P
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
IM REL
IN
ARY
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
DESCRIPTION
The M37735EHLXXXHP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the PROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on. Its strong points are the low power dissipation, the low supply voltage and the small package. The M37735EHLXXXHP has the same function as the M37735MHLXXXHP except that the built-in ROM is PROM. (Refer to the basic function blocks description.)
qSingle power supply ...................................................... 2.7–5.5 V qLow power dissipation (At 3 V supply voltage, 12 MHz frequency) ............................................ 9 mW (Typ.) qInterrupts ............................................................ 19 types, 7 levels qMultiple-function 16-bit timer ................................................. 5 + 3 qSerial I/O (UART or clock synchronous) ...................................... 3 q10-bit A-D converter .............................................. 8-channel inputs qWatchdog timer qProgrammable input/output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8) ............................... 68 qClock generating circuit ........................................ 2 circuits built-in qSmall package ..................... 80-pin plastic molded fine-pitch QFP (0.5 mm lead pitch)
APPLICATION FEATURES
qNumber of basic instructions .................................................. 103 qMemory size PROM ............................................. 124 Kbytes RAM ................................................ 3968 bytes qInstruction execution time The fastest instruction at 12 MHz frequency ...................... 333 ns Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and so on. Control devices for general industrial equipment such as communication equipment, and so on.
PIN CONFIGURATION (TOP VIEW)
P86/RxD1 P87/TxD1 P00/C S0 P01/C S1 P02/C S2 P03/C S3 P04/C S4 P05/R S M P P06/A16 P07/A17 P10/A8/D8 P11/A9/D9 P12/A10 /D10 P13/A11 /D11 P14/A12 /D12 P15/A13 /D13 P16/A14 /D14 P17/A15 /D15 P20/A0/D0 P21/A1/D1
49 59 57 55 53 52 51 50 47 43 56 60 54 58 48 46 45
P85/C LK1 P84/C TS1/R TS1 P83/TXD0 P82/RXD0/C LK S0 P81/C LK0 P80/C TS0/R TS0/C LK S1 VC C AVC C VR E F AVSS VSS P77/AN7/XC IN P76/AN6/XC O U T P75/AN5/ADTR G/TXD2 P74/AN4/RXD2 P73/AN3/C LK2 P72/AN2/C TS2 P71/AN1 P70/AN0 P67/TB 2IN/f SUB
44
42
41
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
10 11 12 13 14 16 17 18 15 19 20 2 3 9
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
M37735E HLXXXH P
P22/A2/D2 P23/A3/D3 P24/A4/D4 P25/A5/D5 P26/A6/D6 P27/A7/D7 P 30/WE L P31/WE H P32/ALE P33/H LD A VSS E/R D E XO U T XIN R ESET C N V SS BYTE P40/H O LD P41/R D Y P42/f 1
1
5
6
7
P66/TB 1IN P65/TB 0IN P64/IN T2 P63/IN T1 P62/IN T0 P61/TA 4IN P60/TA 4OUT P57/TA 3IN/KI3 P56/TA 3OUT/KI2 P55/TA 2IN/KI1 P54/TA 2OUT/KI0 P53/TA 1IN P52/TA 1OUT P51/TA 0 IN P50/TA 0OUT P47 P46 P45 P44 P43
Outline
4
8
80P 6D-A, 80P6Q-A
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Reference External data bus width voltage input selection input VREF BYTE
Data Bus(Even) Data Bus(Odd)
Data Buffer DBH(8)
P0(8)
Data Buffer DBL(8)
Instruction Register(8)
Instruction Queue Buffer Q0(8) Instruction Queue Buffer Q1(8)
Address Bus
Incrementer(24)
(0V) AVSS Input/Output port P2 Input/Output port P8 Input/Output port P7 Input/Output port P6 Input/Output port P5 Input/Output port P4 Input/Output port P3
Program Address Register PA(24) Data Address Register DA(24)
P2(8)
CNVss
Incrementer/Decrementer(24)
(0V) VSS
Program Bank Register PG(8) Data Bank Register DT(8)
UART2(9) UART1(9)
UART0(9)
VCC
Input Butter Register IB(16)
Watchdog Timer
Timer TB2(16)
Timer TB1(16)
Timer TB0(16)
Processor Status Register PS(11)
Reset input
RESET
Direct Page Register DPR(16)
Stack Pointer S(16)
Timer TA4(16)
M37735EHLXXXHP BLOCK DIAGRAM
Timer TA3(16)
Timer TA2(16)
Timer TA1(16)
Timer TA0(16)
Index Register Y(16)
XCOUT XCIN
Index Register X(16) Accumulatcr B(16)
Enable output
E
Accumulator A(16)
Clock Generating Circuit 3968 bytes P7(8)
Clock input Clock output XIN XOUT
RAM
Arithmetic Logic Unit(16)
XCOUT XCIN
124 Kbytes
2
PROM
P8(8)
P6(8)
P5(8)
P4(8)
P3(4)
Program Counter PC(16)
A-D Converter(10)
Input/Output port P1
Instruction Queue Buffer Q2(8)
P1(8)
AVCC
Input/Output port P0
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
FUNCTIONS OF M37735EHLXXXHP
Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Multi-function timers Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Memory expansion Operating temperature range Device structure Package Input/Output voltage Output current PROM RAM P0 – P2, P4 – P8 P3 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Functions 103 333 ns (the fastest instruction at external clock 12 MHz frequency) 124 Kbytes 3968 bytes 8-bit ! 8 4-bit ! 1 16-bit ! 5 16-bit ! 3 (UART or clock synchronous serial I/O) ! 3 10-bit ! 1 (8 channels) 12-bit ! 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 2.7 – 5.5 V 9 mW (at 3 V supply voltage, external clock 12 MHz frequency) 22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency) 5V 5 mA Maximum 1 Mbytes –40 to 85 °C CMOS high-performance silicon gate process 80-pin plastic molded fine-pitch QFP (80P6D-A;0.5 mm lead pitch)
