MITSUBISHI SEMICONDUCTOR 〈THYRISTOR 〉
CR2AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
CR2AM
OUTLINE DRAWING
10 MAX 4 φ3.2±0.1 TYPE NAME @ VOLTAGE CLASS
8 MAX 3.2±0.2 23.7±0.5
Dimensions in mm
0.5
∗
4 MAX 12 MIN
1.2±0.1 0.8 0.8
2.5 2.5
4.5 MAX
1.5 MIN
0.5
123
1.55±0.1
∗
Measurement point of case temperature
10 MAX
24 1 2 3 4 CATHODE ANODE GATE ANODE
• IT (AV) ........................................................................... 2A • VDRM ..............................................................400V/600V • IGT ......................................................................... 100µ A
3 1
TO-202
APPLICATION Control of household equipment such as electric blandets, leakage protector, static switch, other general purpose control applications, ignitors
MAXIMUM RATINGS
Symbol VRRM VRSM VR (DC) VDRM VD (DC) Parameter Repetitive peak reverse voltage Non-repetitive peak reverse voltage DC reverse voltage Repetitive peak off-state voltage DC off-state voltage
V1 V1
Voltage class 8 400 500 320 400 320 12 600 720 480 600 480
Unit V V V V V
Symbol IT (RMS) IT (AV) ITSM I2t PGM PG (AV) VFGM VRGM IFGM Tj Tstg —
Parameter RMS on-state current Average on-state current Surge on-state current I2t for fusing
Conditions Commercial frequency, sine half wave, 180° conduction, Tc =75°C 60Hz sine half wave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, Surge on-state current
Ratings 3.15 2.0 20 1.6 0.5 0.1 6 6 0.3 –40 ~ +125 –40 ~ +125
Unit A A A A2s W W V V A °C °C g
Peak gate power dissipation Average gate power dissipation Peak gate forward voltage Peak gate reverse voltage Peak gate forward current Junction temperature Storage temperature Weight Typical value
1.6
V1. With Gate-to-cathode resistance RGK =1kΩ
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR2AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IRRM IDRM VTM VGT VGD IGT R th (j-c) Parameter Repetitive peak reverse current Repetitive peak off-state current On-state voltage Gate trigger voltage Gate non-trigger voltage Gate trigger current Thermal resistance Test conditions Tj=125°C, V RRM applied Tj=125°C, V DRM applied, RGK=1k Ω Tc=25 °C, ITM =4A, Instantaneous value Tj=25 °C, VD =6V, IT=0.1A Tj=125°C, VD=1/2VDRM, RGK=1k Ω Tj=25 °C, VD=6V, IT=0.1A Junction to case V2 Limits Min. — — — — 0.2 1 — Typ. — — — — — — — Max. 0.1 0.1 1.8 0.8 — 100 V 3 10 Unit mA mA V V V µA °C/W
V2. The method point for case temperature is at the anode tab 1.5mm away from the molded case. V3. If special values of I GT are required, choose at least two items from those listed in the table below. (Example: AB, BC) Item IGT (µ A) A 1 ~ 30 B 20 ~ 50 C 40 ~ 100
The above values do not include the current flowing through the 1k Ω resistance between the gate and cathode.
