P
e. n. atio ang cific t to ch c spe inal e subje f ot a its ar is n his tric lim e e: T otic param N e Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
qSingle power supply ...................................................... 5 V ± 10% qLow power dissipation (at 25 MHz frequency) ............................................47.5 mW (Typ.) qInterrupts ............................................................ 19 types, 7 levels qMultiple-function 16-bit timer ................................................. 5 + 3 qSerial I/O (UART or clock synchronous) ..................................... 3 q10-bit A-D converter ............................................ 8-channel inputs q12-bit watchdog timer qProgrammable input/output, output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10)..........................84 qClock generating circuit ........................................ 2 circuits built-in
DESCRIPTION
The M37736EHBXXXGP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the PROM, RAM, multiple-function timers, serial I/O, A-D converter, and others. In the M37736EHBXXXGP, as the multiplex method of the external bus, either of 2 types can be selected. The M37736EHBXXXGP has the same function as the M37736MHBXXXGP except that the built-in ROM is PROM. (Refer to the basic function blocks description.) For program development, the M37736EHBGS with erasable ROM that is housed in a windowed ceramic LCC is also provided.
APPLICATION
Control devices for general commercial equipment such as office automation, office equipment, and others. Control devices for general industrial equipment such as communication equipment, and others. Note. Do not use the windowed EPROM version for mass production, because it is a tool for program development (for evaluation).
FEATURES
qNumber of basic instructions .................................................. 103 qMemory size PROM ............................................. 124 Kbytes RAM ................................................ 3968 bytes qInstruction execution time The fastest instruction at 25 MHz frequency ...................... 160 ns
PIN CONFIGURATION (TOP VIEW)
80 ↔ P87/TXD1 79 ↔ P90/CTS2 78 ↔ P91/CLK2 77 ↔ P92/RXD2 76 → P93/TXD2 75 → P94 74 → P95 73 → P96 72 → P97 71 ↔ P00/A0/CS0 70 ↔ P01/A1/CS1 69 ↔ P02/A2/CS2 68 ↔ P03/A3/CS3 67 ↔ P04/A4/CS4 66 ↔ P05/A5/RSMP 65 ↔ P06/A6/A16 64 ↔ P07/A7/A17 63 ↔ P10/A8/D8 62 ↔ P11/A9/D9 61 ↔ P12/A10/D10 60 ↔ P13/A11/D11 59 ↔ P14/A12/D12 58 ↔ P15/A13/D13 57 ↔ P16/A14/D14 56 ↔ P17/A15/D15 55 ↔ P20/A16/A0/D0 54 ↔ P21/A17/A1/D1 53 ↔ P22/A18/A2/D2 52 ↔ P23/A19/A3/D3 51 ↔ P24/A20/A4/D4
P86/RXD1 ↔ 81 P85/CLK1 ↔ 82 P84/CTS1/RTS1 ↔ 83 P83/TXD0 ↔ 84 P82/RXD0/CLKS0 ↔ 85 P81/CLK0 ↔ 86 P80/CTS0/RTS0/CLKS1 ↔ 87 88 VCC AVCC 89 VREF → 90 91 AVSS 92 VSS P77/AN7/XCIN ↔ 93 P76/AN6/XCOUT ↔ 94 P75/AN5/ADTRG ↔ 95 P74/AN4 ↔ 96 P73/AN3 ↔ 97 P72/AN2 ↔ 98 P71/AN1 ↔ 99 P70/AN0 ↔ 100
M37736EHBXXXGP
50 ↔ P25/A21/A5/D5 49 ↔ P26/A22/A6/D6 48 ↔ P27/A23/A7/D7 47 ↔ P30/R/W/WEL 46 ↔ P31/BHE/WEH 45 ↔ P32/ALE 44 ↔ P33/HLDA 43 → EVL0 42 → EVL1 VCC 41 40 VSS 39 → E/RDE 38 → XOUT 37 ← XIN 36 ← RESET 35 ← BSEL 34 ← CNVSS 33 ← BYTE 32 ↔ P40/HOLD 31 ↔ P41/RDY
P67/TB2IN/f SUB ↔ 1 P66/TB1IN ↔ 2 P65/TB0IN ↔ 3 P64/INT2 ↔ 4 P63/INT1 ↔ 5 P62/INT0 ↔ 6 P61/TA4IN ↔ 7 P60/TA4OUT ↔ 8 P57/TA3IN ↔ 9 P56/TA3OUT ↔ 10 P55/TA2IN ↔ 11 P54/TA2OUT ↔ 12 P53/TA1IN ↔ 13 P52/TA1OUT ↔ 14 P51/TA0IN ↔ 15 P50/TA0OUT ↔ 16 P107/KI3 ↔ 17 P106/KI2 ↔ 18 P105/KI1 ↔ 19 P104/KI0 ↔ 20 P103 ↔ 21 P102 ↔ 22 P101 ↔ 23 P100 ↔ 24 P47 ↔ 25 P46 ↔ 26 P45 ↔ 27 P44 ↔ 28 P43 ↔ 29 P42/f1 ↔ 30
Outline 100P6S-A
1
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
Input/Output port P10
Output port P9
Reference External data bus width selection input voltage input BYTE VREF
Data Buffer DBH(8) Data Buffer DBL(8)
Instruction Register(8)
Instruction Queue Buffer Q0(8) Instruction Queue Buffer Q1(8) Instruction Queue Buffer Q2(8)
Data Bus(Even) Data Bus(Odd)
P1(8)
P0(8)
P10(8)
P9(8)
AVCC
Incrementer(24)
Program Address Register PA(24) Data Address Register DA(24)
A-D Converter(10)
(0V) AVSS
P2(8)
Address Bus
CNVSS
Program Counter PC(16)
(0V) VSS
Program Bank Register PG(8)
Watchdog Timer
Timer TB2(16)
Timer TB1(16)
Timer TB0(16)
P4(8)
Incrementer/Decrementer(24)
VCC
Data Bank Register DT((8)
Bus method Reset input selection input RESET BSEL
Input Buffer Register IB(16)
Timer TA4(16)
Timer TA3(16)
Timer TA2(16)
Timer TA1(16)
Timer TA0(16)
Processor Status Register PS(11) Direct Page Register DPR(16)
M37736EHBXXXGP BLOCK DIAGRAM
XCOUT
Enable output E
XCIN
Stack Pointer S(16) Index Register Y(16)
RAM 3968 bytes
Index Register X(16)
Clock Generating Circuit
Accumulator B(16) Accumulator A(16)
Clock output XOUT
XCIN XCOUT
Clock input XIN
Arithmetic Logic Unit(16)
2
Input/Output port P8
PROM 124 Kbytes
P8(8)
Input/Output port P7
P7(8)
Input/Output port P6
P6(8)
Input/Output port P5
P5(8)
Input/Output port P4
UART2(9)
UART1(9)
UART0(9)
Input/Output port P3
P3(4)
Input/Output port P2
Input/Output port P1
Input/Output port P0
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
FUNCTIONS OF M37736EHBXXXGP
Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Output port Multi-function timers Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Memory expansion Operating temperature range Device structure Package M37736EHBXXXGP M37736EHBGS Input/Output voltage Output current PROM RAM P0 – P2, P4 – P8, P10 P3 P9 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Functions 103 160 ns (the fastest instruction at external clock 25 MHz frequency) 124 Kbytes 3968 bytes 8-bit ! 9 4-bit ! 1 8-bit ! 1 16-bit ! 5 16-bit ! 3 (UART or clock synchronous serial I/O) ! 3 10-bit ! 1 (8 channels) 12-bit ! 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 5 V ± 10% 47.5 mW (at external clock 25 MHz frequency) 5V 5 mA External bus mode A; maximum 16 Mbytes, External bus mode B; maximum 1 Mbytes –20 to 85 °C CMOS high-performance silicon gate process 100-pin plastic molded QFP (100P6S-A) 100-pin ceramic LCC (with a window) (100D0)
3
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
PIN DESCRIPTION
Pin Vcc, Vss CNVss
_____
Name Input/Output Power source Apply 5 V ± 10% to Vcc and 0 V to Vss. CNVss input Reset input Clock input Clock output Enable output Input Input Input Output Output
Functions
RESET
XIN
_
XOUT
E
BYTE
BSEL
External data bus width selection input Bus method select input Analog power source input Reference voltage input I/O port P0
Input
Input
AVcc, AVss VREF P00 – P07
This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. This pin functions as the enable signal output pin which indicates the access status in the internal bus. In the external bus mode B and the memory expansion mode or the microprocessor mode, ___ this pin output signal RDE. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. In the memory expansion mode or the microprocessor mode, this pin determines the external bus mode. The bus mode becomes the external bus mode A when “H” signal is input, and the external bus mode B when “L” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. In the memory expansion mode or the microprocessor mode, these pins output address (A0 – A7) ____ ___ ___ at the external bus mode A, and these pins output signals CS0 – CS4 and RSMP, and addresses (A16, A17) at the external bus mode B. In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address is output. When using the external bus mode A, the address is A16 – A23. When using the external bus mode B, the address is A0 – A7. In the single-chip mode, these pins have ___same function as port P0. In the memory expansion the ____ __ mode or the microprocessor mode, R/W, BHE, ALE, and HLDA signals are output at the external ___ ___ ____ bus mode A, and WEL, WEH, ALE, and HLDA signals are output at the external bus mode B. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion ____ ___ mode or the microprocessor mode, P40, P41 and P42 become HOLD and RDY input pins, and a clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 can be selected as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for timers A0 to A3. In addition to having the same functions as port P0 in the single-chip mode, these pins also ___ ___ function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1. Port P9 is an 8-bit I/O port. These ports are floating when reset. When writting to the port latch, these ports become the output mode. P90 – P93 also function as I/O port for UART 2. In addition to having the same functions as port P0 in the single-chip mode, P104 – P107 also __ __ function as input pins for key input interrupt input (KI0 – KI3). These pins should be left open.
Input I/O
P10 – P17 I/O port P1
I/O
P20 – P27 I/O port P2
I/O
P30 – P33 I/O port P3
I/O
P40 – P47 I/O port P4
I/O
P50 – P57 I/O port P5 P60 – P67 I/O port P6
I/O I/O
P70 – P77 I/O port P7
I/O
P80 – P87 I/O port P8 P90 – P97 Output port P9 P100 – P107 I/O port P10 EVL0, EVL1 ––
I/O Output I/O Output
4
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
BASIC FUNCTION BLOCKS
The M37736EHBXXXGP has the same function as the M37736MHB XXXGP except that the built-in ROM is PROM. Refer to the section on the M37736MHBXXXGP.
PIN DESCRIPTION (EPROM MODE)
Pin VCC, VSS CNVSS
_____
BYTE XIN
RESET
Name Power supply VPP input VPP input Reset input Clock input Clock output Enable output Analog supply input Reference voltage input Address input (A0 – A7) Address input (A8 – A15) Data I/O (D0 – D7) Address input (A16) Input port P3 Input port P4 Control signal input Input port P6 Input port P7 Input port P8 Input port P9 Input port P10 _____ _____
Input/Output Input Input Input Input Output Output Input Input Input I/O Input Input Input Input Input Input Input Input Input Input Output
Functions Supply 5V±10% to VCC and 0V to VSS. Connect to VPP when programming or verifing. Connect to VPP when programming or verifing. Connect to VSS. Connect a ceramic resonator between XIN and XOUT. Keep open. Connect AVCC to VCC and AVSS to VSS. Connect to VSS. Port P0 functions as the lower 8 bits address input (A0 – A7). Port P1 functions as the higher 8 bits address input (A8 – A15). Port P2 functions as the 8 bits data input/output (D0 – D7). P30 functions as the most significant bit address input (A16). Connect to VSS. Connect to VSS.
