MC9S08GB60 MC9S08GB32 MC9S08GT60 MC9S08GT32
Technical Data
HCS08
Microcontrollers
MC9S08GB60/D Rev. 1.5, 11/2003
WWW.MOTOROLA.COM/SEMICONDUCTORS
DOCUMENT NUMBER MC9S08GB60/D
MC9S08GB/GT Data Sheet V1.5
8-/16-Bit Products Division Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. ©Motorola, Inc., 2003
MOTOROLA
MC9S08GB/GT
3
Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://motorola.com/semiconductors The following revision history table summarizes changes contained in this document.
Revision Number
1.0 1.1 1.2 1.3 1.4
Revision Date
4/25/2003
Description of Changes Initial release Electricals change, appendix A only Electricals change, appendix A only
10/2/2003 10/29/2003
Added module version table; clarifications Fixed typos and made corrections and clarifications Added 1-MHz IDD values to Electricals, appendix A
1.5
11/12/2003
This product incorporates SuperFlash technology licensed from SST. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc.
Motorola, Inc., 2003
4
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
List of Sections
Section 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Section 2 Pins and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Section 3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Section 4 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Section 5 Resets, Interrupts, and System Configuration . . . . . . . . . . . . . . . 63 Section 6 Internal Clock Generator (ICG) Module . . . . . . . . . . . . . . . . . . . . . 81 Section 7 Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Section 8 Parallel Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Section 9 Keyboard Interrupt (KBI) Module . . . . . . . . . . . . . . . . . . . . . . . . . 149 Section 10 Timer/PWM (TPM) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Section 11 Serial Communications Interface (SCI) Module. . . . . . . . . . . . . 171 Section 12 Serial Peripheral Interface (SPI) Module . . . . . . . . . . . . . . . . . . 191 Section 13 Inter-Integrated Circuit (IIC) Module . . . . . . . . . . . . . . . . . . . . . . 207 Section 14 Analog-to-Digital Converter (ATD) Module . . . . . . . . . . . . . . . . 221 Section 15 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Appendix A Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Appendix B Ordering Information and Mechanical Drawings. . . . . . . . . . . 283
MOTOROLA
MC9S08GB/GT
5
List of Sections
6
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Table of Contents
Section 1 Introduction
1.1 1.2 1.2.1 1.2.2 1.2.3 1.3 1.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Standard Features of the HCS08 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Features of MC9S08GB/GT Series of MCUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Devices in the MC9S08GB/GT Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 MCU Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 System Clock Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Section 2 Pins and Connections
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Device Pin Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Recommended System Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Background/Mode Select (PTG0/BKGD/MS). . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.5 General-Purpose I/O and Peripheral Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.6 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Section 3 Modes of Operation
3.1 3.2 3.3 3.4 3.5 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.6.6 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Active Background Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Stop Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Stop1 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Stop2 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Stop3 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Active BDM Enabled in Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 LVD Enabled in Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 On-Chip Peripheral Modules in Stop Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
MOTOROLA
MC9S08GB/GT
7
Table of Contents
Section 4 Memory
4.1 4.1.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.5 4.6 4.6.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.6 MC9S08GB/GT Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Reset and Interrupt Vector Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Register Addresses and Bit Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Program and Erase Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Program and Erase Command Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Burst Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Access Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Vector Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 FLASH Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 FLASH Clock Divider Register (FCDIV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 FLASH Options Register (FOPT and NVOPT) . . . . . . . . . . . . . . . . . . . . . . . . . . 58 FLASH Configuration Register (FCNFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 FLASH Protection Register (FPROT and NVPROT) . . . . . . . . . . . . . . . . . . . . . . 59 FLASH Status Register (FSTAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 FLASH Command Register (FCMD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Section 5 Resets, Interrupts, and System Configuration
5.1 5.2 5.3 5.4 5.5 5.5.1 5.5.2 5.5.3 5.6 5.6.1 5.6.2 5.6.3 5.6.4 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 MCU Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Computer Operating Properly (COP) Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Interrupt Stack Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 External Interrupt Request (IRQ) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Interrupt Vectors, Sources, and Local Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Low-Voltage Detect (LVD) System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LVD Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 LVD Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Low-Voltage Warning (LVW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
5.7 Real-Time Interrupt (RTI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.8 Reset, Interrupt, and System Control Registers and Control Bits . . . . . . . . . . . . . . 70 5.8.1 Interrupt Pin Request Status and Control Register (IRQSC) . . . . . . . . . . . . . . . . 70 5.8.2 System Reset Status Register (SRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.8.3 System Background Debug Force Reset Register (SBDFR). . . . . . . . . . . . . . . . 73 5.8.4 System Options Register (SOPT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.8.5 System Device Identification Register (SDIDH, SDIDL) . . . . . . . . . . . . . . . . . . . 75 5.8.6 System Real-Time Interrupt Status and Control Register (SRTISC) . . . . . . . . . . 75 5.8.7 System Power Management Status and Control 1 Register (SPMSC1) . . . . . . . 77 5.8.8 System Power Management Status and Control 2 Register (SPMSC2) . . . . . . . 78
Section 6 Internal Clock Generator (ICG) Module
6.1 6.1.1 6.1.2 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.5 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 External Clock Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 External Crystal/Resonator Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Off Mode (Off) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Self-Clocked Mode (SCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 FLL Engaged, Internal Clock (FEI) Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 FLL Bypassed, External Clock (FBE) Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 FLL Engaged, External Clock (FEE) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 FLL Lock and Loss-of-Lock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 FLL Loss-of-Clock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Clock Mode Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Example #1: External Crystal = 32 kHz, Bus Frequency = 4.19 MHz . . . . . . . . . 96 Example #2: External Crystal = 4 MHz, Bus Frequency = 20 MHz. . . . . . . . . . . 98 Example #3: No External Crystal Connection, 5.4 MHz Bus Frequency . . . . . . 100 Example #4: Internal Clock Generator Trim. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 ICG Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
MOTOROLA
MC9S08GB/GT
9
Table of Contents
6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.5.6
ICG Control Register 1 (ICGC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ICG Control Register 2 (ICGC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 ICG Status Register 1 (ICGS1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 ICG Status Register 2 (ICGS2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ICG Filter Registers (ICGFLTU, ICGFLTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 ICG Trim Register (ICGTRM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Section 7 Central Processor Unit (CPU)
7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.4.6 7.5 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.6 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Programmer’s Model and CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Index Register (H:X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Condition Code Register (CCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Inherent Addressing Mode (INH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Relative Addressing Mode (REL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Immediate Addressing Mode (IMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Direct Addressing Mode (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Extended Addressing Mode (EXT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Indexed Addressing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Special Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Reset Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Interrupt Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Wait Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Stop Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 BGND Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 HCS08 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Section 8 Parallel Input/Output
8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.3 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.3.1 Port A and Keyboard Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
8.3.2 Port B and Analog to Digital Converter Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.3.3 Port C and SCI2, IIC, and High-Current Drivers . . . . . . . . . . . . . . . . . . . . . . . . 132 8.3.4 Port D, TPM1 and TPM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.3.5 Port E, SCI1, and SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.3.6 Port F and High-Current Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.3.7 Port G, BKGD/MS, and Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.4 Parallel I/O Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.4.1 Data Direction Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.4.2 Internal Pullup Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.4.3 Slew Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.5 Stop Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.6 Parallel I/O Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.6.1 Port A Registers (PTAD, PTAPE, PTASE, and PTADD) . . . . . . . . . . . . . . . . . . 136 8.6.2 Port B Registers (PTBD, PTBPE, PTBSE, and PTBDD) . . . . . . . . . . . . . . . . . . 138 8.6.3 Port C Registers (PTCD, PTCPE, PTCSE, and PTCDD) . . . . . . . . . . . . . . . . . 139 8.6.4 Port D Registers (PTDD, PTDPE, PTDSE, and PTDDD) . . . . . . . . . . . . . . . . . 141 8.6.5 Port E Registers (PTED, PTEPE, PTESE, and PTEDD) . . . . . . . . . . . . . . . . . . 142 8.6.6 Port F Registers (PTFD, PTFPE, PTFSE, and PTFDD) . . . . . . . . . . . . . . . . . . 144 8.6.7 Port G Registers (PTGD, PTGPE, PTGSE, and PTGDD) . . . . . . . . . . . . . . . . . 145
Section 9 Keyboard Interrupt (KBI) Module
9.1 9.1.1 9.2 9.3 9.4 9.4.1 9.4.2 9.4.3 9.5 9.5.1 9.5.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Port A and Keyboard Interrupt Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 KBI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Keyboard Interrupt (KBI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Pin Enables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Edge and Level Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 KBI Interrupt Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 KBI Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 KBI Status and Control Register (KBISC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 KBI Pin Enable Register (KBIPE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Section 10 Timer/PWM (TPM) Module
10.1 10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
MOTOROLA
MC9S08GB/GT
11
Table of Contents
10.3 TPM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 10.4 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.4.1 External TPM Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.4.2 TPMxCHn — TPMx Channel n I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.5.1 Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.5.2 Channel Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.5.3 Center-Aligned PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 10.6 TPM Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.6.1 Clearing Timer Interrupt Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.6.2 Timer Overflow Interrupt Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.6.3 Channel Event Interrupt Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 10.6.4 PWM End-of-Duty-Cycle Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.7 TPM Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 10.7.1 Timer x Status and Control Register (TPMxSC) . . . . . . . . . . . . . . . . . . . . . . . . 165 10.7.2 Timer x Counter Registers (TPMxCNTH:TPMxCNTL). . . . . . . . . . . . . . . . . . . . 166 10.7.3 Timer x Counter Modulo Registers (TPMxMODH:TPMxMODL) . . . . . . . . . . . . 167 10.7.4 Timer x Channel n Status and Control Register (TPMxCnSC) . . . . . . . . . . . . . 168 10.7.5 Timer x Channel Value Registers (TPMxCnVH:TPMxCnVL). . . . . . . . . . . . . . . 170
Section 11 Serial Communications Interface (SCI) Module
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 11.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.3 SCI System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.4 Baud Rate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 11.5 Transmitter Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 11.5.1 Transmitter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 11.5.2 Send Break and Queued Idle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.6 Receiver Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.6.1 Receiver Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 11.6.2 Data Sampling Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.6.3 Receiver Wakeup Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.7 Interrupts and Status Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.8 Additional SCI Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.8.1 8- and 9-Bit Data Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.9 Stop Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
11.9.1 Loop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.9.2 Single-Wire Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.10 SCI Registers and Control Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 11.10.1 SCI x Baud Rate Registers (SCIxBDH, SCIxBHL). . . . . . . . . . . . . . . . . . . . . . . 182 11.10.2 SCI x Control Register 1 (SCIxC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.10.3 SCI x Control Register 2 (SCIxC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.10.4 SCI x Status Register 1 (SCIxS1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 11.10.5 SCI x Status Register 2 (SCIxS2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.10.6 SCI x Control Register 3 (SCIxC3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.10.7 SCI x Data Register (SCIxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Section 12 Serial Peripheral Interface (SPI) Module
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.2 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.2.1 SPI System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.2.2 SPI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.2.3 SPI Baud Rate Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 12.3.1 SPI Clock Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 12.3.2 SPI Pin Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 12.3.3 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 12.3.4 Mode Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 12.4 SPI Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 12.4.1 SPI Control Register 1 (SPIC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 12.4.2 SPI Control Register 2 (SPIC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.4.3 SPI Baud Rate Register (SPIBR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 12.4.4 SPI Status Register (SPIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 12.4.5 SPI Data Register (SPID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Section 13 Inter-Integrated Circuit (IIC) Module
13.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 13.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 13.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 13.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 13.1.4 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 13.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
MOTOROLA
MC9S08GB/GT
13
Table of Contents
13.2.1 IIC Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 13.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.4.1 Byte Transfer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.4.2 Address Detect Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 13.4.3 Arbitration Lost Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 13.5 IIC Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 13.5.1 IIC Address Register (IICA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 13.5.2 IIC Frequency Divider Register (IICF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 13.5.3 IIC Control Register (IICC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 13.5.4 IIC Status Register (IICS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 13.5.5 IIC Data I/O Register (IICD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Section 14 Analog-to-Digital Converter (ATD) Module
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.1.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.1.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 14.2 Signal Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.3.1 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.3.2 Sample and Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 14.3.3 Analog Input Multiplexer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 14.3.4 ATD Module Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 14.4 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 14.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 14.6 ATD Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 14.6.1 ATD Control (ATDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 14.6.2 ATD Status and Control (ATDSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 14.6.3 ATD Result Data (ATDRH, ATDRL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 14.6.4 ATD Pin Enable (ATDPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Section 15 Development Support
15.1 15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
14
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
15.3 Background Debug Controller (BDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.3.1 BKGD Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 15.3.2 Communication Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 15.3.3 BDC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 15.3.4 BDC Hardware Breakpoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 15.4 On-Chip Debug System (DBG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.4.1 Comparators A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.4.2 Bus Capture Information and FIFO Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 248 15.4.3 Change-of-Flow Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 15.4.4 Tag vs. Force Breakpoints and Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 15.4.5 Trigger Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 15.4.6 Hardware Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 15.5 Registers and Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 15.5.1 BDC Registers and Control Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 15.5.2 System Background Debug Force Reset Register (SBDFR). . . . . . . . . . . . . . . 253 15.5.3 DBG Registers and Control Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Appendix A Electrical Characteristics
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.8.1 A.9 A.9.1 A.9.2 A.9.3 A.10 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Electrostatic Discharge (ESD) Protection Characteristics . . . . . . . . . . . . . . . . . . . 263 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Supply Current Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Internal Clock Generation Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 273 ICG Frequency Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Timer/PWM (TPM) Module Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 FLASH Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Appendix B Ordering Information and Mechanical Drawings
B.1 B.2 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
MOTOROLA
MC9S08GB/GT
15
Table of Contents
B.3 B.4 B.5
64-Pin LQFP Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 44-Pin QFP Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 42-Pin SDIP Package Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
16
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Section 1 Introduction
1.1 Overview
The MC9S08GB/GT are members of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced HCS08 core and are available with a variety of modules, memory sizes, memory types, and package types.
