0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PS21869-A

PS21869-A

  • 厂商:

    MITSUBISHI(三菱)

  • 封装:

  • 描述:

    PS21869-A - Dual-In-Line Package Intelligent Power Module - Mitsubishi Electric Semiconductor

  • 数据手册
  • 价格&库存
PS21869-A 数据手册
MITSUBISHI SEMICONDUCTOR MITSUBISHI SEMICONDUCTOR PS21869/-A PS21869/-A TRANSFER-MOLD TYPE TRANSFER-MOLD TYPE INSULATED TYPE INSULATED TYPE PS21869 INTEGRATED POWER FUNCTIONS 600V/50A low-loss CSTBT inverter bridge for 3 phase DC-to-AC power conversion INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS • • • • • For upper-leg IGBTS : Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection. For lower-leg IGBTS : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC). (Fig.3) Fault signaling : Corresponding to an SC fault (Lower-side IGBT) or a UV fault (Lower-side supply). Input interface : 5V line CMOS/TTL compatible. (High Active) UL Approved : Yellow Card No. E80276 APPLICATION AC100V~200V three-phase inverter drive for small power motor control. Fig. 1 PACKAGE OUTLINES Dimensions in mm TERMINAL CODE 27×2.8(=75.6) 2.8 (8.5) (2.4) (14.4) (2.5) (17.6) (2.4) 12 27 34 28 29 56 30 78 31 32 9 10 11 12 13 33 34 14 15 16 17 18 19 20 21 35 36 ±0.3 C (1) (4.5) (3.1) Heat sink side (2.2) (3.5) (4.65) Type name , Lot No. 41 34.9±0.5 31±0.5 2-f4.5±0.2 (2.9) 37 38 39 (4.65) (10) 40 13.4±0.5 (1.5) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. UP VP1 VUFB VUFS VP VP1 VVFB VVFS WP VP1 VPC VWFB VWFS 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. VN1 VNC CIN CFO FO UN VN WN P U V W N 21.4±0.5 (11) (10) 22 23 24 25 26 11.5±0.5 (0.6) (2) (3.5) DUMMY TERMINAL CODE 27. 28. 29. 30. 31. 32. 33. 34. VPC UPG P VPC VPG U WPG V 35. 36. 37. 38. 39. 40. 41. UNG VNC VNO WNG VNG W P (1.5) Irregular solder remains 0.5MAX Irregular solder remains 0.5MAX 8.5±0.3 10±0.3 10±0.3 10±0.3 67±0.3 79±0.5 A 20±0.3 (0.6) (2) 3.8±0.2 1.9±0.05 1±0.2 1.6±0.5 1.7±0.05 0.8±0.2 1.6±0.5 B 12.8±0.5 (16.0)±0.5 ✽ 7±0.5 3.25MAX 1.85MAX Detail : B (t=0.7) Detail : C Heat sink side Detail : A (t=0.7) ✽ -A : Long terminal type (16.0mm) (0~5°) Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE Fig. 2 INTERNAL FUNCTIONS BLOCK DIAGRAM (TYPICAL APPLICATION EXAMPLE) CBW+ CBW– CBV+ CBV– CBU– CBU+ C1 : Tight tolerance, temp-compensated electrolytic type (Note : The capacitance value depends on the PWM control scheme used in the applied system). C2 : 0.22~2µF R-category ceramic capacitor for noise filtering. High-side input (PWM) (5V line) (Note 1,2) Input signal Input signal Input signal conditioning conditioning conditioning Level shifter Level shifter Level shifter Protection circuit (UV) Protection circuit (UV) Protection circuit (UV) C2 C1 (Note 6) DIP-IPM Inrush current limiter circuit P Drive circuit Drive circuit Drive circuit AC line input H-side IGBTS (Note 4) U V W M AC line output C Z Fig. 3 N1 VNC N CIN L-side IGBTS Drive circuit Z : ZNR (Surge absorber) C : AC filter (Ceramic capacitor 2.2~6.5nF) (Note : Additionally, an appropriate line-to line surge absorber circuit may become necessary depending on the application environment). Input signal conditioning Fo logic Protection circuit Control supply Under-Voltage protection FO CFO Low-side input (PWM) (5V line) (Note 1, 2) Fault output (5V line) (Note 3, 5) VNC VD (15V line) Note1: 2: 3: 4: 5: 6: Input logic is high-active. There is a 2.5kΩ (min) pull-down resistor built-in each input circuit. When using an external CR filter, please make it satisfy the input threshold voltage. By virtue of integrating an application specific type HVIC inside the module, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible. (see also Fig. 8) This output is open collector type. The signal line should be pulled up to the positive side of the 5V power supply with approximately 10kΩ resistance. (see also Fig. 8) The wiring between the power DC link capacitor and the PN1 terminals should be as short as possible to protect the DIP-IPM against catastrophic high surge voltages. For extra precaution, a small film type