_____ ___ ___
_
XOUT
E
AVCC, AVSS VREF P00 – P07 P10 – P17 P20 – P27 P30 P31 – P33 P40 – P47 P50 – P57 P60 – P67 P70 – P77 P80 – P87 P90 – P97 P100 – P107 BSEL EVL0, EVL1
P50, P51, and P52 function as PGM, OE, and CE input pins respectively. Connect P53, P54, P55, and P56 to VCC. Connect P57 to VSS. Connect to VSS. Connect to VSS. Connect to VSS. Connect to VSS. Connect to VSS. Connect to VCC. Keep open.
5
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
EPROM MODE
The M37736EHBXXXGP features an EPROM mode in addition to _____ its normal modes. When the RESET signal level is “L”, the chip automatically enters the EPROM mode. Table 1 list the correspondence between pins and Figure 1 shows the pin connections in the EPROM mode. The EPROM mode is the 1M mode for the EPROM that is equivalent to the M5M27C101K. When in the EPROM mode, ports P0, P1, P2, P30, P50, P51, P52, CNV SS, and BYTE are used for the EPROM (equivalent to the M5M27C101K). When in this mode, the built-in PROM can be programmed or read from using these pins in the same way as with the M5M27C101K.
This chip does not have Device Identifier Mode, so that set the corresponding program algorithm. The program area should specify address 0100016 – 1FFFF16. Connect the clock which is either ceramic resonator or external clock to XIN pin and XOUT pin. Table 1 Pin function in EPROM mode VCC VPP VSS Address input Data I/O
___
M37736EHBXXXGP VCC CNVSS, BYTE VSS Ports P0, P1, P30 Port P2 P52 P51 P50
M5M27C101K VCC VPP VSS A0 – A16 D0 – D7
___
CE
___
CE
___
OE
_____
OE
_____
PGM
PGM
VCC
VPP
CE OE PGM
P67 ↔ 1 P66 ↔ 2 P65 ↔ 3 P64 ↔ 4 P63 ↔ 5 P62 ↔ 6 P61 ↔ 7 P60 ↔ 8 P57 ↔ 9 P56 ↔ 10 P55 ↔ 11 P54 ↔ 12 P53 ↔ 13 P52 ↔ 14 P51 ↔ 15 P50 ↔ 16 P107 ↔ 17 P106 ↔ 18 P105 ↔ 19 P104 ↔ 20 P103 ↔ 21 P102 ↔ 22 P101 ↔ 23 P100 ↔ 24 P47 ↔ 25 P46 ↔ 26 P45 ↔ 25 P44 ↔ 28 P43 ↔ 29 P42 ↔ 30
∗ : Connect to ceramic oscillation circuit.
Outline 100P6S-A
Fig. 1 Pin connection in EPROM mode
: It is used in the EPROM mode.
6
P86 ↔ 81 P85 ↔ 82 P84 ↔ 83 P83 ↔ 84 P82 ↔ 85 P81 ↔ 86 P80 ↔ 87 88 VCC 89 AVCC VREF → 90 91 AVSS 92 VSS P77 ↔ 93 P76 ↔ 94 P75 ↔ 95 P74 ↔ 96 P73 ↔ 97 P72 ↔ 98 P71 ↔ 99 P70 ↔ 100
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
↔ P87 ↔ P90 ↔ P91 ↔ P92 → P93 → P94 → P95 → P96 → P97 ↔ P00 ↔ P01 ↔ P02 ↔ P03 ↔ P04 ↔ P05 ↔ P06 ↔ P07 ↔ P10 ↔ P11 ↔ P12 ↔ P13 ↔ P14 ↔ P15 ↔ P16 ↔ P17 ↔ P20 ↔ P21 ↔ P22 ↔ P23 ↔ P24
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 D0 D1 D2 D3 D4
M37736EHBGP
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31
↔ P25 ↔ P26 ↔ P27 ↔ P30 ↔ P31 ↔ P32 ↔ P33 → EVL0 → EVL1 VCC VSS →E → XOUT ← XIN ← RESET ← BSEL CNVSS ← BYTE ↔ P40 ↔ P41
D5 D6 D7 A16
VSS ∗
PR
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
MI ELI
NA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
FUNCTION IN EPROM MODE 1M mode (equivalent to the M5M27C101K) Reading
___ ___
Programming operation
To program the M37733EHBXXXFP, first set VCC = 6 V, VPP = 12.5 V, and set the address to 0100016. Apply a 0.2 ms programming pulse, check that the data can be read, and if it cannot be read OK, repeat the procedure, applying a 0.2 ms programming pulse and checking that the data can be read until it can be read OK. Record the accumulated number of pulse applied (X) before the data can be read OK, and then write the data again, applying a further once this number of pulses (0.2 ! X ms). When this series of programming operations is complete, increment the address, and continue to repeat the procedure above until the last address has been reached. Finally, when all addresses have been programmed, read with VCC = VPP = 5 V (or VCC = VPP = 5.5 V). Table 2. I/O signal in each mode Pin Mode Read-out Output Disable Programming Programming Verify Program Disable
___ ___ _____
To read the EPROM, set the CE and OE pins to a “L” level. Input the address of the data (A0 – A16) to be read, and the data will be output to the I/O pins D0 – D7. The data I/O pins will be floating when either __ __ the CE or OE pins are in the “H” state.
Programming
Programming must be performed in 8 bits by a byte program. To ___ ___ program to the EPROM, set the CE pin to a “L” level and the OE pin to a “H” level. The CPU will enter the programming mode when 12.5 V is applied to the VPP pin. The address to be programmed to is selected with pins A0 –_____ and the data to be programmed is input to pins D0 A16, – D7. Set the PGM pin to a “L” level to being programming.
