Freescale Semiconductor Technical Data
MRF1518 Rev. 6, 3/2005
RF Power Field Effect Transistor
N - Channel Enhancement - Mode Lateral MOSFET
Designed for broadband commercial and industrial applications with frequencies to 520 MHz. The high gain and broadband performance of this device make it ideal for large- signal, common source amplifier applications in 12.5 volt mobile FM equipment. • Specified Performance @ 520 MHz, 12.5 Volts Output Power — 8 Watts D Power Gain — 11 dB Efficiency — 55% • Capable of Handling 20:1 VSWR, @ 15.5 Vdc, 520 MHz, 2 dB Overdrive • Excellent Thermal Stability • Characterized with Series Equivalent Large - Signal Impedance Parameters G • RF Power Plastic Surface Mount Package • Broadband UHF/VHF Demonstration Amplifier Information Available Upon Request • N Suffix Indicates Lead - Free Terminations S • Available in Tape and Reel. T1 Suffix = 1,000 Units per 12 mm, 7 Inch Reel.
MRF1518NT1 MRF1518T1
520 MHz, 8 W, 12.5 V LATERAL N - CHANNEL BROADBAND RF POWER MOSFET
CASE 466 - 03, STYLE 1 PLD - 1.5 PLASTIC
Table 1. Maximum Ratings
Rating Drain- Source Voltage Gate- Source Voltage Drain Current — Continuous Total Device Dissipation @ TC = 25°C Derate above 25°C Storage Temperature Range Operating Junction Temperature
(1)
Symbol VDSS VGS ID PD Tstg TJ
Value - 0.5, +40 ± 20 4 62.5 0.50 - 65 to +150 150
Unit Vdc Vdc Adc W W/°C °C °C
Table 2. Thermal Characteristics
Characteristic Thermal Resistance, Junction to Case Symbol RθJC Value 2 Unit °C/W
Table 3. Moisture Sensitivity Level
Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 1. Calculated based on the formula PD = TJ – TC RθJC Rating 1 Package Peak Temperature 260 Unit °C
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
Freescale Semiconductor, Inc., 2005. All rights reserved.
MRF1518NT1 MRF1518T1 1
RF Device Data Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic Off Characteristics Zero Gate Voltage Drain Current (VDS = 40 Vdc, VGS = 0 Vdc) Gate- Source Leakage Current (VGS = 10 Vdc, VDS = 0 Vdc) On Characteristics Gate Threshold Voltage (VDS = 12.5 Vdc, ID = 100 µA) Drain- Source On - Voltage (VGS = 10 Vdc, ID = 1 Adc) Dynamic Characteristics Input Capacitance (VDS = 12.5 Vdc, VGS = 0, f = 1 MHz) Output Capacitance (VDS = 12.5 Vdc, VGS = 0, f = 1 MHz) Reverse Transfer Capacitance (VDS = 12.5 Vdc, VGS = 0, f = 1 MHz) Functional Tests (In Freescale Test Fixture) Common- Source Amplifier Power Gain (VDD = 12.5 Vdc, Pout = 8 Watts, IDQ = 150 mA, f = 520 MHz) Drain Efficiency (VDD = 12.5 Vdc, Pout = 8 Watts, IDQ = 150 mA, f = 520 MHz) Gps η 10 50 11 55 — — dB % Ciss Coss Crss — — — 66 33 4.5 — — — pF pF pF VGS(th) VDS(on) 1.0 — 1.6 0.4 2.1 — Vdc Vdc IDSS IGSS — — — — 1 1 µAdc µAdc Symbol Min Typ Max Unit