1.2 Features
Features have been organized to reflect: • • Standard features of the HCS08 Family Features of the MC9S08GB/GT MCU
1.2.1 Standard Features of the HCS08 Family
• • • • • 40-MHz HCS08 CPU (central processor unit) HC08 instruction set with added BGND instruction Background debugging system (see also the Development Support section) Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module) Debug module containing two comparators and nine trigger modes. Eight deep FIFO for storing change-of-flow addresses and event-only data. Debug module supports both tag and force breakpoints. Support for up to 32 interrupt/reset sources Power-saving modes: wait plus three stops System protection features: – – – – Optional computer operating properly (COP) reset Low-voltage detection with reset or interrupt Illegal opcode detection with reset Illegal address detection with reset (some devices don’t have illegal addresses)
• • •
1.2.2 Features of MC9S08GB/GT Series of MCUs
• • • On-chip in-circuit programmable FLASH memory with block protection and security options (see Table 1-1 for device specific information) On-chip random-access memory (RAM) (see Table 1-1 for device specific information) 8-channel, 10-bit analog-to-digital converter (ATD)
MC9S08GB/GT 17
MOTOROLA
Introduction
• • • • •
Two serial communications interface modules (SCI) Serial peripheral interface module (SPI) Clock source options include crystal, resonator, external clock or internally generated clock with precision NVM trimming Inter-integrated circuit bus module to operate up to 100 kbps (IIC) One 3-channel and one 5-channel 16-bit timer/pulse width modulator (TPM) modules with selectable input capture, output compare, and edge-aligned PWM capability on each channel. Each timer module may be configured for buffered, centered PWM (CPWM) on all channels (TPMx). 8-pin keyboard interrupt module (KBI) 16 high-current pins (limited by package dissipation) Software selectable pullups on ports when used as input. Selection is on an individual port bit basis. During output mode, pullups are disengaged. Internal pullup on RESET and IRQ pin to reduce customer system cost 56 general-purpose input/output (I/O) pins, depending on package selection 64-pin low-profile quad flat package (LQFP) — MC9S08GBxx 44-pin quad flat package (QFP) — MC9S08GTxx 42-pin shrink dual in-line package (SDIP) — MC9S08GTxx
• • • • • • • •
1.2.3 Devices in the MC9S08GB/GT Series
Table 1-1 lists the devices available in the MC9S08GB/GT series and summarizes the differences among them. Table 1-1 Devices in the MC9S08GB/GT Series
Device
MC9S08GB60
FLASH
60K
RAM
4K
TPM
One 3-channel and one 5-channel 16-bit timer One 3-channel and one 5-channel 16-bit timer Two 2-channel/16bit timers Two 2-channel/16bit timers
I/O
56
Packages
64 LQFP
MC9S08GB32
32K
2K
56 36 34 36 34
64 LQFP 44 QFP 42 SDIP 44 QFP 42 SDIP
MC9S08GT60
60K
4K
MC9S08GT32
32K
2K
1.3 MCU Block Diagrams
These block diagrams shows the structure of the MC9S08GB/GT MCUs.
18
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
HCS08 CORE
INTERNAL BUS 8
PORT A
BDC
CPU
DEBUG MODULE (DBG)
PTA7/KBIP7– PTA0/KBIP0
NOTES 1, 6
RESET NOTE 4 IRQ NOTES 2, 3
RESETS AND INTERRUPTS MODES OF OPERATION POWER MANAGEMENT RTI IRQ COP
8-BIT KEYBOARD INTERRUPT MODULE (KBI)
PORT B
HCS08 SYSTEM CONTROL
8 PTB7/AD7– PTB0/AD0 NOTE 1
IIC MODULE (IIC) PORT C
LVD SERIAL COMMUNICATIONS INTERFACE MODULE (SCI1)
PTC7 PTC6 PTC5 PTC4 PTC3/SCL PTC2/SDA PTC1/RxD2 PTC0/TxD2 PTD7/TPM2CH4 PTD6/TPM2CH3 PTD5/TPM2CH2 PTD4/TPM2CH1 PTD3/TPM2CH0 PTD2/TPM1CH2 PTD1/TPM1CH1 PTD0/TPM1CH0 PTE7 PTE6 PTE5/SPSCK PTE4/MOSI PTE3/MISO PTE2/SS PTE1/RxD1 PTE0/TxD1
NOTES 1, 5
USER FLASH (GB60 = 61,268 BYTES) (GB32 = 32,768 BYTES)
PORT D
SERIAL COMMUNICATIONS INTERFACE MODULE (SCI2)
NOTE 1
USER RAM (GB60 = 4096 BYTES) (GB32 = 2048 BYTES)
3-CHANNEL TIMER/PWM MODULE (TPM1)
VDDAD VSSAD VREFH VREFL
10-BIT ANALOG-TO-DIGITAL CONVERTER (ATD)
PORT E
5-CHANNEL TIMER/PWM MODULE (TPM2)
NOTE 1
PORT F
INTERNAL CLOCK GENERATOR (ICG) LOW-POWER OSCILLATOR VDD VSS
SERIAL PERIPHERAL INTERFACE MODULE (SPI) 8
PTF7–PTF0
NOTES 1, 5
PORT G
VOLTAGE REGULATOR
PTG7 PTG6 PTG5 PTG4 PTG3 PTG2/EXTAL PTG1/XTAL PTG0/BKGD/MS
NOTE 1
NOTES: 1. Port pins are software configurable with pullup device if input port. 2. Pin contains software configurable pullup/pulldown device if IRQ enabled (IRQPE = 1). 3. IRQ does not have a clamp diode to VDD. IRQ should not be driven above VDD. 4. Pin contains integrated pullup device. 5. High current drive 6. Pins PTA[7:4] contain both pullup and pulldown devices. Pulldown available when KBI enabled (KBIPn = 1).
Figure 1-1 MC9S08GBxx Block Diagram
MOTOROLA
MC9S08GB/GT
19
Introduction
HCS08 CORE
INTERNAL BUS 8
PORT A
BDC
CPU
DEBUG MODULE (DBG)
PTA7/KBIP7– PTA0/KBIP0
NOTES 1, 7
RESET NOTE 4 IRQ NOTES 2, 3
RESETS AND INTERRUPTS MODES OF OPERATION POWER MANAGEMENT RTI IRQ COP
8-BIT KEYBOARD INTERRUPT MODULE (KBI)
PORT B
HCS08 SYSTEM CONTROL
8 PTB7/AD7– PTB0/AD0 NOTE 1
IIC MODULE (IIC) PORT C
LVD SERIAL COMMUNICATIONS INTERFACE MODULE (SCI1)
PTC6 (NOTE 6) PTC5 (NOTE 6) PTC4 PTC3/SCL PTC2/SDA PTC1/RxD2 PTC0/TxD2 PTD4/TPM2CH1
NOTES 1, 5
USER FLASH (GT60 = 61,268 BYTES) (GT32 = 32,768 BYTES)
PORT D
SERIAL COMMUNICATIONS INTERFACE MODULE (SCI2)
PTD3/TPM2CH0 NOTE 1 PTD1/TPM1CH1 PTD0/TPM1CH0 PTE5/SPSCK
USER RAM (GT60 = 4096 BYTES) (GT32 = 2048 BYTES)
3-CHANNEL TIMER/PWM MODULE (TPM1) (NOTE 8) 5-CHANNEL TIMER/PWM MODULE (TPM2) (NOTE 8)
VDDAD VSSAD VREFH VREFL
10-BIT ANALOG-TO-DIGITAL CONVERTER (ATD)
PORT E
PTE4/MOSI PTE3/MISO PTE2/SS PTE1/RxD1 PTE0/TxD1
NOTE 1
INTERNAL CLOCK GENERATOR (ICG) LOW-POWER OSCILLATOR VDD VSS
SERIAL PERIPHERAL INTERFACE MODULE (SPI)
PTG2/EXTAL PORT G PTG1/XTAL PTG0/BKGD/MS NOTE 1
VOLTAGE REGULATOR
NOTES: 1. Port pins are software configurable with pullup device if input port. 2. Pin contains software configurable pullup/pulldown device if IRQ enabled (IRQPE = 1). 3. IRQ does not have a clamp diode to VDD. IRQ should not be driven above VDD. 4. Pin contains integrated pullup device. 5. High current drive 6. PTC[6:5] are not available on the 42-pin SDIP package. 7. Pins PTA[7:4] contain both pullup and pulldown devices. Pulldown available when KBI enabled (KBIPn = 1). 8. Only two timer channels per TPM are bonded out. All channels are available for use.
