P
. . tion nge ifica to cha t pec al s subjec a fin are not s is is ric limit t : Th tice arame No e p Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DESCRIPTION
The M37736M4LXXXHP is a single-chip microcomputer using the 7700 Family core. This single-chip microcomputer has a CPU and a bus interface unit. The CPU is a 16-bit parallel processor that can be an 8-bit parallel processor, and the bus interface unit enhances the memory access efficiency to execute instructions fast. This microcomputer also includes a 32 kHz oscillation circuit, in addition to the ROM, RAM, multiple-function timers, serial I/O, A-D converter, and so on. Its strong points are the low power dissipation, the low supply voltage, and the small package. In the M37736M4LXXXHP, as the multiplex method of the external bus, either of 2 types can be selected.
qLow power dissipation (At 3 V supply voltage, 12 MHz frequency) ............................................ 9 mW (Typ.) qInterrupts ............................................................ 19 types, 7 levels qMultiple-function 16-bit timer ................................................. 5 + 3 qSerial I/O (UART or clock synchronous) ..................................... 3 q10-bit A-D converter .............................................. 8-channel inputs q12-bit watchdog timer qProgrammable input/output, output (ports P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10) ............... 84 qClock generating circuit ........................................ 2 circuits built-in qSmall package ..................... 100-pin plastic molded fine-pitch QFP (100P6Q-A;0.5 mm lead pitch)
APPLICATION FEATURES
qNumber of basic instructions .................................................. 103 qMemory size ROM ................................................. 32 Kbytes RAM ................................................ 2048 bytes qInstruction execution time The fastest instruction at 12 MHz frequency ...................... 333 ns qSingle power supply ...................................................... 2.7–5.5 V Control devices for general commercial equipment such as office automation, office equipment, personal information equipment, and others. Control devices for general industrial equipment such as communication equipment, and others.
PIN CONFIGURATION (TOP VIEW)
75 ↔ P92/RXD2 74 → P93/TXD2 73 → P94 72 → P95 71 → P96 70 → P97 69 ↔ P00/A0/CS0 68 ↔ P01/A1/CS1 67 ↔ P02/A2/CS2 66 ↔ P03/A3/CS3 65 ↔ P04/A4/CS4 64 ↔ P05/A5/RSMP 63 ↔ P06/A6/A16 62 ↔ P07/A7/A17 61 ↔ P10/A8/D8 60 ↔ P11/A9/D9 59 ↔ P12/A10/D10 58 ↔ P13/A11/D11 57 ↔ P14/A12/D12 56 ↔ P15/A13/D13 55 ↔ P16/A14/D14 54 ↔ P17/A15/D15 53 ↔ P20/A16/A0/D0 52 ↔ P21/A17/A1/D1 51 ↔ P22/A18/A2/D2
P91/CLK2 ↔ 76 P90/CTS2 ↔ 77 P87/TXD1 ↔ 78 P86/RXD1 ↔ 79 P85/CLK1 ↔ 80 P84/CTS1/RTS1 ↔ 81 P83/TXD0 ↔ 82 P82/RXD0/CLKS0 ↔ 83 P81/CLK0 ↔ 84 P80/CTS0/RTS0/CLKS1 ↔ 85 86 VCC 87 AVCC VREF → 88 89 AVSS 90 VSS P77/AN7/XCIN ↔ 91 P76/AN6/XCOUT ↔ 92 P75/AN5/ADTRG ↔ 93 P74/AN4 ↔ 94 P73/AN3 ↔ 95 P72/AN2 ↔ 96 P71/AN1 ↔ 97 P70/AN0 ↔ 98 P67/TB2IN/f SUB ↔ 99 P66/TB1IN ↔ 100
M37736M4LXXXHP
50 ↔ P23/A19/A3/D3 49 ↔ P24/A20/A4/D4 48 ↔ P25/A21/A5/D5 47 ↔ P26/A22/A6/D6 46 ↔ P27/A23/A7/D7 45 ↔ P30/R/W/WEL 44 ↔ P31/BHE/WEH 43 ↔ P32/ALE 42 ↔ P33/HLDA 41 → EVL0 40 → EVL1 39 VCC 38 VSS 37 → E/RDE 36 → XOUT 35 ← XIN 34 ← RESET 33 ← BSEL 32 ← CNVSS 31 ← BYTE 30 ↔ P40/HOLD 29 ↔ P41/RDY 28 ↔ P42/f1 27 ↔ P43 26 ↔ P44
P65/TB0IN ↔ 1 P64/INT2 ↔ 2 P63/INT1 ↔ 3 P62/INT0 ↔ 4 P61/TA4IN ↔ 5 P60/TA4OUT ↔ 6 P57/TA3IN ↔ 7 P56/TA3OUT ↔ 8 P55/TA2IN ↔ 9 P54/TA2OUT ↔ 10 P53/TA1IN ↔ 11 P52/TA1OUT ↔ 12 P51/TA0IN ↔ 13 P50/TA0OUT ↔ 14 P107/KI3 ↔ 15 P106/KI2 ↔ 16 P105/KI1 ↔ 17 P104/KI0 ↔ 18 P103 ↔ 19 P102 ↔ 20 P101 ↔ 21 P100 ↔ 22 P47 ↔ 23 P46 ↔ 24 P45 ↔ 25
Outline 100P6Q-A
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Input/Output port P10
Output port P9
Reference External data bus width selection input voltage input BYTE VREF
Data Buffer DBH(8) Data Buffer DBL(8) Data Bus(Even) Data Bus(Odd)
Instruction Register(8)
Instruction Queue Buffer Q0(8) Instruction Queue Buffer Q1(8) Instruction Queue Buffer Q2(8)
P0(8)
P10(8)
P9(8)
AVCC
Incrementer(24)
Program Address Register PA(24) Data Address Register DA(24)
A-D Converter(10)
(0V) AVSS
P2(8)
Address Bus
CNVSS
Program Counter PC(16)
(0V) VSS
Program Bank Register PG(8)
Watchdog Timer
Timer TB2(16)
Timer TB1(16)
Timer TB0(16)
P4(8)
Incrementer/Decrementer(24)
VCC
Data Bank Register DT((8)
Bus method Reset input selection input RESET BSEL
Input Buffer Register IB(16)
Timer TA4(16)
Timer TA3(16)
Timer TA2(16)
Timer TA1(16)
Timer TA0(16)
Processor Status Register PS(11) Direct Page Register DPR(16)
M37736M4LXXXHP BLOCK DIAGRAM
XCOUT
Enable output E
XCIN
Stack Pointer S(16) Index Register Y(16)
RAM 2048 bytes
Index Register X(16)
Clock Generating Circuit
Accumulator B(16) Accumulator A(16)
Clock output XOUT
XCIN XCOUT
Clock input XIN
Arithmetic Logic Unit(16)
2
Input/Output port P8
ROM 32 Kbytes
P8(8)
Input/Output port P7
P7(8)
Input/Output port P6
P6(8)
Input/Output port P5
P5(8)
Input/Output port P4
UART2(9)
UART1(9)
UART0(9)
Input/Output port P3
P3(4)
Input/Output port P2
Input/Output port P1
P1(8)
Input/Output port P0
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
FUNCTIONS OF M37736M4LXXXHP
Parameter Number of basic instructions Instruction execution time Memory size Input/Output ports Output port Multi-function timers Serial I/O A-D converter Watchdog timer Interrupts Clock generating circuit Supply voltage Power dissipation Input/Output characteristic Memory expansion Operating temperature range Device structure Package Input/Output voltage Output current ROM RAM P0 – P2, P4 – P8, P10 P3 P9 TA0, TA1, TA2, TA3, TA4 TB0, TB1, TB2 Functions 103 333 ns (the fastest instruction at external clock 12 MHz frequency) 32 Kbytes 2048 bytes 8-bit ! 9 4-bit ! 1 8-bit ! 1 16-bit ! 5 16-bit ! 3 (UART or clock synchronous serial I/O) ! 3 10-bit ! 1 (8 channels) 12-bit ! 1 3 external types, 16 internal types Each interrupt can be set to the priority level (0 – 7.) 2 circuits built-in (externally connected to a ceramic resonator or a quartz-crystal oscillator) 2.7 – 5.5 V 9 mW (at 3 V supply voltage, external clock 12 MHz frequency) 22.5 mW (at 5 V supply voltage, external clock 12 MHz frequency) 5V 5 mA External bus mode A; maximum 16 Mbytes, External bus mode B; maximum 1 Mbytes –40 to 85 °C CMOS high-performance silicon gate process 100-pin plastic molded fine-pitch QFP (100P6Q-A;0.5 mm lead pitch)
