MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MSB710–QT1/D
PNP General Purpose Amplifier Transistors Surface Mount
COLLECTOR 3
MSB710-QT1 MSB710-RT1*
*Motorola Preferred Device
3 2 1
2 BASE
1 EMITTER
CASE 318D–03, STYLE 1 SC–59
MAXIMUM RATINGS (TA = 25°C)
Rating Collector–Base Voltage Collector–Emitter Voltage Emitter–Base Voltage Collector Current — Continuous Collector Current — Peak Symbol V(BR)CBO V(BR)CEO V(BR)EBO IC IC(P) Value – 60 – 50 – 7.0 – 500 –1.0 Unit Vdc Vdc Vdc mAdc Adc
THERMAL CHARACTERISTICS
Characteristic Power Dissipation Junction Temperature Storage Temperature Symbol PD TJ Tstg Max 200 150 – 55 ~ +150 Unit mW °C °C
DEVICE MARKING Marking Symbol
CQX
MSB710–QT1
CRX
MSB710–RT1
The “X” represents a smaller alpha digit Date Code. The Date Code indicates the actual month in which the part was manufactured.
Thermal Clad is a trademark of the Bergquist Company
Preferred devices are Motorola recommended choices for future use and best overall value.
REV 1
© Motorola, Inc. 1996
Motorola Small–Signal Transistors, FETs and Diodes Device Data
1
MSB710-QT1 MSB710-RT1
ELECTRICAL CHARACTERISTICS (TA = 25°C)
Characteristic Collector–Emitter Breakdown Voltage (IC = –10 mAdc, IB = 0) Collector–Base Breakdown Voltage (IC = –10 µAdc, IE = 0) Emitter–Base Breakdown Voltage (IE = –10 µAdc, IC = 0) Collector–Base Cutoff Current (VCB = –20 Vdc, IE = 0) DC Current Gain(1) (VCE = –10 Vdc, IC = –150 mAdc) (VCE = –10 Vdc, IC = 500 mAdc) Collector–Emitter Saturation Voltage (IC = – 300 mAdc, IB = – 30 mAdc) Collector–Base Saturation Voltage (IC = – 300 mAdc, IB = – 30 mAdc) Output Capacitance (VCB = –10 Vdc, IE = 0, f = 1.0 MHz) 1. Pulse Test: Pulse Width ≤ 300 µs, D.C. ≤ 2%. MSB710–QT1 MSB710–RT1 Symbol V(BR)CEO V(BR)CBO V(BR)EBO ICBO Min – 50 – 60 – 7.0 — Max — — — – 0.1 Unit Vdc Vdc Vdc µAdc — hFE1 hFE2 VCE(sat) VBE(sat) Cob 85 120 40 — — — 170 240 — – 0.6 –1.5 15 Vdc Vdc pF
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MSB710-QT1 MSB710-RT1
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection
0.037 0.95
interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.
0.037 0.95
0.098–0.118 2.5–3.0 0.094 2.4 0.039 1.0 0.031 0.8
inches mm
SC–59 POWER DISSIPATION
The power dissipation of the SC–59 is a function of the pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by TJ(max), the maximum rated junction temperature of the die, RθJA, the thermal resistance from the device junction to ambient; and the operating temperature, TA . Using the values provided on the data sheet, PD can be calculated as follows: PD = TJ(max) – TA RθJA the equation for an ambient temperature TA of 25°C, one can calculate the power dissipation of the device which in this case is 200 milliwatts. PD = 150°C – 25°C = 200 milliwatts 625°C/W
The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into
The 625° C/W assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 200 milliwatts. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad™. Using a board material such as Thermal Clad, a power dissipation of 400 milliwatts can be achieved using the same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. • Always preheat the device. • The delta temperature between the preheat and soldering should be 100°C or less.* • When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C.
• The soldering temperature and time should not exceed • When shifting from preheating to soldering, the • After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. • Mechanical stress or shock should not be applied during cooling * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. maximum temperature gradient should be 5°C or less. 260°C for more than 10 seconds.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
3
MSB710-QT1 MSB710-RT1
SOLDER STENCIL GUIDELINES
Prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. A solder stencil is required to screen the optimum amount of solder paste onto the footprint. The stencil is made of brass or stainless steel with a typical thickness of 0.008 inches. The stencil opening size for the SC–59 package should be the same as the pad size on the printed circuit board, i.e., a 1:1 registration.
TYPICAL SOLDER HEATING PROFILE
For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones, and a figure for belt speed. Taken together, these control settings make up a heating “profile” for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 1 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177 –189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.
STEP 1 PREHEAT ZONE 1 “RAMP” 200°C
STEP 2 STEP 3 VENT HEATING “SOAK” ZONES 2 & 5 “RAMP”
DESIRED CURVE FOR HIGH MASS ASSEMBLIES 150°C
STEP 4 STEP 5 STEP 6 STEP 7 HEATING HEATING VENT COOLING ZONES 3 & 6 ZONES 4 & 7 205° TO 219°C “SOAK” “SPIKE” PEAK AT 170°C SOLDER JOINT 160°C
150°C 100°C 100°C DESIRED CURVE FOR LOW MASS ASSEMBLIES 50°C 140°C
SOLDER IS LIQUID FOR 40 TO 80 SECONDS (DEPENDING ON MASS OF ASSEMBLY)
TIME (3 TO 7 MINUTES TOTAL)
TMAX
Figure 1. Typical Solder Heating Profile
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MSB710-QT1 MSB710-RT1
PACKAGE DIMENSIONS
A L
3 2 1
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. DIM A B C D G H J K L S MILLIMETERS MIN MAX 2.70 3.10 1.30 1.70 1.00 1.30 0.35 0.50 1.70 2.10 0.013 0.100 0.10 0.26 0.20 0.60 1.25 1.65 2.50 3.00 INCHES MIN MAX 0.1063 0.1220 0.0512 0.0669 0.0394 0.0511 0.0138 0.0196 0.0670 0.0826 0.0005 0.0040 0.0040 0.0102 0.0079 0.0236 0.0493 0.0649 0.0985 0.1181
S
B
D G
C H K
J
STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR
CASE 318D–03 ISSUE E SC–59
Motorola Small–Signal Transistors, FETs and Diodes Device Data
5
MSB710-QT1 MSB710-RT1
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
6
◊
MSB710–QT1/D Motorola Small–Signal Transistors, FETs and Diodes Device Data
*MSB710-QT1/D*