snubber capacitor (0.1~0.22µF, high voltage type) is recommended to be mounted close to these PN1 DC power input pins. Fo output pulse width should be decided by putting external capacitor between CFO and VNC terminals. (Example : CFO=22nF → tFO=1.8ms (Typ.)) High voltage (600V or more) and fast recovery type (less than 100ns) diodes should be used in the bootstrap circuit. Fig. 3 EXTERNAL PART OF THE DIP-IPM PROTECTION CIRCUIT DIP-IPM Drive circuit P Short Circuit Protective Function (SC) : SC protection is achieved by sensing the L-side DC-Bus current (through the external shunt resistor) after allowing a suitable filtering time (defined by the RC circuit). When the sensed shunt voltage exceeds the SC trip-level, all the L-side IGBTs are turned OFF and a fault signal (Fo) is output. Since the SC fault may be repetitive, it is recommended to stop the system when the Fo signal is received and check the fault. IC (A) SC Protection Trip Level H-side IGBTS U V W L-side IGBTS External protection circuit N1 Shunt Resistor (Note 1) A N VNC CIN B Drive circuit Collector current waveform CR C Protection circuit (Note 2) 0 2 tw (µs) Note1: In the recommended external protection circuit, please select the RC time constant in the range 1.5~2.0µs. 2: To prevent erroneous protection operation, the wiring of A, B, C should be as short as possible. Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCC VCC(surge) VCES ± IC ± ICP PC Tj Parameter Supply voltage Supply voltage (surge) Collector-emitter voltage Each IGBT collector current Each IGBT collector current (peak) Collector dissipation Junction temperature Condition Applied between P-N Applied between P-N Tf = 25°C Tf = 25°C, less than 1ms Tf = 25°C, per 1 chip (Note 1) Ratings 450 500 600 50 100 70.4 –20~+125 Unit V V V A A W °C Note 1 : The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ Tf ≤ 100°C) however, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to Tj(ave) ≤ 125°C (@ Tf ≤ 100°C). CONTROL (PROTECTION) PART Symbol VD VDB VIN VFO IFO VSC Parameter Control supply voltage Control supply voltage Input voltage Fault output supply voltage Fault output current Current sensing input voltage Condition Applied between VP1-VPC, VN1-VNC Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS Applied between UP, VP, WP-VPC, UN, VN, WN-VNC Applied between FO-VNC Sink current at FO terminal Applied between CIN-VNC Ratings 20 20 –0.5~VD+0.5 –0.5~VD+0.5 1 –0.5~VD+0.5 Unit V V V V mA V TOTAL SYSTEM Parameter VCC(PROT) Self protection supply voltage limit (short circuit protection capability) Module case operation temperature Tf Tstg Storage temperature Viso Isolation voltage Symbol Condition VD = 13.5~16.5V, Inverter part Tj = 125°C, non-repetitive, less than 2 µs (Note 2) 60Hz, Sinusoidal, AC 1 minute, connection pins to heat-sink plate Ratings 400 –20~+100 –40~+125 2500 Unit V °C °C Vrms Note 2 : Tf MEASUREMENT POINT Al Board Specification : Dimensions : 100✕100✕10mm, Finishing : 12s, Warp : –50~100µm Control Terminals Groove DIP-IPM 18mm 13.5mm P U V W N AI board Power Terminals FWDi Chip IGBT Chip Temp. measurement point (inside the AI board) Temp. measurement point (inside the AI board) Silicon-grease should be applied evenly with a thickness of 100~200µm Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE THERMAL RESISTANCE Symbol Rth(j-f)Q Rth(j-f)F Parameter Junction to case thermal resistance (Note 3) Condition Inverter IGBT part (per 1/6 module) Inverter FWDi part (per 1/6 module) Min. — — Limits Typ. — — Max. 1.42 2.00 Unit °C/W °C/W Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM and heat-sink. ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Collector-emitter saturation voltage FWDi forward voltage Condition IC = 50A, Tj = 25°C VD = VDB = 15V VIN = 5V IC = 50A, Tj = 125°C Tj = 25°C, –IC = 50A, VIN = 0V VCC = 300V, VD = VDB = 15V IC = 50A, Tj = 125°C, VIN = 0 ↔ 5V Inductive load (upper-lower arm) Tj = 25°C Tj = 125°C Min. — — — 0.70 — — — — — — Limits Typ. 1.50 1.60 1.70 1.30 0.30 0.40 2.00 0.65 — — Max. 2.00 2.10 2.20 1.90 — 0.60 2.60 0.90 1 10 Unit V V µs µs µs µs µs mA Switching times Collector-emitter cut-off current VCE = VCES CONTROL (PROTECTION) PART Symbol Parameter Condition Total of VP1-VPC, VN1-VNC VD = VDB = 15V VIN = 5V VUFB-VUFS, VVFB-VVFS, VWFB-VWFS VD = VDB = 15V Total of VP1-VPC, VN1-VNC VIN = 0V VUFB-VUFS, VVFB-VVFS, VWFB-VWFS VSC = 0V, FO circuit pull-up to 5V with 10kΩ VSC = 1V, IFO = 1mA Tj = 25°C, VD = 15V (Note 4) VIN = 5V Trip level Reset level Tj ≤ 125°C Trip level Reset level CFO = 22nF (Note 5) Min. — — — — 4.9 — 0.43 1.0 10.0 10.5 10.3 10.8 1.0 2.1 0.8 Limits Typ. — — — — — — 0.48 1.5 — — — — 1.8 2.3 1.4 Max. 5.00 0.40 7.00 0.55 — 0.95 0.53 2.0 12.0 12.5 12.5 13.0 — 2.6 2.1 Unit mA mA mA mA V V V mA V V V V ms V V ID Circuit current VFOH Fault output voltage VFOL Short circuit trip level VSC(ref) Input current IIN UVDBt Supply circuit under-voltage UVDBr protection UVDt UVDr Fault output pulse width tFO ON threshold voltage Vth(on) Applied between UP, VP, WP-VPC, UN, VN, WN-VNC OFF threshold voltage Vth(off) Note 4 : Short circuit protection is functioning only at the low-arms. Please select the value of the external shunt resistor such that the SC triplevel is less than 85 A. 5 : Fault signal is output when the low-arms short circuit or control supply under-voltage protective functions operate. The fault output pulsewidth tFO depends on the capacitance value of CFO according to the following approximate equation : CFO = 12.2 ✕ 10-6 ✕ tFO [F]. Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE MECHANICAL CHARACTERISTICS AND RATINGS Parameter Mounting torque Weight Heat-sink flatness Mounting screw : M4 Condition Recommended 1.18 N·m (Note 6) Min. 0.98 — –50 Limits Typ. — 65 — Max. 1.47 — 100 Unit N·m g µm Note 6: Measurement point of heat-sink flatness +– Measurement location 3mm Heat-sink side – + Heat-sink side RECOMMENDED OPERATION CONDITIONS Symbol VCC VD VDB ∆VD, ∆VDB tdead fPWM Parameter Supply voltage Control supply voltage Control supply voltage Control supply variation Arm shoot-through blocking time PWM input frequency Condition Applied between P-N Applied between VP1-VPC, VN1-VNC Applied between VUFB-VUFS, VVFB-VVFS, VWFB-VWFS Min. 0 13.5 13.0 –1 2 — — (Note 7) (Note 8) 300 –5.0 Limits Typ. 300 15.0 15.0 — — 5 — — — Max. 400 16.5 18.5 1 — — 23 — 5.0 Unit V V V V/µs µs kHz Arms ns V For each input signal, Tf ≤ 100°C Tf ≤ 100°C, Tj ≤ 125°C VCC = 300V, VD = 15V, fc = 5kHz Allowable r.m.s. current IO P.F = 0.8, sinusoidal Tj ≤ 125°C, Tf ≤ 100°C PWIN ON Minimum input pulse width VNC between VNC-N (including surge) VNC variation Note 7 : The allowable r.m.s. current value depends on the actual application conditions. 8 : The input pulse width less than PWIN might make no response. Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE Fig. 4 THE DIP-IPM INTERNAL CIRCUIT VUFB VUFS VP1 UP HVIC1 VCC VB HO VS DIP-IPM P IGBT1 Di1 IN COM U VVFB VVFS VP1 VP HVIC2 VCC VB HO VS IGBT2 Di2 IN COM V VWFB VWFS VP1 WP VPC HVIC3 VCC VB HO VS IGBT3 Di3 IN COM W IGBT4 Di4 LVIC UOUT VN1 VCC IGBT5 VOUT Di5 UN VN WN Fo UN VN WN Fo GND VNO CIN WOUT IGBT6 Di6 VNC CFO N CFO CIN Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE Fig. 5 TIMING CHARTS OF THE DIP-IPM PROTECTIVE FUNCTIONS [A] Short-Circuit Protection (Lower-arms only) (With the external shunt resistance and CR connection) a1. Normal operation : IGBT ON and carrying current. a2. Short circuit current detection (SC trigger). a3. Hard IGBT gate interrupt. a4. IGBT turns OFF. a5. FO timer operation starts : The pulse width of the FO signal is set by the external capacitor CFO. a6. Input “L” : IGBT OFF state. a7. Input “H” : IGBT ON state, but during the FO active signal period the IGBT doesn’t turn ON. a8. IGBT OFF state. Lower-arms control input Protection circuit state SET a6 a7 RESET Internal IGBT gate a2 a1 Output current Ic Sense voltage of the shunt resistance SC a3 a4 a8 SC reference voltage CR circuit time constant DELAY Error output Fo a5 [B] Under-Voltage Protection (Lower-arm, UVD) b1. Control