3
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
PIN DESCRIPTION
Pin Vcc, Vss CNVss
_____
Name Input/Output Power source Apply 2.7 – 5.5 V to Vcc and 0 V to Vss. CNVss input Reset input Clock input Clock output Enable output Input Input Input Output Output
Functions
RESET
XIN
_
XOUT
E
BYTE
AVcc, AVss VREF P00 – P07
External data bus width selection input Analog power source input Reference voltage input I/O port P0
Input
This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. In the single-chip mode, this pin functions as the enable signal output pin which indicates the access status in the internal bus. ___ In the memory expansion mode or the microprocessor mode, this pin functions as the RDE signal output pin. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. ___ ___ In the memory expansion mode or the microprocessor mode, these pins output CS0 – CS4, ____ RSMP signals, and address (A16, A17). In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address (A0 – A7) is output. In the single-chip mode, these pins have the same function as port P0. In the memory expansion ____ ____ ____ mode or the microprocessor mode, WEL, WEH, ALE, and HLDA signals are output. In the single-chip mode, these pins have the same functions as____P0. In the memory expansion port ___ mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 also functions as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins also __ __ function as I/O pins for timers A0 to A3 and input pins for key input interrupt input (KI0 – KI3). In addition to having the same functions as port P0 in the single-chip mode, these pins also ___ ___ function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. P72 to P75 also function as I/O pins for UART2. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1.
Input I/O
P10 – P17 I/O port P1
I/O
P20 – P27 I/O port P2
I/O
P30 – P33 I/O port P3 P40 – P47 I/O port P4
I/O I/O
P50 – P57 I/O port P5 P60 – P67 I/O port P6
I/O I/O
P70 – P77 I/O port P7
I/O
P80 – P87 I/O port P8
I/O
4
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
PIN DESCRIPTION (EPROM MODE)
Pin VCC, VSS CNVSS
____
BYTE XIN XOUT
E
Name Power supply VPP input VPP input Reset input Clock input Clock output Enable output Analog supply input Reference voltage input Address input (A0 – A7) Address input (A8 – A15) Data I/O (D0 – D7) Address input (A16) Input port P3 Input port P4 Control signal input Input port P6 Input port P7 Input port P8
Input/Output Input Input Input Input Output Output Input Input Input I/O Input Input Input Input Input Input Input
RESET
Functions Supply 5V±10% to VCC and 0V to VSS. Connect to VPP when programming or verifing. Connect to VPP when programming or verifing. Connect to VSS. Connect a ceramic resonator between XIN and XOUT. Keep open. Connect AVCC to VCC and AVSS to VSS. Connect to VSS. Port P0 functions as the lower 8 bits address input (A0 – A7). Port P1 functions as the higher 8 bits address input (A8 – A15). Port P2 functions as the 8 bits data bus(D0 – D7). P30 functions as the most significant bit address input (A16). Connect to VSS. Connect to VSS.
___ __ __
_
AVCC, AVSS VREF P00 – P07 P10 – P17 P20 – P27 P30 P31 – P33 P40 – P47 P50 – P57 P60 – P67 P70 – P77 P80 – P87
P50, P51 and P52 function as PGM, OE and CE input pins respectively. Connect P53, P54, P55 and P56 to VCC. Connect P57 to VSS. Connect to VSS. Connect to VSS. Connect to VSS.
5
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
BASIC FUNCTION BLOCKS
The M37735EHLXXXHP has the same functions as the M37735MHBXXXFP except for the following : (1) The built-in ROM is PROM. (2) The status of bit 3 of the oscillation circuit control register 1 (address 6F16) at a reset is different. (3) The usage condition of bit 3 of the oscillation circuit control register 1 is different. (4) Part of the processor mode selection method is different. Accordingly, refer to the basic function blocks description in the M37735MHBXXXFP except for Figure 1 (bit configuration of oscillation circuit control register 1), Figure 3 (microcomputer internal status during reset), and Table 1 (microprocessor mode selection method). In the M37735EHLXXXHP, bit 3 of the oscillation circuit control register 1 must be “0”. (Refer to Figure 1.) Bit 3 is “1” at a reset. Accordingly, write “0” to bit 3 in the single-chip mode after reset.
Figure 2 shows how to write data in oscillation circuit control register 1. In the M37735EHLXXXHP, the microprosessor mode cannot be selected by connecting the CNVSS pin to VCC. Connect the CNVSS pin to VSS and start the microcomputer operating from the singlechip mode. Table 1. Relationship between CNVSS pin input level and processor modes CNVSS VSS Description Mode Single-chip mode upon starting qSingle-chip qMemory expansion after reset. Each mode can be selected by changing the processor qMicroprocessor mode bits by software.
7
6
5
4 0
3 0
2
1
0 Oscillation circuit control register 1 Main clock division selection bit 0 : Main clock is divided by 2. 1 : Main clock is not divided by 2.
CC2 CC1 CC0
Address 6F16 Note. Write to the oscillation circuit control register 1 as the flow shown in Figure 2.
