MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR8PM
OUTLINE DRAWING
10.5 MAX 5.2
Dimensions in mm
2.8
17 5.0
1.2
TYPE NAME VOLTAGE CLASS
φ3.2±0.2
13.5 MIN
3.6
1.3 MAX
0.8
2.54
2.54
8.5
0.5
2.6
• • • • •
IT (RMS) ........................................................................ 8A VDRM ..............................................................400V/600V IFGT !, IRGT !, IRGT # ......................... 30mA (20mA) V5 Viso ........................................................................ 1500V UL Recognized: File No. E80276
123 2
∗ Measurement point of case temperature
1
1 T1 TERMINAL 2 T2 TERMINAL 3 3 GATE TERMINAL
TO-220F
APPLICATION Switching mode power supply, light dimmer, electric flasher unit, control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications
MAXIMUM RATINGS
Symbol VDRM VDSM Parameter Repetitive peak off-state voltage V1 Non-repetitive peak off-state voltage V1 Voltage class 8 400 500 12 600 720 Unit V V
Symbol IT (RMS) ITSM I2t PGM PG (AV) VGM IGM Tj Tstg — Viso
Parameter RMS on-state current Surge on-state current I2t for fusing
Conditions Commercial frequency, sine full wave 360° conduction, Tc =88°C 60Hz sinewave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
4.5
Ratings 8 80 26 5 0.5 10 2 –40 ~ +125 –40 ~ +125
Unit A A A2s W W V A °C °C g V
Peak gate power dissipation Average gate power dissipation Peak gate voltage Peak gate current Junction temperature Storage temperature Weight Isolation voltage Typical value Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case
2.0 1500
V1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IDRM VTM VFGT ! VRGT ! VRGT # IFGT ! IRGT ! IRGT # VGD R th (j-c) (dv/dt) c Gate non-trigger voltage Thermal resistance Critical-rate of rise of off-state commutating voltage Gate trigger current V 2 Gate trigger voltage V2 Parameter Repetitive peak off-state current On-state voltage ! @ # ! @ # Tj=125°C, VD=1/2VDRM Junction to case V4 Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Tj=25 °C, VD =6V, RL=6Ω, RG=330Ω Test conditions Tj=125°C, V DRM applied Tc=25 °C, ITM=12A, Instantaneous measurement Limits Min. — — — — — — — — 0.2 —
V3
Typ. — — — — — — — — — — —
Max. 2.0 1.6 1.5 1.5 1.5 30 V 5 30 V 5 30 V 5 — 3.7 —
Unit mA V V V V mA mA mA V °C/ W V/µ s
V2. Measurement using the gate trigger characteristics measurement circuit. V3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. V4. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W. V5. High sensitivity (I GT≤20mA) is also available. (IGT item 1 ) (dv/dt) c Symbol R 8 400 L 10 V/µ s R 12 600 L 10 — Min. — 1. Junction temperature Tj =125° C 2. Rate of decay of on-state commutating current (di/dt)c=–4.0A/ms 3. Peak off-state voltage VD =400V Unit Test conditions
Voltage class
VDRM (V)
Commutating voltage and current waveforms (inductive load)
SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c (di/dt)c
TIME
TIME TIME VD
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS
SURGE ON-STATE CURRENT (A)
RATED SURGE ON-STATE CURRENT 100 90 80 70 60 50 40 30 20 10 0 100 2 3 4 5 7 101 2 3 4 5 7 102
ON-STATE CURRENT (A)
102 7 5 3 2 101 7 5 3 2 100 7 5 3 2 10–1
Tj = 125°C
Tj = 25°C
0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE CHARACTERISTICS
100 (%)
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 TYPICAL EXAMPLE
3 2 VGM = 10V
GATE VOLTAGE (V)
PG(AV) = 0.5W PGM = 5W
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
101 7 5 3 2 100 7 5 3 2
IGM = 2A VGT = 1.5V
IRGT III
IFGT I IRGT I, IRGT III VGD = 0.2V 10–1 7 5 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE CURRENT (mA)
102 IRGT I IFGT I 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
100 (%)
GATE TRIGGER VOLTAGE (Tj = t °C) GATE TRIGGER VOLTAGE (Tj = 25°C)
103 7 5 4 3 2 102 7 5 4 3 2
TYPICAL EXAMPLE
TRANSIENT THERMAL IMPEDANCE (°C/W)
102 2 3 5 7 103 2 3 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz)
101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT)
TRANSIENT THERMAL IMPEDANCE (°C/W)
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
MAXIMUM ON-STATE POWER DISSIPATION
ON-STATE POWER DISSIPATION (W)
103
NO FINS
16 14 12 360° CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16
102
101
100
10–1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz)
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 160 CASE TEMPERATURE (°C) 140 120 100 80 60 360° 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 AMBIENT TEMPERATURE (°C) CURVES APPLY REGARDLESS OF CONDUCTION ANGLE
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 120 100 80 60 40 RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 120 120 t2.3 100 100 t2.3 60 60 t2.3 NATURAL CONVECTION CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 8 10 12 14 16
8
10
12
14
16
RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t °C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 80 60 40 20 0 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 RMS ON-STATE CURRENT (A)
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 4 3 2 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C) TYPICAL EXAMPLE LACHING CURRENT (mA) 103 7 5 3 2 102 7 5 3 2 100 (%)
LACHING CURRENT VS. JUNCTION TEMPERATURE
HOLDING CURRENT (Tj = t °C) HOLDING CURRENT (Tj = 25°C)
101 7 5 3 2
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
+ T2 , G+ TYPICAL – T2 , G– EXAMPLE
+ T2 , G– TYPICAL EXAMPLE
100 –40
0
40
80
120
160
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR8PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) 160 TYPICAL EXAMPLE 140
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 140 TYPICAL EXAMPLE Tj = 125°C
BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
BREAKOVER VOLTAGE (Tj = t °C) BREAKOVER VOLTAGE (Tj = 25°C)
120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C)
120 100 80 60 40 20 I QUADRANT III QUADRANT
0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs)
COMMUTATION CHARACTERISTICS 3 TYPICAL 2 EXAMPLE 102 Tj = 125°C 7 IT = 4A 5 τ = 500µs 3 VD = 200V 2 f = 3Hz
VOLTAGE WAVEFORM
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 7 5 4 3 2 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102 100 (%) TYPICAL EXAMPLE IFGT I IRGT I IRGT III
t (dv/dt)C VD
CURRENT WAVEFORM (di/dt)C IT
τ
t
101 7 I QUADRANT 5 3 MINIMUM 2 CHARAC100 TERISTICS III QUADRANT 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A /ms)
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
GATE CURRENT PULSE WIDTH (µs)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω
6V V
A RG
6V V
A RG
TEST PROCEDURE 1 6Ω
TEST PROCEDURE 2
6V V
A RG
TEST PROCEDURE 3
Feb.1999