MITSUBISHI SEMICONDUCTOR 〈THYRISTOR 〉
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
CR6CM
OUTLINE DRAWING
10.5 MAX
3.2±0.2
Dimensions in mm
4.5 4
1.3
16 MAX
∗
12.5 MIN 3.8 MAX
TYPE NAME VOLTAGE CLASS
1.0
0.8
2.5
7.0
φ3.6±0.2
2.5
4.5
0.5
2.6
123 24 1 2 3 4
∗
Measurement point of case temperature
• IT (AV) ........................................................................... 6A • VDRM ..............................................................400V/600V • IGT ..........................................................................10mA
3 1
CATHODE ANODE GATE ANODE
TO-220
APPLICATION Switching mode power supply, ECR, regulator for autocycle, motor control
MAXIMUM RATINGS
Symbol VRRM VRSM VR (DC) VDRM VD (DC) Parameter Repetitive peak reverse voltage Non-repetitive peak reverse voltage DC reverse voltage Repetitive peak off-state voltage DC off-state voltage Voltage class 8 400 500 320 400 320 12 600 720 480 600 480 Unit V V V V V
Symbol IT (RMS) IT (AV) ITSM I2t PGM PG (AV) VFGM VRGM IFGM Tj Tstg —
Parameter RMS on-state current Average on-state current Surge on-state current I2t for fusing
Conditions Commercial frequency, sine half wave, 180° conduction, Tc =88°C 60Hz sine half wave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
Ratings 9.4 6 90 34 5 0.5 6 10 2 –40 ~ +125 –40 ~ +125
Unit A A A A2s W W V V A °C °C g
Peak gate power dissipation Average gate power dissipation Peak gate forward voltage Peak gate reverse voltage Peak gate forward current Junction temperature Storage temperature Weight Typical value
2.0
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IRRM IDRM VTM VGT VGD IGT IH R th (j-c) Parameter Repetitive peak reverse current Repetitive peak off-state current On-state voltage Gate trigger voltage Gate non-trigger voltage Gate trigger current Holding current Thermal resistance Test conditions Tj=125°C, V RRM applied Tj=125°C, V DRM applied Tc=25 °C, ITM =20A, instantaneous value Tj=25 °C, VD=6V, IT=1A Tj=125°C, VD=1/2VDRM Tj=25 °C, VD=6V, IT=1A Tj=25 °C, VD=12V Junction to case V1 Limits Min. — — — — 0.2 — — — Typ. — — — — — — 15 — Max. 2.0 2.0 1.7 1.0 — 10 — 3.0 Unit mA mA V V V mA mA °C/W
V1. The contact thermal resistance R th (c-f) is 1.0°C/W with greased.
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS 103 7 Tc = 125°C 5 3 2 102 7 5 3 2 101 7 5 3 2 100 0 1 2 3 4 5 RATED SURGE ON-STATE CURRENT 200
SURGE ON-STATE CURRENT (A)
180 160 140 120 100 80 60 40 20 0 100 2 3 4 5 7 101 2 3 4 5 7 102
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
GATE CHARACTERISTICS 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE
100 (%)
GATE VOLTAGE (V)
VFGM = 6V
PGM = 5W
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
TYPICAL EXAMPLE
VGT = 1V IGT = 10mA
PG(AV) = 0.5W
VGD = 0.2V IFGM = 2A 10–1 5 7 101 2 3 5 7 102 2 3 5 7 103 2 3 5 GATE CURRENT (mA)
100 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
TRANSIENT THERMAL IMPEDANCE (°C/W)
1.0
GATE TRIGGER VOLTAGE (V)
0.9
0.8 0.7 0.6 0.5
0.4 0.3 0.2
,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,,
DISTRIBUTION TYPICAL EXAMPLE 0 20 40 60 80 100 120 JUNCTION TEMPERATURE (°C)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 102
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
