MITSUBISHI MITSUBISHI
PM200CSD060 PM200CSD060
FLAT-BASE TYPE FLAT-BASE TYPE INSULATED PACKAGE INSULATED PACKAGE
PM200CSD060
FEATURE
a) Adopting new 4th generation planar IGBT chip, which performance is improved by 1µm fine rule process. For example, typical VCE(sat)=1.7V b) Using new Diode which is designed to get soft reverse recovery characteristics. c) Keeping the package compatibility. The layout/position of both terminal pin and mounting hole is same as S-series 3rd generation IPM. • 3φ 200A, 600V Current-sense IGBT for 15kHz switching • Monolithic gate drive & protection logic • Detection, protection & status indication circuits for overcurrent, short-circuit, over-temperature & under-voltage (P-Fo available from upper leg devices) • Acoustic noise-less 22kW class inverter application • UL Recognized Yellow Card No.E80276(N) File No.E80271
APPLICATION General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
135 ±1 120.5 ±0.5 40.68 LABEL
4- φ5.5 MOUNTING HOLES
13 15 17 19 14 16 18
24.1
Terminal code 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. VUPC UFO UP VUP1 VVPC VFO VP VVP1 VWPC WFO 11. 12. 13. 14. 15. 16. 17. 18. 19. WP VWP1 VNC VN1 NC UN VN WN FO
16.5 11
1234
5678
9 11 10 12
3.22
10 3-2
10 3-2 3-2 66.44
10 6-2
20
39.5
10.5 φ2.54
95.5 ±0.5 110 ±1
P
20
13
U
V 26 2-φ2.54 19-
W 3.22 26 0.5 4-R6 6-M5 NUTS
3-2 0.5
0.5 ±0.3 51.5 A
11.6
33.7 34.7
24.1 –0.5 23.1 7.7 4
+1.0
21.3
A : DETAIL
10.6
Screwing depth Min9.0
5
N B PPS
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
Rfo=1.5kΩ
NC Fo VNC W N VN1 VN UN VWPC
WP
VWP1 VP VVP1 UP VUP1 UFO WFO VFO VVPC VUPC
Rfo
Rfo
Rfo
Rfo
Gnd In
Fo Vcc Gnd In
Fo Vcc
Gnd In
Fo Vcc
Gnd In
Fo Vcc
Gnd In
Fo Vcc Gnd In
Fo Vcc
Gnd
Si Out
Gnd
Si Out
Gnd
Si Out
Gnd
Si Out
Gnd
Si Out
Gnd
Si Out
Th
NC
N
W
V
U
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART
Symbol VCES ±IC ±ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C Ratings 600 200 400 595 –20 ~ +150 Unit V A A W °C
CONTROL PART
Symbol VD VCIN VFO IFO Parameter Supply Voltage Input Voltage Fault Output Supply Voltage Fault Output Current Condition Applied between : VUP1-VUPC VVP1-VVPC, VWP1-VWPC, VN1-VNC Applied between : UP-VUPC, VP-VVPC WP-VWPC, UN • VN • WN-VNC Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC FO-VNC Sink current at UFO, VFO, WFO, FO terminals Ratings 20 20 20 20 Unit V V V mA
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
TOTAL SYSTEM
Parameter Supply Voltage Protected by VCC(PROT) OC & SC VCC(surge) Supply Voltage (Surge) Module Case Operating TC Temperature Storage Temperature Tstg Isolation Voltage Viso Symbol Condition VD = 13.5 ~ 16.5V, Inverter Part, Tj = 125°C Start Applied between : P-N, Surge value or without switching (Note-1) Ratings 400 500 –20 ~ +100 –40 ~ +125 2500 Unit V V °C °C Vrms
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
(Note-1) Tc measurement point is as shown below. (Base plate depth 3mm)
Tc
THERMAL RESISTANCES
Symbol Rth(j-c)Q Rth(j-c)F Rth(j-c’)Q Rth(j-c’)F Rth(c-f) Parameter Junction to case Thermal Resistances Contact Thermal Resistance Test Condition Inverter IGBT part (per 1 element), (Note-1) Inverter FWDi part (per 1 element), (Note-1) Inverter IGBT part (per 1 element), (Note-2) Inverter FWDi part (per 1 element), (Note-2) Case to fin, Thermal grease applied (per 1 module) Min. — — — — — Limits Typ. — — — — — Max. 0.21 0.35 0.13 0.21 0.018 Unit
(Note-2) TC measurement point is just under the chips. If you use this value, Rth(f-a) should be measured just under the chips.