Figure 1-2 MC9S08GTxx Block Diagram
20
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Table 1-2 lists the functional versions of the on-chip modules. Table 1-2 Block Versions
Module
Analog-to-Digital Converter (ATD) Internal Clock Generator (ICG) Inter-Integrated Circuit (IIC) Keyboard Interrupt (KBI) Serial Communications Interface (SCI) Serial Peripheral Interface (SPI) Timer Pulse-Width Modulator (TPM) Central Processing Unit (CPU)
Version
3 2 1 1 1 3 1 2
1.4 System Clock Distribution
SYSTEM CONTROL LOGIC RTI TPM1 TPM2 IIC SCI1 SCI2 SPI
ICGERCLK FFE
ICG
FIXED FREQ CLOCK (XCLK)
ICGOUT ICGLCLK*
÷2
BUSCLK
CPU
BDC
ATD ATD has min and max frequency requirements. See ATD section and Appendix A.
RAM
FLASH FLASH has frequency requirements for program and erase operation. See Appendix A.
* ICGLCLK is the alternate BDC clock source for the MC9S08GB/GT.
Figure 1-3 System Clock Distribution Diagram
MOTOROLA
MC9S08GB/GT
21
Introduction
Some of the modules inside the MCU have clock source choices. Figure 1-3 shows a simplified clock connection diagram. The ICG supplies the clock sources: • ICGOUT is an output of the ICG module. It is either: – – – The external crystal oscillator An external clock source The output of the digitally-controlled oscillator (DCO) in the frequency-locked loop sub-module
Control bits inside the ICG determine which source is connected. • FFE is a control signal generated inside the ICG. If the frequency of ICGOUT > 4 × the frequency of ICGERCLK, this signal is a logic 1 and the fixed-frequency clock will be the ICGERCLK. Otherwise the fixed-frequency clock will be BUSCLK. ICGLCLK — Development tools can select this internal self-clocked source (~ 8 MHz) to speed up BDC communications in systems where the bus clock is slow. ICGERCLK — External reference clock can be selected as the real-time interrupt clock source.
• •
22
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Section 2 Pins and Connections
2.1 Introduction
This section describes signals that connect to package pins. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals.
2.2 Device Pin Assignment
PTG2/EXTAL PTG0/BKGD/MS PTA5/KBIP5 PTA4/KBIP4 50 48 PTA2/KBIP2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 47 46 45 44 43 42 41 40 39 38 37 36 35 34 PTA1/KBIP1 PTA0/KBIP0 PTF7 PTF6 PTF5 VREFL VREFH PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 33 PTB0/AD0 18 17 PTD5/TPM2CH2 PTD6/TPM2CH3 PTD0/TPM1CH0 PTD1/TPM1CH1 PTD2/TPM1CH2 PTD3/TPM2CH0 PTD4/TPM2CH1 PTE5/SPSCK PTE7 PTE2/SS PTE3/MISO PTE4/MOSI PTE6 VDD VSS 31 32 PTD7/TPM2CH4 PTA7/KBIP7 PTA6/KBIP6 PTA3/KBIP3 49 63 RESET 1 PTG7 PTC0/TxD2 PTC1/RxD2 PTC2/SDA PTC3/SCL PTC4 PTC5 PTC6 PTC7 PTF2 PTF3 PTF4 PTE0/TxD1 PTE1/RxD1 IRQ 16 62 61 60 59 58 57 56 55 54 53 52 51 PTG1/XTAL
PTG5
PTG4
PTG3
VSSAD
PTG6
VDDAD
PTF1
64
19
20
21
22
23
24
25
26
27
PTF0
28
29
30
Figure 2-1 MC9S08GBxx in 64-Pin LQFP Package
MOTOROLA
MC9S08GB/GT
23
Pins and Connections
PTG0/BKGD/MS
44 PTG2/EXTAL
43
42
41
40
39
38
37
36
RESET 1 PTC0/TxD2 PTC1/RxD2 PTC2/SDA PTC3/SCL PTC4 PTC5 PTC6 PTE0/TxD1 PTE1/RxD1 IRQ 11 PTE2/SS 12 2 3 4 5 6 7 8 9 10 13 14 15 16
35
34 PTA2/KBIP2 33 PTA1/KBIP1 32 31 30 29 28 27 26 25 24 PTA0/KBIP0 VREFL VREFH PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 23 PTB0/AD0 22 PTB1/AD1
PTA5/KBIP5
PTA7/KBIP7
PTA6/KBIP6
PTA4/KBIP4 20 PTD3/TPM2CH0
17
18
19
PTE5/SPSCK
PTE3/MISO
VDD
PTD0/TPM1CH0
Figure 2-2 MC9S08GTxx in 44-Pin QFP Package
24
MC9S08GB/GT
PTD1/TPM1CH1
PTD4/TPM2CH1
PTE4/MOSI
VSS
21
PTA3/KBIP3
PTG1/XTAL
VDDAD
VSSAD
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
VDDAD VSSAD PTG0/BKGD/MS PTG1/XTAL PTG2/EXTAL RESET PTC0/TxD2 PTC1/RXD2 PTC2/SDA PTC3/SCL PTC4 PTE0/TxD1 PTE1/RxD1 IRQ PTE2/SS PTE3/MISO PTE4/MOSI PTE5/SPSCK VSS VDD PTD0/TPM1CH0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
PTA7/KBIP7 PTA6/KBIP6 PTA5/KBIP5 PTA4/KBIP4 PTA3/KBIP3 PTA2/KBIP2 PTA1/KBIP1 PTA0/KBIP0 VREFL VREFH PTB7/AD7 PTB6/AD6 PTB5/AD5 PTB4/AD4 PTB3/AD3 PTB2/AD2 PTB1/AD1 PTB0/AD0 PTD4/TPM2CH1 PTD3/TPM2CH0 PTD1/TPM1CH1
Figure 2-3 MC9S08GTxx in 42-Pin SDIP Package
2.3 Recommended System Connections
Figure 2-4 shows pin connections that are common to almost all MC9S08GBxx application systems. MC9S08GTxx connections will be similar except for the amount of I/O pins available. A more detailed discussion of system connections follows.
MOTOROLA
MC9S08GB/GT
25
Pins and Connections
VREFH CBYAD 0.1 µF SYSTEM POWER + 3V CBLK 10 µF VDD VDDAD MC9S08GBxx PTA0/KBIP0 PTA1/KBIP1 PTA2/KBIP2 PORT A VSS PTA3/KBIP3 PTA4/KBIP4 PTA5/KBIP5 PTA6/KBIP6 PTA7/KBIP7 NOTE 1 RF C1 C2 RS PTB0/AD0 PTB1/AD1 PTB2/AD2 EXTAL NOTE 2 BACKGROUND HEADER VDD 1 BKGD/MS NOTE 3 PORT B PTB3/AD3 PTB4/AD4 PTB5/AD5 PTB6/AD6 PTB7/AD7 PTC0/TxD2 PTC1/RxD2 PTC2/SDA RESET PORT C PTC3/SCL PTC4 PTC5 PTC6 IRQ PTC7 PTD0/TPM1CH0 PTD1/TPM1CH1 PTD2/TPM1CH2 PORT G PORT D PTD3/TPM2CH0 PTD4/TPM2CH1 PTD5/TPM2CH2 PTD6/TPM2CH3 PTD7/TPM2CH4 PTE0/TxD1 PTE1/RxD1 PTE2/SS PORT F PORT E PTE3/MISO PTE4/MOSI PTE5/SPSCK PTE6 PTE7 I/O AND PERIPHERAL INTERFACE TO APPLICATION SYSTEM
VSSAD VREFL VDD CBY 0.1 µF
+
XTAL NOTE 2
X1
OPTIONAL MANUAL RESET
ASYNCHRONOUS
INTERRUPT INPUT PTG0/BKDG/MS PTG1/XTAL PTG2/EXTAL PTG3 PTG4 PTG5 PTG6 PTG7 PTF0
NOTES: 1. Not required if using the internal oscillator option. 2. These are the same pins as PTG1 and PTG2. 3. BKGD/MS is the same pin as PTG0.
PTF1 PTF2 PTF3 PTF4 PTF5 PTF6 PTF7
Figure 2-4 Basic System Connections
26
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
2.3.1 Power
VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated lower-voltage source to the CPU and other internal circuitry of the MCU. Typically, application systems have two separate capacitors across the power pins. In this case, there should be a bulk electrolytic capacitor, such as a 10-µF tantalum capacitor, to provide bulk charge storage for the overall system and a 0.1-µF ceramic bypass capacitor located as close to the MCU power pins as practical to suppress high-frequency noise. VDDAD and VSSAD are the analog power supply pins for the MCU. This voltage source supplies power to the ATD. A 0.1-µF ceramic bypass capacitor should be located as close to the MCU power pins as practical to suppress high-frequency noise.
2.3.2 Oscillator
Out of reset the MCU uses an internally generated clock (self-clocked mode — fSelf_reset) equivalent to about 8-MHz crystal rate. This frequency source is used during reset startup and can be enabled as the clock source for stop recovery to avoid the need for a long crystal startup delay. This MCU also contains a trimmable internal clock generator (ICG) module that can be used to run the MCU. For more information on the ICG, see the Internal Clock Generator section. The oscillator in this MCU is a Pierce oscillator that can accommodate a crystal or ceramic resonator in either of two frequency ranges selected by the RANGE bit in the ICGC1 register. Rather than a crystal or ceramic resonator, an external oscillator can be connected to the EXTAL input pin, and the XTAL output pin must be left unconnected. Refer to Figure 2-4 for the following discussion. RS (when used) and RF should be low-inductance resistors such as carbon composition resistors. Wire-wound resistors, and some metal film resistors, have too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically designed for high-frequency applications. RF is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup and its value is not generally critical. Typical systems use 1 MΩ to 10 MΩ. Higher values are sensitive to humidity and lower values reduce gain and (in extreme cases) could prevent startup. C1 and C2 are typically in the 5-pF to 25-pF range and are chosen to match the requirements of a specific crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and MCU pin capacitance when sizing C1 and C2. The crystal manufacturer typically specifies a load capacitance which is the series combination of C1 and C2 which are usually the same size. As a first-order approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin (EXTAL and XTAL).
2.3.3 Reset
RESET is a dedicated pin with a pullup device built in. It has input hysteresis, a high current output driver, and no output slew rate control. Internal power-on reset and low-voltage reset circuitry typically make external reset circuitry unnecessary. This pin is normally connected to the standard 6-pin background
MOTOROLA
MC9S08GB/GT
27
Pins and Connections
debug connector so a development system can directly reset the MCU system. If desired, a manual external reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset). Whenever any reset is initiated (whether from an external signal or from an internal system), the reset pin is driven low for about 34 cycles of fSelf_reset, released, and sampled again about 38 cycles of fSelf_reset later. If reset was caused by an internal source such as low-voltage reset or watchdog timeout, the circuitry expects the reset pin sample to return a logic 1. If the pin is still low at this sample point, the reset is assumed to be from an external source. The reset circuitry decodes the cause of reset and records it by setting a corresponding bit in the system control reset status register (SRS). Never connect any significant capacitance to the reset pin because that would interfere with the circuit and sequence that detects the source of reset. If an external capacitance prevents the reset pin from rising to a valid logic 1 before the reset sample point, all resets will appear to be external resets.
