0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MMBT3904WT1

MMBT3904WT1

  • 厂商:

    MOTOROLA(摩托罗拉)

  • 封装:

  • 描述:

    MMBT3904WT1 - General Purpose Transistor - Motorola, Inc

  • 数据手册
  • 价格&库存
MMBT3904WT1 数据手册
MOTOROLA SEMICONDUCTOR TECHNICAL DATA Order this document MMBT3904WT1/D General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT–323/SC–70 which is designed for low power surface mount applications. NPN MMBT3904WT1 PNP MMBT3906WT1 GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT MAXIMUM RATINGS Rating Collector – Emitter Voltage Collector – Base Voltage Emitter – Base Voltage MMBT3904WT1 MMBT3906WT1 MMBT3904WT1 MMBT3906WT1 MMBT3904WT1 MMBT3906WT1 Symbol VCEO VCBO VEBO IC Value 40 –40 60 –40 6.0 –5.0 200 –200 Unit Vdc Vdc Vdc 3 Collector Current — Continuous MMBT3904WT1 MMBT3906WT1 mAdc 1 2 THERMAL CHARACTERISTICS Characteristic Total Device Dissipation(1) TA = 25°C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol PD RqJA TJ, Tstg Max 150 833 – 55 to +150 Unit mW °C/W °C CASE 419–02, STYLE 3 SOT–323/SC–70 DEVICE MARKING MMBT3904WT1 = AM MMBT3906WT1 = 2A ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Max Unit OFF CHARACTERISTICS Collector – Emitter Breakdown Voltage(2) (IC = 1.0 mAdc, IB = 0) (IC = –1.0 mAdc, IB = 0) Collector – Base Breakdown Voltage (IC = 10 mAdc, IE = 0) (IC = –10 mAdc, IE = 0) Emitter – Base Breakdown Voltage (IE = 10 mAdc, IC = 0) (IE = –10 mAdc, IC = 0) Base Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) (VCE = –30 Vdc, VEB = –3.0 Vdc) Collector Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) (VCE = –30 Vdc, VEB = –3.0 Vdc) V(BR)CEO MMBT3904WT1 MMBT3906WT1 V(BR)CBO MMBT3904WT1 MMBT3906WT1 V(BR)EBO MMBT3904WT1 MMBT3906WT1 IBL MMBT3904WT1 MMBT3906WT1 ICEX MMBT3904WT1 MMBT3906WT1 — — 50 –50 — — 50 –50 nAdc 6.0 –5.0 — — nAdc 60 –40 — — Vdc 40 –40 — — Vdc Vdc 1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint. 2. Pulse Test: Pulse Width 300 ms; Duty Cycle 2.0%. v v Thermal Clad is a trademark of the Bergquist Company. Motorola Small–Signal Transistors, FETs and Diodes Device Data © Motorola, Inc. 1996 1 NPN MMBT3904WT1 PNP MMBT3906WT1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued) Characteristic Symbol Min Max Unit ON CHARACTERISTICS(2) DC Current Gain (IC = 0.1 mAdc, VCE = 1.0 Vdc) (IC = 1.0 mAdc, VCE = 1.0 Vdc) (IC = 10 mAdc, VCE = 1.0 Vdc) (IC = 50 mAdc, VCE = 1.0 Vdc) (IC = 100 mAdc, VCE = 1.0 Vdc) (IC = –0.1 mAdc, VCE = –1.0 Vdc) (IC = –1.0 mAdc, VCE = –1.0 Vdc) (IC = –10 mAdc, VCE = –1.0 Vdc) (IC = –50 mAdc, VCE = –1.0 Vdc) (IC = –100 mAdc, VCE = –1.0 Vdc) Collector – Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) (IC = –10 mAdc, IB = –1.0 mAdc) (IC = –50 mAdc, IB = –5.0 mAdc) Base – Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc) (IC = 50 mAdc, IB = 5.0 mAdc) (IC = –10 mAdc, IB = –1.0 mAdc) (IC = –50 mAdc, IB = –5.0 mAdc) hFE MMBT3904WT1 40 70 100 60 30 60 80 100 60 30 VCE(sat) MMBT3904WT1 MMBT3906WT1 VBE(sat) MMBT3904WT1 MMBT3906WT1 0.65 — –0.65 — 0.85 0.95 –0.85 –0.95 — — — — 0.2 0.3 –0.25 –0.4 Vdc — — 300 — — — — 300 — — Vdc — MMBT3906WT1 SMALL– SIGNAL CHARACTERISTICS Current – Gain — Bandwidth Product (IC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz) (IC = –10 mAdc, VCE = –20 Vdc, f = 100 MHz) Output Capacitance (VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz) (VCB = –5.0 Vdc, IE = 0, f = 1.0 MHz) Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) (VEB = –0.5 Vdc, IC = 0, f = 1.0 MHz) Input Impedance (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) (VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) Voltage Feedback Ratio (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) (VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) Small – Signal Current Gain (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) (VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) Output Admittance (VCE = 10 Vdc, IC = 1.0 mAdc, f = 1.0 kHz) (VCE = –10 Vdc, IC = –1.0 mAdc, f = 1.0 kHz) Noise Figure (VCE = 5.0 Vdc, IC = 100 mAdc, RS = 1.0 k Ω, f = 1.0 kHz) (VCE = –5.0 Vdc, IC = –100 mAdc, RS = 1.0 k Ω, f = 1.0 kHz) fT MMBT3904WT1 MMBT3906WT1 Cobo MMBT3904WT1 MMBT3906WT1 Cibo MMBT3904WT1 MMBT3906WT1 hie MMBT3904WT1 MMBT3906WT1 hre MMBT3904WT1 MMBT3906WT1 hfe MMBT3904WT1 MMBT3906WT1 hoe MMBT3904WT1 MMBT3906WT1 NF MMBT3904WT1 MMBT3906WT1 — — 5.0 4.0 1.0 3.0 40 60 dB 100 100 400 400 0.5 0.1 8.0 10 — 1.0 2.0 10 12 X 10– 4 — — 8.0 10.0 kΩ — — 4.0 4.5 pF 300 250 — — pF MHz mmhos SWITCHING CHARACTERISTICS Delay Time Rise Time Storage Time Fall Time 2. Pulse Test: Pulse Width (VCC = 3.0 Vdc, VBE = – 0.5 Vdc) (VCC = –3.0 Vdc, VBE = 0.5 Vdc) (IC = 10 mAdc, IB1 = 1.0 mAdc) (IC = –10 mAdc, IB1 = –1.0 mAdc) (VCC = 3.0 Vdc, IC = 10 mAdc) (VCC = –3.0 Vdc, IC = –10 mAdc) (IB1 = IB2 = 1.0 mAdc) (IB1 = IB2 = –1.0 mAdc) MMBT3904WT1 MMBT3906WT1 MMBT3904WT1 MMBT3906WT1 MMBT3904WT1 MMBT3906WT1 MMBT3904WT1 MMBT3906WT1 td tr ts tf — — — — — — — — 35 35 35 35 200 225 50 75 ns ns v 300 ms, Duty Cycle v 2.0%. 2 Motorola Small–Signal Transistors, FETs and Diodes Device Data NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3904WT1 DUTY CYCLE = 2% 300 ns +3 V +10.9 V 10 k 275 10 < t1 < 500 ms DUTY CYCLE = 2% t1 +3 V +10.9 V 275 10 k 0 – 0.5 V < 1 ns CS < 4 pF* – 9.1 V < 1 ns 1N916 CS < 4 pF* * Total shunt capacitance of test jig and connectors Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage and Fall Time Equivalent Test Circuit TYPICAL TRANSIENT CHARACTERISTICS TJ = 25°C TJ = 125°C 10 MMBT3904WT1 7.0 CAPACITANCE (pF) Q, CHARGE (pC) 5.0 Cibo 3.0 2.0 Cobo 5000 3000 2000 1000 700 500 300 200 100 70 50 QT QA VCC = 40 V IC/IB = 10 MMBT3904WT1 1.0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 40 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 REVERSE BIAS VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (mA) Figure 3. Capacitance Figure 4. Charge Data Motorola Small–Signal Transistors, FETs and Diodes Device Data 3 NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3904WT1 500 300 200 100 70 50 30 20 10 7 5 MMBT3904WT1 td @ VOB = 0 V 1.0 2.0 3.0 5.0 7.0 10 20 30 IC, COLLECTOR CURRENT (mA) IC/IB = 10 500 300 200 t r, RISE TIME (ns) 100 70 50 30 20 10 7 5 200 1.0 MMBT3904WT1 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 VCC = 40 V IC/IB = 10 TIME (ns) tr @ VCC = 3.0 V 40 V 15 V 2.0 V 50 70 100 IC, COLLECTOR CURRENT (mA) Figure 