Main clock external input selection bit 0 : Main-clock oscillation circuit is operating by itself. Watchdog timer is used at returning from STP state. 1 : Main-clock is input externally. Watchdog timer is not used at returning from STP state. Sub clock external input selection bit 0 : Sub-clock oscillation circuit is operating by itself. Port P76 functions as XCOUT pin. Watchdog timer is used at returning from STP state. 1 : Sub-clock is input externally. Port P76 functions as I/O port. Watchdog timer is not used at returning from STP state. 0 : Always “0” (This bit is “1” at reset, so that write “0” to this bit .) 0 : Always “0” (However, writing data “5516” shown in Figure 2 is possible.) Clock prescaler reset bit
Fig. 1 Bit configuration of oscillation circuit control register 1 (corresponding to Figure 63 in data sheet “M37735MHBXXXFP”)
Writing data “5516” (LDM instruction) Next instruction Writing data “8016” (LDM instruction) Writing data “0Y16” (LDM instruction)
Reset clock prescaler
CC2 to CC0 selection bits
• How to reset clock prescaler
• How to write in CC2 to CC0 selection bits Note. “Y” is the sum of bits to be set. For example, when setting bits 2 and 1 to “1”, “Y” becomes “6”.
Fig. 2 How to write data in oscillation circuit control register 1 (identical with Figure 64 in data sheet “M37735MHBXXXFP”)
6
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
RESET CIRCUIT
_____
The microcomputer is released from the reset state when the RESET pin is returned to “H” level after holding it at “L” level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A23 – A16 to 0016, A15 – A8 to the contents of address FFFF16, and A7 – A0 to the contents of address FFFE16. Figure 3 shows the microcomputer internal status during reset. Figure 4 shows an example of a reset circuit. When the stabilized clock is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. When a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from “L” to “H” after the main-clock oscillation is fully stabilized.
Power on
VCC
RESET
2.7V 0V
VCC
RESET
0V
0.55V
Note. In this case, stabilized clock is input from the external to the main-clock oscillation circuit. Perform careful evalvation at the system design level before using.
Fig. 4 Example of a reset circuit
7
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Address Port P0 direction register Port P1 direction register Port P2 direction register Port P3 direction register Port P4 direction register Port P5 direction register Port P6 direction register Port P7 direction register Port P8 direction register A-D control register 0 A-D control register 1 UART 0 transmit/receive mode register UART 1 transmit/receive mode register UART 0 transmit/receive control register 0 UART 1 transmit/receive control register 0 UART 0 transmit/receive control register 1 UART 1 transmit/receive control register 1 Count start flag One- shot start flag Up-down flag Timer A0 mode register Timer A1 mode register Timer A2 mode register Timer A3 mode register Timer A4 mode register Timer B0 mode register Timer B1 mode register Timer B2 mode register Processor mode register 0 Processor mode register 1 Watchdog timer register
Address
(0416)••• (0516)••• (0816)••• (0916)••• (0C16)••• (0D16)••• (1016)••• (1116)••• (1416)••• (1E16)••• (1F16)••• (3016)••• (3816)•••
0016 0016 0016 00 00 0016 0016 0016 0016 0016 00000? ?? 000 0016 0016 11
Watchdog timer frequency selection flag Memory allocation control register UART2 transmit/receive mode register UART2 transmit/receive control register 0 UART2 transmit/receive control register 1 Oscillation circuit control register 0 Port function control register Serial transmit control register Oscillation circuit control register 1
A-D/UART2 trans./rece. interrupt control register
(6116)•••
0
0 (6316)••• 0 0 0 0 0 0 0 1 (6416)••• (6816)••• 0000000 1000
(6916)••• 0 0 0 0 0 0 1 0 (6C16)••• 0 0 0 0 0 0 0 1 (6D16)••• 0 (6E16)••• (6F16)••• 0 (7016)••• 0016 00 01000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000000 000000 000000
UART 0 transmission interrupt control register (7116)••• UART 0 receive interrupt control register
(7216)•••
UART 1 transmission interrupt control register (7316)••• UART 1 receive interrupt control register Timer A0 interrupt control register Timer A1 interrupt control register Timer A2 interrupt control register Timer A3 interrupt control register Timer A4 interrupt control register Timer B0 interrupt control register Timer B1 interrupt control register Timer B2 interrupt control register
INT0 interrupt control register INT1 interrupt control register INT2/Key input interrupt control register
(3416)••• 0 0 0 0 1 0 0 0 (3C16)••• 0 0 0 0 1 0 0 0 (3516)••• 0 0 0 0 0 0 1 0 (3D16)••• 0 0 0 0 0 0 1 0 (4016)••• (4216)••• (4416)••• (5616)••• (5716)••• (5816)••• (5916)••• (5A16)••• 0016 00000 0016 0016 0016 0016 0016 0016
(7416)••• (7516)••• (7616)••• (7716)••• (7816)••• (7916)••• (7A16)••• (7B16)••• (7C16)••• (7D16)••• (7E16)••• (7F16)•••
(5B16)••• 0 0 1 0 0 0 0 0 (5C16)••• 0 0 1 (5D16)••• 0 0 1 (5E16)••• (5F16)••• (6016)••• FFF16 0000 0000 0016 0
Processor status register (PS) Program bank register (PG) Program counter (PCH) Program counter (PCL) Direct page register (DPR) Data bank register (DT)
000??0001?? 0016 Content of FFFF16 Content of FFFE16 000016 0016
Contents of other registers and RAM are undefined during reset. Initialize them by software.