3
P
. . tion nge ifica to cha t pec al s subjec fin re a ot a is n limits This ric ice: aramet Not e p Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
PIN DESCRIPTION
Pin Vcc, Vss CNVss
_____
Name Input/Output Power source Apply 2.7 – 5.5 V to Vcc and 0 V to Vss. CNVss input Reset input Clock input Clock output Enable output Input Input Input Output Output
Functions
RESET
XIN XOUT
_
E
BYTE
BSEL
External data bus width selection input Bus method select input Analog power source input Reference voltage input I/O port P0
Input
Input
AVcc, AVss VREF P00 – P07
This pin controls the processor mode. Connect to Vss for the single-chip mode and the memory expansion mode, and to Vcc for the microprocessor mode. When “L” level is applied to this pin, the microcomputer enters the reset state. These are pins of main-clock generating circuit. Connect a ceramic resonator or a quartzcrystal oscillator between XIN and XOUT. When an external clock is used, the clock source should be connected to the XIN pin, and the XOUT pin should be left open. This pin functions as the enable signal output pin which indicates the access status in the internal bus. In the external bus mode B and the memory expansion mode or the microprocessor mode, ___ this pin output signal RDE. In the memory expansion mode or the microprocessor mode, this pin determines whether the external data bus has an 8-bit width or a 16-bit width. The data bus has a 16-bit width when “L” signal is input and an 8-bit width when “H” signal is input. In the memory expansion mode or the microprocessor mode, this pin determines the external bus mode. The bus mode becomes the external bus mode A when “H” signal is input, and the external bus mode B when “L” signal is input. Power source input pin for the A-D converter. Externally connect AVcc to Vcc and AVss to Vss. This is reference voltage input pin for the A-D converter. In the single-chip mode, port P0 becomes an 8-bit I/O port. An I/O direction register is available so that each pin can be programmed for input or output. These ports are in the input mode when reset. In the memory expansion mode or the microprocessor mode, these pins output address (A0 – A7) ___ ___ ____ at the external bus mode A, and these pins output signals CS0 – CS4 and RSMP, and addresses (A16, A17) at the external bus mode B. In the single-chip mode, these pins have the same functions as port P0. When the BYTE pin is set to “L” in the memory expansion mode or the microprocessor mode and external data bus has a 16-bit width, high-order data (D8 – D15) is input/output or an address (A8 – A15) is output. When the BYTE pin is “H” and an external data bus has an 8-bit width, only address (A8 – A15) is output. In the single-chip mode, these pins have the same functions as port P0. In the memory expansion mode or the microprocessor mode, low-order data (D0 – D7) is input/output or an address is output. When using the external bus mode A, the address is A16 – A23. When using the external bus mode B, the address is A0 – A7. In the single-chip mode, these pins have the_same function__ port P0. In the memory expansion _ __ _ _ _ __ _ __ __ __ __ ____ ____ ___ _ as mode or the microprocessor mode, R/W_,___B_______ , ALE, and HLDA signals are output at the external HE ________ ____________ _ _ __ _ _ bus mode A, and WEL, WEH, ALE, and HLDA signals are output at the external bus mode B. In the single-chip mode, these pins have the same functions as____P0. In the memory expansion port ___ mode or the microprocessor mode, P40, P41, and P42 become HOLD and RDY input pins, and a clock φ1 output pin, respectively. Functions of the other pins are the same as in the single-chip mode. However, in the memory expansion mode, P42 can be selected as an I/O port. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for timers A0 to A3. In addition to having the same functions as port P0 in the single-chip mode, these pins also ___ ___ function as I/O pins for timer A4, input pins for external interrupt input (INT0 – INT2) and input pins for timers B0 to B2. P67 also functions as sub-clock φSUB output pin. In addition to having the same functions as port P0 in the single-chip mode, these pins function as input pins for A-D converter. Additionally, P76 and P77 have the function as the output pin (XCOUT) and the input pin (XCIN) of the sub-clock (32 kHz) oscillation circuit, respectively. When P76 and P77 are used as the XCOUT and XCIN pins, connect a resonator or an oscillator between the both. In addition to having the same functions as port P0 in the single-chip mode, these pins also function as I/O pins for UART 0 and UART 1. Port P9 is an 8-bit I/O port. These ports are floating when reset. When writing to the port latch, these ports become the output mode. P90 – P93 also function as I/O port for UART 2. In addition to having the same functions as port P0 in the single-chip mode. P104 – P107 also __ __ function as input pins for key input interrupt input (Kl0 – Kl3). These pins should be left open.
Input I/O
P10 – P17 I/O port P1
I/O
P20 – P27 I/O port P2
I/O
P30 – P33 I/O port P3
I/O
P40 – P47 I/O port P4
I/O
P50 – P57 I/O port P5 P60 – P67 I/O port P6
I/O I/O
P70 – P77 I/O port P7
I/O
P80 – P87 I/O port P8 P90 – P97 Output port P9 P100 – P107 I/O port P10 EVL0, EVL1
I/O Output I/O Output
4
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
BASIC FUNCTION BLOCKS
The M37736M4LXXXHP has the same fuanctions as the M37736MHBXXXGP except for the memory allocation, the reset circuit, the ROM area modification function, and the package. Refer to the section on the M37736MHBXXXGP.