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS 101 7 Tc = 25°C 5 3 2 100 7 5 3 2 10–1 7 5 3 2 10–2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) RATED SURGE ON-STATE CURRENT 20
SURGE ON-STATE CURRENT (A)
18 16 14 12 10 8 6 4 2 0 100 2 3 4 5 7 101 2 3 4 5 7 102
ON-STATE CURRENT (A)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR2AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
GATE CHARACTERISTICS 102
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE
100 (%)
GATE VOLTAGE (V)
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
101
VFGM = 6V PG(AV) = 0.1W VGT = 0.8V IGT = 100µA (Tj = 25°C)
PGM = 0.5W
103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
TYPICAL EXAMPLE
100
10–1 VGD = 0.15V IFGM = 0.3A
10–2
5 710–12 3 5 7 100 2 3 5 7 101 2 3 5 7 102 2 3 5
100 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
GATE CURRENT (mA)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 1.0
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
TRANSIENT THERMAL IMPEDANCE (°C/W)
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 3 2 102 7 5 3 2 101 7 5 3 2 JUNCTION TO AMBIENT
GATE TRIGGER VOLTAGE (V)
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,,
DISTRIBUTION TYPICAL EXAMPLE 0 20 40 60 80 100 120 JUNCTION TEMPERATURE (°C)
JUNCTION TO CASE
0 –40 –20
100 7 5 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 TIME (s)
AVERAGE POWER DISSIPATION (W)
CASE TEMPERATURE (°C)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE HALF WAVE) 5.0 180° 4.5 90° 120° 60° 4.0 θ = 30° 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 θ 360° RESISTIVE, INDUCTIVE LOADS 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160 140 120 100 80 60 40 20 0 0 θ = 30° 60° 90° 120° 180° θ 360° RESISTIVE, INDUCTIVE LOADS
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR2AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
AMBIENT TEMPERATURE (°C)
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160 WITHOUT FIN 140 NATURAL θ CONVECTION 360° 120 RESISTIVE, 100 INDUCTIVE LOADS 80 θ = 30° 60° 60 90° 120° 40 180° 20 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160 ALL FINS ARE 140 BLACK PAINTED θ IRON AND GREASED 120 100 80 60 40 20 0 0 θ = 30° 90° 180° 50 50 t1.2 360° RESISTIVE, INDUCTIVE LOADS NATURAL CONVECTION
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE FULL WAVE) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 θ θ 360° RESISTIVE LOADS 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 CASE TEMPERATURE (°C) θ = 30° 60° 90° 120° 180°
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 140 120 100 80 60 40 20 0 0 θ = 30° 60° 90° 120° 180° 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 θ θ
360° RESISTIVE LOADS
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
AMBIENT TEMPERATURE (°C)
120 100 80 60 40 20 0 0
360° RESISTIVE θ = 30° LOADS 60° NATURAL 90° CONVECTION 120° 180°
AMBIENT TEMPERATURE (°C)
ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 WITHOUT FIN 140 θθ
ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 ALL FINS ARE 140 BLACK PAINTED θθ IRON AND GREASED 50 50 t1.2 360° 120 RESISTIVE LOADS 100 NATURAL CONVECTION 80 60 40 20 0 θ = 30° 0 90° 180° 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR2AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS. GATE TO CATHODE RESISTANCE
100 (%)
160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60
100 (%)
RGK = 1kΩ
120 100 TYPICAL EXAMPLE Tj = 125°C
BREAKOVER VOLTAGE (RGK = r k Ω) BREAKOVER VOLTAGE (RGK = 1k Ω)
80 100 120
BREAKOVER VOLTAGE (T j = t °C) BREAKOVER VOLTAGE (T j = 25°C)
80 60 40 20 0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 GATE TO CATHODE RESISTANCE (kΩ)
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE (dv/dt = vV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
HOLDING CURRENT (mA)
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 120 TYPICAL EXAMPLE IGT (25°C) 100 # 1 19µA # 2 66µA 80 60 40 20 0 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) #2 #1 Tj = 125°C RGK = 1kΩ
100 (%)
HOLDING CURRENT VS. JUNCTION TEMPERATURE 101 7 DISTRIBUTION 5 TYPICAL EXAMPLE 3 IGT (25°C) = 35µA 2 100 7 5 3 2
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
10–1 7 5 3 VD = 12V 2 RGK = 1kΩ 10–2 –60 –40 –20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (°C)
100 (%)
500 Tj = 25°C TYPICAL EXAMPLE IGT (25°C) IH (1kΩ) # 1 25µA 0.9mA # 2 48µA 1.3mA
400
REPETITIVE PEAK REVERSE VOLTAGE (Tj = t °C) REPETITIVE PEAK REVERSE VOLTAGE (Tj = 25°C)
100 (%)
HOLDING CURRENT VS. GATE TO CATHODE RESISTANCE
REPETITIVE PEAK REVERSE VOLTAGE VS. JUNCTION TEMPERATURE 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60 80 100 120
HOLDING CURRENT (RGK = r k Ω) HOLDING CURRENT (RGK = 1k Ω)
300 #1 #2 100
200
0 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 GATE TO CATHODE RESISTANCE (kΩ)
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR2AM
LOW POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 104 7 TYPICAL EXAMPLE IGT (DC) 5 4 # 1 19µA 3 # 2 66µA 2 103 7 5 4 3 2 102 0 10
100 (%)
Tj = 25°C
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
#1 #2
2 3 4 5 7 101
2 3 4 5 7 102
GATE CURRENT PULSE WIDTH (µs)
Feb.1999