MOTOROLA
Freescale Semiconductor, Inc.
SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF374A/D
The RF MOSFET Line
RF Power Field-Effect Transistor
N–Channel Enhancement–Mode Lateral MOSFET
Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain and broadband performance of this device make it ideal for large–signal, common source amplifier applications in 28/32 volt transmitter equipment. • Typical Two–Tone Performance @ 860 MHz, 32 Volts, Narrowband Fixture Output Power — 130 Watts PEP Power Gain — 17.3 dB Efficiency — 41% IMD — –32.5 dBc • 100% Tested for Load Mismatch Stress at All Phase Angles with 10:1 VSWR @ 32 Vdc, 860 MHz, 130 Watts, f1 = 857 MHz, f2 = 863 MHz • Integrated ESD Protection • Excellent Thermal Stability • Characterized with Differential Large–Signal Impedance Parameters
MRF374A
470 – 860 MHz, 130 W, 32 V LATERAL N–CHANNEL BROADBAND RF POWER MOSFET
Freescale Semiconductor, Inc...
CASE 375F–04, STYLE 1 NI–650
MAXIMUM RATINGS
Rating Drain–Source Voltage Gate–Source Voltage Total Device Dissipation @ TC = 25°C Derate above 25°C Storage Temperature Range Operating Junction Temperature Symbol VDSS VGS PD Tstg TJ Value 70 – 0.5, +15 302 1.72 – 65 to +150 200 Unit Vdc Vdc Watts W/°C °C °C
ESD PROTECTION CHARACTERISTICS
Test Conditions Human Body Model Machine Model Class 1 (Minimum) M2 (Minimum)
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RθJC Max 0.58 Unit °C/W
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 3
MOTOROLA RF Motorola, Inc. 2003 DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF374A 1
Freescale Semiconductor, Inc.
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic OFF CHARACTERISTICS (1) Drain–Source Breakdown Voltage (VGS = 0 Vdc, ID =10 µA) Zero Gate Voltage Drain Current (VDS = 32 Vdc, VGS = 0 Vdc) Gate–Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) ON CHARACTERISTICS (1) Gate Threshold Voltage (VDS = 10 V, ID = 200 µA) Gate Quiescent Voltage (VDS = 32 V, ID = 100 mA) VGS(th) VGS(Q) VDS(on) 2 2.5 — 2.9 3.3 0.41 4 4.5 0.45 Vdc Vdc Vdc V(BR)DSS IDSS IGSS 70 — — — — — — 1 1 Vdc µAdc µAdc Symbol Min Typ Max Unit
Freescale Semiconductor, Inc...
Drain–Source On–Voltage (VGS = 10 V, ID = 3 A) DYNAMIC CHARACTERISTICS (1) Input Capacitance (VDS = 32 V, VGS = 0 V, f = 1 MHz) Output Capacitance (VDS = 32 V, VGS = 0 V, f = 1 MHz) Reverse Transfer Capacitance (VDS = 32 V, VGS = 0 V, f = 1 MHz)
Ciss Coss Crss
— — —
97.3 49 1.91
— — —
pF pF pF
FUNCTIONAL CHARACTERISTICS, NARROWBAND OPERATION (In Motorola MRF374A Narrowband Circuit, 50 ohm system) (2) Common Source Power Gain (VDD = 32 Vdc, Pout = 130 W PEP, IDQ = 2 x 200 mA, f1 = 857 MHz, f2 = 863 MHz) Drain Efficiency (VDD = 32 Vdc, Pout = 130 W PEP, IDQ = 2 x 200 mA, f1 = 857 MHz, f2 = 863 MHz) Intermodulation Distortion (VDD = 32 Vdc, Pout = 130 W PEP, IDQ = 2 x 200 mA, f1 = 857 MHz, f2 = 863 MHz) Load Mismatch (VDD = 32 Vdc, Pout = 130 W Two–Tone, IDQ = 2 x 200 mA, f1 = 857 MHz, f2 = 863 MHz, VSWR 10:1 at All Phase Angles of Test) Gps 16 17.3 — dB
η
36
41.2
—
%
IMD
—
–32.5
–28
dB
No Degradation in Output Power
TYPICAL CHARACTERISTICS, BROADBAND OPERATION (In Motorola MRF374 Broadband Circuit, 50 ohm system) Common Source Power Gain (VDD = 32 Vdc, Pout = 100 W PEP, IDQ = 750 mA, f1 = 857 MHz, f2 = 863 MHz) Drain Efficiency (VDD = 32 Vdc, Pout = 100 W PEP, IDQ = 750 mA, f1 = 857 MHz, f2 = 863 MHz) Intermodulation Distortion (VDD = 32 Vdc, Pout = 100 W PEP, IDQ = 750 mA, f1 = 857 MHz, f2 = 863 MHz) (1) Each side of device measured separately. (2) Measured in push–pull configuration. Gps — 15.8 — dB
η
—
35
—
%
IMD
—
34.5
—
dB
MRF374A 2
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
MRF374 Rev 3a
C7A L3A R2 L4 C4A R1A L2A C13A C14A C12A C11 L1B C12B C14B
VGS
R3A
VDD
R4A C9A C6 R1B C10 C9B R4B L3B L2B C7B
L1A
RF INPUT
C1
C2
C3 C4B
C5
RF OUTPUT
C13B
VGS
R3B
VDD
Freescale Semiconductor, Inc...