Fig. 3 Microcomputer internal status during reset
8
MITSUBISHI MICROCOMPUTERS
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
PR
I LIM E
N
ARY
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
EPROM MODE
The M37735EHLXXXHP features an EPROM mode in addition to its _____ normal modes. When the R ESET s ignal level is “L”, the chip automatically enters the EPROM mode. Table 2 lists the correspondence between pins and Figure 5 shows the pin connections in the EPROM mode. The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K. When in the EPROM mode, ports P0, P1, P2, P30, P5 0, P5 1, P5 2, CNVSS a nd BYTE are used for the EPROM (equivalent to the M5M27C101K). When in this mode, the built-in PROM can be programmed or read from using these pins in the same way as with the M5M27C101K. This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify
address 01000 16 – 1FFFF16. Connect the clock which is either ceramic resonator or external clock to XIN pin and XOUT pin. Table 2. Pin function in EPROM mode M37735EHLXXXHP VCC VPP VSS Address input Data I/O
__ __
M5M27C101K VCC VPP VSS A0 – A16 D0 – D 7
__ __
V CC CNVSS, BYTE VSS Ports P0, P1, P30 Port P2 P52 P51 P50
CE
CE
OE PGM
___
OE PGM
___
50
59
55
51
60
46
56
52
48
57
53
47
58
54
49
45
44
43
42
41
↔ P86/RXD1 ↔ P87/TXD1 ↔ P00/CS0 ↔ P01/CS1 ↔ P02/CS2 ↔ P03/CS3 ↔ P04/CS4 ↔ P05/RSMP ↔ P06/A16 ↔ P07/A17 ↔ P10/A8/D8 ↔ P11/A9/D9 ↔ P12/A10/D10 ↔ P13/A11/D11 ↔ P14/A12/D12 ↔ P15/A13/D13 ↔ P16/A14/D14 ↔ P17/A15/D15 ↔ P20/A0/D0 ↔ P21/A1/D1
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 D0 D1
VCC
P85/CLK1 ↔ P84/CTS1/RTS1 ↔ P83/TXD0 ↔ P82/RXD0/CLKS0 ↔ P81/CLK0 ↔ P80/CTS0/RTS0/CLKS1 ↔ VCC AVCC VREF → AVSS VSS P77/AN7/XCIN ↔ P76/AN6/XCOUT ↔ P75/AN5/ADTRG/TxD2 ↔ P74/AN4/RxD2 ↔ P73/AN3/CLK2 ↔ P72/AN2/CTS2 ↔ P71/AN1 ↔ P70/AN0 ↔ P67/TBIN/ SUB ↔
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
11 13 10 14 15 12 16 17 18 19 20 6 1 2 4 5 3 7 8 9
40 39 38 37 36 35 34 33 32
M37735EHLXXXHP
31 30 29 28 27 26 25 24 23 22 21
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
P22/A2/D2 P23/A3/D3 P24/A4/D4 P25/A5/D5 P26/A6/D6 P27/A7/D7 P30/WEL P31/WEH P32/ALE P33/HLDA VSS → E/RDE → XOUT ← XIN ← RESET CNVSS ← BYTE ↔ P40/HOLD ↔ P41/RDY ↔ P42/ 1
D2 D3 D4 D5 D6 D7 A16
VSS
∗
VPP
CE OE PGM
P66/TB1IN ↔ P65/TB0IN ↔ P64/INT2 ↔ P63/INT1 ↔ P62/INT0 ↔ P61/TA4IN ↔ P60/TA4OUT ↔ P57/TA3IN/KI3 ↔ P56/TA3OUT/KI2 ↔ P55/TA2IN/KI1 ↔ P54/TA2OUT/KI0 ↔ P53/TA1IN ↔ P52/TA1OUT ↔ P51/TA0IN ↔ P50/TA0OUT ↔ P47 ↔ P46 ↔ P45 ↔ P44 ↔ P43 ↔
∗
Outline 80P6D-A, 80P6Q-A
Fig. 5 Pin connection in EPROM mode
: Connect to ceramic oscillation circuit. : It is used in the EPROM mode.
9
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K) Reading
__ __
Programming operation
To program the M37735EHLXXXHP, first set VCC = 6 V, VPP = 12.5 V, and set the address to 0100016. Apply a 0.2 ms programming pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2 ms programming pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2 ! X ms). When this series of programming operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached. Finally, when all addresses have been programmed, read with VCC = VPP = 5 V (or VCC = VPP = 5.5 V). Table 3. I/O signal in each mode Pin Mode Read-out Output Disable Programming Programming Verify Program Disable
__ __ ___
To read the EPROM, set the CE and OE pins to a “L” level. Input the address of the data (A0 – A16) to be read, and the data will be output to the I/O pins D0 – D7. The data I/O pins will be floating when either __ __ the CE or OE pins are in the “H” state.
Programming
Programming must be performed in 8 bits by a byte program. To __ __ program to the EPROM, set the CE pin to a “L” level and the OE pin to a “H” level. The CPU will enter the programming mode when 12.5 V is applied to the VPP pin. The address to be programmed to is selected with pins A0 – A16, and the data to be programmed is input to pins D0 ___ – D7. Set the PGM pin to a “L” level to being programming.
CE
OE
PGM
VPP 5V 5V
VCC 5V 5V
Data I/O Output Floating Floating Input Output Floating
VIL VIL VIH VIL VIL VIH
VIL VIH X VIH VIL VIH
X X
X 5V 5V VIL 12.5 V 6 V VIH 12.5 V 6 V VIH 12.5 V 6 V
Note 1 : An X indicates either VIL or VIH.
Programming operation (equivalent to the M5M27C101K)
AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted) Symbol tAS tOES tDS tAH tDH tDFP tVCS tVPS tPW tOPW tCES tOE Address setup time
__
Parameter
Test conditions
Min. 2 2 2 0 2 0 2 2 0.19 0.19 2
Limits Typ.
Max.