MEMORY
The memory map is shown in Figure 1. The address space has a capacity of 16 Mbytes and is allocated to addresses from 016 to FFFFFF16. The address space is divided by 64-Kbyte unit called bank. The banks are numbered from 016 to FF16. However, banks 1016 – FF16 cannot be accessed in the external bus mode B. Built-in ROM, RAM and control registers for internal peripheral devices are assigned to bank 016. The 32-Kbyte area from addresses 800016 to FFFF16 is the built-in ROM. Addresses FFD616 to FFFF16 are the RESET and interrupt vector addresses and contain the interrupt vectors. Refer to the section on interrupts for details. The 2048-byte area allocated to addresses from 8016 to 87F16 is the
built-in RAM. In addition to storing data, the RAM is used as stack during a subroutine call or interrupts. Peripheral devices such as I/O ports, A-D converter, serial I/O, timer, and interrupt control registers are allocated to addresses from 016 to 7F16. Additionally, the internal ROM area can be modified by software. Refer to the section on ROM area modification function for details. A 256-byte direct page area can be allocated anywhere in bank 016 by using the direct page register (DPR). In the direct page addressing mode, the memory in the direct page area can be accessed with two words. Hence program steps can be reduced.
00000016 Bank 0 16
00000016 00007F 16 00008016 00087F 16
00000016 Internal RAM 2048 bytes Internal peripheral devices control registers
refer to Fig. 2 for detail information
00FFFF16 01000016
00007F 16
Bank 1 16 00FFD6 16 01FFFF16
•••••••••••••••••••
Interrupt vector table
A-D/UART2 trans./rece.
UART1 transmission UART1 receive UART0 transmission UART0 receive Timer B2
00800016
Timer B1 Timer B0 Timer A4 Timer A3 Timer A2
FE000016 Bank FE 16 FEFFFF 16 FF000016 Bank FF 16 00FFD6 16 FFFFFF 16 00FFFF 16 00FFFE16 Internal ROM 32 Kbytes
Timer A1 Timer A0
INT2/Key input INT1 INT0
Watchdog timer
DBC
BRK instruction Zero divide
RESET
Notes 1. Internal ROM area can be modified. (Refer to the section on ROM area modification function.) 2. Banks 10 16 – FF16 cannot be accessed in the external bus mode B.
Fig. 1 Memory map
5
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Address (Hexadecimal notation) 000000 000001 000002 Port P0 register 000003 Port P1 register 000004 Port P0 direction register 000005 Port P1 direction register 000006 Port P2 register 000007 Port P3 register 000008 Port P2 direction register 000009 Port P3 direction register 00000A Port P4 register 00000B Port P5 register 00000C Port P4 direction register 00000D Port P5 direction register 00000E Port P6 register 00000F Port P7 register 000010 Port P6 direction register 000011 Port P7 direction register 000012 Port P8 register 000013 000014 Port P8 direction register 000015 000016 000017 000018 000019 00001A 00001B 00001C Reserved area (Note) 00001D Reserved area (Note) 00001E A-D control register 0 00001F A-D control register 1 000020 A-D register 0 000021 000022 A-D register 1 000023 000024 A-D register 2 000025 000026 A-D register 3 000027 000028 A-D register 4 000029 00002A A-D register 5 00002B 00002C A-D register 6 00002D 00002E A-D register 7 00002F 000030 UART 0 transmit/receive mode register 000031 UART 0 baud rate register 000032 UART 0 transmission buffer register 000033 000034 UART 0 transmit/receive control register 0 000035 UART 0 transmit/receive control register 1 000036 UART 0 receive buffer register 000037 000038 UART 1 transmit/receive mode register 000039 UART 1 baud rate register 00003A UART 1 transmission buffer register 00003B 00003C UART 1 transmit/receive control register 0 00003D UART 1 transmit/receive control register 1 00003E UART 1 receive buffer register 00003F
Address (Hexadecimal notation) 000040 000041 000042 000043 000044 000045 000046 000047 000048 000049 00004A 00004B 00004C 00004D 00004E 00004F 000050 000051 000052 000053 000054 000055 000056 000057 000058 000059 00005A 00005B 00005C 00005D 00005E 00005F 000060 000061 000062 000063 000064 000065 000066 000067 000068 000069 00006A 00006B 00006C 00006D 00006E 00006F 000070 000071 000072 000073 000074 000075 000076 000077 000078 000079 00007A 00007B 00007C 00007D 00007E 00007F
Count start flag One-shot start flag Up-down flag
Timer A0 register Timer A1 register Timer A2 register Timer A3 register Timer A4 register Timer B0 register Timer B1 register Timer B2 register Timer A0 mode register Timer A1 mode register Timer A2 mode register Timer A3 mode register Timer A4 mode register Timer B0 mode register Timer B1 mode register Timer B2 mode register Processor mode register 0 Processor mode register 1 Watchdog timer register Watchdog timer frequency selection flag Reserved area (Note) Memory allocation control register UART 2 transmit/receive mode register UART 2 baud rate register UART 2 transmission buffer register UART 2 transmit/receive control register 0 UART 2 transmit/receive control register 1 UART 2 receive buffer register Oscillation circuit control register 0 Port function control register Serial transmit control register Oscillation circuit control register 1 A-D/UART 2 trans./rece. interrupt control register UART 0 transmission interrupt control register UART 0 receive interrupt control register UART 1 transmission interrupt control register UART 1 receive interrupt control register Timer A0 interrupt control register Timer A1 interrupt control register Timer A2 interrupt control register Timer A3 interrupt control register Timer A4 interrupt control register Timer B0 interrupt control register Timer B1 interrupt control register Timer B2 interrupt control register INT0 interrupt control register INT1 interrupt control register INT2/Key input interrupt control register Note. Do not write to this address.
Fig. 2 Location of internal peripheral devices and interrupt control registers
6
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RESET CIRCUIT
_____
The microcomputer is released from the reset state when the RESET pin is returned to “H” level after holding it at “L” level with the power source voltage at 2.7 – 5.5 V. Program execution starts at the address formed by setting address A23 – A16 to 0016, A15 – A8 to the contents of address FFFF16, and A7 – A0 to the contents of address FFFE16. Figure 3 shows an example of a reset circuit. When the stabilized clock is input from the external to the main-clock oscillation circuit, the reset input voltage must be 0.55 V or less when the power source voltage reaches 2.7 V. When a resonator/oscillator is connected to the main-clock oscillation circuit, change the reset input voltage from “L” to “H” after the main-clock oscillation is fully stabilized.