supply voltage rises : After the voltage level reaches UVDr, the circuits start to operate when next input is applied. b2. Normal operation : IGBT ON and carrying current. b3. Under voltage trip (UVDt). b4. IGBT OFF in spite of control input condition. b5. FO operation starts. b6. Under voltage reset (UVDr). b7. Normal operation : IGBT ON and carrying current. Control input Protection circuit state UVDr RESET SET RESET b6 Control supply voltage VD b1 UVDt b3 b4 b2 Output current Ic b7 Error output Fo b5 Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE [C] Under-Voltage Protection (Upper-arm, UVDB) c1. Control supply voltage rises : After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation : IGBT ON and carrying current. c3. Under voltage trip (UVDBt). c4. IGBT OFF in spite of control input condition, but there is no FO signal output. c5. Under voltage reset (UVDBr). c6. Normal operation : IGBT ON and carrying current. Control input Protection circuit state UVDBr Control supply voltage VDB RESET SET RESET c1 UVDBt c5 c3 c4 c6 c2 Output current Ic High-level (no fault output) Error output Fo Fig. 6 RECOMMENDED CPU I/O INTERFACE CIRCUIT 5V line 10kΩ DIP-IPM UP,VP,WP,UN,VN,WN CPU Fo VNC(Logic) Note : RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and the wiring impedance of the application’s printed circuit board. The DIP-IPM input signal section integrates a 2.5kΩ(min) pull-down resistor. Therefore, when using a external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement. 2.5kΩ (min) Fig. 7 RECOMMENDED WIRING OF SHUNT RESISTANCE Wiring inductance should be less than 10nH. DIP-IPM width=3mm, thickness=100µm, length=17mm in copper pattern (rough standard) Shunt resistor VNC N Please make the connection point as close as possible to the terminal of shunt resistor. Jul. 2003 MITSUBISHI SEMICONDUCTOR PS21869/-A TRANSFER-MOLD TYPE INSULATED TYPE Fig. 8 TYPICAL DIP-IPM APPLICATION CIRCUIT EXAMPLE C1:Tight tolerance temp-compensated electrolytic type C2,C3: 0.22~2µF R-category ceramic capacitor for noise filtering. (Note: The capacitance value depends on the PWM control used in the applied system.) C2 C1 VUFB VUFS VP1 HVIC1 VCC VB HO VS DIP-IPM P C3 UP IN COM U C2 C1 VVFB VVFS VP1 HVIC2 VCC IN COM VB HO VS C3 VP V C2 C1 VWFB VWFS VP1 HVIC3 VCC VB HO VS M C3 Note 1 : To prevent the input signals oscillation, the wiring of each input should be as short as possible. (2cm~3cm or less) 2 : By virtue of integrating an application specific type HVIC inside the module, direct coupling to CPU terminals without any opto-coupler or transformer isolation is possible. 3 : FO output is open collector type. This signal line should be pulled up to the positive side of the 5V power supply with approximately 10kΩ resistor. 4 : FO output pulse width is determined by the external capacitor between CFO and VNC terminals (CFO). (Example : CFO = 22 nF → tFO = 1.8 ms (typ.)) 5 : The logic of input signal is high-active. The DIP-IPM input signal section integrates a 2.5kΩ (min) pull-down resistor. Therefore, when using external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement. 6 : To prevent malfunction of protection, The wiring of A, B, C should be as short as possible. 7 : Please set the R1C5 time constant in the range 1.5~2µs. 8 : Each capacitor should be located as nearby the pins of the DIP-IPM as possible. 9 : To prevent surge destruction, the wiring between the smoothing capacitor and the P&N1 pins should be as short as possible. Approximately a 0.1~0.22µF snubber capacitor between the P&N1 pins is recommended. CPU UNIT 5V line 15V line WP IN VPC COM W LVIC UOUT VN1 VCC C3 VOUT UN VN WN Fo VNC UN VN WN Fo GND VNO CIN CFO WOUT Too long wiring here might cause short-circuit. N C CFO C4(CFO ) C5 CIN B R1 Shunt Resistance A Long GND wiring here might generate noise to input and cause IGBT malfunction. If this wiring is too long, the SC level fluctuation might be larger and cause SC malfunction. N1 Jul. 2003
PS21869-A 价格&库存

很抱歉,暂时无法提供与“PS21869-A”相匹配的价格&库存,您可以联系我们找货

免费人工找货