MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM-14
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR12PM-14
OUTLINE DRAWING
Dimensions in mm
10.5 MAX 5.2
1.2
2.8
5.0
17
8.5
V
TYPE NAME
φ3.2 ± 0.2
3.6
VOLTAGE CLASS
1.3 MAX
13.5 MIN
0.8
2.54
2.54
0.5
2.6
¡IT (RMS) ...................................................................... 12A ¡VDRM ....................................................................... 700V ¡IFGT !, I RGT!, IRGT # ........................................... 30mA ¡Viso ........................................................................ 1500V ¡UL Recognized: File No. E80276
V Measurement point of case temperature
T1 TERMINAL T2 TERMINAL GATE TERMINAL TO-220F
APPLICATION Switching mode power supply, light dimmer, electric flasher unit, hair driver, control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet, solenoid drivers, small motor control, copying machine, electric tool
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltage V1 Non-repetitive peak off-state voltage V1 Voltage class 14 700 840 Unit V V
Symbol IT (RMS) ITSM I2t PGM PG (AV) VGM IGM Tj Tstg — Viso
Parameter RMS on-state current Surge on-state current I2t for fusing
Conditions Commercial frequency, sine full wave 360° conduction, Tc =74°C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
4.5
Ratings 12 120 60 5 0.5 10 2 –40 ~ +125 –40 ~ +125
Unit A A A2s W W V A °C °C g V
Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Isolation voltage Typical value Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case
2.0 1500
V1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM-14
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IDRM VTM VFGT ! VRGT ! VRGT # IFGT ! IRGT ! IRGT # VGD R th (j-c) (dv/dt) c Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage Gate trigger current V 2 Gate trigger voltage V2 Parameter Repetitive peak off-state current On-state voltage ! @ # ! @ # Tj=125°C, VD=1/2VDRM Junction to case V4 Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Test conditions Tj=125°C, V DRM applied Tc=25 °C, ITM=20A, Instantaneous measurement Limits Min. — — — — — — — — 0.2 —
V3
Typ. — — — — — — — — — — —
Max. 2.0 1.6 1.5 1.5 1.5 30 30 30 — 3.5 —
Unit mA V V V V mA mA mA V °C/ W V/µ s
V2. Measurement using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W.
Voltage class
VDRM (V)
(dv/dt) c Symbol Min. Unit Test conditions
Commutating voltage and current waveforms (inductive load)
R
—
1. Junction temperature Tj =125° C V/µ s 2. Rate of decay of on-state commutating current (di/dt)c=–6.0A/ms 3. Peak off-state voltage VD =400V
SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c (di/dt)c
TIME
14
700
TIME TIME VD
L
10
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS
SURGE ON-STATE CURRENT (A)
RATED SURGE ON-STATE CURRENT 200 180 160 140 120 100 80 60 40 20 0 100 2 3 4 5 7 101 2 3 4 5 7 102
ON-STATE CURRENT (A)
102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
Tj = 125°C
Tj = 25°C
10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM-14
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE CHARACTERISTICS
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE
100 (%)
GATE VOLTAGE (V)
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
102 7 5 3 2 VGM = 10V 101 7 5 3 2 100 7 5 3 2 PGM = 5W PG(AV) = 0.5W VGT = 1.5V IGM = 2A
103 7 5 4 3 2 102 7 5 4 3 2
TYPICAL EXAMPLE
IRGT I, IRGT III
IFGT I
VGD = 0.2V IRGT I IFGT I, IRGT III 10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE CURRENT (mA)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
GATE TRIGGER VOLTAGE (Tj = t °C) GATE TRIGGER VOLTAGE (Tj = 25°C)
103 7 5 4 3 2 102 7 5 4 3 2
TYPICAL EXAMPLE
TRANSIENT THERMAL IMPEDANCE (°C/W)
102 2 3 5 7 103 2 3 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT)
MAXIMUM ON-STATE POWER DISSIPATION
TRANSIENT THERMAL IMPEDANCE (°C/W)
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
NO FINS
ON-STATE POWER DISSIPATION (W)
103
16 14 12 360° CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16
102
101
100
10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz)
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM-14
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160
CASE TEMPERATURE (°C) AMBIENT TEMPERATURE (°C)
140 120 100 80 60
CURVES APPLY REGARDLESS OF CONDUCTION ANGLE
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 120 120 t2.3 100 100 100 t2.3 80 60 NO FINS RESISTIVE, 40 INDUCTIVE LOADS 20 NATURAL CONVECTION 0 0 2 4 6 60 60 t2.3
360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6
8
10
12
14
16
8
10
12
14
16
RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t °C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 80 60 40 20 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A)
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) TYPICAL EXAMPLE
LACHING CURRENT (mA)
LACHING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
100 (%)
HOLDING CURRENT (Tj = t °C) HOLDING CURRENT (Tj = 25°C)
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
+ T2 , G+ TYPICAL – T2 , G– EXAMPLE
DISTRIBUTION
+ T2 , G– TYPICAL EXAMPLE
100 –40
0
40
80
120
160
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM-14
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) 160 TYPICAL EXAMPLE 140
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 140 TYPICAL EXAMPLE Tj = 125°C
BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
BREAKOVER VOLTAGE (Tj = t °C) BREAKOVER VOLTAGE (Tj = 25°C)
120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C)
120 100 80 60 40 20 #1 I QUADRANT #2 III QUADRANT
0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs)
COMMUTATION CHARACTERISTICS 3 TYPICAL 2 EXAMPLE 102 Tj = 125°C 7 IT = 4A 5 τ = 500µs 3 VD = 200V 2 f = 3Hz
VOLTAGE WAVEFORM
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 7 5 4 3 2 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102 100 (%) TYPICAL EXAMPLE IFGT I IRGT I IRGT III
t (dv/dt)C VD
CURRENT WAVEFORM (di/dt)C IT
τ
t
101 I QUADRANT 7 5 3 MINIMUM 2 CHARACIII QUADRANT 100 TERISTICS 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A /ms)
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
GATE CURRENT PULSE WIDTH (µs)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω
6V V
A RG
6V V
A RG
TEST PROCEDURE 1 6Ω
TEST PROCEDURE 2
6V V
A RG
TEST PROCEDURE 3
Feb.1999