Power on
VCC
RESET
2.7V 0V
VCC
RESET
0V
0.55V
Note. In this case, stabilized clock is input from the external to the main-clock oscillation circuit. Perform careful evalvation at the system design level before using.
Fig. 3 Example of a reset circuit
7
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
___ ___
ROM AREA MODIFICATION FUNCTION
The internal ROM size and its address area of the M37736M4LXXXHP can be modified by the memory allocation control register’s bit 0 shown in Figure 4. Figure 6 shows the memory allocation in which the internal ROM size and its address area are modified. Make sure to write data in the memory allocation control register as the flow shown in Figure 5. This ROM area modification function is valid in memory expansion mode and single-chip mode. Table 1 shows the relationship between memory allocation selection
bits and address corresponding to chip-select signals CS0 and CS1 in the external bus mode B. When ordering a mask ROM, Mitsubishi Electric corp. produces the mask ROM using the data within 32 Kbytes (addresses 00800016 – 00FFFF16). It is regardless of the selected ROM size (refer to MASK ROM ORDER CONFIRMATION FORM.) Therefore, program “FF16” to the addresses out of the selected ROM area in the EPROM which you tender when ordering a mask ROM. Address 00FFFF16 of this microcomputer corresponds to the lowest address of the EPROM which you tender.
7
6
5
4
3
2
1
0 ML0 Memory allocation control register
Address 6316
Memory allocation selection bit ROM size (ROM area) 0 : 32 Kbytes (addresses 00800016 – 00FFFF16) 1 : 16 Kbytes (addresses 00C00016 – 00FFFF16)
Note. Write to the memory allocation control register as the flow shown in Figure 5.
Fig. 4 Bit configuration of memory allocation control register
Writing data “5516” (LDM instruction) Next instruction Writing data “0016” or “0116” (LDM instruction)
ML0 selection bit • How to write in memory allocation control register
Fig. 5 How to write data in memory allocation control register
8
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
(ML0) = (0) ROM size : 32 kbytes 00000016 00007F16 00008016 00087F16 SFR Internal RAM 2048 bytes 00000016 00007F16 00008016 00087F16
(ML0) = (1) ROM size : 16 Kbytes SFR Internal RAM 2048 bytes
00800016 Internal ROM 32 Kbytes 00FFFF16 01000016
00C00016 00FFFF16 01000016
Internal ROM 16 Kbytes
FFFFFF16 : External memory area
FFFFFF16
Note. Banks 1016 to FF16 cannot be accessed in the external bus mode B.
Fig. 6 Memory allocation (modification of internal ROM area by memory allocation selection bit)
__ _
__ _
Table 1. Relationship between memory allocation selection bits and addresses corresponding to chip-select signals CS0 and CS1 in external bus mode B Memory allocation select bit ML0 0 1 Internal ROM area 00800016 – 00FFFF16 00C00016 – 00FFFF16
__ _
Access address
__ _
CS0
CS1
00088016 – 007FFF16 00088016 – 007FFF16
01000016 – 03FFFF16 00800016 – 00BFFF16 01000016 – 03FFFF16
ADDRESSING MODES
The M37736M4LXXXHP has 28 powerful addressing modes. Refer to the MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLECHIP 16-BIT MICROCOMPUTERS for the details of each addressing mode.
MITSUBISHI SEMICONDUCTORS DATA BOOK SINGLE-CHIP 16BIT MICROCOMPUTERS for details.
DATA REQUIRED FOR MASK ROM ORDERING
Please send the following data for mask orders. (1) M37736M4LXXXHP mask ROM order confirmation form (2) 100P6Q mark specification form (100P6D mark specification form is substituted.) (3) ROM data (EPROM 3 sets)
MACHINE INSTRUCTION LIST
The M37736M4LXXXHP has 103 machine instructions. Refer to the
9
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Symbol Vcc AVcc VI VI Parameter Conditions Power source voltage Analog power source voltage _____ Input voltage RESET, CNVss, BYTE Input voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, VREF, XIN, BSEL Output voltage P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, 7, P60 – P67, P70 – P77, P80 – P8_ P90 – P97, P100 – P107, XOUT, E Power dissipation Ta = 25 °C Operating temperature Storage temperature Ratings –0.3 to +7 –0.3 to +7 –0.3 to +12 Unit V V V
–0.3 to Vcc + 0.3
V
VO
–0.3 to Vcc + 0.3 200 –40 to +85 –65 to +150
V mW °C °C
Pd Topr Tstg
RECOMMENDED OPERATING CONDITIONS (Vcc = 2.7 – 5.5 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol Vcc AVcc Vss AVss VIH VIH VIH VIL VIL VIL IOH(peak) Parameter f(XIN) : Operating Power source voltage f(XIN) : Stopped, f(XCIN) = 32.768 kHz Analog power source voltage Power source voltage Analog power source voltage , P60 – High-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57_____ P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL, XCIN (Note 3) High-level input voltage P10 – P17, P20 – P27 (in single-chip mode) High-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) P60 – Low-level input voltage P00 – P07, P30 – P33, P40 – P47, P50 – P57, _____P67, P70 – P77, P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL, XCIN (Note 3) Low-level input voltage P10 – P17, P20 – P27 (in single-chip mode) Low-level input voltage P10 – P17, P20 – P27 (in memory expansion mode and microprocessor mode) High-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 High-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 Low-level peak output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P54 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level peak output current P44 – P47, P100 – P103 Low-level average output current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P43, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level average output current P44 – P47, P100 – P103 Main-clock oscillation frequency (Note 4) Sub-clock oscillation frequency Min. 2.7 2.7 Limits Typ. Max. 5.5 5.5 Unit V V V V Vcc Vcc Vcc 0.2Vcc 0.2Vcc 0.16Vcc –10 V V V V V V mA
Vcc 0 0 0.8 Vcc 0.8 Vcc 0.5 Vcc 0 0 0
IOH(avg)
–5
mA
IOL(peak) IOL(peak) IOL(avg) IOL(avg) f(XIN) f(XCIN)
10 16 5 12 12 50
mA mA mA mA MHz kHz
32.768
Notes 1. Average output current is the average value of a 100 ms interval. 2. The sum of IOL(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less, the sum of IOH(peak) for ports P0, P1, P2, P3, P8, and P9 must be 80 mA or less, the sum of IOL(peak) for ports P4, P5, P6, P7, and P10 must be 100 mA or less, and the sum of IOH(peak) for ports P4, P5, P6, P7, and P10 must be 80 mA or less. 3. Limits VIH and VIL for XCIN are applied when the sub clock external input selection bit = “1”. 4. The maximum value of f(XIN) = 6 MHz when the main clock division selection bit = “1”.