2.3.4 Background/Mode Select (PTG0/BKGD/MS)
The background/mode select (BKGD/MS) shares its function with an I/O port pin. While in reset the pin functions as a mode select pin. Immediately after reset rises the pin functions as the background pin and can be used for background debug communication. While functioning as a background/mode select pin the pin includes an internal pullup device, input hysteresis, a standard output driver, and no output slew rate control. When used as an I/O port (PTG0) the pin is limited to output only. If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of reset. If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD/MS low during the rising edge of reset which forces the MCU to active background mode. The BKGD pin is used primarily for background debug controller (BDC) communications using a custom protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s BDC clock could be as fast as the bus clock rate, so there should never be any significant capacitance connected to the BKGD/MS pin that could interfere with background serial communications. Although the BKGD pin is a pseudo open-drain pin, the background debug communication protocol provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from cables and the absolute value of the internal pullup device play almost no role in determining rise and fall times on the BKGD pin.
2.3.5 General-Purpose I/O and Peripheral Ports
The remaining 55 pins are shared among general-purpose I/O and on-chip peripheral functions such as timers and serial I/O systems. (Twenty of these pins are not bonded out on the 44-pin package and twenty-two are not bonded out on the 42-pin package.) Immediately after reset, all 55 of these pins are configured as high-impedance general-purpose inputs with internal pullup devices disabled. NOTE: To avoid extra current drain from floating input pins, the reset initialization routine in the application program should either enable on-chip pullup devices or change the direction of unused pins to outputs so the pins do not float.
28
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
For information about controlling these pins as general-purpose I/O pins, see the Parallel Input/Output section. For information about how and when on-chip peripheral systems use these pins, refer to the appropriate section from Table 2-1. Table 2-1 Pin Sharing References
Port Pins
PTA7–PTA0 PTB7–PTB0 PTC7–PTC4 PTC3–PTC2 PTC1–PTC0 PTD7–PTD3 PTD2–PTD0 PTE7–PTE6 PTE5 PTE4 PTE3 PTE2 PTE1–PTE0 PTF7–PTF0 PTG7–PTG3 PTG2–PTG1 PTG0
Alternate Function
KBI7–KBI0 AD7–AD0 — SCL–SDA RxD2–TxD2 TPM2CH4– TPM2CH0 TPM1CH2– TPM1CH0 — SPSCK MISO MOSI SS RxD1–TxD1 — — EXTAL–XTAL BKGD/MS
Reference(1)
Keyboard Interrupt (KBI) Module Analog-to-Digital Converter (ATD) Module Parallel Input/Output Inter-Integrated Circuit (IIC) Module Serial Communications Interface (SCI) Module Timer/PWM (TPM) Module Timer/PWM (TPM) Module Parallel Input/Output
Serial Peripheral Interface (SPI) Module
Serial Communications Interface (SCI) Module Parallel Input/Output Parallel Input/Output Internal Clock Generator (ICG) Module Development Support
NOTES: 1. See this section for information about modules that share these pins.
When an on-chip peripheral system is controlling a pin, data direction control bits still determine what is read from port data registers even though the peripheral module controls the pin direction by controlling the enable for the pin’s output buffer. See the Parallel Input/Output section for more details. Pullup enable bits for each input pin control whether on-chip pullup devices are enabled whenever the pin is acting as an input even if it is being controlled by an on-chip peripheral module. When the PTA7–PTA4 pins are controlled by the KBI module and are configured for rising-edge/high-level sensitivity, the pullup enable control bits enable pulldown devices rather than pullup devices. Similarly, when IRQ is configured as the IRQ input and is set to detect rising edges, the pullup enable control bit enables a pulldown device rather than a pullup device.
MOTOROLA
MC9S08GB/GT
29
Pins and Connections
2.3.6 Signal Properties Summary
Table 2-2 summarizes I/O pin characteristics. These characteristics are determined by the way the common pin interfaces are hardwired to internal circuits. Table 2-2 Signal Properties
Pin Name
VDD VSS VDDAD VSSAD VREFH VREFL RESET I/O
Dir
High Current Pin
— — — — — — Y
Output Slew (1)
— — — — — — N
Pull-Up(2)
— — — — — — Y
Comments
Pin contains integrated pullup. IRQPE must be set to enable IRQ function. IRQ does not have a clamp diode to VDD. IRQ should not be driven above VDD. Pullup/pulldown active when IRQ pin function enabled. Pullup forced on when IRQ enabled for falling edges; pulldown forced on when IRQ enabled for rising edges.
IRQ
I
—
—
Y
PTA0/KBIP0 PTA1/KBIP1 PTA2/KBIP2 PTA3/KBIP3 PTA4/KBIP4 PTA5/KBIP5 PTA6/KBIP6 PTA7/KBIP7 PTB0/AD0 PTB1/AD1 PTB2/AD2 PTB3/AD3 PTB4/AD4 PTB5/AD5 PTB6/AD6 PTB7/AD7 PTC0/TxD2 PTC1/RxD2 PTC2/SDA PTC3/SCL PTC4 PTC5 PTC6
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O
N N N N N N N N N N N N N N N N Y Y Y Y Y Y Y
SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC
SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC Not available on 42-pin pkg Not available on 42-pin pkg When pin is configured for SCI function, pin is configured for partial output drive. Pullup/pulldown active when KBI pin function enabled. Pullup forced on when KBIPx enabled for falling edges; pulldown forced on when KBIPx enabled for rising edges.
30
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Table 2-2 Signal Properties (Continued)
Pin Name
PTC7 PTD0/TPM1CH0 PTD1/TPM1CH1 PTD2/TPM1CH2 PTD3/TPM2CH0 PTD4/TPM2CH1 PTD5/TPM2CH2 PTD6/TPM2CH3 PTD7/TPM2CH4 PTE0/TxD1 PTE1/RxD1 PTE2/SS PTE3/MISO PTE4/MOSI PTE5/SPSCK PTE6 PTE7 PTF0 PTF1 PTF2 PTF3 PTF4 PTF5 PTF6 PTF7 PTG0/BKGD/MS PTG1/XTAL PTG2/EXTAL PTG3 PTG4 PTG5 PTG6 PTG7
Dir
I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O O I/O I/O I/O I/O I/O I/O I/O
High Current Pin
Y N N N N N N N N N N N N N N N N Y Y Y Y Y Y Y Y N N N N N N N N
Output Slew (1)
SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC
Pull-Up(2)
SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC
Comments
Not available on 42- or 44-pin pkg
Not available on 42- or 44-pin pkg
Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg
Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Pullup enabled and slew rate disabled when BDM function enabled. Pullup and slew rate disabled when XTAL pin function. Pullup and slew rate disabled when EXTAL pin function. Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg Not available on 42- or 44-pin pkg
NOTES: 1. SWC is software controlled slew rate, the register is associated with the respective port. 2. SWC is software controlled pullup resistor, the register is associated with the respective port.
MOTOROLA
MC9S08GB/GT
31
Pins and Connections
32
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Section 3 Modes of Operation
3.1 Introduction
The operating modes of the MC9S08GB/GT are described in this section. Entry into each mode, exit from each mode, and functionality while in each of the modes are described.
3.2 Features
• • Active background mode for code development Wait mode: – – – • – – – – CPU shuts down to conserve power System clocks running Full voltage regulation maintained System clocks stopped; voltage regulator in standby Stop1 — Full power down of internal circuits for maximum power savings Stop2 — Partial power down of internal circuits, RAM contents retained Stop3 — All internal circuits powered for fast recovery
Stop modes:
3.3 Run Mode
This is the normal operating mode for the MC9S08GB/GT. This mode is selected when the BKGD/MS pin is high at the rising edge of reset. In this mode, the CPU executes code from internal memory with execution beginning at the address fetched from memory at $FFFE:$FFFF after reset.
3.4 Active Background Mode
The active background mode functions are managed through the background debug controller (BDC) in the HCS08 core. The BDC, together with the on-chip debug module (DBG), provide the means for analyzing MCU operation during software development. Active background mode is entered in any of five ways: • • • • • When the BKGD/MS pin is low at the rising edge of reset When a BACKGROUND command is received through the BKGD pin When a BGND instruction is executed When encountering a BDC breakpoint When encountering a DBG breakpoint
MC9S08GB/GT 33
MOTOROLA
Modes of Operation
Once in active background mode, the CPU is held in a suspended state waiting for serial background commands rather than executing instructions from the user’s application program. Background commands are of two types: • Non-intrusive commands, defined as commands that can be issued while the user program is running. Non-intrusive commands can be issued through the BKGD pin while the MCU is in run mode; non-intrusive commands can also be executed when the MCU is in the active background mode. Non-intrusive commands include: – – – – • Memory access commands Memory-access-with-status commands BDC register access commands The BACKGROUND command
Active background commands, which can only be executed while the MCU is in active background mode. Active background commands include commands to: – – – Read or write CPU registers Trace one user program instruction at a time Leave active background mode to return to the user’s application program (GO)
The active background mode is used to program a bootloader or user application program into the FLASH program memory before the MCU is operated in run mode for the first time. When the MC9S08GB/GT is shipped from the Motorola factory, the FLASH program memory is erased by default unless specifically noted so there is no program that could be executed in run mode until the FLASH memory is initially programmed. The active background mode can also be used to erase and reprogram the FLASH memory after it has been previously programmed. For additional information about the active background mode, refer to the Development Support section.
3.5 Wait Mode
Wait mode is entered by executing a WAIT instruction. Upon execution of the WAIT instruction, the CPU enters a low-power state in which it is not clocked. The I bit in CCR is cleared when the CPU enters the wait mode, enabling interrupts. When an interrupt request occurs, the CPU exits the wait mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine. While the MCU is in wait mode, there are some restrictions on which background debug commands can be used. Only the BACKGROUND command and memory-access-with-status commands are available when the MCU is in wait mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from wait mode and enter active background mode.
34
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
3.6 Stop Modes
One of three stop modes is entered upon execution of a STOP instruction when the STOPE bit in the system option register is set. In all stop modes, all internal clocks are halted. If the STOPE bit is not set when the CPU executes a STOP instruction, the MCU will not enter any of the stop modes and an illegal opcode reset is forced. The stop modes are selected by setting the appropriate bits in SPMSC2. Table 3-1 summarizes the behavior of the MCU in each of the stop modes. Table 3-1 Stop Mode Behavior
Mode PDC CPU, Digital PPDC Peripherals, FLASH 0 1 Don’t care Off Off Standby RAM ICG ATD Disabled
(1)
Regulator
I/O Pins
RTI
Stop1 Stop2 Stop3
1 1 0
Off Standby Standby
Off Off Off(2)
Off Standby Standby
Reset States held States held
Off Optionally on Optionally on
Disabled Disabled
NOTES: 1. Either ATD stop mode or power-down mode depending on the state of ATDPU. 2. Crystal oscillator can be configured to run in stop3. Please see the ICG registers.