Vertical Balun Mounting Detail
Output 2 (12.5 ohm microstrip) Output 1 (12.5 ohm microstrip)
Motorola Vertical 860 MHz Balun Rogers RO3010 (50 mil thick)
PCB Substrate (30 mil thick)
Note: Trim Balun PCB so that a 35 mil "tab" fits into the main PCB slot" resulting in Balun solder pads being level with the PCB substrate solder pads when fully inserted.
Input (50 ohm microstrip)
Ground
55 mil slot cut out to accept Balun
Figure 1. MRF374A Narrowband Test Circuit Component Layout
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF374A 3
Freescale Semiconductor, Inc.
Table 1. MRF374A Narrowband Test Circuit Component Layout Designations and Values
Designation C1 C2 C3 C4A, B, C12A, B C5 C6 C7A, B, C14A, B C9A, B C10 C11 C13A, B L1A, B L2A, B L3A, B L4 R1A, B R2 R3A, B R4A, B PCB Balun B1A, B Description 0.8 pF Chip Capacitor, B Case, ATC 2.2 pF Chip Capacitor, B Case, ATC 0.5 – 5.0 pF Variable Capacitor, Johanson Gigatrim 47 pF Chip Capacitors, B Case, ATC 1.0 pF Chip Capacitor, B Case, ATC 10 pF Chip Capacitor, B Case, ATC 100,000 pF Chip Capacitors, B Case, ATC 15 pF Chip Capacitors, B Case, ATC 3.9 pF Chip Capacitor, B Case, ATC 5.1 pF Chip Capacitor, B Case, ATC 2.2 mF, 100 V Chip Capacitors, Vishay #VJ3640Y225KXBAT 5.0 nH, Coilcraft #A02T 8.0 nH, Coilcraft #A03T 130.0 nH, Coilcraft #132–11SMJ 8.8 nH, Coilcraft #1606–8 51 W, 1/4 W Chip Resistors, Vishay Dale (1210) 10 W, 1/2 W Chip Resistor, Vishay Dale (2010) 3.3 kW, 1/8 W Chip Resistors, Vishay Dale (1206) 180 W, 1/4 W Chip Resistors, Vishay Dale (1210) MRF374 Printed Circuit Board Rev 03, Rogers RO4350, Height 30 mils, εr = 3.48 Vertical 860 MHz Narrowband Balun, Printed Circuit Board Rev 01, Rogers RO3010, Height 50 mils, εr = 10.2
Freescale Semiconductor, Inc...
MRF374A 4
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
C19
VGS
R6 R7A C18A
R4
R3 R5T R2A
MRF374
C15A C17A
C16A
VDD
L3A C3A C4 C5 R1A
L5 C2
C6 L4 R1B C7
C8A
C9A C10 L2
L1A C12 C11 C13 C14A
RF INPUT
C1
RF OUTPUT
C14B
L6 R7B
C3B
C8B C9B
L1B
L3B
C17B C15B R2B C16B
VGS
C18B
VDD
Freescale Semiconductor, Inc...