Unit µs µs µs µs µs ns µs µs ms ms µs ns
OE setup time
Data setup time Address hold time Data hold time Output enable to output float delay VCC setup time VPP setup time
___ ___
130
PGM pulse width
__
0.2
0.21 5.25 150
PGM over program pulse width CE setup time
__
Data valid from OE
10
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
AC waveforms
PROGRAM VIH ADDRESS VIL tAS VIH/VOH DATA VIL/VOL VPP VPP VCC VCC +1 VCC VCC VIH
CE
VERIFY
tAH DATA SET
DATA OUTPUT VALID
tDS
tDH
tDFP
tVPS
tVCS
VIL VIH
PGM
tCES
VIL VIH
OE
tOES tPW tOPW
tOE
VIL
Programming algorithm flow chart
Test conditions for A.C. characteristics Input voltage : VIL = 0.45 V, VIH = 2.4 V Input rise and fall times (10 % – 90 %) : ≤ 20 ns Reference voltage at timing measurement : Input, Output “L” = 0.8 V, “H” = 2 V
START ADDR=FIRST LOCATION VCC=6.0 V VPP=12.5 V X=0
PROGRAM ONE PULSE OF 0.2 ms
X=X+1 YES
X=25? NO FAIL VERIFY BYTE
VERIFY BYTE PASS
FAIL
DEVICE FAILED
PASS PROGRAM PULSE OF 0.2X ms DURATION NO INCREMENT ADDR LAST ADDR? YES VCC=VPP=*5.0 V VERIFY ALL BYTE PASS DEVICE PASSED FAIL
DEVICE FAILED
*4.5 V ≤ VCC = VPP ≤ 5.5 V
11
MITSUBISHI MICROCOMPUTERS
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
PR
I LIM E
N
ARY
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
SAFETY INSTRUCTIONS
(1) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on. (2) The programmable M37735EHLHP that is shipped in blank is also provided. For the M37735EHLHP, Mitsubishi Electric corp. does not perform PROM programming test and screening following the assembly processes. To improve reliability after programming, performing programming and test according to the flow below before use is recommended.
ADDRESSING MODES
The M37735EHLXXXHP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37735EHLXXXHP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details.
DATA REQUIRED FOR PROM ORDERING
Please send the following data for writing to PROM. (1) M37735EHLXXXHP writing to PROM order confirmation form (2) 80P6D, 80P6Q mark specification form (3) ROM data (EPROM 3 sets)
Programming with PROM programmer
Screening
(Caution)
(Leave at 150 °C for 40 hours)
Verify test with PROM programmer
Function check in target device
Caution : Never expose to 150 °C exceeding 100 hours.
12
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
ABSOLUTE MAXIMUM RATINGS
Symbol Vcc AVcc VI VI Parameter Power source voltage Analog power source voltage _____ Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, VREF, XIN Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, __ P80 – P87, XOUT, E Power dissipation Operating temperature Storage temperature Conditions Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12 (Note) –0.3 to Vcc + 0.3 Unit V V V V
VO Pd Topr Tstg
–0.3 to Vcc + 0.3 Ta = 25 °C 200 –40 to +85 –65 to +150
V mW °C °C
Note. When the EPROM is programmed, input voltage of pins CNVSS and BYTE is 13 V respectively.
RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) Parameter f(XIN) : Operating Power source voltage f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage – P33, High-level input voltage P00 – P07, P30 _____P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) – P33, Low-level input voltage P00 – P07, P30 _____P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10– P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level peak output current P44 – P47, P50 – P53 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level average output current P44 – P47, P50 – P53 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 2.7 2.7 Limits Typ. Max. 5.5 5.5 Unit V V V V Vcc Vcc Vcc 0.2Vcc 0.2Vcc 0.16Vcc –10 V V V V V V mA
Vcc 0 0 0.8 Vcc 0.8 Vcc 0.5 Vcc 0 0 0
IOH(avg)
–5
mA
IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN)
10 16 5 12 12 50
mA mA mA mA MHz kHz
32.768
Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, and P8 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, and P7 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, and P7 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”.
13
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)
Symbol VOH VOH VOH Parameter High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87 High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 High-level output voltage P30 – P32 Test conditions
VCC = 5 V, IOH = –10 mA VCC = 3 V, IOH = –1 mA
Min. 3 2.5 4.7 3.1 4.8 2.6 3.4 4.8 2.6
Limits Typ.
Max.
Unit V V V
_
VOH
High-level output voltage E Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87 Low-level output voltage P44 – P47, P50 – P53 Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 Low-level output voltage P30 – P32
VCC = 5 V, IOH = –400 µA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOL = 10 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 16 mA VCC = 3 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V, VI = 5 V VCC = 3 V, VI = 3 V VCC = 5 V, VI = 0 V VCC = 3 V, VI = 0 V
VI = 0 V, without a pull-up transistor VI = 0 V, with a pull-up transistor VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V
V 2 0.5 1.8 1.5 0.45 1.9 0.43 0.4 1.6 0.4 0.4 V V V V
VOL
VOL VOL VOL
_
VOL
Low-level output voltage E
____ ___
V
VT+ – VT–
Hysteresis HOLD, RDY, TA0IN – TA4IN, TB0IN – TB2IN, ___ ___ ____ ___ ___ ___ INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, __ __ CLK1, CLK2, KI0 – KI3
_____
0.4 0.1 0.2 0.1 0.1 0.06 0.1 0.06
1 0.7 0.5 0.4 0.4 0.26 0.4 0.26 5 4 –5 –4 –5 –4 V V V V µA
VT+ – VT– VT+ – VT– VT+ – VT– IIH
Hysteresis RESET Hysteresis XIN Hysteresis XCIN (When external clock is input) High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 _____P60 – P67, P70 – P77, – P57, P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P53, P60, P61, P65 – P67, _____ P70 – P77, P80 – P87, XIN, RESET, CNVss, BYTE Low-level input current P54 – P57, P62 – P64
IIL
µA
µA
IIL
–0.25 –0.08 2
–0.5 –0.18
–1.0 –0.35 mA V
VRAM
RAM hold voltage
When clock is stopped.