3.6.1 Stop1 Mode
The stop1 mode provides the lowest possible standby power consumption by causing the internal circuitry of the MCU to be powered down. To select entry into stop1 mode upon execution of a STOP instruction, the user must set the PDC bit in SPMSC2 and clear the PPDC bit in SPMSC2. When the MCU is in stop1 mode, all internal circuits that are powered from the voltage regulator are turned off. The voltage regulator is in a low-power standby state, as is the ATD. Exit from stop1 is done by asserting either of the wake-up pins on the MCU: RESET or IRQ. IRQ is always an active low input when the MCU is in stop1, regardless of how it was configured before entering stop1. Entering stop1 mode automatically asserts LVD. Stop1 cannot be exited until VDD > VLVDH/L rising (VDD must rise above the LVI rearm voltage). Upon wake-up from stop1 mode, the MCU will start up as from a power-on reset (POR). The CPU will take the reset vector.
3.6.2 Stop2 Mode
The stop2 mode provides very low standby power consumption and maintains the contents of RAM and the current state of all of the I/O pins. To select entry into stop2 upon execution of a STOP instruction, the user must execute a STOP instruction while the PPDC and PDC bits in SPMSC2 are set.
MOTOROLA
MC9S08GB/GT
35
Modes of Operation
Before entering stop2 mode, the user must save the contents of the I/O port registers, as well as any other memory-mapped registers which they want to restore after exit of stop2, to locations in RAM. Upon exit of stop2, these values can be restored by user software before pin latches are opened. When the MCU is in stop2 mode, all internal circuits that are powered from the voltage regulator are turned off, except for the RAM. The voltage regulator is in a low-power standby state, as is the ATD. Upon entry into stop2, the states of the I/O pins are latched. The states are held while in stop2 mode and after exiting stop2 mode until a logic 1 is written to PPDACK in SPMSC2. Exit from stop2 is done by asserting either of the wake-up pins: RESET or IRQ, or by an RTI interrupt. IRQ is always an active low input when the MCU is in stop2, regardless of how it was configured before entering stop2. Upon wake-up from stop2 mode, the MCU will start up as from a power-on reset (POR) except pin states remain latched. The CPU will take the reset vector. The system and all peripherals will be in their default reset states and must be initialized. After waking up from stop2, the PPDF bit in SPMSC2 is set. This flag may be used to direct user code to go to a stop2 recovery routine. PPDF remains set and the I/O pin states remain latched until a logic 1 is written to PPDACK in SPMSC2. To maintain I/O state for pins that were configured as general-purpose I/O, the user must restore the contents of the I/O port registers, which have been saved in RAM, to the port registers before writing to the PPDACK bit. If the port registers are not restored from RAM before writing to PPDACK, then the register bits will assume their reset states when the I/O pin latches are opened and the I/O pins will switch to their reset states. For pins that were configured as peripheral I/O, the user must reconfigure the peripheral module that interfaces to the pin before writing to the PPDACK bit. If the peripheral module is not enabled before writing to PPDACK, the pins will be controlled by their associated port control registers when the I/O latches are opened.
3.6.3 Stop3 Mode
Upon entering the stop3 mode, all of the clocks in the MCU, including the oscillator itself, are halted. The ICG is turned off, the ATD is disabled, and the voltage regulator is put in standby. The states of all of the internal registers and logic, as well as the RAM content, are maintained. The I/O pin states are not latched at the pin as in stop2. Instead they are maintained by virtue of the states of the internal logic driving the pins being maintained. Exit from stop3 is done by asserting RESET, an asynchronous interrupt pin, or through the real-time interrupt. The asynchronous interrupt pins are the IRQ or KBI pins. If stop3 is exited by means of the RESET pin, then the MCU will be reset and operation will resume after taking the reset vector. Exit by means of an asynchronous interrupt or the real-time interrupt will result in the MCU taking the appropriate interrupt vector. A separate self-clocked source (≈1 kHz) for the real-time interrupt allows a wakeup from stop2 or stop3 mode with no external components. When RTIS2:RTIS1:RTIS0 = 0:0:0, the real-time interrupt function
36
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
and this 1-kHz source are disabled. Power consumption is lower when the 1-kHz source is disabled, but in that case the real-time interrupt cannot wake the MCU from stop.
3.6.4 Active BDM Enabled in Stop Mode
Entry into the active background mode from run mode is enabled if the ENBDM bit in BDCSCR is set. This register is described in the Development Support section of this data sheet. If ENBDM is set when the CPU executes a STOP instruction, the system clocks to the background debug logic remain active when the MCU enters stop mode so background debug communication is still possible. In addition, the voltage regulator does not enter its low-power standby state but maintains full internal regulation. If the user attempts to enter either stop1 or stop2 with ENBDM set, the MCU will instead enter stop3. Most background commands are not available in stop mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in either stop or wait mode. The BACKGROUND command can be used to wake the MCU from stop and enter active background mode if the ENBDM bit is set. Once in background debug mode, all background commands are available. The table below summarizes the behavior of the MCU in stop when entry into the background debug mode is enabled. Table 3-2 BDM Enabled Stop Mode Behavior
Mode PDC Don’t care CPU, Digital PPDC Peripherals, FLASH Don’t care Standby RAM ICG ATD Disabled
(1)
Regulator
I/O Pins States held
RTI
Stop3
Standby
Active
Active
Optionally on
NOTES: 1. Either ATD stop mode or power-down mode depending on the state of ATDPU.
3.6.5 LVD Enabled in Stop Mode
The LVD system is capable of generating either an interrupt or a reset when the supply voltage drops below the LVD voltage. If the LVD is enabled in stop by setting the LVDE and the LVDSE bits in SPMSC1 when the CPU executes a STOP instruction, then the voltage regulator remains active during stop mode. If the user attempts to enter either stop1 or stop2 with the LVD enabled for stop (LVDSE = 1), the MCU will instead enter stop3. The table below summarizes the behavior of the MCU in stop when the LVD is enabled. Table 3-3 LVD Enabled Stop Mode Behavior
Mode PDC Don’t care CPU, Digital PPDC Peripherals, FLASH Don’t care Standby RAM ICG ATD Disabled
(1)
Regulator
I/O Pins States held
RTI
Stop3
Standby
Standby
Active
Optionally on
NOTES: 1. Either ATD stop mode or power-down mode depending on the state of ATDPU.
MOTOROLA
MC9S08GB/GT
37
Modes of Operation
3.6.6 On-Chip Peripheral Modules in Stop Modes
When the MCU enters any stop mode, system clocks to the internal peripheral modules are stopped. Even in the exception case (ENBDM = 1), where clocks are kept alive to the background debug logic, clocks to the peripheral systems are halted to reduce power consumption. Refer to 3.6.1 Stop1 Mode, 3.6.2 Stop2 Mode, and 3.6.3 Stop3 Mode for specific information on system behavior in stop modes. I/O Pins • • • All I/O pin states remain unchanged when the MCU enters stop3 mode. If the MCU is configured to go into stop2 mode, all I/O pins states are latched before entering stop. If the MCU is configured to go into stop1 mode, all I/O pins are forced to their default reset state upon entry into stop.
Memory • • All RAM and register contents are preserved while the MCU is in stop3 mode. All registers will be reset upon wake-up from stop2, but the contents of RAM are preserved and pin states remain latched until the PPDACK bit is written. The user may save any memory-mapped register data into RAM before entering stop2 and restore the data upon exit from stop2. All registers will be reset upon wake-up from stop1 and the contents of RAM are not preserved. The MCU must be initialized as upon reset. The contents of the FLASH memory are non-volatile and are preserved in any of the stop modes.
•
ICG — In stop3 mode, the ICG enters its low-power standby state. Either the oscillator or the internal reference may be kept running when the ICG is in standby by setting the appropriate control bit. In both stop2 and stop1 modes, the ICG is turned off. Neither the oscillator nor the internal reference can be kept running in stop2 or stop1, even if enabled within the ICG module. TPM — When the MCU enters stop mode, the clock to the TPM1 and TPM2 modules stop. The modules halt operation. If the MCU is configured to go into stop2 or stop1 mode, the TPM modules will be reset upon wake-up from stop and must be reinitialized. ATD — When the MCU enters stop mode, the ATD will enter a low-power standby state. No conversion operation will occur while in stop. If the MCU is configured to go into stop2 or stop1 mode, the ATD will be reset upon wake-up from stop and must be reinitialized. KBI — During stop3, the KBI pins that are enabled continue to function as interrupt sources that are capable of waking the MCU from stop3. The KBI is disabled in stop1 and stop2 and must be reinitialized after waking up from either of these modes. SCI — When the MCU enters stop mode, the clocks to the SCI1 and SCI2 modules stop. The modules halt operation. If the MCU is configured to go into stop2 or stop1 mode, the SCI modules will be reset upon wake-up from stop and must be reinitialized. SPI — When the MCU enters stop mode, the clocks to the SPI module stop. The module halts operation. If the MCU is configured to go into stop2 or stop1 mode, the SPI module will be reset upon wake-up from stop and must be reinitialized.
38
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
IIC — When the MCU enters stop mode, the clocks to the IIC module stops. The module halts operation. If the MCU is configured to go into stop2 or stop1 mode, the IIC module will be reset upon wake-up from stop and must be reinitialized. Voltage Regulator — The voltage regulator enters a low-power standby state when the MCU enters any of the stop modes unless the LVD is enabled in stop mode or BDM is enabled.