101
100
10–1
0.1 0 –40 –20
10–2 10–3 2 3 5 710–22 3 5 710–12 3 5 7 100 2 3 5 7 101 TIME (s)
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE HALF WAVE) 16
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160
CASE TEMPERATURE (°C)
14 12 10 8 6 4 2 0 0 2
θ = 30°
180° 120° 90° 60°
140 120 100 80 60 40 20 0 0
θ 360° RESISTIVE, INDUCTIVE LOADS
θ 360° RESISTIVE, INDUCTIVE LOADS 10 12 14 16
θ = 30° 60° 90° 120° 1 2 3 4 5
180° 6 7 8
4
6
8
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE FULL WAVE) 16 180° 120° 90° 60°
CASE TEMPERATURE (°C)
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 140 120 100 80 60 40 60° 20 0 0 2 4 6 8 10 12 14 16 120° θ = 30° 90° 180° θ θ
14 12 10 8 6 4 2 0 0 2 4
θ = 30°
360° RESISTIVE LOADS
θ
θ
360° 6 RESISTIVE LOADS 8 10 12 14 16
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
AVERAGE POWER DISSIPATION (W)
CASE TEMPERATURE (°C)
MAXIMUM AVERAGE POWER DISSIPATION (RECTANGULAR WAVE) 16 θ = 30° DC 14 60° 270° 180° 12 120° 90° 10 8 6 4 2 0 0 2 4 6 8 θ 360° RESISTIVE, INDUCTIVE LOADS 10 12 14 16
ALLOWABLE AMBIENT TEMPERATURE VS. AVERAGE ON-STATE CURRENT (RECTANGULAR WAVE) 160 140 120 100 80 60 40 20 0 0 2 θ = 30° 90° 180° 60° 120° 270° DC θ 360° RESISTIVE, INDUCTIVE LOADS
4
6
8
10
12
14
16
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
100 (%)
160 140 120 100 80 60 40 20
TYPICAL EXAMPLE
BREAKOVER VOLTAGE (dv/dt = vV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
BREAKOVER VOLTAGE (T j = t °C) BREAKOVER VOLTAGE (T j = 25°C)
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 Tj = 125°C TYPICAL 140 EXAMPLE 120 IGT (25°C) # 1 4.7mA 100 # 2 7.2mA 80 60 40 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) #1 #2
0 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6CM
MEDIUM POWER USE
NON-INSULATED TYPE, GLASS PASSIVATION TYPE
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 50 45
HOLDING CURRENT (mA)
HOLDING CURRENT VS. GATE TRIGGER CURRENT
HOLDING CURRENT (mA)
40 35 30 25 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 20
,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,, ,,,,,,,,,,
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
TYPICAL EXAMPLE
100 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
GATE TRIGGER CURRENT (mA)
TURN-ON TIME VS. GATE CURRENT 5.0 4.5
TURN-ON TIME (µs)
TURN-OFF TIME (µs)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 #
VD = 100V RL = 16Ω Ta = 25°C TYPICAL EXAMPLE IGT (25°C) # 5.2mA
80 70 60 50 40 30 20 10
,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,,
TYPICAL EXAMPLE 0 20
TURN-OFF TIME VS. JUNCTION TEMPERATURE
DISTRIBUTION
0 10 20 30 40 50 60 70 80 90 100 GATE CURRENT (mA)
0
IT = 6A, –di/dt = 5A/µs, VD = 300V, dv/dt = 20V/µs VR = 50V 40 60 80 100 120 140 160
JUNCTION TEMPERATURE (°C)
REPETITIVE PEAK REVERSE VOLTAGE (Tj = t °C) REPETITIVE PEAK REVERSE VOLTAGE (Tj = 25°C)
100 (%)
REPETITIVE PEAK REVERSE VOLTAGE VS. JUNCTION TEMPERATURE 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
100 (%)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 104 7 TYPICAL EXAMPLE 5 3 2 103 7 5 3 2 102 7 5 3 2 101 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 GATE CURRENT PULSE WIDTH (µs) tw
0.1s
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
Feb.1999