14
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol Parameter Test conditions VCC = 5 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 0.75 MHz), f(XCIN) : Stopped, in operating Min. Limits Typ. Max. Unit
4.5
9
mA
3
6
mA
ICC
Power source current
When single-chip mode, output pins are open, and other pins are VSS. VCC = 3 V, f(XIN) = 12 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, in operating (Note 3) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, when clock is stopped Ta = 85 °C, when clock is stopped
0.4
0.8
mA
6
12
µA
30
60
µA
3
6
µA
1 20
µA µA
Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. 2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. 3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. 4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.
A–D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Symbol — — RLADDER tCONV VREF VIA Parameter Resolution Absolute accuracy Ladder resistance Conversion time Reference voltage Analog input voltage Test conditions VREF = VCC VREF = VCC VREF = VCC Min. Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V
10 19.6 2.7 0
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
15
MITSUBISHI MICROCOMPUTERS
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
PR
I LIM E
N
ARY
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
TIMING REQUIREMENTS (V CC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.
External clock input
Symbol tc tw(H) tw(L) tr tf Parameter External clock input cycle time (Note 3) External clock input high-level pulse width (Note 4) External clock input low-level pulse width (Note 4) External clock rise time External clock fall time Limits Min. 83 33 33 Max. Unit ns ns ns ns ns
15 15
Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns. 4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / t c must be set to values from 0.45 through 0.55.
Single-chip mode
Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D–E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Parameter Limits Min. 200 200 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Memory expansion mode and microprocessor mode
Symbol tsu(D–RDE) tsu(RDY– 1) tsu(HOLD– 1) th(RDE–D) th( 1–RDY) th( 1–HOLD) Data input setup time ___ RDY input setup time HOLD input setup time Data input hold time ___ RDY input hold time ____ HOLD input hold time
____
Parameter
Limits Min. 50 80 80 0 0 0 Max.
Unit ns ns ns ns ns ns
16
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Timer A input
Symbol tc(TA) tw(TAH) tw(TAL)
(Count input in event counter mode) Parameter Limits Min. 250 125 125 Max. Unit ns ns ns
TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width
Timer A input (Gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) Parameter Limits Min. 666 333 333 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19.
Timer A input (External trigger input in one-shot pulse mode)
Symbol t c(TA) tw(TAH) tw(TAL) TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 666 166 166 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19.
Timer A input (External trigger input in pulse width modulation mode)
Symbol tw(TAH) tw(TAL) TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 166 166 Max. Unit ns ns
Timer A input (Up-down input in event counter mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time Parameter Limits Min. 3333 1666 1666 666 666 Max. Unit ns ns ns ns ns
Timer A input (Two-phase pulse input in event counter mode)
Symbol tc(TA) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) TAjIN input cycle time TAjIN input setup time TAjOUT input setup time Parameter Limits Min. 2000 500 500 Max. Unit ns ns ns
17
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Timer B input (Count input in event counter mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Limits Min. 250 125 125 500 250 250 Max. Unit ns ns ns ns ns ns
Timer B input (Pulse period measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Parameter Limits Min. 666 333 333 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19.
Timer B input (Pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Parameter Limits Min. 666 333 333 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS” on page 19.
A-D trigger input
Symbol
____
Parameter
ADTRG input cycle time (minimum allowable trigger) ____ ADTRG input low-level pulse width
Limits Min. 1333 166 Max.
Unit ns ns
tc(AD) tw(ADL)
Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time
____ ___
Parameter
Limits Min. 333 166 166 0 65 75 Max.
Unit ns ns ns ns ns ns ns
100
External interrupt INTi input, key input interrupt KIi input
Symbol
___
Parameter
___ __
Limits Min. 250 250 250 Max.
Unit ns ns ns
tw(INH) tw(INL) tw(KIL)
INTi input high-level pulse width INTi input low-level pulse width KIi input low-level pulse width
18
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
DATA FORMULAS Timer A input (Gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 8 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) Max. Unit ns ns ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol tc(TA) TAiIN input cycle time Parameter Limits Min. 8 ! 109 2 · f(f2) Max. Unit ns
Timer B input (In pulse period measurement mode or pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input high-level pulse width TBiIN input low-level pulse width Parameter Limits Min. 8 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) Max. Unit ns ns ns
Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”.