MOTOROLA
MC9S08GB/GT
39
Modes of Operation
40
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Section 4 Memory
4.1 MC9S08GB/GT Memory Map
As shown in Figure 4-1, on-chip memory in the MC9S08GB/GT series of MCUs consists of RAM, FLASH program memory for nonvolatile data storage, plus I/O and control/status registers. The registers are divided into three groups: • • • Direct-page registers ($0000 through $007F) High-page registers ($1800 through $182B) Nonvolatile registers ($FFB0 through $FFBF)
$0000 $007F $0080 DIRECT PAGE REGISTERS $0000 DIRECT PAGE REGISTERS RAM RAM 4096 BYTES $107F $1080 FLASH 1920 BYTES $17FF $1800 HIGH PAGE REGISTERS $182B $182C UNIMPLEMENTED 26580 BYTES FLASH 59348 BYTES FLASH 32768 BYTES $7FFF $8000 HIGH PAGE REGISTERS $182B $182C $17FF $1800 UNIMPLEMENTED 3968 BYTES 2048 BYTES $087F $0880 $007F $0080
$FFFF MC9S08GB/GT60 MC9S08GB/GT32
$FFFF
Figure 4-1 MC9S08GB/GT Memory Map
MOTOROLA
MC9S08GB/GT
41
Memory
4.1.1 Reset and Interrupt Vector Assignments
Table 4-1 shows address assignments for reset and interrupt vectors. The vector names shown in this table are the labels used in the Motorola-provided equate file for the MC9S08GB/GT. For more details about resets, interrupts, interrupt priority, and local interrupt mask controls, refer to the Resets, Interrupts, and System Configuration section. Table 4-1 Reset and Interrupt Vectors
Address (High/Low)
$FFC0:FFC1 Unused Vector Space (available for user program) $FFCA:FFCB $FFCC:FFCD $FFCE:FFCF $FFD0:FFD1 $FFD2:FFD3 $FFD4:FFD5 $FFD6:FFD7 $FFD8:FFD9 $FFDA:FFDB $FFDC:FFDD $FFDE:FFDF $FFE0:FFE1 $FFE2:FFE3 $FFE4:FFE5 $FFE6:FFE7 $FFE8:FFE9 $FFEA:FFEB $FFEC:FFED $FFEE:FFEF $FFF0:FFF1 $FFF2:FFF3 $FFF4:FFF5 $FFF6:FFF7 $FFF8:FFF9 $FFFA:FFFB $FFFC:FFFD $FFFE:FFFF RTI IIC ATD Conversion Keyboard SCI2 Transmit SCI2 Receive SCI2 Error SCI1 Transmit SCI1 Receive SCI1 Error SPI TPM2 Overflow TPM2 Channel 4 TPM2 Channel 3 TPM2 Channel 2 TPM2 Channel 1 TPM2 Channel 0 TPM1 Overflow TPM1 Channel 2 TPM1 Channel 1 TPM1 Channel 0 ICG Low Voltage Detect IRQ SWI Reset Vrti Viic Vatd Vkeyboard Vsci2tx Vsci2rx Vsci2err Vsci1tx Vsci1rx Vsci1err Vspi Vtpm2ovf Vtpm2ch4 Vtpm2ch3 Vtpm2ch2 Vtpm2ch1 Vtpm2ch0 Vtpm1ovf Vtpm1ch2 Vtpm1ch1 Vtpm1ch0 Vicg Vlvd Virq Vswi Vreset
Vector
Vector Name
42
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
4.2 Register Addresses and Bit Assignments
The registers in the MC9S08GB/GT are divided into these three groups: • • • Direct-page registers are located in the first 128 locations in the memory map, so they are accessible with efficient direct addressing mode instructions. High-page registers are used much less often, so they are located above $1800 in the memory map. This leaves more room in the direct page for more frequently used registers and variables. The nonvolatile register area consists of a block of 16 locations in FLASH memory at $FFB0–$FFBF. Nonvolatile register locations include: – – Three values which are loaded into working registers at reset An 8-byte backdoor comparison key which optionally allows a user to gain controlled access to secure memory
Since the nonvolatile register locations are FLASH memory, they must be erased and programmed like other FLASH memory locations. Direct-page registers can be accessed with efficient direct addressing mode instructions. Bit manipulation instructions can be used to access any bit in any direct-page register. Table 4-2 is a summary of all user-accessible direct-page registers and control bits. The direct page registers in Table 4-2 can use the more efficient direct addressing mode which only requires the lower byte of the address. Because of this, the lower byte of the address in column one is shown in bold text. In Table 4-3 and Table 4-4 the whole address in column one is shown in bold. In Table 4-2, Table 4-3, and Table 4-4, the register names in column two are shown in bold to set them apart from the bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with a 0 indicates this unused bit always reads as a 0. Shaded cells with dashes indicate unused or reserved bit locations that could read as 1s or 0s.
MOTOROLA
MC9S08GB/GT
43
Memory
Table 4-2 Direct-Page Register Summary
Address $0000 $0001 $0002 $0003 $0004 $0005 $0006 $0007 $0008 $0009 $000A $000B $000C $000D $000E $000F $0010 $0011 $0012 $0013 $0014 $0015 $0016 $0017 $0018 $0019 $001A $001B $001C $001D $001E $001F $0020 $0021 $0022 $0023 $0024 $0025 $0026 $0027 Register Name PTAD PTAPE PTASE PTADD PTBD PTBPE PTBSE PTBDD PTCD PTCPE PTCSE PTCDD PTDD PTDPE PTDSE PTDDD PTED PTEPE PTESE PTEDD IRQSC Reserved KBISC KBIPE SCI1BDH SCI1BDL SCI1C1 SCI1C2 SCI1S1 SCI1S2 SCI1C3 SCI1D SCI2BDH SCI2BDL SCI2C1 SCI2C2 SCI2S1 SCI2S2 SCI2C3 SCI2D Bit 7 PTAD7 PTAPE7 PTASE7 PTADD7 PTBD7 PTBPE7 PTBSE7 PTBDD7 PTCD7 PTCPE7 PTCSE7 PTCDD7 PTDD7 PTDPE7 PTDSE7 PTDDD7 PTED7 PTEPE7 PTESE7 PTEDD7 0 — KBEDG7 KBIPE7 0 SBR7 LOOPS TIE TDRE 0 R8 Bit 7 0 SBR7 LOOPS TIE TDRE 0 R8 Bit 7 6 PTAD6 PTAPE6 PTASE6 PTADD6 PTBD6 PTBPE6 PTBSE6 PTBDD6 PTCD6 PTCPE6 PTCSE6 PTCDD6 PTDD6 PTDPE6 PTDSE6 PTDDD6 PTED6 PTEPE6 PTESE6 PTEDD6 0 — KBEDG6 KBIPE6 0 SBR6 SCISWAI TCIE TC 0 T8 6 0 SBR6 SCISWAI TCIE TC 0 T8 6 5 PTAD5 PTAPE5 PTASE5 PTADD5 PTBD5 PTBPE5 PTBSE5 PTBDD5 PTCD5 PTCPE5 PTCSE5 PTCDD5 PTDD5 PTDPE5 PTDSE5 PTDDD5 PTED5 PTEPE5 PTESE5 PTEDD5 IRQEDG — KBEDG5 KBIPE5 0 SBR5 RSRC RIE RDRF 0 TXDIR 5 0 SBR5 RSRC RIE RDRF 0 TXDIR 5 4 PTAD4 PTAPE4 PTASE4 PTADD4 PTBD4 PTBPE4 PTBSE4 PTBDD4 PTCD4 PTCPE4 PTCSE4 PTCDD4 PTDD4 PTDPE4 PTDSE4 PTDDD4 PTED4 PTEPE4 PTESE4 PTEDD4 IRQPE — KBEDG4 KBIPE4 SBR12 SBR4 M ILIE IDLE 0 0 4 SBR12 SBR4 M ILIE IDLE 0 0 4 3 PTAD3 PTAPE3 PTASE3 PTADD3 PTBD3 PTBPE3 PTBSE3 PTBDD3 PTCD3 PTCPE3 PTCSE3 PTCDD3 PTDD3 PTDPE3 PTDSE3 PTDDD3 PTED3 PTEPE3 PTESE3 PTEDD3 IRQF — KBF KBIPE3 SBR11 SBR3 WAKE TE OR 0 ORIE 3 SBR11 SBR3 WAKE TE OR 0 ORIE 3 2 PTAD2 PTAPE2 PTASE2 PTADD2 PTBD2 PTBPE2 PTBSE2 PTBDD2 PTCD2 PTCPE2 PTCSE2 PTCDD2 PTDD2 PTDPE2 PTDSE2 PTDDD2 PTED2 PTEPE2 PTESE2 PTEDD2 IRQACK — KBACK KBIPE2 SBR10 SBR2 ILT RE NF 0 NEIE 2 SBR10 SBR2 ILT RE NF 0 NEIE 2 1 PTAD1 PTAPE1 PTASE1 PTADD1 PTBD1 PTBPE1 PTBSE1 PTBDD1 PTCD1 PTCPE1 PTCSE1 PTCDD1 PTDD1 PTDPE1 PTDSE1 PTDDD1 PTED1 PTEPE1 PTESE1 PTEDD1 IRQIE — KBIE KBIPE1 SBR9 SBR1 PE RWU FE 0 FEIE 1 SBR9 SBR1 PE RWU FE 0 FEIE 1 Bit 0 PTAD0 PTAPE0 PTASE0 PTADD0 PTBD0 PTBPE0 PTBSE0 PTBDD0 PTCD0 PTCPE0 PTCSE0 PTCDD0 PTDD0 PTDPE0 PTDSE0 PTDDD0 PTED0 PTEPE0 PTESE0 PTEDD0 IRQMOD — KBIMOD KBIPE0 SBR8 SBR0 PT SBK PF RAF PEIE Bit 0 SBR8 SBR0 PT SBK PF RAF PEIE Bit 0
44
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Table 4-2 Direct-Page Register Summary (Continued)
Address $0028 $0029 $002A $002B $002C $002D $002E $002F $0030 $0031 $0032 $0033 $0034 $0035 $0036 $0037 $0038 $0039 $003A $003B $003C $003D $003E– $003F $0040 $0041 $0042 $0043 $0044 $0045 $0046 $0047 $0048 $0049 $004A $004B $004C $004D $004E $004F Register Name SPIC1 SPIC2 SPIBR SPIS Reserved SPID Reserved Reserved TPM1SC TPM1CNTH TPM1CNTL TPM1MODH TPM1MODL TPM1C0SC TPM1C0VH TPM1C0VL TPM1C1SC TPM1C1VH TPM1C1VL TPM1C2SC TPM1C2VH TPM1C2VL Reserved PTFD PTFPE PTFSE PTFDD PTGD PTGPE PTGSE PTGDD ICGC1 ICGC2 ICGS1 ICGS2 ICGFLTU ICGFLTL ICGTRM Reserved Bit 7 6 SPIE SPE 0 0 0 SPPR2 SPRF 0 0 0 Bit 7 6 0 0 0 0 TOF TOIE Bit 15 14 Bit 7 6 Bit 15 14 Bit 7 6 CH0F CH0IE Bit 15 14 Bit 7 6 CH1F CH1IE Bit 15 14 Bit 7 6 CH2F CH2IE Bit 15 14 Bit 7 6 — — — — PTFD7 PTFD6 PTFPE7 PTFPE6 PTFSE7 PTFSE6 PTFDD7 PTFDD6 PTGD7 PTGD6 PTGPE7 PTGPE6 PTGSE7 PTGSE6 PTGDD7 PTGDD6 0 RANGE LOLRE CLKST 0 0 0 0 5 SPTIE 0 SPPR1 SPTEF 0 5 0 0 CPWMS 13 5 13 5 MS0B 13 5 MS1B 13 5 MS2B 13 5 — — PTFD5 PTFPE5 PTFSE5 PTFDD5 PTGD5 PTGPE5 PTGSE5 PTGDD5 REFS MFD REFST 0 0 4 3 MSTR CPOL MODFEN BIDIROE SPPR0 0 MODF 0 0 0 4 3 0 0 0 0 CLKSB CLKSA 12 11 4 3 12 11 4 3 MS0A ELS0B 12 11 4 3 MS1A ELS1B 12 11 4 3 MS2A ELS2B 12 11 4 3 — — — — PTFD4 PTFD3 PTFPE4 PTFPE3 PTFSE4 PTFSE3 PTFDD4 PTFDD3 PTGD4 PTGD3 PTGPE4 PTGPE3 PTGSE4 PTGSE3 PTGDD4 PTGDD3 CLKS LOCRE LOLS LOCK 0 0 0 FLT TRIM 0 0 2 CPHA 0 SPR2 0 0 2 0 0 PS2 10 2 10 2 ELS0A 10 2 ELS1A 10 2 ELS2A 10 2 — — PTFD2 PTFPE2 PTFSE2 PTFDD2 PTGD2 PTGPE2 PTGSE2 PTGDD2 OSCSTEN 1 SSOE SPISWAI SPR1 0 0 1 0 0 PS1 9 1 9 1 0 9 1 0 9 1 0 9 1 — — PTFD1 PTFPE1 PTFSE1 PTFDD1 PTGD1 PTGPE1 PTGSE1 PTGDD1 0* RFD LOCS ERCS 0 0 FLT Bit 0 LSBFE SPC0 SPR0 0 0 Bit 0 0 0 PS0 Bit 8 Bit 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 — — PTFD0 PTFPE0 PTFSE0 PTFDD0 PTGD0 PTGPE0 PTGSE0 PTGDD0 0 ICGIF DCOS
0
0
0
0
0
0
* This bit is reserved for Motorola internal use only. Always write a 0 to this bit.