Erasing
To erase data on this chip, use an ultraviolet light source with a 2537 Angstrom wave length. The minimum radiation power necessary for erasing is 15 J/cm2.
CE
OE
PGM
VPP 5V 5V
VCC 5V 5V
Data I/O Output Floating Floating Input Output Floating
VIL VIL VIH VIL VIL VIH
VIL VIH X VIH VIL VIH
X X
X 5V 5V VIL 12.5 V 6 V VIH 12.5 V 6 V VIH 12.5 V 6 V
Note 1 : An X indicates either VIL or VIH.
Programming operation (equivalent to the M5M27C101K)
AC ELECTRICAL CHARACTERISTICS (Ta = 25 ± 5 °C, VCC = 6 V ± 0.25 V, VPP = 12.5 ± 0.3 V, unless otherwise noted) Symbol tAS tOES tDS tAH tDH tDFP tVCS tVPS tPW tOPW tCES tOE Address setup time
___
Parameter
Test conditions
Min. 2 2 2 0 2 0 2 2 0.19 0.19 2
Limits Typ.
Max.
Unit µs µs µs µs
OE setup time
Data setup time Address hold time Data hold time Output enable to output float delay VCC setup time VPP setup time _____ PGM pulse width _____ PGM over program pulse width ___ CE setup time __ Data valid from OE
130
µs ns µs µs ms ms µs ns
0.2
0.21 5.25 150
7
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
AC waveforms
PROGRAM VIH ADDRESS VIL tAS VIH/VOH DATA VIL/VOL VPP VPP VCC VCC +1 VCC VCC VIH
CE
VERIFY
tAH DATA SET
DATA OUTPUT VALID
tDS
tDH
tDFP
tVPS
tVCS
VIL VIH
PGM
tCES
VIL VIH
OE
tOES tPW tOPW
tOE
VIL
Programming algorithm flow chart
Test conditions for A.C. characteristics Input voltage : VIL = 0.45 V, VIH = 2.4 V Input rise and fall times (10 % – 90 %) : ≤ 20 ns Reference voltage at timing measurement : Input, Output “L” = 0.8 V, “H” = 2 V
START ADDR=FIRST LOCATION VCC=6.0 V VPP=12.5 V X=0
PROGRAM ONE PULSE OF 0.2 ms
X=X+1 YES
X=25? NO FAIL VERIFY BYTE
VERIFY BYTE PASS
FAIL
DEVICE FAILED
PASS PROGRAM PULSE OF 0.2X ms DURATION NO INCREMENT ADDR LAST ADDR? YES VCC=VPP=*5.0 V VERIFY ALL BYTE PASS DEVICE PASSED FAIL
DEVICE FAILED
*4.5 V ≤ VCC = VPP ≤ 5.5 V
8
P
. . tion hange c ifica pec ject to al s b a fin are su ot is n mits This etric li m ice: Not e para Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
SAFETY INSTRUCTIONS
(1) Sunlight and fluorescent lamp contain light that can erase written information. When using in read mode, be sure to cover the transparent glass portion with a seal or other materials (ceramic package product). (2) Mitsubishi Electric corp. provides the seal for covering the transparent glass. Take care that the seal does not touch the read pins (ceramic package product). (3) Clean the transparent glass before erasing. Fingers’ fat and paste disturb the passage of ultraviolet rays and may affect badly the erasure capability (ceramic package product). (4) A high voltage is used for programming. Take care that overvoltage is not applied. Take care especially at power on. (5) The programmable M37736EHBGP that is shipped in blank is also provided. For the M37736EHBGP, Mitsubishi Electric corp. does not perform PROM programming test and screening following the assembly processes. To improve reliability after programming, performing programming and test according to the flow below before use is recommended.
ADDRESSING MODES
The M37736EHBXXXGP has 28 powerful addressing modes. Refer to the “7700 Family Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37736EHBXXXGP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details.
DATA REQUIRED FOR PROM ORDERING
Please send the following data for writing to PROM. (1) M37736EHBXXXGP writing to PROM order confirmation form (2) 100P6S mark specification form (3) ROM data (EPROM 3 sets)
Programming with PROM programmer
Screening
(Caution)
(Leave at 150 °C for 40 hours)
Verify test with PROM programmer
Function check in target device
Caution : Never expose to 150 °C exceeding 100 hours.
9
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
ABSOLUTE MAXIMUM RATINGS
Symbol Vcc AVcc VI Parameter Conditions Power source voltage Analog power source voltage _____ Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, VREF, XIN, BSEL Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, 7, P60 – P67, P70 – P77, P80 – P8_ P90 – P97, P100 – P107, XOUT, E Power dissipation Ta = 25 °C Operating temperature Storage temperature Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12(Note) Unit V V V
VI
–0.3 to Vcc + 0.3
V
VO Pd Topr Tstg
–0.3 to Vcc + 0.3 300 –20 to +85 –40 to +150
V mW °C °C
Note. When the EPROM is programmed, input voltage of pins CNVss and BYTE is 13 V respectively.
RECOMMENDED OPERATING CONDITIONS (Vcc = 5 V ± 10%, Ta = –20 to +85 °C, unless otherwise noted)
Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) Power source voltage Parameter f(XIN) : Operating f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage , P60 – High-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57_____ P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) P60 – Low-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, _____P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level peak output current P44 – P47, P100 – P103 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level average output current P44 – P47, P100 – P103 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 4.5 2.7 Limits Typ. 5.0 Vcc 0 0 0.8 Vcc 0.8 Vcc 0.5 Vcc 0 0 0 Vcc Vcc Vcc 0.2Vcc 0.2Vcc 0.16Vcc –10 Max. 5.5 5.5 Unit V V V V V V V V V V mA
IOH(avg)
–5
mA
IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN)
10 20 5 15 25 50
mA mA mA mA MHz kHz
32.768
Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, P7, and P10 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, P7, and P10 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 12.5 MHz when the main clock division selection bit = “1”.