Vertical Balun Mounting Detail
Output 2 (12.5 ohm microstrip) Output 1 (12.5 ohm microstrip)
Motorola Vertical 660 MHz Balun Rogers RO3010 (50 mil thick)
PCB Substrate (30 mil thick)
Note: Trim Balun PCB so that a 35 mil tab" fits into the main PCB slot" resulting in Balun solder pads being level with the PCB substrate solder pads when fully inserted.
Input (50 ohm microstrip)
Ground
55 mil slot cut out to accept Balun
Figure 2. MRF374 Broadband Test Circuit Component Layout
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF374A 5
Freescale Semiconductor, Inc.
Table 2. MRF374 Broadband Test Circuit Component Designations and Values
Designation C1 C2 C3A, B, C14A, B C4 C5 C6 C7 C8A, B C9A, B C10 C11 C12 C13 C15A, B C16A, B C17A, B C18A, B C19 L1A, B, L3A, B, L4, L5 L2, L6 R1A, B R2A, B, R7A, B R3 R4 R5T R6 PCB Balun B1, B2 Description 0.8 pF Chip Capacitor, B Case, ATC 8.2 pF Chip Capacitor, B Case, ATC 100 pF Chip Capacitors, B Case, ATC 7.5 pF Chip Capacitor, B Case, ATC 3.0 pF Chip Capacitor, B Case, ATC 9.1 pF Chip Capacitor, B Case, ATC 15 pF Chip Capacitor, B Case, ATC 12 pF Chip Capacitors, B Case, ATC 4.7 pF Chip Capacitors, B Case, ATC 10 pF Chip Capacitor, B Case, ATC 3.6 pF Chip Capacitor, B Case, ATC 3.0 pF Chip Capacitor, B Case, ATC 2.7 pF Chip Capacitor, B Case, ATC 3.3 mF, 100 V Chip Capacitors, Vitramon #VJ3640Y335KXBAT 22 mF, 35 V Chip Capacitors, Kemet #491D226K035AS 3.9 pF Chip Capacitors, B Case, ATC 2.2 mF, 50 V Chip Capacitors, Vitramon #VJ2225Y225KXAAT 10 mF, 35 V Chip Capacitor, Kemet #T491D106K035AS 8.0 nH, Coilcraft #A03T 12.5 nH, Coilcraft #A04T 22 Ω, 1/8 W Chip Resistor, Vishay Dale (1206) 10 Ω, 1/8 W Chip Resistor, Vishay Dale (1206) 390 Ω, 1/8 W Chip Resistor, Vishay Dale (1206) 2.4 kΩ, 1/8 W Chip Resistor, Vishay Dale (1206) 470 Ω Thermistor, KOA SPEER MOT #0680149M01 6.8 kΩ, 1/2 W Resistor (Axial Lead), Vishay Dale (2010) MRF374 Printed Circuit Board Rev 03, Rogers RO4350, Height 30 mils, εr = 3.48 Vertical 660 MHz Broadband Balun, Printed Circuit Board Rev 01, Rogers RO3010, Height 50 mils, εr = 10.2
Freescale Semiconductor, Inc...
MRF374A 6
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
MRF374A TYPICAL CHARACTERISTICS
18 17.5 G ps , POWER GAIN (dB) 17 16.5 16 15.5 15 400 Pout = 100 W (PEP) IDQ = 750 mA nFrequency = 6 MHz 500 600 700 800 900 VDD = 32 Vdc -15 -20 -25 -30 -35 -40 -45 -50 400 32 Vdc VDD = 28 Vdc Pout = 100 W (PEP) IDQ = 750 mA nFrequency = 6 MHz
28 Vdc
IMD, INTERMODULATION DISTORTION (dBc)
500
600
700
800
900
Freescale Semiconductor, Inc...