MOTOROLA
MC9S08GB/GT
45
Memory
Table 4-2 Direct-Page Register Summary (Continued)
Address $0050 $0051 $0052 $0053 $0054 $0055– $0057 $0058 $0059 $005A $005B $005C $005D– $005F $0060 $0061 $0062 $0063 $0064 $0065 $0066 $0067 $0068 $0069 $006A $006B $006C $006D $006E $006F $0070 $0071 $0072 $0073 $0074– $007F Register Name ATDC ATDSC ATDRH ATDRL ATDPE Reserved IICA IICF IICC IICS IICD Reserved TPM2SC TPM2CNTH TPM2CNTL TPM2MODH TPM2MODL TPM2C0SC TPM2C0VH TPM2C0VL TPM2C1SC TPM2C1VH TPM2C1VL TPM2C2SC TPM2C2VH TPM2C2VL TPM2C3SC TPM2C3VH TPM2C3VL TPM2C4SC TPM2C4VH TPM2C4VL Reserved Bit 7 ATDPU CCF Bit 7 Bit 7 ATDPE7 — — 6 DJM ATDIE 6 6 ATDPE6 — — 5 RES8 ATDCO 5 5 ATDPE5 — — 4 SGN 4 4 ATDPE4 — — ADDR TX ARBL DATA — — TOF Bit 15 Bit 7 Bit 15 Bit 7 CH0F Bit 15 Bit 7 CH1F Bit 15 Bit 7 CH2F Bit 15 Bit 7 CH3F Bit 15 Bit 7 CH4F Bit 15 Bit 7 — — — — TOIE 14 6 14 6 CH0IE 14 6 CH1IE 14 6 CH2IE 14 6 CH3IE 14 6 CH4IE 14 6 — — — — CPWMS 13 5 13 5 MS0B 13 5 MS1B 13 5 MS2B 13 5 MS3B 13 5 MS4B 13 5 — — — — CLKSB 12 4 12 4 MS0A 12 4 MS1A 12 4 MS2A 12 4 MS3A 12 4 MS4A 12 4 — — — — CLKSA 11 3 11 3 ELS0B 11 3 ELS1B 11 3 ELS2B 11 3 ELS3B 11 3 ELS4B 11 3 — — — — PS2 10 2 10 2 ELS0A 10 2 ELS1A 10 2 ELS2A 10 2 ELS3A 10 2 ELS4A 10 2 — — — — PS1 9 1 9 1 0 9 1 0 9 1 0 9 1 0 9 1 0 9 1 — — — — PS0 Bit 8 Bit 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 0 Bit 8 Bit 0 — — 3 2 1 Bit 0 PRS ATDCH 2 1 2 1 ATDPE2 ATDPE1 — — — — ICR IICIE IAAS MST BUSY TXAK 0 RSTA SRW 0 IICIF 0 RXAK
3 3 ATDPE3 — —
Bit 0 Bit 0 ATDPE0 — — 0
MULT IICEN TCF
46
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
High-page registers, shown in Table 4-3, are accessed much less often than other I/O and control registers so they have been located outside the direct addressable memory space, starting at $1800. Table 4-3 High-Page Register Summary
Address Register Name $1800 SRS $1801 SBDFR $1802 SOPT $1803 – Reserved $1805 $1806 SDIDH $1807 SDIDL $1808 SRTISC $1809 SPMSC1 $180A SPMSC2 $180B– Reserved $180F $1810 DBGCAH $1811 DBGCAL $1812 DBGCBH $1813 DBGCBL $1814 DBGFH $1815 DBGFL $1816 DBGC $1817 DBGT $1818 DBGS $1819– Reserved $181F $1820 FCDIV $1821 FOPT $1822 Reserved $1823 FCNFG $1824 FPROT $1825 FSTAT $1826 FCMD $1827– Reserved $182B Bit 7 POR 0 COPE — — REV3 ID7 RTIF LVDF LVWF — — Bit 15 Bit 7 Bit 15 Bit 7 Bit 15 Bit 7 DBGEN TRGSEL AF — — DIVLD KEYEN — 0 FPOPEN FCBEF FCMD7 — — 6 PIN 0 COPT — — REV2 ID6 RTIACK LVDACK LVWACK — — 14 6 14 6 14 6 ARM BEGIN BF — — PRDIV8 FNORED — 0 FPDIS FCCF FCMD6 — — 5 COP 0 STOPE — — REV1 ID5 RTICLKS LVDIE LVDV — — 13 5 13 5 13 5 TAG 0 ARMF — — DIV5 0 — KEYACC FPS2 FPVIOL FCMD5 — — 4 ILOP 0 — — — REV0 ID4 RTIE LVDRE LVWV — — 12 4 12 4 12 4 BRKEN 0 0 — — DIV4 0 — 0 FPS1 FACCERR FCMD4 — — 3 0 0 0 — — ID11 ID3 0 LVDSE PPDF — — 11 3 11 3 11 3 RWA TRG3 CNT3 — — DIV3 0 — 0 FPS0 0 FCMD3 — — 2 ICG 0 0 — — ID10 ID2 RTIS2 LVDE PPDACK — — 10 2 10 2 10 2 RWAEN TRG2 CNT2 — — DIV2 0 — 0 0 FBLANK FCMD2 — — 1 LVD 0 BKGDPE — — ID9 ID1 RTIS1 0 PDC — — 9 1 9 1 9 1 RWB TRG1 CNT1 — — DIV1 SEC01 — 0 0 0 FCMD1 — — Bit 0 0 BDFR — — — ID8 ID0 RTIS0 0 PPDC — — Bit 8 Bit 0 Bit 8 Bit 0 Bit 8 Bit 0 RWBEN TRG0 CNT0 — — DIV0 SEC00 — 0 0 0 FCMD0 — —
MOTOROLA
MC9S08GB/GT
47
Memory
Nonvolatile FLASH registers, shown in Table 4-4, are located in the FLASH memory. These registers include an 8-byte backdoor key which optionally can be used to gain access to secure memory resources. During reset events, the contents of NVPROT and NVOPT in the nonvolatile register area of the FLASH memory are transferred into corresponding FPROT and FOPT working registers in the high-page registers to control security and block protection options. Table 4-4 Nonvolatile Register Summary
Address Register Name $FFB0 – NVBACKKEY $FFB7 $FFB8 – Reserved $FFBC $FFBD NVPROT $FFBE Reserved(1) $FFBF NVOPT Bit 7 6 5 4 3 2 1 Bit 0
8-Byte Comparison Key — — FPOPEN — KEYEN — — FPDIS — FNORED — — FPS2 — 0 — — FPS1 — 0 — — FPS0 — 0 — — 0 — 0 — — 0 — SEC01 — — 0 — SEC00
NOTES: 1. This location can be used to store the factory trim value for the ICG.
Provided the key enable (KEYEN) bit is 1, the 8-byte comparison key can be used to temporarily disengage memory security. This key mechanism can be accessed only through user code running in secure memory. (A security key cannot be entered directly through background debug commands.) This security key can be disabled completely by programming the KEYEN bit to 0. If the security key is disabled, the only way to disengage security is by mass erasing the FLASH if needed (normally through the background debug interface) and verifying that FLASH is blank. To avoid returning to secure mode after the next reset, program the security bits (SEC01:SEC00) to the unsecured state (1:0).
4.3 RAM
The MC9S08GB/GT includes static RAM. The locations in RAM below $0100 can be accessed using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program variables in this area of RAM is preferred. The RAM retains data when the MCU is in low-power wait, stop2, or stop3 mode. At power-on or after wakeup from stop1, the contents of RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop below the minimum value for RAM retention. For compatibility with older M68HC05 MCUs, the HCS08 resets the stack pointer to $00FF. In the MC9S08GB/GT, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct page RAM can be used for frequently accessed RAM variables and bit-addressable program variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated to the highest address of the RAM in the Motorola-provided equate file).
LDHX TXS #RamLast+1 ;point one past RAM ;SP B No trigger
Triggering Mode
15.5.3.9 Debug Status Register (DBGS) This is a read-only status register.
Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 AF 6 BF 5 ARMF 4 0 3 CNT3 2 CNT2 1 CNT1 Bit 0 CNT0
= Unimplemented or Reserved
Figure 15-9 Debug Status Register (DBGS) AF — Trigger Match A Flag AF is cleared at the start of a debug run and indicates whether a trigger match A condition was met since arming. 1 = Comparator A match. 0 = Comparator A has not matched. BF — Trigger Match B Flag BF is cleared at the start of a debug run and indicates whether a trigger match B condition was met since arming. 1 = Comparator B match. 0 = Comparator B has not matched.
258
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
ARMF — Arm Flag While DBGEN = 1, this status bit is a read-only image of the ARM bit in DBGC. This bit is set by writing 1 to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A debug run can also be ended manually by writing 0 to the ARM or DBGEN bits in DBGC. 1 = Debugger armed. 0 = Debugger not armed. CNT3:CNT2:CNT1:CNT0 — FIFO Valid Count These bits are cleared at the start of a debug run and indicate the number of words of valid data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO. The external debug host is responsible for keeping track of the count as information is read out of the FIFO. Table 15-3 CNT Status Bits
CNT[3:0]
0000 0001 0010 0011 0100 0101 0110 0111 1000
Valid Words in FIFO
No valid data 1 2 3 4 5 6 7 8
MOTOROLA
MC9S08GB/GT
259
Development Support
260
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Appendix A Electrical Characteristics
A.1 Introduction
This section contains electrical and timing specifications.
A.2 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table A-1 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable pull-up resistor associated with the pin is enabled. Table A-1 Absolute Maximum Ratings
Rating
Supply voltage Maximum current into VDD Digital input voltage Instantaneous maximum current Single pin limit (applies to all port pins)(1), (2), (3) Storage temperature range
Symbol
VDD IDD VIn ID Tstg
Value
–0.3 to +3.8 120 –0.3 to VDD + 0.3 ± 25 –55 to 150
Unit
V mA V mA °C
NOTES: 1. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values. 2. All functional non-supply pins are internally clamped to VSS and VDD. 3. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.