19
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
SWITCHING CHARACTERISTICS
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note))
Single-chip mode
Symbol td(E–P0Q) td(E–P1Q) td(E–P2Q) td(E–P3Q) td(E–P4Q) td(E–P5Q) td(E–P6Q) td(E–P7Q) td(E–P8Q) Parameter Port P0 data output delay time Port P1 data output delay time Port P2 data output delay time Port P3 data output delay time Port P4 data output delay time Port P5 data output delay time Port P6 data output delay time Port P7 data output delay time Port P8 data output delay time Test conditions Limits Min. Max. 300 300 300 300 300 300 300 300 300 Unit ns ns ns ns ns ns ns ns ns
Fig. 6
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
P0 P1 P2 P3 P4 P5 P6 P7 P8 φ1
E
50 pF
Fig. 6 Measuring circuit for ports P0 – P8 and φ1
20
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Memory expansion mode and microprocessor mode
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Symbol td(CS–WE) td(CS–RDE) th(WE–CS) th(RDE–CS) td(An–WE) td(An–RDE) td(A–WE) td(A–RDE) th(WE–An) th(RDE–An) tw(ALE) Chip-select output delay time Parameter Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 Limits Min. 20 182 4 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 20 182 20 162 40 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 40 123 Fig. 6 10 93 9 40 4 40 90 No wait Wait 1 Wait 0 40 131 298 10 No wait Wait 1 Wait 0 53 128 295 25 0 0 30 120 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Chip-select hold time Address output delay time
Address output delay time Address hold time ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–WE) td(ALE–RDE) td(WE–DQ) th(WE–DQ) tw(WE) tpxz(RDE–DZ) tpzx(RDE–DZ) tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1) td(φ1–HLDA)
ALE output delay time Data output delay time Data hold time
___ ___
WEL/WEH pulse width
Floating start delay time Floating release delay time
___
RDE pulse width
____
RSMP output delay time
____
RSMP hold time
φ1 output delay time
____
HLDA output delay time
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
21
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Bus timing data formulas (VCC = 2.7 – 5.5V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max.), unless otherwise noted (Note1))
Symbol td(CS–WE) td(CS–RDE) th(WE–CS) th(RDE–CS) td(An–WE) td(An–RDE) Parameter Wait mode No wait Wait 1 Wait 0 Chip-select hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Address hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 td(ALE–WE) td(ALE–RDE) td(WE–DQ) th(WE–DQ) No wait Wait 1 Wait 0 Data output delay time Data hold time
___ ___
Chip-select output delay time
Limits Min. 1 ! 109 – 63 2 · f(f2) 9 3 ! 10 – 68 2 · f(f2) 4 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 9 1 ! 109 2 · f(f2) 4 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) – 43 – 43 – 63 – 68 – 63 – 88 – 43 – 43 – 43 – 73 – 73
Max.
Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Address output delay time
td(A–WE) td(A–RDE) th(WE–An) th(RDE–An) tw(ALE)
Address output delay time
ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
ALE output delay time
90 – 43 – 35 – 35 10 – 30 – 38 – 38
ns ns ns ns ns ns ns ns ns ns
No wait Wait 1 Wait 0
tw(WE) tpxz(RDE–DZ) tpzx(RDE–DZ)
WEL/WEH pulse width
Floating start delay time Floating release delay time
___
No wait Wait 1 Wait 0
tw(RDE)
RDE pulse width
td(RSMP–WE) – 58 RSMP output delay time td(RSMP–RDE) ____ th(φ1–RSMP) 0 RSMP hold time td(WE–φ1) φ1 output delay time 0 td(RDE–φ1) Notes 1. This applies when the main clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37735MHBXXXFP”.
____
30
ns
22
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
TIMING DIAGRAM
tr tf tc
tw(H)
tw(L)
XIN
E
td(E–P0Q)
Port P0 output
tsu(P0D–E)
Port P0 input
th(E–P0D)
td(E–P1Q)
Port P1 output
tsu(P1D–E)
Port P1 input
th(E–P1D)
td(E–P2Q)
Port P2 output
tsu(P2D–E)
Port P2 input
th(E–P2D)
td(E–P3Q)
Port P3 output
tsu(P3D–E)
Port P3 input
th(E–P3D)
td(E–P4Q)
Port P4 output
tsu(P4D–E)
Port P4 input
th(E–P4D)
td(E–P5Q)
Port P5 output
tsu(P5D–E)
Port P5 input
th(E–P5D)
td(E–P6Q)
Port P6 output
tsu(P6D–E)
Port P6 input
th(E–P6D)
td(E–P7Q)
Port P7 output
tsu(P7D–E)
Port P7 input
th(E–P7D) td(E–P8Q)
Port P8 output
tsu(P8D–E)
Port P8 input
th(E–P8D)
23
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
tc(TA) tw(TAH) TAiIN input
tw(TAL)
tc(UP) tw(UPH) TAiOUT input tw(UPL)
In event counter mode TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising)
th(TIN–UP)
tsu(UP–TIN)
In event counter mode (When two-phase pulse input is selected) TAjIN input
tsu(TAjIN–TAjOUT )
tc(TA)
t su(TAjIN –TAjOUT ) tsu(TAjOUT –TAjIN )
TAjOUT input
tsu(TAjOUT –TAjIN)
tc(TB) tw(TBH) TBiIN input tw(TBL)
24
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
tc(AD) tw(ADL)
ADTRG input
tc(CK) tw(CKH) CLKi
tw(CKL)
th(C–Q) TxDi td(C–Q) RxDi tsu(D–C) th(C–D)
tw(INL)
INTi input Kli input
tw(INH) tw(KNL)
25
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Memory expansion mode and microprocessor mode (When wait bit = “1”)
φ1
WEL WEH RDE
RDY input
tsu(RDY–φ1) th(φ1–RDY)
(When wait bit = “0”)
φ1
WEL WEH RDE
RDY input
tsu(RDY–φ1) th(φ1–RDY)
(When wait bit = “1” or “0” in common)
φ1 tsu(HOLD–φ1)
HOLD input
th(φ1–HOLD)
td(φ1–HLDA)
HLDA output
td(φ1–HLDA)
Test conditions • VCC = 2.7 – 5.5 V • Input timing voltage : V IL = 0.2VCC, VIH = 0.8V CC • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
