0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BAV99WT1

BAV99WT1

  • 厂商:

    MOTOROLA(摩托罗拉)

  • 封装:

  • 描述:

    BAV99WT1 - SC-70/SOT-323 Dual Series Switching Diode - Motorola, Inc

  • 详情介绍
  • 数据手册
  • 价格&库存
BAV99WT1 数据手册
MOTOROLA SEMICONDUCTOR TECHNICAL DATA Order this document by BAV99WT1/D SC-70/SOT-323 Dual Series Switching Diode The BAV99WT1 is a smaller package, equivalent to the BAV99LT1. Suggested Applications • ESD Protection • Polarity Reversal Protection • Data Line Protection • Inductive Load Protection • Steering Logic MAXIMUM RATINGS (EACH DIODE) Rating Reverse Voltage Forward Current Peak Forward Surge Current Repetitive Peak Reverse Voltage Average Rectified Forward Current(1) (averaged over any 20 ms period) Repetitive Peak Forward Current Non–Repetitive Peak Forward Current t = 1.0 ms t = 1.0 ms t = 1.0 S Symbol VR IF IFM(surge) VRRM IF(AV) IFRM IFSM 2.0 1.0 0.5 Value 70 215 500 70 715 450 Unit Vdc mAdc mAdc V mA mA A BAV99WT1 BAV99RWT1 Motorola Preferred Devices 3 1 2 ANODE 1 CATHODE 2 3 CATHODE/ANODE BAV99WT1 CASE 419–02, STYLE 9 SC–70/SOT–323 CATHODE 1 3 CATHODE/ANODE BAV99RWT1 CASE 419–02, STYLE 10 SC–70/SOT–323 ANODE 2 THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR–5 Board,(1) TA = 25°C Derate above 25°C Thermal Resistance Junction to Ambient Total Device Dissipation Alumina Substrate,(2) TA = 25°C Derate above 25°C Thermal Resistance Junction to Ambient Junction and Storage Temperature 1. FR–5 = 1.0 0.75 0.062 in. 2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina. Symbol PD Max 200 1.6 RqJA PD 625 300 2.4 RqJA TJ, Tstg 417 – 65 to +150 Unit mW mW/°C °C/W mW mW/°C °C/W °C    DEVICE MARKING BAV99WT1 = A7 BAV99RWT1 = F7 Thermal Clad is a trademark of the Bergquist Company. Preferred devices are Motorola recommended choices for future use and best overall value. © Motorola, Small–Signal Transistors, FETs and Diodes Device Data Motorola Inc. 1996 1 BAV99WT1 BAV99RWT1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (EACH DIODE) Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Reverse Breakdown Voltage (I(BR) = 100 µA) Reverse Voltage Leakage Current (VR = 70 Vdc) (VR = 25 Vdc, TJ = 150°C) (VR = 70 Vdc, TJ = 150°C) Diode Capacitance (VR = 0, f = 1.0 MHz) Forward Voltage (IF = 1.0 mAdc) (IF = 10 mAdc) (IF = 50 mAdc) (IF = 150 mAdc) V(BR) IR 70 — — — — — — — — — — — 2.5 30 50 1.5 715 855 1000 1250 6.0 1.75 Vdc mAdc pF mVdc CD VF Reverse Recovery Time (IF = IR = 10 mAdc, iR(REC) = 1.0 mAdc) (Figure 1) RL = 100 W Forward Recovery Voltage (IF = 10 mA, tr = 20 ns) trr VFR ns V 820 Ω +10 V 2k 100 µH 0.1 µF DUT 50 Ω OUTPUT PULSE GENERATOR 50 Ω INPUT SAMPLING OSCILLOSCOPE 90% VR INPUT SIGNAL IR iR(REC) = 1 mA OUTPUT PULSE (IF = IR = 10 mA; measured at iR(REC) = 1 mA) IF 0.1 µF tr 10% tp t IF trr t Notes: 1. A 2.0 kΩ variable resistor adjusted for a Forward Current (IF) of 10 mA. Notes: 2. Input pulse is adjusted so IR(peak) is equal to 10 mA. Notes: 3. tp » trr Figure 1. Recovery Time Equivalent Test Circuit 2 Motorola Small–Signal Transistors, FETs and Diodes Device Data BAV99WT1 BAV99RWT1 CURVES APPLICABLE TO EACH DIODE 100 10 TA = 150°C IF, FORWARD CURRENT (mA) I R, REVERSE CURRENT ( µA) 1.0 TA = 125°C 10 TA = 85°C TA = 25°C TA = – 40°C 0.1 0.2 0.1 TA = 85°C TA = 55°C 1.0 0.01 TA = 25°C 0.4 0.6 0.8 1.0 VF, FORWARD VOLTAGE (VOLTS) 1.2 0.001 0 10 20 30 40 VR, REVERSE VOLTAGE (VOLTS) 50 Figure 2. Forward Voltage Figure 3. Leakage Current 0.68 CD , DIODE CAPACITANCE (pF) 0.64 0.60 0.56 0.52 0 2 4 6 8 VR, REVERSE VOLTAGE (VOLTS) Figure 4. Capacitance Motorola Small–Signal Transistors, FETs and Diodes Device Data 3 BAV99WT1 BAV99RWT1 INFORMATION FOR USING THE SC–70/SOT–323 SURFACE MOUNT PACKAGE MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process. 0.025 0.025 0.65 0.65 0.075 1.9 0.035 0.9 0.028 0.7 inches mm SC–70/SOT–323 SC–70/SOT–323 POWER DISSIPATION The power dissipation of the SC–70/SOT–323 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by T J(max), the maximum rated junction temperature of the die, RθJA, the thermal resistance from the device junction to ambient, and the operating temperature, TA . Using the values provided on the data sheet for the SC–70/SOT–323 package, PD can be calculated as follows: PD = TJ(max) – TA RθJA SOLDERING PRECAUTIONS The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. • Always preheat the device. • The delta temperature between the preheat and soldering should be 100°C or less.* • When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C. • The soldering temperature and time shall not exceed 260°C for more than 10 seconds. • When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less. • After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. • Mechanical stress or shock should not be applied during cooling. * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 200 milliwatts. PD = 150°C – 25°C 625°C/W = 200 milliwatts The 625 °C/W for the SC–70/SOT–323 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 200 milliwatts. There are other alternatives to achieving higher power dissipation from the SC–70/SOT–323 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad™. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint. 4 Motorola Small–Signal Transistors, FETs and Diodes Device Data BAV99WT1 BAV99RWT1 PACKAGE DIMENSIONS A L 3 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. INCHES MIN MAX 0.071 0.087 0.045 0.053 0.035 0.049 0.012 0.016 0.047 0.055 0.000 0.004 0.004 0.010 0.017 REF 0.026 BSC 0.028 REF 0.031 0.039 0.079 0.087 0.012 0.016 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.90 1.25 0.30 0.40 1.20 1.40 0.00 0.10 0.10 0.25 0.425 REF 0.650 BSC 0.700 REF 0.80 1.00 2.00 2.20 0.30 0.40 S 1 2 B V G D C 0.05 (0.002) RN K J H DIM A B C D G H J K L N R S V CASE 419–02 ISSUE H SC–70/SOT–323 STYLE 9: PIN 1. ANODE 2. CATHODE 3. CATHODE–ANODE STYLE 10: PIN 1. CATHODE 2. ANODE 3. ANODE–CATHODE Motorola Small–Signal Transistors, FETs and Diodes Device Data 5 BAV99WT1 BAV99RWT1 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 6 ◊ Motorola Small–Signal Transistors, FETs and Diodes Device Data BAV99WT1/D *BAV99WT1/D*
BAV99WT1
物料型号: - BAV99WT1 - BAV99RWT1