5. Turn – On Time 500 300 200 t s, STORAGE TIME (ns) ′ 100 70 50 30 20 10 7 5 1.0 MMBT3904WT1 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC/IB = 20 IC/IB = 10 500 300 200 Figure 6. Rise Time t′s = ts – 1/8 tf IB1 = IB2 t f , FALL TIME (ns) VCC = 40 V IB1 = IB2 IC/IB = 20 IC/IB = 20 IC/IB = 10 100 70 50 30 20 10 7 5 1.0 IC/IB = 10 MMBT3904WT1 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 7. Storage Time Figure 8. Fall Time TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS (VCE = 5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz) 12 10 NF, NOISE FIGURE (dB) 8 6 4 2 0 0.1 SOURCE RESISTANCE = 500 W IC = 100 mA 0.2 0.4 1.0 2.0 4.0 10 14 f = 1.0 kHz 12 NF, NOISE FIGURE (dB) 10 8 6 4 2 MMBT3904WT1 20 40 100 0 0.1 0.2 0.4 1.0 2.0 4.0 10 MMBT3904WT1 20 40 100 IC = 1.0 mA SOURCE RESISTANCE = 200 W IC = 1.0 mA SOURCE RESISTANCE = 200 W IC = 0.5 mA SOURCE RESISTANCE = 1.0 k IC = 50 mA IC = 0.5 mA IC = 50 mA IC = 100 mA f, FREQUENCY (kHz) RS, SOURCE RESISTANCE (k OHMS) Figure 9. Noise Figure Figure 10. Noise Figure 4 Motorola Small–Signal Transistors, FETs and Diodes Device Data NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3904WT1 h PARAMETERS (VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C) 300 hoe, OUTPUT ADMITTANCE (m mhos) MMBT3904WT1 200 h fe , CURRENT GAIN 100 50 MMBT3904WT1 20 10 5 100 70 50 2 1 30 0.1 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 10 0.1 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 10 Figure 11. Current Gain 20 h re , VOLTAGE FEEDBACK RATIO (X 10 –4 ) h ie , INPUT IMPEDANCE (k OHMS) 10 5.0 MMBT3904WT1 10 7.0 5.0 3.0 2.0 Figure 12. Output Admittance MMBT3904WT1 2.0 1.0 0.5 1.0 0.7 0.5 0.1 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 10 0.2 0.1 0.2 0.3 0.5 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 10 Figure 13. Input Impedance Figure 14. Voltage Feedback Ratio Motorola Small–Signal Transistors, FETs and Diodes Device Data 5 NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3904WT1 TYPICAL STATIC CHARACTERISTICS h FE, DC CURRENT GAIN (NORMALIZED) 2.0 TJ = +125°C 1.0 0.7 0.5 0.3 0.2 – 55°C +25°C MMBT3904WT1 VCE = 1.0 V 0.1 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) Figure 15. DC Current Gain VCE, COLLECTOR EMITTER VOLTAGE (VOLTS) 1.0 MMBT3904WT1 0.8 IC = 1.0 mA 10 mA 30 mA 100 mA TJ = 25°C 0.6 0.4 0.2 0 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (mA) Figure 16. Collector Saturation Region 1.2 TJ = 25°C 1.0 V, VOLTAGE (VOLTS) 0.8 VBE @ VCE =1.0 V 0.6 0.4 VCE(sat) @ IC/IB =10 0.2 0 MMBT3904WT1 VBE(sat) @ IC/IB =10 COEFFICIENT (mV/ °C) 1.0 MMBT3904WT1 0.5 +25°C TO +125°C qVC FOR VCE(sat) 0 – 0.5 – 55°C TO +25°C – 1.0 +25°C TO +125°C – 1.5 – 2.0 – 55°C TO +25°C qVB FOR VBE(sat) 1.0 2.0 5.0 10 20 50 100 200 0 20 40 60 80 100 120 140 160 180 200 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 17. “ON” Voltages Figure 18. Temperature Coefficients 6 Motorola Small–Signal Transistors, FETs and Diodes Device Data NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3906WT1 3V + 9.1 V 275 < 1 ns 10 k CS < 4 pF* +10.6 V 300 ns DUTY CYCLE = 2% 10 < t1 < 500 ms DUTY CYCLE = 2% t1 10.9 V 0 10 k 1N916 CS < 4 pF* < 1 ns 275 