f, FREQUENCY (MHz)
f, FREQUENCY (MHz)
Figure 3. Gain versus Frequency in Broadband Circuit
45 IRL, INPUT RETURN LOSS (dB) 40 η, DRAIN EFFICIENCY (%) 35 30 25 20 VDD = 28 Vdc 32 Vdc Pout = 100 W (PEP) IDQ = 750 mA nFrequency = 6 MHz 20 Gps G ps , POWER GAIN (dB) 15
Figure 4. Intermodulation Distortion versus Frequency in Broadband Circuit
40
35 VDD = 32 Vdc Pout = 100 W (PEP) IDQ = 750 mA nFrequency = 6 MHz η
D
10
30
5
25
IRL 0 400 20 900
400
500
600
700
800
900
500
600
700
800
f, FREQUENCY (MHz)
f, FREQUENCY (MHz)
Figure 5. Drain Efficiency versus Frequency in Broadband Circuit
η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) 200 C oss , C iss , Capacitance (pF) 20
Figure 6. Performance in Broadband Circuit
40 35 30 25 20 15 10 5 0 0.1 1 η 10 VDD = 32 Vdc IDQ = 1.1 A f = 860 MHz 2 K Mode COFDM 64 QAM 10.5 Peak/Avg. Ratio Gps IMR
η , DRAIN EFFICIENCY (%) D -20 -25 -30 -35 -40 -45 -50 -55 -60 100 IMR, INTERMODULATION (dBc)
100
Ciss
10
50
Coss Crss
5
0
0
10
20
30
40
50
0 60
C rss , Capacitance (pF)
150
15
VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS) AVG.
Figure 7. Capacitance versus Voltage
Figure 8. COFDM Intermodulation, Gain and Efficiency versus Output Power in Broadband Circuit
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF374A 7
Freescale Semiconductor, Inc.
MRF374A TYPICAL CHARACTERISTICS
η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB) 40 35 30 25 20 15 10 5 0 0.1 η 1 10 Gps IMR VDD = 32 Vdc IDQ = 1.1 A f = 860 MHz -20 -25 IMR, INTERMODULATION (dBc) G ps , POWER GAIN (dB) -30 -35 -40 -45 -50 -55 -60 100 19 18 17 16 15 14 13 1 10 100 Pout, OUTPUT POWER (WATTS) PEP IDQ = 1.0 A 800 mA 600 mA 400 mA 200 mA VDD = 32 Vdc f = 857 MHz nFrequency = 6 MHz
Freescale Semiconductor, Inc...
Pout, OUTPUT POWER (WATTS) AVG.
Figure 9. 8–VSB Intermodulation, Gain and Efficiency versus Output Power in Broadband Circuit
Figure 10. Power Gain versus Peak Output Power in Narrowband Circuit
IMD, INTERMODULATION DISTORTION (dBc)
-20 -25 -30 -35 -40 -45 -50 -55 1 800 mA 1.0 A VDD = 32 Vdc f = 857 MHz nFrequency = 6 MHz 100 600 mA IDQ = 200 mA η , DRAIN EFFICIENCY (%) D
50 40 30 20 10 0 VDD = 32 Vdc IDQ = 800 mA f = 857 MHz nFrequency = 6 MHz 1 10 Pout, OUTPUT POWER (WATTS) PEP 100
400 mA
10 Pout, OUTPUT POWER (WATTS) PEP
Figure 11. Intermodulation Distortion versus Peak Output Power in Narrowband Circuit
Figure 12. Drain Efficiency versus Peak Output Power in Narrowband Circuit
MRF374A 8
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
MRF374A TYPICAL CHARACTERISTICS VDD = 28 Vdc
18 17.5 G ps , POWER GAIN (dB) 17 16.5 16 15.5 15 560 MHz 760 MHz 660 MHz 860 MHz VDD = 28 Vdc IDQ = 750 mA Tone Spacing = 6 MHz 18 17.5 G ps , POWER GAIN (dB) 17 560 MHz 16.5 16 15.5 15 1 10 100 Pout, OUTPUT POWER (WATTS) PEP 1 10 100 Pout, OUTPUT POWER (WATTS) PEP 760 MHz 660 MHz 860 MHz VDD = 32 Vdc IDQ = 750 mA Tone Spacing = 6 MHz 470 MHz
VDD = 32 Vdc
470 MHz
Freescale Semiconductor, Inc...