器件简介: BAV99WT1是一种小型封装,等同于BAV99LT1。建议应用包括ESD保护、极性反转保护、数据线保护和感性负载保护以及转向逻辑。

引脚分配: - ANODE(阳极) - CATHODE(阴极) 引脚编号为1和2。

参数特性: - 最大额定值(每个二极管): - 反向电压(VR):70Vdc - 正向电流(IF):215mAdc - 峰值正向浪涌电流(IFM(surge)):500mAdc - 重复峰值反向电压(VRRM):70V - 平均整流正向电流(IF(AV)):715mA(在任何20ms周期内平均) - 重复峰值正向电流(FRM):450mA - 非重复峰值正向电流(IFSM):1.0A(1.0us)、0.5A(1.0ms)、2.0A(1.0S)

功能详解: - 该二极管具有反向击穿电压、反向电压漏电流、二极管电容、正向电压、反向恢复时间以及正向恢复电压等电气特性。

应用信息: - 适用于ESD保护、极性反转保护、数据线保护和感性负载保护。

封装信息: - SC-70/SOT-323封装。 - 总器件耗散(FR-5基板,TA=25°C):200mW,超过25°C时每度1.6mW/°C递减。 - 热阻(结到环境):625°C/W。 - 总器件耗散(氧化铝基板,TA=25°C):300mW,超过25°C时每度2.4mW/°C递减。 - 热阻(结到环境):417°C/W。 - 结和存储温度:-65至+150°C。
BAV99WT1 价格&库存

很抱歉,暂时无法提供与“BAV99WT1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
BAV99WT1G
  •  国内价格
  • 5+0.16745
  • 20+0.15185
  • 100+0.13625
  • 500+0.12065
  • 1000+0.11337
  • 2000+0.10817

库存:18006

SBAV99WT1G
  •  国内价格
  • 1+0.29257
  • 30+0.28249
  • 100+0.26231
  • 500+0.24213
  • 1000+0.23204

库存:5

LBAV99WT1G
    •  国内价格
    • 1+0.077
    • 30+0.07425
    • 100+0.0715
    • 500+0.066
    • 1000+0.06325
    • 2000+0.0616

    库存:1756