3V * Total shunt capacitance of test jig and connectors Figure 19. Delay and Rise Time Equivalent Test Circuit Figure 20. Storage and Fall Time Equivalent Test Circuit TYPICAL TRANSIENT CHARACTERISTICS TJ = 25°C TJ = 125°C 10 7.0 CAPACITANCE (pF) 5.0 Cobo Cibo 3.0 2.0 MMBT3906WT1 5000 3000 2000 Q, CHARGE (pC) 1000 700 500 300 200 QA 100 1.0 0.1 70 50 VCC = 40 V IC/IB = 10 QT MMBT3906WT1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 40 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 REVERSE BIAS VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (mA) Figure 21. Capacitance Figure 22. Charge Data 500 300 200 100 TIME (ns) 70 50 30 20 10 7 5 tr @ VCC = 3.0 V 15 V 40 V 2.0 V td @ VOB = 0 V 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) MMBT3906WT1 IC/IB = 10 500 300 200 t f , FALL TIME (ns) 100 70 50 30 20 10 7 5 IC/IB = 10 MMBT3906WT1 IC/IB = 20 VCC = 40 V IB1 = IB2 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 200 IC, COLLECTOR CURRENT (mA) Figure 23. Turn – On Time Figure 24. Fall Time 7 Motorola Small–Signal Transistors, FETs and Diodes Device Data NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3906WT1 TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS (VCE = –5.0 Vdc, TA = 25°C, Bandwidth = 1.0 Hz) 5.0 4.0 NF, NOISE FIGURE (dB) SOURCE RESISTANCE = 200 W IC = 1.0 mA NF, NOISE FIGURE (dB) SOURCE RESISTANCE = 200 W IC = 0.5 mA SOURCE RESISTANCE = 2.0 k IC = 50 mA 2.0 12 f = 1.0 kHz 10 IC = 0.5 mA 8.0 6.0 4.0 2.0 MMBT3906WT1 20 40 100 0 0.1 0.2 0.4 IC = 50 mA IC = 100 mA MMBT3906WT1 1.0 2.0 4.0 10 20 RS, SOURCE RESISTANCE (kΩ) 40 100 IC = 1.0 mA 3.0 1.0 SOURCE RESISTANCE = 2.0 k IC = 100 mA 0.2 0.4 1.0 2.0 4.0 10 f, FREQUENCY (kHz) 0 0.1 Figure 25. Figure 26. h PARAMETERS (VCE = –10 Vdc, f = 1.0 kHz, TA = 25°C) 300 MMBT3906WT1 200 hfe , CURRENT GAIN hoe, OUTPUT ADMITTANCE (m mhos) 100 70 50 30 20 MMBT3906WT1 100 70 50 10 7.0 5.0 0.1 0.2 0.5 0.7 1.0 2.0 3.0 0.3 IC, COLLECTOR CURRENT (mA) 5.0 7.0 10 30 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 7.0 10 Figure 27. Current Gain 20 h re , VOLTAGE FEEDBACK RATIO (X 10 –4 ) MMBT3906WT1 10 h ie , INPUT IMPEDANCE (k Ω ) 7.0 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 10 7.0 5.0 3.0 2.0 Figure 28. Output Admittance MMBT3906WT1 1.0 0.7 0.5 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 7.0 10 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (mA) 5.0 7.0 10 Figure 29. Input Impedance 8 Figure 30. Voltage Feedback Ratio Motorola Small–Signal Transistors, FETs and Diodes Device Data NPN MMBT3904WT1 PNP MMBT3906WT1 MMBT3906WT1 STATIC CHARACTERISTICS 2.0 h FE, DC CURRENT GAIN (NORMALIZED) TJ = +125°C +25°C – 55°C VCE = 1.0 V 1.0 0.7 0.5 0.3 MMBT3906WT1 0.2 0.1 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IC, COLLECTOR CURRENT (mA) 20 30 50 70 100 200 Figure 31. DC Current Gain VCE, COLLECTOR EMITTER VOLTAGE (VOLTS) 1.0 MMBT3906WT1 0.8 IC = 1.0 mA 0.6 10 mA 30 mA 100 mA TJ = 25°C 0.4 0.2 0 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 IB, BASE CURRENT (mA) 0.7 1.0 2.0 3.0 5.0 7.0 10 Figure 32. Collector Saturation Region TJ = 25°C 0.8 V, VOLTAGE (VOLTS) VBE(sat) @ IC/IB = 10 VBE @ VCE = 1.0 V θV, TEMPERATURE