MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR3AM
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR3AM
OUTLINE DRAWING
10 MAX 4 φ3.2±0.1
TYPE NAME VOLTAGE CLASS
Dimensions in mm
0.5
∗
4 MAX 12 MIN
1.2±0.1 0.8 0.8
8 MAX
3.2±0.2 23.7±0.5
2.5 2.5
4.5 MAX
1.5 MIN
0.5
123
1.55±0.1
∗
Measurement point of case temperature
• IT (RMS) ........................................................................ 3A • VDRM ..............................................................400V/600V • IFGT !, IRGT !, IRGT # ......................... 30mA (15mA) V6 APPLICATION Contactless AC switches, light dimmer, electric blankets, control of household equipment such as electric fan, solenoid drivers, small motor control, other general purpose control applications
10 MAX 24 1 2 3 34 1
T1 TERMINAL T2 TERMINAL GATE TERMINAL T2 TERMINAL
TO-202
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltage V1 Non-repetitive peak off-state voltage V1 Voltage class 8 400 500 12 600 720 Unit V V
Symbol IT (RMS) ITSM I2t PGM PG (AV) VGM IGM Tj Tstg —
Parameter RMS on-state current Surge on-state current I2t for fusing Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Typical value
Conditions Commercial frequency, sine full wave 360° conduction, Tc =86°C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
Ratings 3 30 3.7 3 0.3 6 0.5 –40 ~ +125 –40 ~ +125 1.6
Unit A A A2s W W V A °C °C g
V1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR3AM
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Limits Symbol IDRM VTM VFGT ! VRGT ! VRGT # IFGT ! IRGT ! IRGT # VGD Rth (j-c) (dv/dt)c Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage Gate trigger current V2 Gate trigger voltage V2 Parameter Repetitive peak off-state current On-state voltage ! @ # ! @ # Tj=125°C, VD=1/2VDRM Junction to case V4 V5 Tj=25°C, VD=6V, RL=6Ω, RG=330Ω Tj=25°C, VD=6V, RL=6Ω, RG=330Ω Test conditions Tj=125°C, VDRM applied Tc=25°C, ITM=4.5A, Instantaneous measurement Min. — — — — — — — — 0.2 —
V3
Typ. — — — — — — — — — — —
Max. 2.0 1.5 1.5 1.5 1.5 30 V6 30 V6 30 V6 — 10 —
Unit mA V V V V mA mA mA V °C/ W V/µs
V2. Measurement using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. Case temperature is measured at the T2 terminal 1.5mm away from the molded case. V5. The contact thermal resistance Rth (c-f) in case of greasing is 3°C/W. V6. High sensitivity (IGT≤15mA) is also available. (IGT item 1) (dv/dt) c Min. Unit Test conditions
Voltage class
VDRM (V)
Commutating voltage and current waveforms (inductive load)
8
400
1. Junction temperature Tj=125°C 5 V/µs 2. Rate of decay of on-state commutating current (di/dt)c=–1.5A/ms 3. Peak off-state voltage VD=400V
SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c (di/dt)c
TIME
TIME TIME VD
12
600
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS RATED SURGE ON-STATE CURRENT 40
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
TC = 25°C
35 30 25 20 15 10 5 0 100 2 3 4 5 7 101 2 3 4 5 7 102
10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR3AM
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE CHARACTERISTICS
100 (%)
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 TYPICAL EXAMPLE IRGT III
GATE VOLTAGE (V)
101 7 5 3 2 VGT
PG(AV) = 0.3W IGM = 0.5A
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
102 7 5 3 2
PGM = 3W
100 7 5 3 2
IRGT I
102 IFGT I, IRGT I 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
IFGT I, IRGT III VGD = 0.2V 10–1 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 GATE CURRENT (mA)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
TRANSIENT THERMAL IMPEDANCE (°C/W)
GATE TRIGGER VOLTAGE (Tj = t °C) GATE TRIGGER VOLTAGE (Tj = 25°C)
103 7 5 4 3 2 102 7 5 4 3 2
TYPICAL EXAMPLE
102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 102 7 JUNCTION TO AMBIENT 5 3 2 101 7 5 3 2 100 7 5 3 2 10–1 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) JUNCTION TO CASE
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
MAXIMUM ON-STATE POWER DISSIPATION
ON-STATE POWER DISSIPATION (W)
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 130 120
CASE TEMPERATURE (°C)
5.0 4.5 4.0 360° 3.5 CONDUCTION 3.0 RESISTIVE, INDUCTIVE 2.5 LOADS 2.0 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 RMS ON-STATE CURRENT (A)
CURVES APPLY REGARDLESS OF CONDUCTION ANGLE
110 100 90 80 70 60 360° CONDUCTION 50 RESISTIVE, 40 INDUCTIVE LOADS 30 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR3AM
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
AMBIENT TEMPERATURE (°C)
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 130 NATURAL CONVECTION 120 ALL FINS ARE BLACK PAINTED IRON AND GREASED 110 CURVES APPLY REGARDLESS 100 OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE 90 LOADS 80 70 60 50 40 30 0 50 50 t1.2 30 30 t1.2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 RMS ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE 100 LOADS 80 60 40 20 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RMS ON-STATE CURRENT (A)
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) 103 7 5 4 3 2 102 7 5 4 3 2
100 (%)
HOLDING CURRENT VS. JUNCTION TEMPERATURE TYPICAL EXAMPLE
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t °C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
HOLDING CURRENT (Tj = t °C) HOLDING CURRENT (Tj = 25°C)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
LACHING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 100
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C)
+ T2 , G+ TYPICAL – – T2 , G EXAMPLE
–60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE (Tj = t °C) BREAKOVER VOLTAGE (Tj = 25°C)
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
LACHING CURRENT (mA)
T2 , G TYPICAL EXAMPLE
+
–
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR3AM
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 III QUADRANT Tj = 125°C
BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs)
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE
COMMUTATION CHARACTERISTICS 102 VOLTAGE WAVEFORM TYPICAL 7 t EXAMPLE 5 (dv/dt)C VD Tj = 125°C 4 IT = 4A 3 CURRENT WAVEFORM (di/dt)C τ = 500µs IT 2 VD = 200V τ t f = 3Hz 101 7 I QUADRANT 5 4 III QUADRANT 3 MINIMUM 2 CHARAC100 0 10
TERISTICS VALUE
I QUADRANT 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
2 3 4 5 7 101
2 3 4 5 7 102
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 7 5 4 3 2 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102
100 (%)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω
TYPICAL EXAMPLE IRGT III IRGT I IFGT I
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
6V V
A RG
6V V
A RG
TEST PROCEDURE 1 6Ω
TEST PROCEDURE 2
6V V
A RG
GATE CURRENT PULSE WIDTH (µs)
TEST PROCEDURE 3
Feb.1999