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART
Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Collector-Emitter Saturation Voltage FWDi Forward Voltage Test Condition VD = 15V, IC = 200A VCIN = 0V, Pulsed (Fig. 1) –IC = 200A, VD = 15V, VCIN = 15V VD = 15V, VCIN = 15V↔0V VCC = 300V, IC = 200A Tj = 125°C Inductive Load (upper and lower arm) VCE = VCES, VCIN = 15V (Fig. 4) Tj = 25°C Tj = 125°C (Fig. 2) Min. — — — 0.4 — — — — — — Limits Typ. 1.7 1.7 2.2 0.8 0.15 0.4 2.0 0.6 — — Max. 2.3 2.3 3.3 2.0 0.3 1.0 2.9 1.2 1 10 Unit V V
Switching Time
Collector-Emitter Cutoff Current
P N B
63mm
U
V
W
°C/W
µs
(Fig. 3) Tj = 25°C Tj = 125°C
mA
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
CONTROL PART
Symbol ID Vth(ON) Vth(OFF) OC SC toff(OC) OT OTr UV UVr IFO(H) IFO(L) tFO Parameter Circuit Current Input ON Threshold Voltage Input OFF Threshold Voltage Over Current Trip Level Short Circuit Trip Level Over Current Delay Time Over Temperature Protection Supply Circuit Under-Voltage Protection Fault Output Current Minimum Fault Output Pulse Width output output output output output Test Condition VD = 15V, VCIN = 15V VN1-VNC VXP1-VXPC Min. — — 1.2 1.7 — 518 310 — — 111 — 11.5 — — — 1.0 Limits Typ. 52 13 1.5 2.0 — 609 — 560 10 118 100 12.0 12.5 — 10 1.8 Max. 72 18 1.8 2.3 1010 850 — — — 125 — 12.5 — 0.01 15 — Unit mA V
Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN-VNC Tj = –20°C VD = 15V (Fig. 5,6) Tj = 25°C Tj = 125°C (Fig. 5,6) –20≤ Tj ≤ 125°C, VD = 15V VD = 15V (Fig. 5,6) Trip level Base-plate Reset level Temperature detection, VD = 15V Trip level –20 ≤ Tj ≤ 125°C Reset level VD = 15V, VFO = 15V VD = 15V (Note-3) (Note-3)
A A µs °C V mA ms
(Note-3) Fault Fault Fault Fault Fault
is given only when the internal OC, SC, OT & UV protection. of OC, SC and UV protection operate by upper and lower arms. of OT protection operate by lower arm. of OC, SC protection given pulse. of OT, UV protection given pulse while over level.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol — — — Parameter Mounting torque Mounting torque Weight Main terminal Mounting part — Test Condition screw : M5 screw : M5 Min. 2.5 2.5 — Limits Typ. 3.0 3.0 920 Max. 3.5 3.5 — Unit N•m N•m g
RECOMMENDED CONDITIONS FOR USE
Symbol VCC VD VCIN(ON) VCIN(OFF) fPWM tdead Parameter Supply Voltage Control Supply Voltage Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time Test Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC (Note-4) Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN-VNC Using Application Circuit input signal of IPM, 3φ sinusoidal PWM VVVF inverter (Fig. 8) For IPM’s each input signals (Fig. 7) Recommended value ≤ 400 15 ± 1.5 ≤ 0.8 ≥ 4.0 ≤ 20 ≥ 2.5 Unit V V V kHz µs
(Note-4) Allowable Ripple rating of Control Voltage : dv/dt ≤ ±5V/µs, 2Vp-p
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
PRECAUTIONS FOR TESTING 1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing “OC” and “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W)
IN Fo IN Fo
P, (U,V,W)
VCIN
(0V)
V
Ic
VCIN
(15V)
V
–Ic
VD (all)
U,V,W, (N)
VD (all)
U,V,W, (N)
Fig. 1 VCE(sat) Test
Fig. 2 VEC Test
a) Lower Arm Switching
P
VCIN (15V) VCIN
Signal input (Upper Arm) Signal input (Lower Arm)
Fo
Fo
U,V,W
trr Irr
CS
VCE Ic 90%
Vcc 90%
N
b) Upper Arm Switching
VCIN Signal input (Upper Arm) Signal input (Lower Arm)
VD (all)
P
Ic
10%
10% tc (on)
10% tc (off)
10%
Fo
U,V,W
VCIN
CS
Vcc
td (on)
tr
td (off)
tf
VCIN (15V)
Fo
(ton= td (on) + tr)
N
(toff= td (off) + tf)
VD (all)
Ic
Fig. 3 Switching time Test circuit and waveform
P, (U,V,W) A
IN Fo
VCIN
Pulse VCE
VCIN (15V)
Over Current
VD (all)
U,V,W, (N)
IC toff (OC) Constant Current
OC
Fig. 4 ICES Test
P, (U,V,W)
IN Fo
Short Circuit Current
VCC IC
Constant Current SC
VCIN
VD (all)
U,V,W, (N)
IC
Fig. 5 OC and SC Test
Fig. 6 OC and SC Test waveform
P
VD VCINP U,V,W Vcc
VD VCINN N Ic VCINP 0V VCINN 0V t t
tdead
tdead
tdead
Fig. 7 Dead time measurement point example
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
P
20k ≥ 10µ
VUP1 UFO UP VUPC Rfo
¡
Vcc Fo In
OUT Si U
VD
IF
+ –
GND GND Vcc Fo In GND GND Vcc Fo
≥ 0.1µ
VVP1 VFO Rfo
OUT Si V
VD
VP VVPC VWP1 WFO Rfo
M
OUT Si W
VD
20k
WP VWPC
In GND GND Vcc Fo OUT Si
¡ IF
≥ 10 µ
UN
≥ 0.1µ
In GND GND N TEMP Th
20k
¡ IF
≥ 10 µ
Vcc VN Fo In
OUT Si
≥ 0.1µ 20k
GND GND VN1
≥ 10 µ
¡
Vcc Fo In OUT Si
VD
IF
WN
≥ 0.1µ
VNC
GND GND
NC
NC 5V
1k
Fo
Rfo
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Quick opto-couplers: TPLH, TPLH ≤ 0.8µs. Use High CMR type. The line between opto-coupler and intelligent module should be shortened as much as possible to minimize the floating capacitance. Slow switching opto-coupler: recommend to use at CTR = 100 ~ 200%, Input current = 8 ~ 10mA, to work in active. Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system.