10
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted)
Symbol VOH VOH VOH Parameter High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P100 – P107 High-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 High-level output voltage P30 – P32 Test conditions
VCC = 5 V, IOH = –10 mA VCC = 3 V, IOH = –1 mA
Min. 3 2.5 4.7 3.1 4.8 2.6 3.4 4.8 2.6
Limits Typ.
Max.
Unit V V V
_
VOH
High-level output voltage E Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33, P40 – P43, P50 – P57, P60 – P67, P70 – P77, P80 – P87, P90 – P97, P104 – P107 Low-level output voltage P44 – P47, P100 – P103 Low-level output voltage P00 – P07, P10 – P17, P20 – P27, P33 Low-level output voltage P30 – P32
VCC = 5 V, IOH = –400 µA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOH = –10 mA VCC = 5 V, IOH = –400 µA VCC = 3 V, IOH = –1 mA VCC = 5 V, IOL = 10 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 16 mA VCC = 3 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V, IOL = 10 mA VCC = 5 V, IOL = 2 mA VCC = 3 V, IOL = 1 mA VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V, VI = 5 V VCC = 3 V, VI = 3 V VCC = 5 V, VI = 0 V VCC = 3 V, VI = 0 V
VI = 0 V, without a pull-up transistor VI = 0 V, with a pull-up transistor VCC = 3 V VCC = 5 V VCC = 3 V VCC = 5 V
V 2 0.5 1.8 1.5 0.45 1.9 0.43 0.4 1.6 0.4 0.4 V V V V
VOL
VOL VOL VOL
_
VOL
Low-level output voltage E
____ ___
V
VT+ – VT–
Hysteresis ___ , ___ , ____ – TA4IN, TB0IN – TB2IN, HOLD RDY TA0IN ____ ____ ____ INT0 – INT2, ADTRG, CTS0, CTS1, CTS2, CLK0, __ __ CLK1, CLK2, KI0 – KI3
_____
0.4 0.1 0.2 0.1 0.1 0.06 0.1 0.06
1 0.7 0.5 0.4 0.4 0.26 0.4 0.26 5 µA 4 –5 µA –4 –5 µA –4 V V V V
VT+ – VT– VT+ – VT– VT+ – VT– IIH
Hysteresis RESET Hysteresis XIN Hysteresis XCIN (When external clock is input) High-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P57, P60 – P67, P70 – P77, _____ P80 – P87, P90 – P92, P100 – P107, XIN, RESET, CNVss, BYTE, BSEL Low-level input current P00 – P07, P10 – P17, P20 – P27, P30 – P33, P40 – P47, P50 – P53, P60, P61, P65 – P67, P70 – P77, P80 – P87, P90 – P92, P100 – P103, _____ XIN, RESET, CNVss, BYTE, BSEL Low-level input current P62 – P64, P104 – P107
IIL
IIL
–0.25 –0.08 2
–0.5 –0.18
–1.0 –0.35 mA V
VRAM
RAM hold voltage
When clock is stopped.
11
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
ELECTRICAL CHARACTERISTICS (Vcc = 5 V, Vss = 0 V, Ta = –40 to +85 °C, unless otherwise noted)
Symbol Parameter Test conditions VCC = 5 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 6 MHz), f(XCIN) = 32.768 kHz, in operating (Note 1) VCC = 3 V, f(XIN) = 12 MHz (square waveform), (f(f2) = 0.75 MHz), f(XCIN) : Stopped, in operating Min. Limits Typ. Max. Unit
4.5
9
mA
3
6
mA
ICC
Power source current
When single-chip mode, output pins are open, and other pins are VSS. VCC = 3 V, f(XIN) = 12 MHz (square waveform), f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 2) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, in operating (Note 3) VCC = 3 V, f(XIN) : Stopped, f(XCIN) = 32.768 kHz, when a WIT instruction is executed (Note 4) Ta = 25 °C, when clock is stopped Ta = 85 °C, when clock is stopped
0.4
0.8
mA
6
12
µA
30
60
µA
3
6
µA
1 20
µA µA
Notes 1. This applies when the main clock external input selection bit = “1”, the main clock division selection bit = “0”, and the signal output stop bit = “1”. 2. This applies when the main clock external input selection bit = “1” and the system clock stop bit at wait state = “1”. 3. This applies when CPU and the clock timer are operating with the sub clock (32.768 kHz) selected as the system clock. 4. This applies when the XCOUT drivability selection bit = “0” and the system clock stop bit at wait state = “1”.
A–D CONVERTER CHARACTERISTICS
(VCC = AVCC = 5 V, VSS = AVSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note)) Symbol — — RLADDER tCONV VREF VIA Parameter Resolution Absolute accuracy Ladder resistance Conversion time Reference voltage Analog input voltage Test conditions VREF = VCC VREF = VCC VREF = VCC Min. Limits Typ. Max. 10 ±3 25 VCC VREF Unit Bits LSB kΩ µs V V
10 19.6 2.7 0
Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
12
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1))
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHZ. 2. Input signal’s rise/fall time must be 100 ns or less, unless otherwise noted.
External clock input
Symbol tc tw(H) tw(L) tr tf Parameter External clock input cycle time (Note 3) External clock input high-level pulse width (Note 4) External clock input low-level pulse width (Note 4) External clock rise time External clock fall time Limits Min. 83 33 33 Max. Unit ns ns ns ns ns
15 15
Notes 3. When the main clock division selection bit = “1”, the minimum value of tc = 166 ns. 4. When the main clock division selection bit = “1”, values of tw(H) / tc and tw(L) / tc must be set to values from 0.45 through 0.55.