MRF1518NT1 MRF1518T1 2 RF Device Data Freescale Semiconductor
VGG C8 C7
B2 + C6 R4 B1 R3 C16 C15 C14 + VDD C13
L1 C5 R2 Z6 R1 N1 RF INPUT C1 C2 C3 C4 Z1 Z2 Z3 Z4 Z5 DUT C9 C10 C11 C12 Z7 Z8 Z9 Z10 N2 RF OUTPUT
B1, B2 C1, C12 C2, C3, C10, C11 C4 C5, C16 C6, C13 C7, C14 C8, C15 C9 L1 N1, N2 R1 R2 R3
Short Ferrite Beads, Fair Rite Products (2743021446) 240 pF, 100 mil Chip Capacitors 0 to 20 pF Trimmer Capacitors 82 pF, 100 mil Chip Capacitor 120 pF, 100 mil Chip Capacitors 10 µF, 50 V Electrolytic Capacitors 1,200 pF, 100 mil Chip Capacitors 0.1 mF, 100 mil Chip Capacitors 30 pF, 100 mil Chip Capacitor 55.5 nH, 5 Turn, Coilcraft Type N Flange Mounts 15 Ω Chip Resistor (0805) 51 Ω, 1/2 W Resistor 10 Ω Chip Resistor (0805)
R4 Z1 Z2 Z3 Z4 Z5, Z6 Z7 Z8 Z9 Z10 Board
33 kΩ, 1/8 W Resistor 0.451″ x 0.080″ Microstrip 1.005″ x 0.080″ Microstrip 0.020″ x 0.080″ Microstrip 0.155″ x 0.080″ Microstrip 0.260″ x 0.223″ Microstrip 0.065″ x 0.080″ Microstrip 0.266″ x 0.080″ Microstrip 1.113″ x 0.080″ Microstrip 0.433″ x 0.080″ Microstrip Glass Teflon, 31 mils, 2 oz. Copper
Figure 1. 450 - 520 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 450 - 520 MHz
12 Pout , OUTPUT POWER (WATTS) 10 470 MHz 8 500 MHz 6 520 MHz 4 2 VDD = 12.5 Vdc 0 0 0.1 0.3 0.2 0.4 Pin, INPUT POWER (WATTS) 0.5 0.6 −20 0 1 2 4 5 6 7 8 3 Pout, OUTPUT POWER (WATTS) 9 10 11 450 MHz 0 VDD = 12.5 Vdc IRL, INPUT RETURN LOSS (dB) −5 470 MHz −10 450 MHz −15 520 MHz 500 MHz
Figure 2. Output Power versus Input Power
Figure 3. Input Return Loss versus Output Power
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 3
TYPICAL CHARACTERISTICS, 450 - 520 MHz
17 450 MHz 15 Eff, DRAIN EFFICIENCY (%) 13 GAIN (dB) 11 9 7 VDD = 12.5 Vdc 5 0 1 2 3 4 5 6 7 8 Pout, OUTPUT POWER (WATTS) 9 10 11 520 MHz 500 MHz 470 MHz 80 70 60 50 520 MHz 40 500 MHz 30 20 VDD = 12.5 Vdc 10 0 0 1 2 3 4 5 6 7 8 9 Pout, OUTPUT POWER (WATTS) 10 11 12 450 MHz 470 MHz
Figure 4. Gain versus Output Power
Figure 5. Drain Efficiency versus Output Power
12 Pout , OUTPUT POWER (WATTS) 10 470 MHz 450 MHz 8 520 MHz 6 500 MHz 4 2 0 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000 VDD = 12.5 Vdc Pin = 26.2 dBm
70 65 Eff, DRAIN EFFICIENCY (%) 60 55 50 45 40 35 30 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000 VDD = 12.5 Vdc Pin = 26.2 dBm 470 MHz 450 MHz 500 MHz 520 MHz
Figure 6. Output Power versus Biasing Current
Figure 7. Drain Efficiency versus Biasing Current
12 Pout , OUTPUT POWER (WATTS) 11 10 9 8 7 6 5 4 3 2 8 9 10 11 12 13 500 MHz IDQ = 150 mA Pin = 26.2 dBm 14 15 16 520 MHz 470 MHz 450 MHz Eff, DRAIN EFFICIENCY (%)
80 75 70 65 60 55 50 45 40 35 30 8 9 10 11 12 13 IDQ = 150 mA Pin = 26.2 dBm 14 15 16 520 MHz 500 MHz 450 MHz 470 MHz
VDD, SUPPLY VOLTAGE (VOLTS)