Figure 13. Power Gain versus Peak Output Power in Broadband Circuit
45 VDD = 28 Vdc IDQ = 750 mA Tone Spacing = 6 MHz 860 MHz η, DRAIN EFFICIENCY (%) 560 MHz 660 MHz 470 MHz
Figure 14. Power Gain versus Peak Output Power in Broadband Circuit
40
η, DRAIN EFFICIENCY (%)
35
VDD = 32 Vdc IDQ = 750 mA Tone Spacing = 6 MHz
860 MHZ 560 MHz 660 MHz 470 MHz
30
25
20
15
10
5 0 1 10 100 Pout, OUTPUT POWER (WATTS) PEP 1 10 100 Pout, OUTPUT POWER (WATTS) PEP
Figure 15. Drain Efficiency versus Peak Output Power in Broadband Circuit
-25 -30 -35 -40 -45 -50 VDD = 28 Vdc IDQ = 750 mA Tone Spacing = 6 MHz 660 MHZ 560 MHZ 860 MHZ
Figure 16. Drain Efficiency versus Peak Output Power in Broadband Circuit
-25 -30 -35 -40 760 MHZ -45 -50 1 10 100 Pout, OUTPUT POWER (WATTS) PEP 470 MHZ VDD = 32 Vdc IDQ = 750 mA Tone Spacing = 6 MHz 660 MHZ 560 MHZ 860 MHZ
IMD, INTERMODULATION DISTORTION (dBc)
760 MHZ 470 MHZ
1
10
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 17. Intermodulation Distortion versus Peak Output Power in Broadband Circuit
IMD, INTERMODULATION DISTORTION (dBc)
Figure 18. Intermodulation Distortion versus Peak Output Power in Broadband Circuit
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF374A 9
Freescale Semiconductor, Inc.
f = 470 MHz
Zsource f = 470 MHz Zo = 4 Ω Zload f = 860 MHz f = 860 MHz
Zo = 4 Ω f = 845 MHz f = 845 MHz Zsource f = 875 MHz Zload f = 875 MHz
Freescale Semiconductor, Inc...
MRF374 VDD = 28 V, IDQ = 400 mA, Pout = 100 W PEP f MHz 470 660 860 Zsource Ω 5.79 + j0.97 4.52 – j0.50 3.16 – j3.73 Zload Ω 4.54 – j2.82 4.21 – j3.04 3.86 – j3.44
MRF374A VDD = 32 V, IDQ = 400 mA, Pout = 130 W PEP f MHz 845 860 875 Zsource Ω 3.33 – j2.42 3.03 – j2.39 2.73 – j3.10 Zload Ω 4.56 – j2.86 4.22 – j3.16 3.87 – j3.52
Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration.
Input Matching Network
+
Device Under Test
-
Output Matching Network
Z source Z
+ load
Figure 19. Series Equivalent Input and Output Impedance
MRF374A 10
For More Information On This Product, Go to: www.freescale.com
MOTOROLA RF DEVICE DATA
Freescale Semiconductor, Inc.
NOTES
Freescale Semiconductor, Inc...
MOTOROLA RF DEVICE DATA
For More Information On This Product, Go to: www.freescale.com
MRF374A 11
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
bbb
M
TA
M
B
M
G
D
2X
bbb
M
TA
M
B
M
L B
1 2
Q bbb
M
TA
M
B
M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. DIM A B C D E F G H K L M N Q R S bbb ccc INCHES MIN MAX 1.135 1.145 0.225 0.235 0.135 0.178 0.210 0.220 0.055 0.065 0.004 0.006 0.900 BSC 0.077 0.087 0.220 0.250 0.260 BSC 0.643 0.657 0.638 0.650 .125 .135 0.227 0.233 0.225 0.235 0.010 BSC 0.015 BSC DRAIN DRAIN GATE GATE SOURCE MILLIMETERS MIN MAX 28.80 29.10 5.72 5.97 3.43 4.52 5.33 5.59 1.40 1.65 0.11 0.15 22.86 BSC 1.96 2.21 5.59 6.35 6.60 BSC 16.33 16.69 16.20 16.50 3.175 3.43 5.77 5.92 5.715 5.97 0.254 BSC 0.381 BSC
S (INSULATOR)
(FLANGE)
K
4 PL
3
4
R (LID) ccc
M
B
M
TA
B
M
Freescale Semiconductor, Inc...
N (LID) ccc M (INSULATOR) bbb
M M
TA
M
B
M
TA
M
B
M
F C
5
E
H A A
(FLANGE)
T
SEATING PLANE
STYLE 1: PIN 1. 2. 3. 4. 5.
CASE 375F–04 ISSUE D NI–650
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Motorola and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. E Motorola, Inc. 2003. How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T. Hong Kong. 852–26668334 Technical Information Center: 1–800–521–6274 HOME PAGE: http://www.motorola.com/semiconductors
MRF374A 12
MRF374A/D ◊For More Information On This Product,MOTOROLA RF DEVICE DATA Go to: www.freescale.com