Single-chip mode
Symbol tsu(P0D–E) tsu(P1D–E) tsu(P2D–E) tsu(P3D–E) tsu(P4D–E) tsu(P5D–E) tsu(P6D–E) tsu(P7D–E) tsu(P8D–E) tsu(P10D–E) th(E–P0D) th(E–P1D) th(E–P2D) th(E–P3D) th(E–P4D) th(E–P5D) th(E–P6D) th(E–P7D) th(E–P8D) th(E–P10D) Port P0 input setup time Port P1 input setup time Port P2 input setup time Port P3 input setup time Port P4 input setup time Port P5 input setup time Port P6 input setup time Port P7 input setup time Port P8 input setup time Port P10 input setup time Port P0 input hold time Port P1 input hold time Port P2 input hold time Port P3 input hold time Port P4 input hold time Port P5 input hold time Port P6 input hold time Port P7 input hold time Port P8 input hold time Port P10 input hold time Parameter Limits Min. 200 200 200 200 200 200 200 200 200 200 0 0 0 0 0 0 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Memory expansion mode and microprocessor mode
Symbol tsu(D–E) tsu(D–RDE) tsu(RDY–φ1) tsu(HOLD–φ1) th(E–D) th(RDE–D) th(φ1–RDY) th(φ1–HOLD) Parameter Data input setup time (external bus mode A) Data input setup time (external bus mode B) ___ RDY input setup time ____ HOLD input setup time Data input hold time (external bus mode A) Data input hold time (external bus mode B) ___ RDY input hold time ____ HOLD input hold time Limits Min. 80 80 80 80 0 0 0 0 Max. Unit ns ns ns ns ns ns ns ns
13
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer A input
Symbol tc(TA) tw(TAH) tw(TAL)
(Count input in event counter mode) Parameter Limits Min. 250 125 125 Max. Unit ns ns ns
TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width
Timer A input (Gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time (Note) TAiIN input high-level pulse width (Note) TAiIN input low-level pulse width (Note) Parameter Limits Min. 666 333 333 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in one-shot pulse mode)
Symbol t c(TA) tw(TAH) tw(TAL) TAiIN input cycle time (Note) TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 666 166 166 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer A input (External trigger input in pulse width modulation mode)
Symbol tw(TAH) tw(TAL) TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 166 166 Max. Unit ns ns
Timer A input (Up-down input in event counter mode)
Symbol tc(UP) tw(UPH) tw(UPL) tsu(UP–TIN) th(TIN–UP) TAiOUT input cycle time TAiOUT input high-level pulse width TAiOUT input low-level pulse width TAiOUT input setup time TAiOUT input hold time Parameter Limits Min. 3333 1666 1666 666 666 Max. Unit ns ns ns ns ns
Timer A input (Two-phase pulse input in event counter mode)
Symbol tc(TA) tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN) TAjIN input cycle time TAjIN input setup time TAjOUT input setup time Parameter Limits Min. 2000 500 500 Max. Unit ns ns ns
14
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Timer B input (Count input in event counter mode)
Symbol tc(TB) tw(TBH) tw(TBL) tc(TB) tw(TBH) tw(TBL) Parameter TBiIN input cycle time (one edge count) TBiIN input high-level pulse width (one edge count) TBiIN input low-level pulse width (one edge count) TBiIN input cycle time (both edges count) TBiIN input high-level pulse width (both edges count) TBiIN input low-level pulse width (both edges count) Limits Min. 250 125 125 500 250 250 Max. Unit ns ns ns ns ns ns
Timer B input (Pulse period measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Parameter Limits Min. 666 333 333 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
Timer B input (Pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time (Note) TBiIN input high-level pulse width (Note) TBiIN input low-level pulse width (Note) Parameter Limits Min. 666 333 333 Max. Unit ns ns ns
Note. Limits change depending on f(XIN). Refer to “DATA FORMULAS”.
A-D trigger input
Symbol
____
Parameter
ADTRG input cycle time (minimum allowable trigger) ____ ADTRG input low-level pulse width
Limits Min. 1333 166 Max.
Unit ns ns
tc(AD) tw(ADL)
Serial I/O
Symbol tc(CK) tw(CKH) tw(CKL) td(C–Q) th(C–Q) tsu(D–C) th(C–D) CLKi input cycle time CLKi input high-level pulse width CLKi input low-level pulse width TXDi output delay time TXDi hold time RXDi input setup time RXDi input hold time
____ ___
Parameter
Limits Min. 333 166 166 0 65 75 Max.
Unit ns ns ns ns ns ns ns
100
External interrupt INTi input, key input interrupt KIi input
Symbol
___
Parameter
___ __
Limits Min. 250 250 250 Max.
Unit ns ns ns
tw(INH) tw(INL) tw(KIL)
INTi input high-level pulse width INTi input low-level pulse width KIi input low-level pulse width
15
P
e. n. atio ang cific t to ch c spe inal e subje f ot a its ar is n his tric lim e e: T otic param N e Som
IM REL
IN
Y AR
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
DATA FORMULAS Timer A input (Gating input in timer mode)
Symbol tc(TA) tw(TAH) tw(TAL) TAiIN input cycle time TAiIN input high-level pulse width TAiIN input low-level pulse width Parameter Limits Min. 8 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) Max. Unit ns ns ns
Timer A input (External trigger input in one-shot pulse mode)
Symbol tc(TA) TAiIN input cycle time Parameter Limits Min. 8 ! 109 2 · f(f2) Max. Unit ns
Timer B input (In pulse period measurement mode or pulse width measurement mode)
Symbol tc(TB) tw(TBH) tw(TBL) TBiIN input cycle time TBiIN input high-level pulse width TBiIN input low-level pulse width Parameter Limits Min. 8 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) Max. Unit ns ns ns
Note. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”.
16
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
SWITCHING CHARACTERISTICS
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz, unless otherwise noted (Note))
Single-chip mode
Symbol Parameter Test conditions Limits Min. Max. 300 300 300 300 300 300 300 300 300 300 300 Unit ns ns ns ns ns ns ns ns ns ns ns td(E–P0Q) Port P0 data output delay time td(E–P1Q) Port P1 data output delay time td(E–P2Q) Port P2 data output delay time td(E–P3Q) Port P3 data output delay time td(E–P4Q) Port P4 data output delay time Fig. 7 td(E–P5Q) Port P5 data output delay time td(E–P6Q) Port P6 data output delay time td(E–P7Q) Port P7 data output delay time td(E–P8Q) Port P8 data output delay time td(E–P9Q) Port P9 data output delay time Port P10 data output delay time td(E–P10Q) Note. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz.
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P 10 50 pF
φ1
E
Fig. 7 Measuring circuit for ports P0 – P10 and φ1
17
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode A] Memory expansion mode and microprocessor mode
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85°C, f(XIN) = 12 MHz (Note 1), unless otherwise noted) Symbol td(An–E) Address output delay time Parameter Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Limits Min. 20 182 20 162 40 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 40 123 10 93 9 40 Fig. 7 4 40 90 No wait Wait 1 Wait 0 40 131 298 10 53 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 20 182 20 182 33 33 0 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
td(A–E)
Address output delay time Address hold time ALE pulse width
th(E–An) tw(ALE)
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–E) td(E–DQ) th(E–DQ) tw(EL) tpxz(E–DZ) tpzx(E–DZ) td(BHE–E)
ALE output delay time Data output delay time Data hold time
_
E pulse width
Floating start delay time Floating release delay time
___
BHE output delay time
td(R/W–E) th(E–BHE) th(E–R/W) td(E–φ1) td(φ1–HLDA)
_
R/ W output delay time
___
____
φ1 output delay time
HLDA output delay time
BHE hold time _ R/ W hold time
30 120
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
18
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode A] Memory expansion mode and microprocessor mode Bus timing data formulas (VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C,
Symbol Parameter f(XIN) = 12 MHz (Max., Note), unless otherwise noted) Limits Min. 1 ! 109 – 63 2 · f(f2) 9 3 ! 10 – 68 2 · f(f2) 9 1 ! 10 – 63 2 · f(f2) 9 3 ! 10 – 88 2 · f(f2) 9 1 ! 10 – 43 2 · f(f2) 9 1 ! 10 – 43 2 · f(f2) 9 2 ! 10 – 43 2 · f(f2) 1 ! 109 – 73 2 · f(f2) 2 ! 109 – 73 2 · f(f2) 9 1 ! 109 2 · f(f2) 4 1! 2 · f(f2) 109 – 43 90 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 0 – 43 – 35 – 35 10 – 30 – 63 – 68 – 63 – 68 – 50 – 50 30 – 43 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
td(An–E)
Address output delay time
Wait mode No wait Wait 1 Wait 0 No wait Wait 1 Wait 0
td(A–E)
Address output delay time
th(E–An)
Address hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0
tw(ALE)
ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–E) td(E–DQ) th(E–DQ)
ALE output delay time
Data output delay time Data hold time
_
No wait Wait 1 Wait 0
tw(EL) tpxz(E–DZ) tpzx(E–DZ)
E pulse width
Floating start delay time Floating release delay time
___
td(BHE–E)
BHE output delay time
No wait Wait 1 Wait 0
_
td(R/W–E)
R/W output delay time
___
No wait Wait 1 Wait 0
th(E–BHE) th(E–R/W) td(E–φ1)
BHE hold time
_
R/W hold time φ1 output delay time
Notes 1. This applies when the main-clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”.