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 8. Output Power versus Supply Voltage
Figure 9. Drain Efficiency versus Supply Voltage
MRF1518NT1 MRF1518T1 4 RF Device Data Freescale Semiconductor
B1 VGG + C8 C7 C6 C5 L1 R1 N1 RF INPUT L2 C1 C2 C3 C4 C9 C10 Z1 Z2 Z3 Z4 DUT Z5 Z6 Z7 C12
B2 C13 C14 + C15 VDD
Z8 C11
N2 RF OUTPUT
B1, B2 C1, C9 C2 C3, C4 C5 C6, C13 C7, C14 C8 C10 C11, C12 C15 L1, L2
Long Ferrite Beads, Fair Rite Products 12 pF, 100 mil Chip Capacitors 6.8 pF, 100 mil Chip Capacitor 20 pF, 100 mil Chip Capacitors 51 pF, 100 mil Chip Capacitor 1000 pF, 100 mil Chip Capacitors 0.039 µF, 100 mil Chip Capacitors 1 µF, 20 V Tantalum Chip Capacitor 3 pF, 100 mil Chip Capacitor 51 pF, 100 mil Chip Capacitors 22 µF, 35 V Tantalum Chip Capacitor 18.5 nH, 5 Turn, Coilcraft
N1, N2 R1 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Board
Type N Flange Mounts 47 Ω Chip Resistor (0805) 1.145″ x 0.080″ Microstrip 0.786″ x 0.080″ Microstrip 0.115″ x 0.223″ Microstrip 0.145″ x 0.223″ Microstrip 0.260″ x 0.223″ Microstrip 0.081″ x 0.080″ Microstrip 0.104″ x 0.080″ Microstrip 1.759″ x 0.080″ Microstrip Glass Teflon, 31 mils, 2 oz. Copper
Figure 10. 820 - 850 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 820 - 850 MHz
12 Pout , OUTPUT POWER (WATTS) 10 8 6 4 2 VDD = 12.5 Vdc 0 0 0.1 0.2 0.4 0.3 Pin, INPUT POWER (WATTS) 0.5 0.6 −40 1 2 3 4 5 6 7 8 9 Pout, OUTPUT POWER (WATTS) 10 11 12 840 MHz 830 MHz 820 MHz 850 MHz 0 VDD = 12.5 Vdc IRL, INPUT RETURN LOSS (dB) −10
850 MHz 840 MHz 820 MHz
−20
−30 830 MHz
Figure 11. Output Power versus Input Power
Figure 12. Input Return Loss versus Output Power
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 5
TYPICAL CHARACTERISTICS, 820 - 850 MHz
17 850 MHz 15 13 GAIN (dB) 830 MHz 11 9 7 VDD = 12.5 Vdc 5 1 2 3 5 6 7 8 4 9 Pout, OUTPUT POWER (WATTS) 10 11 12 820 MHz 840 MHz Eff, DRAIN EFFICIENCY (%) 70 60 50 40 830 MHz 30 20 10 0 1 2 3 5 6 7 8 9 4 Pout, OUTPUT POWER (WATTS) VDD = 12.5 Vdc 10 11 12 820 MHz 840 MHz 80 850 MHz
Figure 13. Gain versus Output Power
Figure 14. Drain Efficiency versus Output Power
12 Pout , OUTPUT POWER (WATTS) 10 8 820 MHz 6 4 2 VDD = 12.5 Vdc 0 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000 840 MHz 830 MHz
70 60 850 MHz Eff, DRAIN EFFICIENCY (%) 50 840 MHz 40 30 20 10 830 MHz
850 MHz
820 MHz
VDD = 12.5 Vdc 0 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000
Figure 15. Output Power versus Biasing Current
Figure 16. Drain Efficiency versus Biasing Current
12 Pout , OUTPUT POWER (WATTS) 11 10 9 8 7 6 5 4 3 2 8 9 10 11 12 13 VDD = 12.5 Vdc 14 15 16 850 MHz 820 MHz 830 MHz 840 MHz Eff, DRAIN EFFICIENCY (%)
80 75 70 65 60 55 50 45 40 35 30 8 9 10 11 12 13 820 MHz VDD = 12.5 Vdc 14 15 16 830 MHz 840 MHz
850 MHz
