MITSUBISHI SEMICONDUCTOR 〈THYRISTOR 〉
CR6PM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
CR6PM
OUTLINE DRAWING
10.5 MAX 5.2
Dimensions in mm
2.8
17 5.0
1.2
TYPE NAME VOLTAGE CLASS
φ3.2±0.2
13.5 MIN
3.6
1.3 MAX
0.8
2.54
2.54
8.5
0.5
2.6
• • • • •
IT (AV) ........................................................................... 6A VDRM ..............................................................400V/600V IGT ..........................................................................10mA Viso ........................................................................ 1500V UL Recognized: File No. E80276
123 2
∗ Measurement point of case temperature
3 1
1 CATHODE 2 ANODE 3 GATE
TO-220F
APPLICATION Switching mode power supply, ECR, regulator for autocycle, motor control
MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)
Symbol VRRM VRSM VR (DC) VDRM VD (DC) Parameter Repetitive peak reverse voltage Non-repetitive peak reverse voltage DC reverse voltage Repetitive peak off-state voltage DC off-state voltage Voltage class 8 400 500 320 400 320 12 600 720 480 600 480 Unit V V V V V
Symbol IT (RMS) IT (AV) ITSM I2t PGM PG (AV) VFGM VRGM IFGM Tj Tstg — Viso
Parameter RMS on-state current Average on-state current Surge on-state current I2t for fusing
Conditions Commercial frequency, sine half wave, 180° conduction, Tc =85°C 60Hz sine half wave 1 full cycle, peak value, non-repetitive Value corresponding to 1 cycle of half wave 60Hz, surge on-state current
4.5
Ratings 9.4 6 90 34 5 0.5 6 10 2 –40 ~ +125 –40 ~ +125
Unit A A A A2s W W V V A °C °C g V
Peak gate power dissipation Average gate power dissipation Peak gate forward voltage Peak gate reverse voltage Peak gate forward current Junction temperature Storage temperature Weight Isolation voltage Typical value Ta=25°C, AC 1 minute, each terminal to case
2.0 1500
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6PM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol IRRM IDRM VTM VGT VGD IGT IH R th (j-c) Parameter Repetitive peak reverse current Repetitive peak off-state current On-state voltage Gate trigger voltage Gate non-trigger voltage Gate trigger current Holding current Thermal resistance Test conditions Tj=125°C, V RRM applied Tj=125°C, V DRM applied Tc=25 °C, ITM=20A, Instantaneous value Tj=25 °C, VD =6V, IT=1A Tj=125°C, VD=1/2VDRM Tj=25 °C, VD=6V, IT=1A Tj=25 °C, VD=12V Junction to case V1 Limits Min. — — — — 0.2 — — — Typ. — — — — — — 15 — Max. 2.0 2.0 1.7 1.0 — 10 — 4.0 Unit mA mA V V V mA mA °C/W
V1. The contact thermal resistance R th (j-c) is 0.5° C/W with greased.
PERFORMANCE CURVES
MAXIMUM ON-STATE CHARACTERISTICS 103 7 Tc = 125°C 5 3 2 102 7 5 3 2 101 7 5 3 2 100 0 1 2 3 4 5 RATED SURGE ON-STATE CURRENT 200
SURGE ON-STATE CURRENT (A)
180 160 140 120 100 80 60 40 20 0 100 2 3 4 5 7 101 2 3 4 5 7 102
ON-STATE CURRENT (A)
ON-STATE VOLTAGE (V)
CONDUCTION TIME (CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6PM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
GATE CHARACTERISTICS 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2
GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE
100 (%)
GATE VOLTAGE (V)
VFGM = 6V
PGM = 5W
GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C)
103 7 5 3 2 102 7 5 3 2 101 7 5 3 2
TYPICAL EXAMPLE
VGT = 1V IGT = 10mA
PG(AV) = 0.5W
VGD = 0.2V IFGM = 2A 10–1 5 7 101 2 3 5 7 102 2 3 5 7 103 2 3 5 GATE CURRENT (mA)
100 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
TRANSIENT THERMAL IMPEDANCE (°C/W)
1.0
GATE TRIGGER VOLTAGE (V)
0.9
0.8 0.7 0.6 0.5
0.4 0.3 0.2
,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,, ,,,,,,,,,,,,,
DISTRIBUTION TYPICAL EXAMPLE 0 20 40 60 80 100 120 JUNCTION TEMPERATURE (°C)
GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE
MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 102
7 5 3 2 7 5 3 2 7 5 3 2 7 5 3 2
101
100
10–1
0.1 0 –40 –20
10–2 10–3 2 3 5 710–22 3 5 710–12 3 5 7 100 2 3 5 7 101 TIME (s)
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE HALF WAVE) 16
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE HALF WAVE) 160
CASE TEMPERATURE (°C)
14 12 10 8 6 4 2 0 0 2
θ = 30°
180° 120° 90° 60°
140 120 100 80 60 40 20 0 0
θ 360° RESISTIVE, INDUCTIVE LOADS
θ 360° RESISTIVE, INDUCTIVE LOADS 10 12 14 16
θ = 30° 60° 90° 120° 1 2 3 4 5
180° 6 7 8
4
6
8
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6PM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
AVERAGE POWER DISSIPATION (W)
MAXIMUM AVERAGE POWER DISSIPATION (SINGLE-PHASE FULL WAVE) 16 180° 120° 90° 60°
CASE TEMPERATURE (°C)
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (SINGLE-PHASE FULL WAVE) 160 140 120 100 80 60 40 60° 20 0 0 2 4 6 8 10 12 14 16 120° θ = 30° 90° 180° θ θ
14 12 10 8 6 4 2 0 0 2 4
θ = 30°
360° RESISTIVE LOADS
θ
θ
360° 6 RESISTIVE LOADS 8 10 12 14 16
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
AVERAGE POWER DISSIPATION (W)
CASE TEMPERATURE (°C)
MAXIMUM AVERAGE POWER DISSIPATION (RECTANGULAR WAVE) 16 θ = 30° DC 14 60° 270° 180° 12 120° 90° 10 8 6 4 2 0 0 2 4 6 8 θ 360° RESISTIVE, INDUCTIVE LOADS 10 12 14 16
ALLOWABLE CASE TEMPERATURE VS. AVERAGE ON-STATE CURRENT (RECTANGULAR WAVE) 160 140 120 100 80 60 40 20 0 0 2 θ = 30° 90° 180° 60° 120° 270° DC θ 360° RESISTIVE, INDUCTIVE LOADS
4
6
8
10
12
14
16
AVERAGE ON-STATE CURRENT (A)
AVERAGE ON-STATE CURRENT (A)
100 (%)
160 140 120 100 80 60 40 20
TYPICAL EXAMPLE
BREAKOVER VOLTAGE (dv/dt = vV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs )
BREAKOVER VOLTAGE (T j = t °C) BREAKOVER VOLTAGE (T j = 25°C)
100 (%)
BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 Tj = 125°C TYPICAL 140 EXAMPLE 120 IGT (25°C) # 1 4.7mA 100 # 2 7.2mA 80 60 40 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) #1 #2
0 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈 THYRISTOR〉
CR6PM
MEDIUM POWER USE
INSULATED TYPE, GLASS PASSIVATION TYPE
HOLDING CURRENT VS. JUNCTION TEMPERATURE 103 7 5 3 2 102 7 5 3 2 101 7 5 3 2 50 45
HOLDING CURRENT (mA)
HOLDING CURRENT VS. GATE TRIGGER CURRENT
HOLDING CURRENT (mA)
40 35 30 25 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 20
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,,
DISTRIBUTION
TYPICAL EXAMPLE
100 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
GATE TRIGGER CURRENT (mA)
TURN-ON TIME VS. GATE CURRENT 5.0 4.5
TURN-ON TIME (µs)
TURN-OFF TIME (µs)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 #
VD = 100V RL = 16Ω Ta = 25°C TYPICAL EXAMPLE IGT (25°C) # 5.2mA
80 70 60 50 40 30 20 10
TYPICAL EXAMPLE
,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,, ,,,,,,,,,
20
TURN-OFF TIME VS. JUNCTION TEMPERATURE
DISTRIBUTION
0 10 20 30 40 50 60 70 80 90 100 GATE CURRENT (mA)
0
0
IT = 6A, –di/dt = 5A/µs, VD = 300V, dv/dt = 20V/µs VR = 50V 40 60 80 100 120 140 160
JUNCTION TEMPERATURE (°C)
REPETITIVE PEAK REVERSE VOLTAGE (Tj = t °C) REPETITIVE PEAK REVERSE VOLTAGE (Tj = 25°C)
100 (%)
REPETITIVE PEAK REVERSE VOLTAGE VS. JUNCTION TEMPERATURE 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –40 –20 0 20 40 60 80 100 120 140 160 JUNCTION TEMPERATURE (°C)
100 (%)
GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 104 7 TYPICAL EXAMPLE 5 3 2 103 7 5 3 2 102 7 5 3 2 101 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 GATE CURRENT PULSE WIDTH (µs) tw
0.1s
GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC)
Feb.1999