10
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz, unless otherwise noted)
Symbol Parameter Test conditions Min. 3 Limits Typ. Max. Unit High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, IOH = –10 mA P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 High-level output voltage P00 – P07, P10 – P17, P20 – P27, IOH = –400 µA P33 IOH = –10 mA High-level output voltage P30 – P32 ICH = –400 µA _ IOH = –10 mA High-level output voltage E IOH = –400 µA Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P50 – P57, IOL = 10 mA P60 – P67, P70 – P75, P80 – P87, P90 – P97, P104 – P107 Low-level output voltage P44 – P47, P100 – P103 IOL = 20 mA Low-level output voltage P00 – P07, P10 – P17, P20 – P27, IOL = 2 mA P33 IOL = 10 mA Low-level output voltage P30 – P32 IOL = 2 mA _ IOL = 10 mA Low-level output voltage E IOL = 2 mA ____ ___ Hysteresis HOLD, _______ , __________ – TA4IN, TB0IN – TB2IN, RDY TA0IN ________ ________ ________ _______ INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, _____ _____ CLK1, CLK2, KI0 – KI3 _____ Hysteresis RESET Hysteresis XIN Hysteresis XCIN (When external clock is input) High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, VI = 5 V P40 – P47, P50 – P57, P60 – P67, P70 – P77, _____ P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, VI = 0 V P40 – P47, P50 – P57, P60, P61, P65 – P67, – P77, P70 _____ P80 – P87, P90 – P92, P100 – P103, XIN, RESET, CNVss, BYTE, BSEL VI = 0 V, Low-level input current P104 – P107, P62 – P64
without a pull-up transistor
VOH
V
VOH VOH VOH
4.7 3.1 4.8 3.4 4.8 2 2 0.45 1.9 0.43 1.6 0.4 0.4 0.2 0.1 0.1 1 0.5 0.4 0.4
V V V
VOL VOL VOL VOL VOL VT+ – VT– VT+ – VT– VT+ – VT– VT+ – VT–
V V V V V V V V V
IIH
5
µA
IIL
–5
µA
–5 –0.25 2 –0.5 –1.0
µA mA V
IIL
VRAM
RAM hold voltage
VI = 0 V, with a pull-up transistor When clock is stopped.
11
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
Symbol Parameter Test conditions VCC = 5 V, f(XIN) = 25 MHz (square waveform), f(f2) = 12.5 MHz, f(XCIN) = 32.768 kHz, in operating (Note 1) VCC = 5 V, f(XIN) = 25 MHz (square waveform), (f(f2) = 1.5625 MHz), f(XCIN) = Stopped, in operating (Note 1) Power source current In single-chip mode, output pins are open, and other pins are VSS. VCC = 5V, f(XIN) = 25 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) VCC = 5 V, f(XIN) : Stopped, f(XCIN) : 32.768 kHz, in operating (Note 3) Min. Limits Typ. Max. Unit
9.5
19
mA
1.3
2.6
mA
ICC
10
20
µA
50
100
µA
Notes 1. 2. 3. 4.
VCC = 5 V, f(XIN) : Stopped, 5 10 µA f(XCIN) : 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, 1 µA when clock is stopped Ta = 85 °C, 20 µA when clock is stopped This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.
A–D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Note), unless otherwise noted) Symbol — — Parameter Test conditions Min. Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V
Resolution VREF = VCC Absolute accuracy VREF = VCC RLADDER Ladder resistance VREF = VCC tCONV Conversion time VREF Reference voltage Analog input voltage VIA Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
10 9.44 2 0
12
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
TIMING REQUIREMENTS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz, unless otherwise noted (Note))
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.
External clock input
Unit Max. tc External clock input cycle time (Note 3) ns tw(H) External clock input high-level pulse width (Note 4) ns tw(L) External clock input low-level pulse width (Note 4) ns tr External clock rise time 8 ns External clock fall time 8 ns tf Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 80 ns. 4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55. Min. 40 15 15 Symbol Parameter Limits
Single-chip mode
Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D-E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) tsu(P10D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) th(E–P10D) Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P10 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Port P10 input hold time Parameter Limits Min. 60 60 60 60 60 60 60 60 60 60 0 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Memory expansion mode and microprocessor mode
Symbol tsu(D–E) tsu(D–RDE) tsu(RDY–φ1) tsu(HOLD–φ1) th(E–D) th(RDE–D) th(φ1–RDY) th(φ1–HOLD) Parameter Data input setup time (external bus mode A) Data input setup time (external bus mode B) RDY input setup time ____ HOLD input setup time Data input hold time (external bus mode A) Data input hold time (external bus mode B) ___ RDY input hold time ____ HOLD input hold time
___
Limits Min. 32 32 55 55 0 0 0 0 Max.
Unit ns ns ns ns ns ns ns ns
13
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
Timer A input
Symbol tc(TA) tw(TAH) tw(TAL)
(Count input in event counter mode) parameter Limits Min. 80 40 40 Max. Unit ns ns ns
TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width
Timer A input (Gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) parameter Limits Min. 320 160 160 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in one-shot pulse mode)
Symbol t c(TA) tw(TAH) tw(TAL) TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width parameter Limits Min. 320 80 80 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in pulse width modulation mode)
Symbol tw(TAH) tw(TAL) TAiIN input high-level pulse width TAiIN input low-level pulse width parameter Limits Min. 80 80 Max. Unit ns ns
Timer A input (Up-down input in event counter mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time parameter Limits Min. 2000 1000 1000 400 400 Max. Unit ns ns ns ns ns
Timer A input (Two-phase pulse input in event counter mode)
Symbol t c(TA) TAj input cycle time tsu(TAjIN–TAjOUT) TAjIN input setup time tsu(TAjOUT–TAjIN) TAjOUT input setup time parameter Limits Min. 800 200 200 Max. Unit ns ns ns
14
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
Timer B input (Count input in event counter mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Limits Min. 80 40 40 160 80 80 Max. Unit ns ns ns ns ns ns
Timer B input (Pulse period measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Parameter Limits Min. 320 160 160 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer B input (Pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Parameter Limits Min. 320 160 160 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
A-D trigger input
Symbol
__________
Parameter
ADTRG input cycle time (minimum allowable trigger) __________ ADTRG input low-level pulse width
Limits Min. 1000 125 Max.
