MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8CM
MEDIUM POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR8CM
OUTLINE DRAWING
10.5 MAX
Dimensions in mm
4.5 4
16 MAX
3.2±0.2
1.3
∗
12.5 MIN 3.8 MAX
TYPE NAME VOLTAGE CLASS
1.0
0.8
2.5
2.5
7.0
φ3.6±0.2 0.5
2.6
123 24 1 2 33 4
∗
Measurement point of case temperature
• IT (RMS) ........................................................................ 8A • VDRM ..............................................................400V/600V • IFGT !, IRGT !, IRGT # ......................... 30mA (20mA) V5
1
T1 TERMINAL T2 TERMINAL GATE TERMINAL T2 TERMINAL
TO-220
APPLICATION Contactless AC switches, light drimmer, electric flasher unit, control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet · electric fan, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltage V1 Non-repetitive peak off-state voltage V1 Voltage class 8 400 500 12 600 720 Unit V V
Symbol IT (RMS) ITSM I2t PGM PG (AV) VGM IGM Tj Tstg —
Parameter RMS on-state current Surge on-state current I2t for fusing Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Typical value
Conditions Commercial frequency, sine full wave 360° conduction, Tc =105°C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
4.5
Ratings 8 80 26 5 0.5 10 2 –40 ~ +125 –40 ~ +125 2.0
Unit A A A2s W W V A °C °C g
V1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8CM
MEDIUM POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IDRM VTM VFGT ! VRGT ! VRGT # IFGT ! IRGT ! IRGT # VGD R th (j-c) (dv/dt) c Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage Gate trigger current V 2 Gate trigger voltage V2 Parameter Repetitive peak off-state current On-state voltage ! @ # ! @ # Tj=125°C, VD=1/2VDRM Junction to case V4 Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Test conditions Tj=125°C, V DRM applied Tc=25 °C, ITM=12A, Instantaneous measurement Limits Min. — — — — — — — — 0.2 —
V3
Typ. — — — — — — — — — — —
Max. 2.0 1.5 1.5 1.5 1.5 30 V 5 30 V 5 30 V 5 — 2.0 —
Unit mA V V V V mA mA mA V °C/ W V/µ s
V2. Measurement using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. The contact thermal resistance R th (c-f) in case of greasing is 1.0°C/W. V5. High sensitivity (I GT≤20mA) is also available. (IGT item 1 ) (dv/dt) c Symbol R 8 400 L 10 V/µ s R 12 600 L 10 — Min. — 1. Junction temperature Tj =125° C 2. Rate of decay of on-state commutating current (di/dt)c=–4A/ms 3. Peak off-state voltage VD =400V Unit Test conditions
Voltage class
VDRM (V)
Commutating voltage and current waveforms (inductive load)
SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c (di/dt)c
TIME
TIME TIME VD
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS 102 RATED SURGE ON-STATE CURRENT 100
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
7 5 3 2 7 5 3 2
90 80 70 60 50 40 30 20 10 0 100 2 3 4 5 7 101 2 3 4 5 7 102
Tj = 125°C
101
Tj = 25°C
100 7 5 3 2 10–1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8CM
MEDIUM POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE CHARACTERISTICS 100 (%) 3 2 GATE VOLTAGE (V) 101 7 5 3 2 100 7 5 3 2 IFGT I IRGT I, IRGT III 10–1 VGD = 0.2V 7 5 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE CURRENT (mA) VGM = 10V PG(AV) = 0.5W PGM = 5W IGM = 2A VGT = 1.5V GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) 103 7 5 4 3 2 102 7 5 4 3 2
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE TYPICAL EXAMPLE
IRGT III
IRGT I IFGT I
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 102 2 3 5 7 103 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) 103 7 5 4 3 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) TYPICAL EXAMPLE TRANSIENT THERMAL IMPEDANCE (°C/W)
GATE TRIGGER VOLTAGE (Tj = t °C) GATE TRIGGER VOLTAGE (Tj = 25°C)
MAXIMUM ON-STATE POWER DISSIPATION ON-STATE POWER DISSIPATION (W) 16 CASE TEMPERATURE (°C) 14 12 360° CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16 160 140 120 100 80 60
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT CURVES APPLY REGARDLESS OF CONDUCTION ANGLE
360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6
8
10
12
14
16
RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8CM
MEDIUM POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
AMBIENT TEMPERATURE (°C)
100 80 60 RESISTIVE, 40 INDUCTIVE LOADS 20 NATURAL CONVECTION 0 0 2 4 6
120 120 t2.3 100 100 t2.3 60 60 t2.3
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 80 60 40 20 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A)
8
10
12
14
16
RMS ON-STATE CURRENT (A)
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) 103 7 5 4 3 2 102 7 5 4 3 2
HOLDING CURRENT VS. JUNCTION TEMPERATURE
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t °C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
TYPICAL EXAMPLE
HOLDING CURRENT (Tj = t °C) HOLDING CURRENT (Tj = 25°C)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
LACHING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C)
100 –40
T2 , G TYPICAL – T2 , G– EXAMPLE
+ +
0
40
80
120
160
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE (Tj = t °C) BREAKOVER VOLTAGE (Tj = 25°C)
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
LACHING CURRENT (mA)
DISTRIBUTION
+ T2 , G– TYPICAL EXAMPLE
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8CM
MEDIUM POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
160 140
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs)
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE TYPICAL EXAMPLE Tj = 125°C
COMMUTATION CHARACTERISTICS 3 TYPICAL 2 EXAMPLE 102 Tj = 125°C 7 IT = 4A 5 τ = 500µs 3 VD = 200V 2 f = 3Hz
VOLTAGE WAVEFORM
BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
(dv/dt)C
t VD
120 100 80 60 40 20 I QUADRANT III QUADRANT
CURRENT WAVEFORM (di/dt)C IT
τ
t
0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
101 7 I QUADRANT 5 3 MINIMUM 2 CHARAC100 TERISTICS III QUADRANT 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 7 5 4 3 2 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102
100 (%)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω
TYPICAL EXAMPLE IFGT I IRGT I IRGT III
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
6V V
A RG
6V V
A RG
TEST PROCEDURE 1 6Ω
TEST PROCEDURE 2
6V V
A RG
GATE CURRENT PULSE WIDTH (µs)
TEST PROCEDURE 3
Feb.1999