VDD, SUPPLY VOLTAGE (VOLTS)
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 17. Output Power versus Supply Voltage
Figure 18. Drain Efficiency versus Supply Voltage
MRF1518NT1 MRF1518T1 6 RF Device Data Freescale Semiconductor
VGG C10 C9
B2 + C8 R4 B1 R3 C18 C17 C16 + VDD C15
L1 C7 R2 Z7 R1 N1 RF INPUT C1 C2 C3 C4 C5 C6 Z1 Z2 Z3 Z4 Z5 Z6 DUT C11 C12 C13 C14 Z8 Z9 Z10 Z11 N2 RF OUTPUT
B1, B2 C1, C14 C2, C3, C4, C11, C12, C13 C5 C6 C7, C18 C8, C15 C9, C16 C10, C17 L1 N1, N2 R1 R2
Short Ferrite Beads, Fair Rite Products (2743021446) 240 pF, 100 mil Chip Capacitors 0 to 20 pF Trimmer Capacitors 30 pF, 100 mil Chip Capacitor 47 pF, 100 mil Chip Capacitor 120 pF, 100 mil Chip Capacitors 10 µF, 50 V Electrolytic Capacitors 1,200 pF, 100 mil Chip Capacitors 0.1 µF, 100 mil Chip Capacitors 55.5 nH, 5 Turn, Coilcraft Type N Flange Mounts 15 Ω Chip Resistor (0805) 51 Ω, 1/2 W Resistor
R3 R4 Z1 Z2 Z3 Z4 Z5 Z6, Z7 Z8 Z9 Z10 Z11 Board
10 Ω Chip Resistor (0805) 33 kΩ, 1/8 W Resistor 0.476″ x 0.080″ Microstrip 0.724″ x 0.080″ Microstrip 0.348″ x 0.080″ Microstrip 0.048″ x 0.080″ Microstrip 0.175″ x 0.080″ Microstrip 0.260″ x 0.223″ Microstrip 0.239″ x 0.080″ Microstrip 0.286″ x 0.080″ Microstrip 0.806″ x 0.080″ Microstrip 0.553″ x 0.080″ Microstrip Glass Teflon, 31 mils, 2 oz. Copper
Figure 19. 400 - 470 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 400 - 470 MHz
12 440 MHz Pout , OUTPUT POWER (WATTS) 400 MHz 470 MHz IRL, INPUT RETURN LOSS (dB) 10 8 6 4 VDD = 12.5 Vdc 2 0 0 0.1 0.2 0.4 0.3 0.5 Pin, INPUT POWER (WATTS) 0.6 0.7 VDD = 12.5 Vdc −5 440 MHz −10 400 MHz −15 470 MHz −20 0 1 2 3 4 5 6 7 8 9 Pout, OUTPUT POWER (WATTS) 10 11 12 0
Figure 20. Output Power versus Input Power
Figure 21. Input Return Loss versus Output Power
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 7
TYPICAL CHARACTERISTICS, 400 - 470 MHz
17 15 440 MHz 13 GAIN (dB) 400 MHz 470 MHz 11 9 VDD = 12.5 Vdc 7 5 0 1 2 3 5 6 7 8 4 9 Pout, OUTPUT POWER (WATTS) 10 11 12 Eff, DRAIN EFFICIENCY (%) 80 70 470 MHz 60 50 40 30 20 VDD = 12.5 Vdc 10 0 0 1 2 5 6 7 8 9 3 4 Pout, OUTPUT POWER (WATTS) 10 11 12 400 MHz 440 MHz
Figure 22. Gain versus Output Power
Figure 23. Drain Efficiency versus Output Power
12 440 MHz Pout , OUTPUT POWER (WATTS) Eff, DRAIN EFFICIENCY (%) 10 8 6 4 2 0 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000 VDD = 12.5 Vdc Pin = 26.8 dBm 400 MHz 470 MHz
70 65 60 400 MHz 55 50 45 40 35 30 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000 VDD = 12.5 Vdc Pin = 26.8 dBm 470 MHz 440 MHz
Figure 24. Output Power versus Biasing Current
Figure 25. Drain Efficiency versus Biasing Current
12 Pout , OUTPUT POWER (WATTS) 11 10 9 8 7 6 5 4 3 2 8 9 10 11 12 13 470 MHz IDQ = 150 mA Pin = 26.8 dBm 14 15 16 400 MHz 440 MHz Eff, DRAIN EFFICIENCY (%)