Unit ns ns
tc(AD) tw(ADL)
Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time
______ ____
Parameter
Limits Min. 200 100 100 0 30 90 Max.
Unit ns ns ns ns ns ns ns
80
External interrupt INTi input, key input interrupt KIi input
Symbol
_______
Parameter
INTi input high-level pulse width ______ INTi input low-level pulse width ____ KIi input low-level pulse width
Limits Min. 250 250 250 Max.
Unit ns ns ns
tw(INH) tw(INL) tw(KIL)
15
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
DATA FORMULAS Timer A input (Gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 8 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) Max. Unit ns ns ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol tc(TA) TAiIN input cycle time Parameter Limits Min. 8 ! 109 2 · f(f2) Max. Unit ns
Timer B input (In pulse period measurement mode or pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input high-level pulse width TBiIN input low-level pulse width Parameter Limits Min. 8 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) Max. Unit ns ns ns
Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “ M37736MHBXXXGP ”.
16
PR
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n his tric lim e e: T otic param N e Som
I LIM E
NA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
SWITCHING CHARACTERISTICS (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85°C, f(XIN) = 25 MHz (Note), unless otherwise noted)
Symbol Parameter Test conditions Limits Min. Max. 80 80 80 80 80 80 80 80 80 80 80 Unit ns ns ns ns ns ns ns ns ns ns ns
td(E–P0Q) Port P0 data output delay time td(E–P1Q) Port P1 data output delay time td(E–P2Q) Port P2 data output delay time td(E–P3Q) Port P3 data output delay time td(E–P4Q) Port P4 data output delay time Fig. 2 td(E–P5Q) Port P5 data output delay time td(E–P6Q) Port P6 data output delay time td(E–P7Q) Port P7 data output delay time td(E–P8Q) Port P8 data output delay time td(E–P9Q) Port P9 data output delay time Port P10 data output delay time td(E–P10Q) Note. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz.
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 φ1
E
50 pF
Fig. 2 Measuring circuit for ports P0 – P10 and φ1
17
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode A] Memory expansion mode and microprocessor mode
(VCC = 5 V ± 10%, VSS = 0 V, Ta = 25 °C, f(XIN) = 25 MHz (Note 1), unless otherwise noted) Symbol td(An–E) Address output delay time Parameter Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Limits Min. 12 87 12 75 18 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 22 57 5 45 9 15 Fig. 2 4 10 45 No wait Wait 1 Wait 0 18 50 130 5 20 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 12 87 12 87 18 18 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
td(A–E)
Address output delay time Address hold time ALE pulse width
th(E–An) tw(ALE)
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–E) td(E–DQ) th(E–DQ) tw(EL) tpxz(E–DZ) tpzx(E–DZ) td(BHE–E)
ALE output delay time Data output delay time Data hold delay time
_
E pulse width
Floating start delay time Floating release delay time
___
BHE output delay time
td(R/W–E) th(E–BHE) th(E–R/W) td(E–φ1) td(φ1–HLDA)
_
R/ W output delay time
___
____
φ1 output delay time
HLDA output delay time
BHE hold time _ R/ W hold time
18 50
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
18
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode A] Memory expansion mode and microprocessor mode Bus timing data formulas (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C,
Symbol Parameter f(XIN) = 25 MHz (Max., Note), unless otherwise noted) Limits Min. 1 ! 109 – 28 2 · f(f2) 3 ! 109 – 33 2 · f(f2) 9 1 ! 10 – 28 2 · f(f2) 9 3 ! 10 – 45 2 · f(f2) 9 1 ! 10 – 22 2 · f(f2) 9 1 ! 10 – 18 2 · f(f2) 9 2 ! 10 – 23 2 · f(f2) 9 1 ! 10 – 35 2 · f(f2) 2 ! 109 – 35 2 · f(f2) 9 1 ! 109 2 · f(f2) 4 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 0 – 30 45 – 22 – 30 – 30 5 – 20 – 28 – 33 – 28 – 33 – 22 – 22 18 – 25 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
td(An–E)
Address output delay time
Wait mode No wait Wait 1 Wait 0 No wait Wait 1 Wait 0
td(A–E)
Address output delay time
th(E–An)
Address hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0
tw(ALE)
ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–E) td(E–DQ) th(E–DQ)
ALE output delay time
Data output delay time Data hold time
_
No wait Wait 1 Wait 0
tw(EL) tpxz(E–DZ) tpzx(E–DZ)
E pulse width
Floating start delay time Floating release delay time
___
td(BHE–E)
BHE output delay time
No wait Wait 1 Wait 0
_
td(R/W–E)
R/W output delay time
___
No wait Wait 1 Wait 0
th(E–BHE) th(E–R/W) td(E–φ1)
BHE hold time
_
R/W hold time φ1 output delay time
Notes 1. This applies when the main-clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “ M37736MHBXXXGP ”.