26
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Memory expansion mode and m icroprocessor mode (No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(WE– φ1) td(WE– φ1) td(RDE– φ1) td(RDE– φ1 )
CS0 – CS4 t d(CS–WE) th(WE –CS) td(CS–RDE) th(RDE– CS)
An
td(An–WE) tw(ALE)
Address
td(An–RDE ) td(ALE –WE) th(WE–An)
Address
Address
th(RDE –An)
ALE
th(ALE –A) tsu(A–ALE) th(WE–DQ) tpxz(RDE –DZ) tpzx(RDE –DZ) td(ALE –RDE)
Am/Dm
Address
Data
Address
td(A–RDE)
Address
td(WE–DQ) t d(A–WE) tw(WE) WEL, WEH
th(RDE–D) t su(D–RDE)
DmIN
Data
tw(RDE)
RDE th(φ1–RSMP) td(RSMP –WE) td(RSMP –RDE)
RSMP
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
27
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Memory expansion mode and m icroprocessor mode (Wait 1 : The external memory area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(WE–φ1)
CS0 – CS4
td(WE–φ1) td(RDE-φ1) th(WE–CS)
td(RDE–φ1)
td(CS–RDE) td(CS–WE) An td(An–WE) tw(ALE) ALE th(ALE–A) tsu(A–ALE) Am/Dm Address Data td(ALE–RDE) th(WE–DQ) tpxz(RDE–DZ) Address Address td(An–RDE) th(WE-An) td(ALE–WE)
th(RDE–CS)
th(RDE–An)
tpzx(RDE–DZ) Address
Address
td(A–WE)
td(WE–DQ) tw(WE)
td(A–RDE)
WEL, WEH
th(RDE–D) tsu(D–RDE) Data
DmIN
tw(RDE)
RDE
th(φ1–RSMP)
RSMP
td(RSMP–WE)
td(RSMP–RDE)
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
28
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Memory expansion mode and microprocessor mode (Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(WE–φ1) td(WE–φ1) td(RDE–φ1) td(RDE–φ1)
CS0 – CS4
td(CS–WE)
th(WE–CS)
td(CS–RDE) th(RDE–CS)
An td(An–WE) tw(ALE) ALE
Address td(An–RDE) td(ALE–WE) th(WE–An)
Address
Address
th(RDE–An)
td(ALE–RDE) tsu(A–ALE)
th(ALE–A)
th(WE–DQ) Address td(A–RDE)
tpxz(RDE–DZ)
tpzx(RDE–DZ) Address
Am/Dm
Address td(A–WE)
Data td(WE–DQ)
tw(WE)
WEL, WEH
tsu(D–RDE) Data
th(RDE–D)
DmIN
tw(RDE)
RDE
td(RSMP–WE)
RSMP
th(φ1–RSMP)
td(RSMP–RDE)
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
29
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
PACKAGE OUTLINE
30
P
. . nge tion ifica t to cha pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
I
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
GZZ–SH00–41B ROM number
Note : Please fill in all items marked Issuance signatures Company name Date issued 1. Confirmation Specify the name of the product being ordered and the type of EPROMs submitted. Three sets of EPROMs are required for each pattern. If at least two of the three sets of EPROMs submitted contain the identical data, we will produce writing to PROM based on this data. We shall assume the responsibility for errors only if the written PROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted. Checksum code for entire EPROM areas EPROM Type : 27C201 00000 00010 20000 (1) Set “FF 16” in the shaded area. (2) Address 0 16 to 0F16 are the area for storing the data on model designation.This area must be written with the data shown below. Address and data are written in hexadecimal notation. 4D 33 37 37 33 35 45 48 Address 0 1 2 3 4 5 6 7 4C FF FF FF FF FF FF FF Address 8 9 A B C D E F (hexadecimal notation) Date: TEL ( Responsible officer Supervisor
Customer
)
DATA
128K
3FFFF
2. Mark specification Mark specification must be submitted using the correct form for the type of package being ordered fill out the appropriate 80P6D Mark Specification Form (for M37735EHLXXXHP) and attach to the Writing to PROM Order Confirmation Form. 3. Comments
Receipt
7700 FAMILY WRITING TO PROM ORDER CONFIRMATION FORM SINGLE-CHIP 16-BIT MICROCOMPUTER M37735EHLXXXHP MITSUBISHI ELECTRIC
Date: Section head Supervisor signature signature
31
P
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T ametric ic Not e par Som
IM REL
I
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
32
PR
. . nge tion ifica t to cha pec al s subjec fin re a ot a is n limits his e: T rametric ic Not e pa Som
MI ELI
Y NAR
MITSUBISHI MICROCOMPUTERS
M37735EHLXXXHP
PROM VERSION OF M37735MHLXXXHP
Keep safety first in your circuit designs!
¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1996 MITSUBISHI ELECTRIC CORP. H-LF448-A KI-9610 Printed in Japan (ROD) 2 New publication, effective Oct. 1996. Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev. No. 1.00 1.01 First Edition The following are added: • PROM ORDER CONFIRMATION FORM • MARK SPECIFICATION FORM 2.00 The following are revised:
Page P1 PIN CONFIGURATION (TOP VIEW) P9 Fig. 5 P9 Left column Line 4 P12 Right column Line 2 Table 2 list... Previous Version
M37735EHLXXXHP Datasheet
Revision Description Rev. date 970604 980421
980731
Revised Version
Outline 80P6D-A
Outline 80P6D-A, 80P6Q-A
Table 2 lists...
The M37735EHLXXXHP has 28 powerful addressing modes. R efer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode.
The M37735EHLXXXHP has 28 powerful addressing modes. R efer to the “7700 Family Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37735EHLXXXHP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37735EHLXXXHP has 103 machine instructions. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details. Line 10 P16 Memory expansion mode and microprocessor mode (2) 80P6D mark specification form
(2) 80P6D, 80P6Q mark specification form Previous Version
Symbol tsu (D–E) Data input setup time
Parameter
Limits Min. 80 Max.
Unit ns
Revised Version Symbol tsu (D–E) Data input setup time Parameter Limits Min. 50 Max. Unit ns
(1)