80 75 70 65 60 55 50 45 40 35 30 8 9 10 11 12 13 IDQ = 150 mA Pin = 26.8 dBm 14 15 16 470 MHz 440 MHz 400 MHz
VDD, SUPPLY VOLTAGE (VOLTS)
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 26. Output Power versus Supply Voltage
Figure 27. Drain Efficiency versus Supply Voltage
MRF1518NT1 MRF1518T1 8 RF Device Data Freescale Semiconductor
VGG C9 C8
B2 + C7 R4 B1 R3 C17 C16 C15 + VDD C14
L4 C6 R2 Z6 RF INPUT N1 C1 C2 R1 Z1 L1 Z2 Z3 C4 C5 Z4 Z5 DUT C12 C10 C3 C11 N2 Z7 Z8 L2 L3 Z9 RF C13 OUTPUT Z10
B1, B2 C1, C13 C2, C4, C11 C3 C5 C6, C17 C7, C14 C8, C15 C9, C16 C10 C12 L1 L2 L3
Short Ferrite Beads, Fair Rite Products (2743021446) 330 pF, 100 mil Chip Capacitors 0 to 20 pF Trimmer Capacitors 12 pF, 100 mil Chip Capacitor 43 pF, 100 mil Chip Capacitor 75 pF, 100 mil Chip Capacitors 10 µF, 50 V Electrolytic Capacitors 1,200 pF, 100 mil Chip Capacitors 0.1 µF, 100 mil Chip Capacitors 75 pF, 100 mil Chip Capacitor 13 pF, 100 mil Chip Capacitor 26 nH, 4 Turn, Coilcraft 5 nH, 2 Turn, Coilcraft 33 nH, 5 Turn, Coilcraft
L4 N1, N2 R1 R2 R3 R4 Z1 Z2 Z3 Z4 Z5, Z6 Z7 Z8 Z9 Z10 Board
55.5 nH, 5 Turn, Coilcraft Type N Flange Mounts 15 W Chip Resistor (0805) 56 W, 1/4 W Carbon Resistor 100 W Chip Resistor (0805) 33 kW, 1/8 W Carbon Resistor 0.115″ x 0.080″ Microstrip 0.255″ x 0.080″ Microstrip 1.037″ x 0.080″ Microstrip 0.192″ x 0.080″ Microstrip 0.260″ x 0.223″ Microstrip 0.125″ x 0.080″ Microstrip 0.962″ x 0.080″ Microstrip 0.305″ x 0.080″ Microstrip 0.155″ x 0.080″ Microstrip Glass Teflon, 31 mils, 2 oz. Copper
Figure 28. 135 - 175 MHz Broadband Test Circuit
TYPICAL CHARACTERISTICS, 135 - 175 MHz
12 Pout , OUTPUT POWER (WATTS) 10 8 155 MHz 6 175 MHz 4 135 MHz 2 VDD = 12.5 Vdc 0 0 0.1 0.2 0.3 Pin, INPUT POWER (WATTS) 0.4 −20 0 1 2 3 4 5 6 7 8 9 Pout, OUTPUT POWER (WATTS) 10 11 12 0 VDD = 12.5 Vdc IRL, INPUT RETURN LOSS (dB) −5
155 MHz −10 135 MHz 175 MHz −15
Figure 29. Output Power versus Input Power
Figure 30. Input Return Loss versus Output Power
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 9
TYPICAL CHARACTERISTICS, 135 - 175 MHz
19 135 MHz 17 Eff, DRAIN EFFICIENCY (%) 175 MHz 15 GAIN (dB) 155 MHz 13 11 9 VDD = 12.5 Vdc 7 0 1 2 3 4 5 6 7 8 9 Pout, OUTPUT POWER (WATTS) 10 11 12 80 70 60 135 MHz 50 40 30 20 VDD = 12.5 Vdc 10 0 0 1 2 6 3 4 5 7 8 9 Pout, OUTPUT POWER (WATTS) 10 11 12 175 MHz 155 MHz
Figure 31. Gain versus Output Power
Figure 32. Drain Efficiency versus Output Power
12 175 MHz Pout , OUTPUT POWER (WATTS) 155 MHz 8 6 4 2 0 0 200 400 600 IDQ, BIASING CURRENT (mA) 800 1000 VDD = 12.5 Vdc Pin = 24.5 dBm Eff, DRAIN EFFICIENCY (%) 10
70 65 135 MHz 60 55 50 45 40 35 30 0 200 600 400 IDQ, BIASING CURRENT (mA) 800 1000 VDD = 12.5 Vdc Pin = 24.5 dBm 155 MHz 135 MHz 175 MHz