19
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode B] Memory expansion mode and microprocessor mode
(VCC = 2.7 – 5.5 V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz, unless otherwise noted (Note 1)) Symbol td(CS–WE) td(CS–RDE) th(WE–CS) th(RDE–CS) td(An–WE) td(An–RDE) td(A–WE) td(A–RDE) th(WE–An) th(RDE–An) tw(ALE) Chip-select output delay time Parameter Test (Note 2) Wait mode conditions No wait Wait 1 Wait 0 Limits Min. 20 182 4 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 20 182 20 162 40 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 40 123 Fig. 7 10 93 9 40 4 40 90 No wait Wait 1 Wait 0 40 131 298 10 No wait Wait 1 Wait 0 53 128 295 25 0 0 30 120 Max. Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Chip-select hold time Address output delay time
Address output delay time Address hold time ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
td(ALE–WE) td(ALE–RDE) td(WE–DQ) th(WE–DQ) tw(WE) tpxz(RDE–DZ) tpzx(RDE–DZ) tw(RDE) td(RSMP–WE) td(RSMP–RDE) th(φ1–RSMP) td(WE–φ1) td(RDE–φ1) td(φ1–HLDA)
ALE output delay time Data output delay time Data hold time
___ ___
WEL/WEH pulse width
Floating start delay time Floating release delay time
___
RDE pulse width
____
RSMP output delay time
____
RSMP hold time
φ1 output delay time
____
HLDA output delay time
Notes 1. This applies when the main clock division selection bit = “0” and f(f2) = 6 MHz. 2. No wait : Wait bit = “1”. Wait 1 : The external memory area is accessed with wait bit = “0” and wait selection bit = “1”. Wait 0 : The external memory area is accessed with wait bit = “0” and wait selection bit = “0”.
20
P
. . tion nge ifica to cha t pec al s subjec fin re a ot a is n limits This ric ice: aramet Not e p Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode B] Bus timing data formulas (VCC = 2.7 – 5.5V, VSS = 0 V, Ta = –40 to +85 °C, f(XIN) = 12 MHz (Max.), unless otherwise noted (Note1))
Symbol td(CS–WE) td(CS–RDE) th(WE–CS) th(RDE–CS) td(An–WE) td(An–RDE) Parameter Wait mode No wait Wait 1 Wait 0 Chip-select hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 Address hold time No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 No wait Wait 1 Wait 0 td(ALE–WE) td(ALE–RDE) td(WE–DQ) th(WE–DQ) No wait Wait 1 Wait 0 Data output delay time Data hold time
___ ___
Chip-select output delay time
Limits Min. 1 ! 109 – 63 2 · f(f2) 9 3 ! 10 – 68 2 · f(f2) 4 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 3 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 9 1 ! 109 2 · f(f2) 4 1 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 2 ! 109 2 · f(f2) 4 ! 109 2 · f(f2) 1 ! 109 2 · f(f2) 0 – 43 – 43 – 63 – 68 – 63 – 88 – 43 – 43 – 43 – 73 – 73
Max.
Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Address output delay time
td(A–WE) td(A–RDE) th(WE–An) th(RDE–An) tw(ALE)
Address output delay time
ALE pulse width
tsu(A–ALE)
Address output setup time
th(ALE–A)
Address hold time
ALE output delay time
90 – 43 – 35 – 35 10 – 30 – 38 – 38
ns ns ns ns ns ns ns ns ns ns
No wait Wait 1 Wait 0
tw(WE) tpxz(RDE–DZ) tpzx(RDE–DZ)
WEL/WEH pulse width
Floating start delay time Floating release delay time
___
No wait Wait 1 Wait 0
tw(RDE)
RDE pulse width
td(RSMP–WE) – 58 RSMP output delay time td(RSMP–RDE) ____ th(φ1–RSMP) RSMP hold time td(WE–φ1) φ1 output delay time 0 td(RDE–φ1) Notes 1. This applies when the main clock division selection bit = “0”. 2. f(f2) represents the clock f2 frequency. For the relation to the main clock and sub clock, refer to Table 10 in data sheet “M37736MHBXXXGP”.
