 40 INDUCTIVE LOADS 20 NATURAL CONVECTION 0 0 2 4 6
360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6
8
10
12
14
16
8
10
12
14
16
RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t °C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 80 60 40 20 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A)
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) TYPICAL EXAMPLE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
LACHING CURRENT VS. JUNCTION TEMPERATURE
100 (%)
HOLDING CURRENT (Tj = t °C) HOLDING CURRENT (Tj = 25°C)
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
+ T2 , G+ TYPICAL – T2 , G– EXAMPLE
LACHING CURRENT (mA)
+ T2 , G– TYPICAL EXAMPLE
100 –40
0
40
80
120
160
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR10PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 140 TYPICAL EXAMPLE Tj = 125°C
160 TYPICAL EXAMPLE 140
BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
BREAKOVER VOLTAGE (Tj = t °C) BREAKOVER VOLTAGE (Tj = 25°C)
120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C)
120 100 80 60 40 20 #1 I QUADRANT #2 III QUADRANT
0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs)
COMMUTATION CHARACTERISTICS 3 TYPICAL 2 EXAMPLE 102 Tj = 125°C 7 IT = 4A 5 τ = 500µs 3 VD = 200V 2 f = 3Hz
VOLTAGE WAVEFORM
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 7 5 4 3 2 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102
100 (%)
TYPICAL EXAMPLE IFGT I IRGT I IRGT III
t (dv/dt)C VD
CURRENT WAVEFORM (di/dt)C IT
τ
t
101 I QUADRANT 7 5 3 MINIMUM 2 CHARACIII QUADRANT 100 TERISTICS 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms)
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
GATE CURRENT PULSE WIDTH (µs)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω
6V V
A RG
6V V
A RG
TEST PROCEDURE 1 6Ω
TEST PROCEDURE 2
6V V
A RG
TEST PROCEDURE 3
Feb.1999