19
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode B] Memory expansion mode and microprocessor mode
(VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Note 1), unless otherwise noted) Symbol td(CS–WE) td(CS–RDE) th(WE–CS) th(RDE–CS) td(An–WE) td(An–RDE) td(A–WE) td(A–RDE) th(WE–An) th(RDE–An) tw(ALE) Chip-select output delay time Parameter Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 Limits Min. 12 87 4 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 12 87 12 75 18 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 22 57 Fig.2 5 45 9 15 4 10 45 No wait Wait 1 Wait 0 18 50 130 5 No wait Wait 1 Wait 0 20 48 128 10 0 0 18 50 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Chip-select hold time Address output delay time
Address output delay time Address hold time ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–WE) td(ALE–RDE) td(WE–DQ) th(WE–DQ) tw(WE) tpxz(RDE–DZ) tpzx(RDE–DZ) tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1) td(φ1–HLDA)
ALE output delay time Data output delay time Data hold delay time
___ ___
WEL/WEH pulse width
Floating start delay time Floating release delay time
___
RDE pulse width
____
RSMP output delay time
____
RSMP hold time
φ1 output delay time
____
HLDA output delay time
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 12.5 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
20
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode B] Memory expansion mode and microprocessor mode Bus timing data formulas (VCC = 5 V ± 10%, VSS = 0 V, Ta = –20 to 85 °C, f(XIN) = 25 MHz (Max., Note1), unless otherwise noted)
Symbol td(CS–WE) td(CS–RDE) th(WE–CS) th(RDE–CS) td(An–WE) td(An–RDE) Parameter Wait mode No wait Wait 1 Wait 0 Chip-select hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Address hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 td(ALE–WE) td(ALE–RDE) td(WE–DQ) th(WE–DQ) No wait Wait 1 Wait 0 Data output delay time Data hold time
___ ___
Chip-select output delay time
Limits Min. 1 ! 109 – 28 2 · f(f2) 3 ! 109 – 33 2 · f(f2) 4 1 ! 10 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2)
9
Max.
Unit ns ns ns
– 28 – 33 – 28 – 45 – 22 – 18 – 23 – 35 – 35
ns ns ns ns ns ns ns ns ns ns
Address output delay time
td(A–WE) td(A–RDE) th(WE–An) th(RDE–An) tw(ALE)
Address output delay time
ALE pulse width
tsu(A–ALE)
Address output setup time
9 1 ! 10 2 · f(f2)
9
th(ALE–A)
Address hold time
– 25
ns ns
4 1 ! 10 2 · f(f2)
9
ALE output delay time
– 30 45
ns ns ns ns ns 5 ns ns ns ns ns ns 18 ns
No wait Wait 1 Wait 0
tw(WE) tpxz(RDE–DZ) tpzx(RDE–DZ)
WEL/WEH pulse width
1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 0 0
– 22 – 30 – 30
Floating start delay time Floating release delay time
___
– 20 – 32 – 32 – 30
No wait Wait 1 Wait 0
tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1)
RDE pulse width
____
RSMP output delay time
____
RSMP hold time
φ1 output delay time
Notes 1. This applies when the main-clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “ M37736MHBXXXGP ”.
21
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
TIMING DIAGRAM
tr tf tc
Single-chip mode
XIN
tw(H)
tw(L)
E
td(E–PiQ)
Port Pi output (i = 0 – 10) Port Pi input (i = 0 – 8, 10)
tsu(PiD–E)
th(E–PiD)
td(E–P1Q)
Port P1 output
tsu(P1D–E)
Port P1 input
th(E–P1D)
td(E–P2Q)
Port P2 output
tsu(P2D–E)
Port P2 input
th(E–P2D)
td(E–P3Q)
Port P3 output
tsu(P3D–E)
Port P3 input
th(E–P3D)
td(E–P4Q)
Port P4 output
tsu(P4D–E)
Port P4 input
th(E–P4D)
td(E–P5Q)
Port P5 output
tsu(P5D–E)
Port P5 input
th(E–P5D)
td(E–P6Q)
Port P6 output
tsu(P6D–E)
Port P6 input
th(E–P6D)
td(E–P7Q)
Port P7 output
tsu(P7D–E)
Port P7 input
th(E–P7D)
td(E–P8Q)
Port P8 output
tsu(P8D–E)
Port P8 input
th(E–P8D)
22
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
tc(TA) tw(TAH) TAiIN input
tw(TAL)
tc(UP) tw(UPH) TAiOUT input tw(UPL)
In event count mode
TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising)
th(TIN–UP)
tsu(UP–TIN)
In event counter mode (When two-phase pulse input is selected) TAjIN input
tsu(TAjIN–TAjOUT)
tc(TA)
tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN)
TAjOUT input
tsu(TAjOUT–TAjIN)
tc(TB) tw(TBH) TBiIN input tw(TBL)
23
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
tc(AD) tw(ADL)
ADTRG input
tc(CK) tw(CKH) CLKi
tw(CKL)
th(C–Q) TxDi td(C–Q) RxDi tSU(D–C) th(C–D)
tw(INL)
INTi input Kli input
tw(INH) tw(KNL)
24
PR
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n his tric lim e e: T otic param N e Som
I LIM E
NA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
Memory expansion mode and microprocessor mode (When wait bit = “1”)
φ1
E or RDE, WEL, WEH
RDY input
tsu(RDY– φ 1) th(φ1–RDY)
( When wait bit = “0”)
φ1
E or RDE, WEL, WEH
RDY input
tsu(RDY– φ 1) th(φ 1–RDY)
(When wait bit = “1” or “0” in common)
φ1
tsu(HOLD– φ 1)
HOLD input
th( φ 1–HOLD)
td(φ 1–HLDA)
HLDA output
td(φ1–HLDA)
Test conditions • VCC = 5 V ± 10% • Input timing voltage : V IL = 1.0 V, VIH = 4.0 V • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