Figure 33. Output Power versus Biasing Current
Figure 34. Drain Efficiency versus Biasing Current
12 Pout , OUTPUT POWER (WATTS) 11 10 9 8 7 6 5 4 3 2 8 9 10 11 12 13 14 15 16 VDD, SUPPLY VOLTAGE (VOLTS) IDQ = 150 mA Pin = 24.5 dBm 155 MHz Eff, DRAIN EFFICIENCY (%) 175 MHz 135 MHz
80 75 70 65 60 55 50 45 40 35 30 8 9 10 11 12 13 IDQ = 150 mA Pin = 24.5 dBm 14 15 16 155 MHz 135 MHz 175 MHz
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 35. Output Power versus Supply Voltage MRF1518NT1 MRF1518T1 10
Figure 36. Drain Efficiency versus Supply Voltage
RF Device Data Freescale Semiconductor
Zo = 10 Ω Zo = 10 Ω 520 520 f = 450 MHz Zin f = 450 MHz ZOL* f = 850 MHz Zin f = 850 MHz ZOL* f = 820 MHz f = 820 MHz
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W f MHz 450 470 500 520 Zin Zin Ω 4.9 +j2.85 4.85 +j3.71 4.63 +j3.84 3.52 +j3.92 ZOL* Ω 6.42 +j3.23 4.59 +j3.61 4.72 +j3.12 3.81 +j3.27 Zin
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W f MHz 820 830 840 850 Zin Ω 1.42 - j0.32 1.39 - j0.21 1.32 - j0.16 1.23 - j0.13 ZOL* Ω 2.34 +j0.23 2.36 +j0.47 2.40 +j0.69 2.37 +j0.79
= Complex conjugate of source impedance with parallel 15 Ω resistor and 82 pF capacitor in series with gate. (See Figure 1).
= Complex conjugate of source impedance.
ZOL* = Complex conjugate of the load impedance at given output power, voltage, frequency, and ηD > 50 %.
ZOL* = Complex conjugate of the load impedance at given output power, voltage, frequency, and ηD > 50 %.
Note: ZOL* was chosen based on tradeoffs between gain, drain efficiency, and device stability.
Input Matching Network
Device Under Test
Output Matching Network
Z
in
Z
* OL
Figure 37. Series Equivalent Input and Output Impedance
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 11
f = 470 MHz ZOL* 400 400
Zin f = 470 MHz 135 ZOL* f = 175 MHz f = 135 MHz 175 Zin Zo = 10 Ω
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W f MHz 400 440 470 Zin Ω 4.28 +j2.36 6.45 +j5.13 5.91 +j3.34 ZOL* Ω 4.41 +j0.67 4.14 +j2.53 3.92 +j4.02
VDD = 12.5 V, IDQ = 150 mA, Pout = 8 W f MHz 135 155 175 Zin Ω 18.31 - j0.76 17.72 +j1.85 18.06 +j5.23 ZOL* Ω 8.97 +j2.62 9.69 +j2.81 7.94 +j1.14
Zin
= Complex conjugate of source impedance with parallel 15 Ω resistor and 47 pF capacitor in series with gate. (See Figure 19).
Zin
= Complex conjugate of source impedance with parallel 15 Ω resistor and 43 pF capacitor in series with gate. (See Figure 28).
ZOL* = Complex conjugate of the load impedance at given output power, voltage, frequency, and ηD > 50 %.
ZOL* = Complex conjugate of the load impedance at given output power, voltage, frequency, and ηD > 50 %.
Note: ZOL* was chosen based on tradeoffs between gain, drain efficiency, and device stability.