____
30
ns
21
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
TIMING DIAGRAM
XIN
tr
tf
tc
tw(H)
tw(L)
E
td(E–PiQ)
Port Pi output (i = 0 – 10)
tsu(PiD–E)
Port Pi input (i = 0 – 8, 10)
th(E–PiD)
22
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
tc(TA) tw(TAH) TAiIN input
tw(TAL)
tc(UP) tw(UPH) TAiOUT input tw(UPL)
In event count mode
TAiOUT input (Up-down input) TAiIN input (when count by falling) TAiIN input (when count by rising)
th(TIN–UP)
tsu(UP–TIN)
In event counter mode (When two-phase pulse input is selected) TAjIN input
tsu(TAjIN–TAjOUT)
tc(TA)
tsu(TAjIN–TAjOUT) tsu(TAjOUT–TAjIN)
TAjOUT input
tsu(TAjOUT–TAjIN)
tc(TB) tw(TBH) TBiIN input tw(TBL)
23
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
tc(AD) tw(ADL)
ADTRG input
tc(CK) tw(CKH) CLKi
tw(CKL)
th(C–Q) TxDi td(C–Q) RxDi tSU(D–C) th(C–D)
tw(INL)
INTi input Kli input
tw(INH) tw(KNL)
24
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
Memory expansion mode and microprocessor mode (When wait bit = “1”)
φ1
E or RDE, WEL, WEH
RDY input
tsu(RDY–φ1) th(φ1–RDY)
( When wait bit = “0”)
φ1
E or RDE, WEL, WEH
RDY input
tsu(RDY–φ1) th(φ1–RDY)
(When wait bit = “1” or “0” in common)
φ1 tsu(HOLD–φ1)
HOLD input
th(φ1–HOLD)
td(φ1–HLDA)
HLDA output
td(φ1–HLDA)
Test conditions • VCC = 2.7 – 5.5 V • Input timing voltage : V IL = 0.2 VCC, VIH = 0.8 V CC • Output timing voltage : V OL = 0.8 V, VOH = 2.0 V
25
P
. . tion nge ifica to cha t pec al s subjec fin re a ot a is n limits This ric ice: aramet Not e p Som
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode A]
Memory expansion mode and microprocessor mode (No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(E-φ1) tw(EL) E td(E-φ1)
td(An-E)
th(E-An) Address Address Address
An
tw(ALE)
td(ALE-E)
ALE
th(ALE-A) tsu(A-ALE) th(E-DQ) tpxz(E-DZ) tpzx(E-DZ)
Am/Dm
Address
Data
Address th(E-D) tsu(D-E) Data
Address
td(E-DQ) td(A-E)
DmIN
th(E-BHE)
td(BHE-E) BHE
td(R/W-E)
th(E-R/W)
R/W
Test conditions VCC = 2.7 – 5.5 V Output timing voltage : VOL = 0.8 V, VOH = 2.0 V Data input DmIN : VIL = 0.16 VCC, VIH = 0.5 VCC
• • •
26
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode A]
Memory expansion mode and microprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(E–φ1) tw(EL)
E
td(E–φ1)
td(An–E) An
th(E–An) Address Address Address
tw(ALE) ALE
td(ALE–E)
th(ALE–A) tsu(A–ALE) Am/Dm Address Data th(E–DQ) tpxz(E–DZ) Address tpzx(E–DZ) Address
td(A–E)
td(E–DQ) tsu(D–E)
th(E–D)
DmIN
Data td(BHE–E) th(E–BHE)
BHE
td(R/W–E) R/W
th(E–R/W)
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 Vcc, V IH = 0.5 Vcc
27
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode A]
Memory expansion mode and microprocessor mode (Wait 0 : The external memory area is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(E–φ1)
E
td(E–φ1) tw(EL)
td(An–E) An Address
th(E–An) Address Address
tw(ALE) ALE
td(ALE–E)
tsu(A–ALE)
th(ALE–A) th(E–DQ) tpxz(E–DZ) Address tpzx(E–DZ) Address
Am/Dm
Address td(A–E)
Data td(E–DQ)
tsu(D–E) DmIN th(E–BHE) Data
th(E–D)
td(BHE–E)
BHE
td(R/W–E) R/W
th(E–R/W)
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 Vcc, V IH = 0.5 Vcc
28
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode B]
Memory expansion and m icroprocessor mode (No wait : When wait bit = “1”)
tw(L)
tw(H)
tf
tr
tc
XIN
φ1
td(WE– φ1) td(WE– φ1) td(RDE– φ1) td(RDE– φ1 )
CS0 – CS4 t d(CS–WE) th(WE –CS) td(CS–RDE) th(RDE– CS)
An
td(An–WE) tw(ALE)
Address
td(An–RDE ) td(ALE –WE) th(WE –An)
Address
Address
th(RDE –An)
ALE
th(ALE –A) tsu(A–ALE) th(WE –DQ) tpxz(RDE –DZ) tpzx(RDE –DZ) td(ALE –RDE)
Am/Dm
Address
Data
Address
td(A–RDE)
Address
td(WE –DQ) t d(A–WE) tw(WE) WEL, WEH
th(RDE –D) t su(D–RDE)
DmIN
Data
tw(RDE)
RDE th(φ1–RSMP) td(RSMP –WE) td(RSMP –RDE)
RSMP
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
29
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode B]
Memory expansion and m icroprocessor mode (Wait 1 : The external area is accessed when wait bit = “0” and wait selection bit = “1”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(WE–φ1)
CS0 – CS4
td(WE–φ1) td(RDE-φ1) th(WE–CS)
td(RDE–φ1)
td(CS–RDE) td(CS–WE) An td(An–WE) tw(ALE) ALE th(ALE–A) tsu(A–ALE) Am/Dm Address Data td(ALE–RDE) th(WE–DQ) tpxz(RDE–DZ) Address Address td(An–RDE) th(WE-An) td(ALE–WE)
th(RDE–CS)
th(RDE–An)
tpzx(RDE–DZ) Address
Address
td(A–WE)
td(WE–DQ) tw(WE)
td(A–RDE)
WEL, WEH
th(RDE–D) tsu(D–RDE) Data
DmIN
tw(RDE)
RDE
th(φ1–RSMP)
RSMP
td(RSMP–WE)
td(RSMP–RDE)
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
30
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
[External bus mode B]
Memory expansion and microprocessor mode (Wait 0 : The external memory are is accessed when wait bit = “0” and wait selection bit = “0”.)
tw(L) XIN
tw(H)
tf tr
tc
φ1
td(WE–φ1) td(WE–φ1) td(RDE–φ1) td(RDE–φ1)
CS0 – CS4
td(CS–WE)
th(WE–CS)
td(CS–RDE) th(RDE–CS)
An td(An–WE) tw(ALE) ALE
Address td(An–RDE) td(ALE–WE) th(WE–An)
Address
Address
th(RDE–An)
td(ALE–RDE) tsu(A–ALE)
th(ALE–A)
th(WE–DQ) Address td(A–RDE)
tpxz(RDE–DZ)
tpzx(RDE–DZ) Address
Am/Dm
Address td(A–WE)
Data td(WE–DQ)
tw(WE)
WEL, WEH
tsu(D–RDE) Data
th(RDE–D)
DmIN
tw(RDE)
RDE
td(RSMP–WE)
RSMP
th(φ1–RSMP)
td(RSMP–RDE)
Test conditions • Vcc = 2.7 – 5.5 V • Output timing voltage : V OL = 0.8 V, V OH = 2.0 V • Data input Dm IN : VIL = 0.16 VCC, VIH = 0.5 V CC
31
P
ion. hange. icat ecif ct to c l sp fina re subje ot a its a is n m This etric li m ice: Not e para m So
IM REL
INA
RY
MITSUBISHI MICROCOMPUTERS
M37736M4LXXXHP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
PACKAGE OUTLINE
Keep safety first in your circuit designs!
¡ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
¡ These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. ¡ Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials. ¡ All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. ¡ Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. ¡ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. ¡ If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. ¡ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
© 1997 MITSUBISHI ELECTRIC CORP. H-LF483-A KI-9703 Printed in Japan (ROD) 2 New publication, effective Mar. 1997. 32 Specifications subject to change without notice.