25
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode (No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(E-φ1) tw(EL) E td(E-φ1)
td(An-E)
th(E-An) Address Address Address
An
tw(ALE)
td(ALE-E)
ALE
th(ALE-A) tsu(A-ALE) th(E-DQ) tpxz(E-DZ) tpzx(E-DZ)
Am/Dm
Address
Data
Address th(E-D) tsu(D-E) Data
Address
td(E-DQ) td(A-E)
DmIN
th(E-BHE)
td(BHE-E) BHE
td(R/W-E)
th(E-R/W)
R/W
Test conditions • VCC = 5 V ± 10% • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Data input DmIN : VIL = 0.8 V, VIH = 2.5 V
26
P
ge. ion. icat o chan t ecif l sp ubject fina re s a ot a is n limits his e: T ametric ic Not e par Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection = “1”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(E–φ1) tw(EL)
E
td(E–φ1)
td(An–E) An
th(E–An) Address Address
tw(ALE) ALE
td(ALE–E)
th(ALE–A) tsu(A–ALE) Am/Dm Address Data th(E–DQ) tpxz(E–DZ) Address tpzx(E–DZ) Address
td(A–E)
td(E–DQ) tsu(D–E)
th(E–D)
DmIN
Data td(BHE–E) th(E–BHE)
BHE
td(R/W–E) R/W
th(E–R/W)
Test conditions • Vcc = 5 V ± 10% • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
27
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode A]
Memory expansion mode and microprocessor mode (Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(E–φ1)
E
td(E–φ1) tw(EL)
td(An–E) An Address
th(E–An) Address Address
tw(ALE) ALE
td(ALE–E)
tsu(A–ALE)
th(ALE–A) th(E–DQ) tpxz(E–DZ) Address tpzx(E–DZ) Address
Am/Dm
Address td(A–E)
Data td(E–DQ)
tsu(D–E) DmIN th(E–BHE) Data
th(E–D)
td(BHE–E)
BHE
td(R/W–E) R/W
th(E–R/W)
Test conditions • Vcc = 5 V ± 10% • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
28
PR
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n his tric lim e e: T otic param N e Som
I LIM E
NA
RY
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode (No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(WE– φ1) td(WE– φ1) td(RDE– φ1) td(RDE– φ1 )
CS0 – CS4 t d(CS–WE) th(WE –CS) td(CS–RDE) th(RDE– CS)
An
td(An–WE) tw(ALE)
Address
td(An–RDE ) td(ALE –WE) th(WE–An)
Address
Address
th(RDE –An)
ALE
th(ALE –A) tsu(A–ALE) th(WE–DQ) tpxz(RDE –DZ) tpzx(RDE –DZ) td(ALE –RDE)
Am/Dm
Address
Data
Address
td(A–RDE)
Address
td(WE–DQ) t d(A–WE) tw(WE) WEL, WEH
th(RDE–D) t su(D–RDE)
DmIN
Data
tw(RDE)
RDE th(φ1–RSMP) td(RSMP –WE) td(RSMP –RDE)
RSMP
Test conditions • Vcc = 5 V ± 10% • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
29
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(WE–φ1)
CS0 – CS4
td(WE–φ1) td(RDE-φ1) th(WE–CS)
td(RDE–φ1)
td(CS–RDE) td(CS–WE) An td(An–WE) tw(ALE) ALE th(ALE–A) tsu(A–ALE) Am/Dm Address Data td(ALE–RDE) th(WE–DQ) tpxz(RDE–DZ) Address Address td(An–RDE) th(WE-An) td(ALE–WE)
th(RDE–CS)
th(RDE–An)
tpzx(RDE–DZ) Address
Address
td(A–WE)
td(WE–DQ) tw(WE)
td(A–RDE)
WEL, WEH
th(RDE–D) tsu(D–RDE) Data
DmIN
tw(RDE)
RDE
th(φ 1–RSMP)
RSMP
td(RSMP–WE)
td(RSMP–RDE)
Test conditions • Vcc = 5 V ± 10% • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.8 V, VIH = 2.5 V
30
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M67736EHBGS
PROM VERSION OF M37736MHBXXXGP
[External bus mode B]
Memory expansion mode and microprocessor mode (Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(WE– φ 1)
td(WE– φ 1)
td(RDE– φ 1)
td(RDE– φ1)
CS0 – CS4
td(CS–WE)
th(WE–CS)
td(CS–RDE) th(RDE–CS)
An td(An–WE) tw(ALE) ALE
Address td(An–RDE) td(ALE–WE) th(WE–An)
Address
Address
th(RDE–An)
td(ALE–RDE) tsu(A–ALE)
th(ALE–A)
th(WE–DQ) Address td(A–RDE)
tpxz(RDE–DZ)
tpzx(RDE–DZ) Address
Am/Dm
Address td(A–WE)
Data td(WE–DQ)
tw(WE)
WEL, WEH
tsu(D–RDE) Data
th(RDE–D)
DmIN
tw(RDE)
RDE
td(RSMP–WE)
RSMP
th(φ1–RSMP)
td(RSMP–RDE)
Test conditions • Vcc = 5 V ± 10% • Output timing voltage : VOL = 0.8 V, VOH = 2.0 V • Data input DmIN : VIL = 0.8 V, VIH = 2.5 V
31
P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736EHBXXXGP M37736EHBGS
PROM VERSION OF M37736MHBXXXGP
PACKAGE OUTLINE
Keep safety first in your circuit designs!
¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1997 MITSUBISHI ELECTRIC CORP. H-LF488-A KI-9703 Printed in Japan (ROD) 2 New publication, effective Mar. 1997. 32 Specifications subject to change without notice.
REVISION DESCRIPTION LIST
Rev. No. 1.00 2.00 First Edition The following are revised:
Page P9 Right column Line 2 Previous Version
M37736EHBXXXGP, M37736EHBGS Datasheet
Revision Description Rev. date 970611 980731
Revised Version The M37736EHBXXXGP has 28 powerful addressing modes. R efer to the “7700 Family Software Manual” for the details.
The M37736EHBXXXGP has 28 powerful addressing modes. R efer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode.
MACHINE INSTRUCTION LIST
The M37736EHBXXXGP has 103 machine instructions. Refer to the “7700 Family Software Manual” for the details.
MACHINE INSTRUCTION LIST
The M37736EHBXXXGP has 103 machine instructions. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for details. Line 10 (2) 80P6N mark specification form
(2) 100P6S mark specification form
(1)