Input Matching Network
Device Under Test
Output Matching Network
Z
in
Z
* OL
Figure 37. Series Equivalent Input and Output Impedance (continued)
MRF1518NT1 MRF1518T1 12 RF Device Data Freescale Semiconductor
Table 5. Common Source Scattering Parameters (VDD = 12.5 Vdc) IDQ = 150 mA
f MHz 50 100 200 300 400 500 600 700 800 900 1000 S11 |S11| 0.88 0.85 0.85 0.87 0.88 0.90 0.92 0.93 0.94 0.94 0.96 ∠φ - 148 - 163 - 170 - 171 - 172 - 173 - 173 - 174 - 175 - 175 - 176 |S21| 18.91 9.40 4.47 2.72 1.85 1.35 1.04 0.83 0.68 0.55 0.46 S21 ∠φ 99 86 73 64 56 52 47 44 39 36 30 |S12| 0.033 0.033 0.026 0.025 0.021 0.019 0.014 0.015 0.014 0.010 0.011 S12 ∠φ 11 -6 - 17 - 28 - 21 - 30 - 26 - 39 - 31 - 41 - 38 |S22| 0.67 0.66 0.69 0.74 0.79 0.83 0.85 0.88 0.90 0.91 0.95 S22 ∠φ - 144 - 158 - 162 - 163 - 164 - 165 - 167 - 168 - 169 - 170 - 170
IDQ = 800 mA
f MHz 50 100 200 300 400 500 600 700 800 900 1000 S11 |S11| 0.90 0.88 0.88 0.89 0.89 0.90 0.91 0.92 0.93 0.94 0.94 ∠φ - 159 - 169 - 174 - 175 - 175 - 176 - 176 - 176 - 176 - 177 - 177 |S21| 20.80 10.35 5.09 3.23 2.30 1.74 1.39 1.16 0.96 0.80 0.67 S21 ∠φ 97 88 79 73 67 63 59 55 50 46 41 |S12| 0.020 0.018 0.017 0.015 0.015 0.014 0.014 0.009 0.011 0.007 0.010 S12 ∠φ 14 1 -9 - 18 - 17 - 22 - 19 - 23 - 14 4 - 15 |S22| 0.73 0.74 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.88 0.89 S22 ∠φ - 162 - 169 - 171 - 171 - 171 - 170 - 171 - 171 - 172 - 173 - 173
IDQ = 1.5 A
f MHz 50 100 200 300 400 500 600 700 800 900 1000 S11 |S11| 0.91 0.89 0.88 0.89 0.89 0.90 0.92 0.92 0.93 0.94 0.94 ∠φ - 159 - 169 - 174 - 175 - 176 - 176 - 176 - 176 - 177 - 177 - 178 |S21| 20.18 10.05 4.93 3.14 2.24 1.70 1.36 1.13 0.94 0.78 0.65 S21 ∠φ 97 89 80 73 67 64 59 55 50 46 41 |S12| 0.015 0.016 0.015 0.014 0.014 0.014 0.010 0.013 0.008 0.013 0.007 S12 ∠φ 11 -5 -3 - 14 - 20 - 22 - 16 - 10 - 13 - 26 8 |S22| 0.73 0.74 0.75 0.78 0.80 0.82 0.84 0.85 0.87 0.87 0.87 S22 ∠φ - 165 - 171 - 172 - 172 - 171 - 170 - 171 - 171 - 172 - 173 - 172
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 13
APPLICATIONS INFORMATION
DESIGN CONSIDERATIONS This device is a common - source, RF power, N - Channel enhancement mode, Lateral Metal - Oxide Semiconductor Field - Effect Transistor (MOSFET). Freescale Application Note AN211A, “FETs in Theory and Practice”, is suggested reading for those not familiar with the construction and characteristics of FETs. This surface mount packaged device was designed primarily for VHF and UHF portable power amplifier applications. Manufacturability is improved by utilizing the tape and reel capability for fully automated pick and placement of parts. However, care should be taken in the design process to insure proper heat sinking of the device. The major advantages of Lateral RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate - to - drain (Cgd), and gate - to - source (Cgs). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain - to - source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter - terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications. drain - source voltage under these conditions is termed VDS(on). For MOSFETs, VDS(on) has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device. BVDSS values for this device are higher than normally required for typical applications. Measurement of BVDSS is not recommended and may result in possible damage to the device. GATE CHARACTERISTICS The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The DC input resistance is very high - on the order of 109 Ω — resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage to the gate greater than the gate - to - source threshold voltage, VGS(th). Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region. Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open - circuited or floating should be avoided. These conditions can result in turn - on of the devices due to voltage build - up on the input capacitor due to leakage currents or pickup. Gate Protection — These devices do not have an internal monolithic zener diode from gate - to - source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate - to - source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate - drain capacitance. If the gate - to - source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate - threshold voltage and turn the device on. DC BIAS Since this device is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. RF power FETs operate optimally with a quiescent drain current (IDQ), whose value is application dependent. This device was characterized at IDQ = 150 mA, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of this device may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. This characteristic is very dependent on frequency and load line.