MOTOROLA
MC9S08GB/GT
261
Electrical Characteristics
A.3 Thermal Characteristics
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take PI/O into account in power calculations, determine the difference between actual pin voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small. Table A-2 Thermal Characteristics
Rating
Operating temperature range (packaged) Thermal resistance 64-pin LQFP (GB60) 42-pin SDIP (GT60) 44-pin QFP (GT60)
Symbol
TA θJA
Value
–40 to 85
Unit
°C °C/W
Temp. Code
C
65 57 118
—
The average chip-junction temperature (TJ) in °C can be obtained from: Equation 1 TJ = TA + (PD × θJA) where: TA = Ambient temperature, °C θJA = Package thermal resistance, junction-to-ambient, °C/W PD = Pint + PI/O Pint = IDD × VDD, Watts — chip internal power PI/O = Power dissipation on input and output pins — user determined For most applications, PI/O 2.3 V) (all digital inputs) Input high voltage (1.8 V ≤ VDD ≤ 2.3 V) (all digital inputs) Input low voltage (VDD > 2.3 V) (all digital inputs) Input low voltage (1.8 V ≤ VDD ≤ 2.3 V) (all digital inputs) Input hysteresis (all digital inputs) Input leakage current (per pin) VIn = VDD or VSS, all input only pins High impedance (off-state) leakage current (per pin) VIn = VDD or VSS, all input/output Internal pullup and pulldown resistors(3) (all port pins and IRQ) Internal pulldown resistors (Port A4–A7 and IRQ) Output high voltage (VDD ≥ 1.8 V) IOH = –2 mA (ports A, B, D, E, and G) Output high voltage (ports C and F) IOH = –10 mA (VDD ≥ 2.7 V) IOH = –6 mA (VDD ≥ 2.3 V) IOH = –3 mA (VDD ≥ 1.8 V) Maximum total IOH for all port pins Output low voltage (VDD ≥ 1.8 V) IOL = 2.0 mA (ports A, B, D, E, and G) Output low voltage (ports C and F) IOL = 10.0 mA (VDD ≥ 2.7 V) IOL = 6 mA (VDD ≥ 2.3 V) IOL = 3 mA (VDD ≥ 1.8 V) Maximum total IOL for all port pins VOL — — — IOLT — 0.5 0.5 0.5 60 VOH VDD – 0.5 — — — 60 V VDD – 0.5 —
Symbol
VLVWL
Min
2.08 2.16
Typical(1)
2.1 2.19
Max
2.2 2.27
Unit
V
VRearm
0.20 0.50 0.70 × VDD 0.85 × VDD —
0.30 0.80
0.40 1.2 —
V
VIH VIH VIL VIL Vhys |IIn|
V
— 0.35 × VDD 0.30 × VDD —
V
V
— 0.06 × VDD — 0.025
V
V µA µA kΩ kΩ
1.0
|IOZ|
—
0.025
1.0
RPU RPD
17.5 17.5
52.5 52.5
|IOHT|
—
mA
—
0.5 V
mA
264
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
Table A-4 DC Characteristics (Continued) (Temperature Range = –40 to 85°C Ambient)
Parameter
dc injection current(4), (5), (6), (7), (8) VIN < VSS , VIN > VDD Single pin limit Total MCU limit, includes sum of all stressed pins Input capacitance (all non-supply pins)(2)
Symbol
Min
Typical(1)
Max
Unit
|IIC|
— — —
0.2 5 7
mA mA pF
CIn
NOTES: 1. Typicals are measured at 25°C. 2. This parameter is characterized and not tested on each device. 3. Measurement condition for pull resistors: VIn = VSS for pullup and VIn = VDD for pulldown. 4. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. 5. All functional non-supply pins are internally clamped to VSS and VDD. 6. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 7. This parameter is characterized and not tested on each device. 8. IRQ does not have a clamp diode to VDD. Do not drive IRQ above VDD.
40 PULL-UP RESISTOR (kΩ) 35 30 25 20 1.8 2 2.2 2.4 2.6 2.8 VDD (V) 3 3.2 3.4 3.6 PULLUP RESISTOR TYPICALS PULLDOWN RESISTANCE (kΩ)
85°C 25°C –40°C
40 35 30 25 20 1.8
PULLDOWN RESISTOR TYPICALS
85°C 25°C –40°C
2.3
2.8 VDD (V)
3.3
3.6
Figure A-1 Pullup and Pulldown Typical Resistor Values (VDD = 3.0 V)
MOTOROLA
MC9S08GB/GT
265
Electrical Characteristics
TYPICAL VOL VS IOL AT VDD = 3.0 V 1 0.8 0.6 VOL (V) VOL (V) 0.4 0.2 0 0 10 IOL (mA) 20 30 0.2 0.1 IOL = 3 mA 0 1 2 VDD (V) 3 4 IOL = 6 mA IOL = 10 mA
85°C 25°C –40°C
TYPICAL VOL VS VDD 0.4 0.3
85°C 25°C –40°C
Figure A-2 Typical Low-Side Driver (Sink) Characteristics (Ports C and F)
TYPICAL VOL VS IOL AT VDD = 3.0 V 1.2 1 0.8 VOL (V) VOL (V) 0.6 0.4 0.2 0 0 5 10 IOL (mA) 15 20 0 1 2 VDD (V) 3 4
85°C 25°C –40°C
0.2 0.15 0.1 0.05
TYPICAL VOL VS VDD
85°C, IOL = 2 mA 25°C, IOL = 2 mA –40°C, IOL = 2 mA
Figure A-3 Typical Low-Side Driver (Sink) Characteristics (Ports A, B, D, E, and G)
TYPICAL VDD – VOH VS VDD AT SPEC IOH
0.8 TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V
0.4 0.3 VDD – VOH (V) 0.2 0.1 0 1
VDD – VOH (V)
0.6 0.4 0.2 0 0
85°C 25°C –40°C
85°C 25°C –40°C
IOH = –10 mA IOH = –6 mA IOH = –3 mA 2 VDD (V) 3 4
–5
–10
–15 IOH (mA)
–20
–25
–30
Figure A-4 Typical High-Side Driver (Source) Characteristics (Ports C and F)
266
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V 1.2 1 VDD – VOH (V) 0.8 0.6 0.4 0.2 0 0 –5 –10 IOH (mA) –15 –20
85°C 25°C –40°C
TYPICAL VDD – VOH VS VDD AT SPEC IOH 0.25 0.2 VDD – VOH (V) 0.15 0.1 0.05 0 1 2 VDD (V) 3 4
85°C, IOH = 2 mA 25°C, IOH = 2 mA –40°C, IOH = 2 mA
Figure A-5 Typical High-Side (Source) Characteristics (Ports A, B, D, E, and G)
A.6 Supply Current Characteristics
Table A-5 Supply Current Characteristics
Parameter Symbol VDD (V) Typical(1) Max(2)
2.1 mA(4) 2.1 mA(4) 2.1 mA(4) 1.8 mA(4) 1.8 mA(4) 1.8 mA(4) 7.5 mA(4) 7.5 mA(4) 7.5 mA(5) 5.8 mA(4) 5.8 mA(4) 5.8 mA(4) 0.6 µA(4) 1.8 µA(4) 4.0 µA(5) 500 nA(4) 1.5 µA(4) 3.3 µA(4) 3.0 µA(4) 5.5 µA(4) 11 µA(5) 2.4 µA(4) 5.0 µA(4) 9.5 µA(4)
Temp. (°C)
55 70 85 55 70 85 55 70 85 55 70 85 55 70 85 55 70 85 55 70 85 55 70 85
3 Run supply current measured at (CPU clock = 2 MHz, fBus = 1 MHz)
(3)
1.1 mA
RIDD 2 0.8 mA
3 Run supply current (3) measured at (CPU clock = 16 MHz, fBus = 8 MHz) RIDD 2
6.5 mA
4.8 mA
3 Stop1 mode supply current S1IDD 2
25 nA
20 nA
3 Stop2 mode supply current S2IDD 2
550 nA
400 nA
MOTOROLA
MC9S08GB/GT
267
Electrical Characteristics
Table A-5 Supply Current Characteristics
Parameter Symbol VDD (V) Typical(1) Max(2)
4.3 µA(4) 7.2 µA(4) 17.0 µA(5) 3.5 µA(4) 6.2 µA(4) 15.0 µA(4)
Temp. (°C)
55 70 85 55 70 85 55 70 85 55 70 85 55 70 85 55 70 85
3 Stop3 mode supply current S3IDD 2
675 nA
500 nA
3 RTI adder from stop2 or stop3(6) 2
300 nA
300 nA
3 LVI adder from stop3 2
70 µA
60 µA
NOTES: 1. Typicals are measured at 25°C. See Figure A-6 through Figure A-9 for typical curves across voltage/temperature. 2. Values given here are preliminary estimates prior to completing characterization. 3. All modules except ATD active, ICG configured for FBE, and does not include any dc loads on port pins 4. Values are characterized but not tested on every part. 5. Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization. 6. Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 560 µA at 3 V and 422 µA at 2V with fBus = 1 MHz.
268
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
18 16 14 12 20 MHz, ATDoff, FEE, 25°C 10 IDD (mA) 8 6 4 2 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.8 VDD (Vdc) 20 MHz, ATDoff, FBE, 25°C 8 MHz, ATDoff, FEE, 25°C 8 MHz, ATDoff, FBE, 25°C 1 MHz, ATDoff, FEE, 25°C 1 MHz, ATDoff, FBE, 25°C
Figure A-6 Typical Run IDD for FBE and FEE Modes, IDD vs VDD
1200
1000
STOP1 IDD (nA)
800 25°C 600 70°C 85°C 400
200
0 1.5 2 2.5 3 3.5 4
VDD (V) NOTES: 1. Clock sources and LVD are all disabled (OSCSTEN = LVDSE = 0). 2. All I/O are set as outputs and driven to VSS with no load.
Figure A-7 Typical Stop1 IDD
MOTOROLA
MC9S08GB/GT
269
Electrical Characteristics
4 3.5 3 STOP2 IDD (µA) 2.5 25°C 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 70°C 85°C
VDD (V) NOTES: 1. Clock sources and LVD are all disabled (OSCSTEN = LVDSE = 0). 2. All I/O are set as outputs and driven to VSS with no load.
Figure A-8 Typical Stop 2 IDD
8 7 6 STOP3 IDD (µA) 5 25°C 4 3 2 1 0 1.5 2 2.5 3 3.5 4 70°C 85°C
VDD (V) NOTES: 1. Clock sources and LVD are all disabled (OSCSTEN = LVDSE = 0). 2. All I/O are set as outputs and driven to VSS with no load.
Figure A-9 Typical Stop3 IDD
270
MC9S08GB/GT
MOTOROLA
Data Sheet — MC9S08GB60/D V1.5
A.7 ATD Characteristics
Table A-6 ATD Electrical Characteristics (Operating)
Num
1
Characteristic
ATD supply(1)
Condition
Symbol
VDDAD
Min
1.80 —
Typical
— 0.7
Max
3.6 1.2
Unit
V mA µA mV mV V
Enabled 2 ATD supply current Disabled (ATDPU = 0 or STOP) VDD–VDDAD VSS–VSSAD
IDDADrun IDDADstop |VDDLT| |VSDLT| |VREFL|
— — — — 2.08
0.02 — — — —
0.6 100 100 VSSAD VDDAD
3 4
Differential supply voltage Differential ground voltage Reference potential, low
5 Reference potential, high
2.08V < VDDAD < 3.6V VREFH 1.80V < VDDAD < 2.08V Enabled IREF IREF VINDC
V VDDAD — — 200 VDDAD 300 µA — VSSAD – 0.3