MITSUBISHI SEMICONDUCTOR 〈TRIAC 〉
BCR3KM
LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR3KM
OUTLINE DRAWING
10 ± 0.3
6.5 ± 0.3 3 ± 0.3
Dimensions in mm
2.8 ± 0.2
15 ± 0.3
φ 3.2 ± 0.2
14 ± 0.5
3.6 ± 0.3
1.1 ± 0.2 1.1 ± 0.2 0.75 ± 0.15
E
0.75 ± 0.15
2.54 ± 0.25
2.54 ± 0.25
4.5 ± 0.2
2.6 ± 0.2
V Measurement point of case temperature
.................................................................. 3A q VDRM ...................................................... 400V / 600V q IFGT ! , IRGT ! , I RGT # ................... 15mA (10mA) V2
q IT (RMS) q UL
T1 TERMINAL T2 TERMINAL GATE TERMINAL
Recognized : File No. E80271
TO-220FN
APPLICATION Control of heater such as electric rice cooker, electric pot
MAXIMUM RATINGS
Symbol V DRM V DSM Parameter Repetitive peak off-state voltageV 1 Voltage class 8 400 500 12 600 720 Unit V V
Non-repetitive peak off-state voltageV1
Symbol I T (RMS) I TSM I 2t PGM PG (AV) VGM I GM Tj T stg — Viso
Parameter RMS on-state current Surge on-state current I 2t for fusing Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Isolation voltage
Conditions Commercial frequency, sine full wave 360° conduction, Tc=111°C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
Ratings 3 30 3.7 3 0.3 6 0.5 –40 ~ +125 –40 ~ +125 2.0
Unit A A A2s W W V A °C °C g V
Feb.1999
Ta=25 °C, AC 1 minute, T1 · T2 · G terminal to case
2000
V1. Gate open.
MITSUBISHI SEMICONDUCTOR 〈TRIAC 〉
BCR3KM
LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol I DRM V TM V FGT ! V RGT ! V RGT # I FGT ! I RGT ! I RGT # VGD Rth (j-c) Rth (j-a) Parameter Repetitive peak off-state current On-state voltage
!
Test conditions Tj=125°C, VDRM applied Tc=25 °C, ITM=4.5A, Instantaneous measurement
@ # !
Limits Min. — — — — — — — — 0.2 — — Typ. — — — — — — — — — — — Max. 2.0 1.5 1.5 1.5 1.5 15 V 2 15 V 2 15 V 2 — 4.0 50
Unit mA V V V V mA mA mA V °C/ W °C/ W
Gate trigger voltage V2
Tj=25°C, V D=6V, RL=6Ω, RG=330Ω
Gate trigger
current V2
@ #
Tj=25°C, V D=6V, RL=6Ω, RG=330Ω Tj=125°C, VD=1/2VDRM Junction to case V3 Junction to ambient
Gate non-trigger voltage Thermal resistance Thermal resistance
V2. High sensitivity (I GT≤ 10mA) is also available. (IGT item ) V3. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W.
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS RATED SURGE ON-STATE CURRENT 40
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
TC = 25°C
35 30 25 20 15 10 5 0 100 2 3 4 5 7 101 2 3 4 5 7 102
10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC 〉
BCR3KM
LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE
102
7 5 3 2
100 (%)
GATE CHARACTERISTICS (Ι, ΙΙ AND ΙΙΙ)
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 TYPICAL EXAMPLE
GATE TRIGGER CURRENT (Tj = t °C) GATE TRIGGER CURRENT (Tj = 25°C)
GATE VOLTAGE (V)
101
7 5 3 VGT 2
PGM = 3W IGM = 0.5A
IRGT III
PG(AV) = 0.3W
IFGT I , IRGT I
100
7 5 3 2
IRGT I
IFGM I , IRGM III VGD = 0.2V 10–1 0 10 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 GATE CURRENT (mA)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE)
100 (%)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) TYPICAL EXAMPLE
TRANSIENT THERMAL IMPEDANCE (°C/W)
102 2 3 5 7 103 2 3 5 7 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz)
GATE TRIGGER VOLTAGE (Tj = t °C) GATE TRIGGER VOLTAGE (Tj = 25°C)
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT)
TRANSIENT THERMAL IMPEDANCE (°C/W)
7 5 4 3 2
MAXIMUM ON-STATE POWER DISSIPATION
ON-STATE POWER DISSIPATION (W)
102
5.0 4.5 4.0 360° 3.5 CONDUCTION RESISTIVE, 3.0 INDUCTIVE 2.5 LOADS 2.0 1.5 1.0 0.5 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 RMS ON-STATE CURRENT (A)
101
7 5 4 3 2
100 2 10 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC 〉
BCR3KM
LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 130 110 CURVES APPLY REGARDLESS 100 OF CONDUCTION 90 ANGLE 80 70 60 360° CONDUCTION 50 RESISTIVE, 40 INDUCTIVE LOADS 30 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 RMS ON-STATE CURRENT (A)
AMBIENT TEMPERATURE (°C)
120
CASE TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 120 100 80 60 40 20 0 0 1 2 3
CURVES APPLY REGARDLESS OF CONDUCTION ANGLE RESISTIVE, INDUCTIVE LOADS NATURAL CONVECTION
120 120 t2.3 100 100 t2.3 60 60 t2.3
4
5
6
7
8
RMS ON-STATE CURRENT (A)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t °C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25 °C)
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 80 60 40 20 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105
7 5 3 2
100 (%)
TYPICAL EXAMPLE
104
7 5 3 2
103
7 5 3 2
102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
100 (%)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103
7 5 4 3 2
LACHING CURRENT VS. JUNCTION TEMPERATURE 103
7 5 3 2
TYPICAL EXAMPLE
HOLDING CURRENT (Tj = t °C) HOLDING CURRENT (Tj = 25 °C)
102
7 5 3 2
102
7 5 4 3 2
101
7 5
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
T2 , G EXAMPLE 100 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
3 + + 2 T2 , G – TYPICAL –
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
LACHING CURRENT (mA)
DISTRIBUTION
+ T2 , G– TYPICAL EXAMPLE
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC 〉
BCR3KM
LOW POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 140 TYPICAL EXAMPLE Tj = 125°C
160 140
TYPICAL EXAMPLE
BREAKOVER VOLTAGE (dv/dt = xV/ µ s ) BREAKOVER VOLTAGE (dv/dt = 1V/ µ s )
BREAKOVER VOLTAGE (Tj = t °C) BREAKOVER VOLTAGE (Tj = 25 °C)
120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
120 100 80 III QUADRANT 60 40 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) I QUADRANT
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH
100 (%)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
6Ω 6Ω
103
7 5 4 3 2
IRGT III IRGT I
TYPICAL EXAMPLE
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
IFGT I
6V V
A RG
6V V
A RG
102
7 5 4 3 2
TEST PROCEDURE
6Ω
TEST PROCEDURE
6V
A V RG
101 0 10
2
3 45
7 101
2
3 45
7 102
GATE CURRENT PULSE WIDTH (µs)
TEST PROCEDURE
Feb.1999