Drain Cgd Gate Cds Cgs Source Ciss = Cgd + Cgs Coss = Cgd + Cds Crss = Cgd
DRAIN CHARACTERISTICS One critical figure of merit for a FET is its static resistance in the full - on condition. This on - resistance, RDS(on), occurs in the linear region of the output characteristic and is specified at a specific gate - source voltage and drain current. The
MRF1518NT1 MRF1518T1 14 RF Device Data Freescale Semiconductor
MOUNTING The specified maximum thermal resistance of 2°C/W assumes a majority of the 0.065″ x 0.180″ source contact on the back side of the package is in good contact with an appropriate heat sink. As with all RF power devices, the goal of the thermal design should be to minimize the temperature at the back side of the package. Refer to Freescale Application Note AN4005/D, “Thermal Management and Mounting Method for the PLD - 1.5 RF Power Surface Mount Package,” and Engineering Bulletin EB209/D, “Mounting Method for RF Power Leadless Surface Mount Transistor” for additional information. AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar transistors are suitable for this device. For examples see Freescale Application Note AN721, “Impedance Matching Networks Applied to RF Power Transistors.”
Large - signal impedances are provided, and will yield a good first pass approximation. Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the very high gain of this device yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The RF test fixture implements a parallel resistor and capacitor in series with the gate, and has a load line selected for a higher efficiency, lower gain, and more stable operating region. Two - port stability analysis with this device’s S - parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Freescale Application Note AN215A, “RF Small - Signal Design Using Two - Port Parameters” for a discussion of two port network theory and stability.
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 15
NOTES
MRF1518NT1 MRF1518T1 16 RF Device Data Freescale Semiconductor
NOTES
MRF1518NT1 MRF1518T1 RF Device Data Freescale Semiconductor 17
NOTES
MRF1518NT1 MRF1518T1 18 RF Device Data Freescale Semiconductor
PACKAGE DIMENSIONS
A F
3
0.146 3.71
0.095 2.41
0.115 2.92
B
D
1
2
R
L
0.115 2.92 0.020 0.51
4
N K Q
ZONE V
0.35 (0.89) X 45_" 5 _ 10_DRAFT
inches mm
SOLDER FOOTPRINT
DIM A B C D E F G H J K L N P Q R S U ZONE V ZONE W ZONE X INCHES MIN MAX 0.255 0.265 0.225 0.235 0.065 0.072 0.130 0.150 0.021 0.026 0.026 0.044 0.050 0.070 0.045 0.063 0.160 0.180 0.273 0.285 0.245 0.255 0.230 0.240 0.000 0.008 0.055 0.063 0.200 0.210 0.006 0.012 0.006 0.012 0.000 0.021 0.000 0.010 0.000 0.010 MILLIMETERS MIN MAX 6.48 6.73 5.72 5.97 1.65 1.83 3.30 3.81 0.53 0.66 0.66 1.12 1.27 1.78 1.14 1.60 4.06 4.57 6.93 7.24 6.22 6.48 5.84 6.10 0.00 0.20 1.40 1.60 5.08 5.33 0.15 0.31 0.15 0.31 0.00 0.53 0.00 0.25 0.00 0.25
U H
4
P C
Y
Y
E
ZONE W
G
RF Device Data Freescale Semiconductor
ÉÉÉÉ É ÉÉÉÉÉÉ ÉÉÉ ÉÉÉÉ É ÉÉÉÉÉÉ É ÉÉÉÉÉÉ ÉÉÉ
1 3 ZONE X
2
NOTES: 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1984. 2. CONTROLLING DIMENSION: INCH 3. RESIN BLEED/FLASH ALLOWABLE IN ZONE V, W, AND X. STYLE 1: PIN 1. 2. 3. 4. DRAIN GATE SOURCE SOURCE
S
VIEW Y - Y
CASE 466 - 03 ISSUE C PLD - 1.5 PLASTIC
MRF1518NT1 MRF1518T1 19
How to Reach Us:
Home Page: www.freescale.com E - mail: support@freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. Freescale Semiconductor, Inc. 2005. All rights reserved.
MRF1518NT1 MRF1518T1
Document Number: MRF1518 Rev. 6, 3/2005
20
RF Device Data Freescale Semiconductor