• • • • • •
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
PERFORMANCE CURVES
OUTPUT CHARACTERISTICS (TYPICAL) Tj = 25°C VD = 17V 15V 13V
COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V)
COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) 2 VD = 15V
240
COLLECTOR CURRENT IC (A)
200 160 120 80 40 0
1.5
1
0.5 Tj = 25°C Tj = 125°C 0 0 40 80 120 160 200
0
0.5
1
1.5
2
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V)
COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 2
SWITCHING TIME tc(on), tc(off) (µs)
SWITCHING TIME CHARACTERISTICS (TYPICAL) 101
7 VCC = 300V 5 VD = 15V Tj = 25°C 4 Tj = 125°C 3 2 Inductive load
1.5
1
100
7 5 4 3 2
0.5 IC = 200A Tj = 25°C Tj = 125°C 0 12 13 14 15 16 17 18
tc(off) tc(on)
10–1 1 10
2
3 4 5 7 102
2
3 4 5 7 103
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR CURRENT IC (A)
101
SWITCHING TIME ton, toff (µs)
7 5 4 3 2
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
SWITCHING TIME CHARACTERISTICS (TYPICAL)
SWITCHING LOSS CHARACTERISTICS (TYPICAL)
2
101
7 5 4 3 2
ESW(off)
100
7 5 4 3 2
toff ton VCC = 300V VD = 15V Tj = 25°C Tj = 125°C Inductive load
2 3 4 5 7 102 2 3 4 5 7 103
ESW(on)
100
7 5 4 3 2
10–1 1 10
10–1 1 10
VCC = 300V VD = 15V Tj = 25°C Tj = 125°C Inductive load
2 3 4 5 7 102 2 3 4 5 7 103
COLLECTOR CURRENT IC (A)
COLLECTOR CURRENT IC (A)
Jul. 2005
MITSUBISHI
PM200CSD060
FLAT-BASE TYPE INSULATED PACKAGE
COLLECTOR RECOVERY CURRENT –IC (A)
DIODE FORWARD CHARACTERISTICS (TYPICAL) 103
7 5 4 3 2
REVERSE RECOVERY TIME trr (µs)
VD = 15V
5 4 3 2
5 4 3 2
102
7 5 4 3 2
10–1
7 5 4 3 2
trr
101
7 5 4 3 2
101
7 5 4 3 2
Tj = 25°C Tj = 125°C 0 0.5 1 1.5 2 2.5
VCC = 300V VD = 15V Tj = 25°C Tj = 125°C Inductive load
2 3 4 5 7 102 2
100
10–2 1 10
3 4 5 7 103
100
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR RECOVERY CURRENT –IC (A)
ID VS. fc CHARACTERISTICS (TYPICAL) 100
CIRCUIT CURRENT ID (mA) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT PART) 101
7 5 3 2 7 5 3 2 7 5 3 2
VD = 15V Tj = 25°C N-side
80
100
60
10–1
40 P-side 20
10–2
0
0
5
10
15
20
25
10–3 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s)
7 5 3 Single Pulse 2 Per unit base = Rth(j – c)Q = 0.21°C/W
CARRIER FREQUENCY fc (kHz)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART) 101
NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c)
7 5 3 2 7 5 3 2 7 5 3 2
100
10–1
10–2
10–3 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s)
7 5 3 Single Pulse 2 Per unit base = Rth(j – c)F = 0.35°C/W
Jul. 2005
REVERSE RECOVERY CURRENT lrr (A)
DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 100 102 Irr 7 7