COEFFICIENTS (mV/°C) 1.0 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 MMBT3906WT1 +25°C TO +125°C qVC FOR VCE(sat) +25°C TO +125°C – 55°C TO +25°C 0.6 MMBT3906WT1 0.4 qVS FOR VBE(sat) 0.2 – 55°C TO +25°C VCE(sat) @ IC/IB = 10 0 1.0 2.0 50 5.0 10 20 IC, COLLECTOR CURRENT (mA) 100 200 0 20 40 60 80 100 120 140 160 IC, COLLECTOR CURRENT (mA) 180 200 Figure 33. “ON” Voltages Figure 34. Temperature Coefficients Motorola Small–Signal Transistors, FETs and Diodes Device Data 9 NPN MMBT3904WT1 PNP MMBT3906WT1 INFORMATION FOR USING THE SOT–323/SC–70 SURFACE MOUNT PACKAGE MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process. 0.025 0.65 0.025 0.65 0.075 1.9 0.035 0.9 0.028 0.7 inches mm SOT–323/SC–70 SOT–323/SC–70 POWER DISSIPATION The power dissipation of the SOT–323/SC–70 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by T J(max), the maximum rated junction temperature of the die, RθJA, the thermal resistance from the device junction to ambient, and the operating temperature, TA . Using the values provided on the data sheet for the SOT–323/SC–70 package, PD can be calculated as follows: PD = TJ(max) – TA RθJA SOLDERING PRECAUTIONS The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. • Always preheat the device. • The delta temperature between the preheat and soldering should be 100°C or less.* • When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C. • The soldering temperature and time shall not exceed 260°C for more than 10 seconds. • When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less. • After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. • Mechanical stress or shock should not be applied during cooling. * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 150 milliwatts. PD = 150°C – 25°C 833°C/W = 150 milliwatts The 833 °C/W for the SOT–323/SC–70 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 150 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT–323/SC–70 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad™. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint. 10 Motorola Small–Signal Transistors, FETs and Diodes Device Data NPN MMBT3904WT1 PNP MMBT3906WT1 PACKAGE DIMENSIONS A L 3 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. S 1 2 B V G D C 0.05 (0.002) RN K J DIM A B C D G H J K L N R S V INCHES MIN MAX 0.071 0.087 0.045 0.053 0.035 0.049 0.012 0.016 0.047 0.055 0.000 0.004 0.004 0.010 0.017 REF 0.026 BSC 0.028 REF 0.031 0.039 0.079 0.087 0.012 0.016 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.90 1.25 0.30 0.40 1.20 1.40 0.00 0.10 0.10 0.25 0.425 REF 0.650 BSC 0.700 REF 0.80 1.00 2.00 2.20 0.30 0.40 H CASE 419–02 ISSUE G SOT–323/SC–70 STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR Motorola Small–Signal Transistors, FETs and Diodes Device Data 11 NPN MMBT3904WT1 PNP MMBT3906WT1 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 12 ◊ Motorola Small–Signal Transistors, FETs and Diodes MMBT3904WT1/D Device Data *MMBT3904WT1/D*
MMBT3904WT1 价格&库存

很抱歉,暂时无法提供与“MMBT3904WT1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MMBT3904WT1G
  •  国内价格
  • 5+0.16367
  • 20+0.14897
  • 100+0.13427
  • 500+0.11957
  • 1000+0.11271
  • 2000+0.10781

库存:31