0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MP20075DH-LF-P

MP20075DH-LF-P

  • 厂商:

    MPS(美国芯源)

  • 封装:

    MSOP8_EP

  • 描述:

    IC REG ADJ 3A

  • 详情介绍
  • 数据手册
  • 价格&库存
MP20075DH-LF-P 数据手册
MP20075 3A, 1.05V–3.6V DDR2/3/3L/4 Memory Termination Regulator The Future of Analog IC Technology DESCRIPTION FEATURES The MP20075 precision DDR2/3/3L/4 termination LDO regulator features a precision VREF/2 tracking voltage for accurate termination. The VTT-LDO output can sink/source up to 3A. • • The MP20075 maintains a fast transient response only requires 20μF (2x10μF) ceramic output capacitance. The MP20075 supports Kelvin sensing. The MP20075 is available in the 8-pin MSOP with Exposed PAD and is specified from −40oC to 85oC. • • • • • • • • • VDDQ Voltage Range: 1.05V to 3.6 V Up to 3A Integrated Sink/Source Linear Regulator with Accurate VREF/2 Divider Reference for DDR2/3/3L/4 Termination Requires Only 20μF Ceramic Output Capacitance Drive Voltage: 3.3V 1.05V Input (VDDQ) Helps Reduce Total Power Dissipation Integrated Divider Tracks VREF for accurate VTT and VTTREF Output Voltage Kelvin Sensing (VTTSEN) ±30mV Accuracy for VTT ±18mV Accuracy for VTTREF Built-In Soft-Start, UVLO and OCL Thermal Shutdown APPLICATIONS • • Notebook DDR2/3/3L/4 Memory Supply and Termination Voltage in ACPI Compliant Systems Active Termination Bus All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. “MPS” and “The Future of Analog IC Technology” are registered trademarks of Monolithic Power Systems, Inc. TYPICAL APPLICATION MP20075 Rev. 1.2 7/15/2013 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 1 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR ORDERING INFORMATION Part Number* MP20075DH Package MSOP8E Top Marking Free Air Temperature (TA) 20075 -40°C to +85°C * For Tape & Reel, add suffix –Z (e.g. MP20075DH–Z); For RoHS Compliant Packaging, add suffix –LF (e.g. MP20075DH–LF–Z) PACKAGE REFERENCE TOP VIEW DDQ 1 8 VTTREF VTT 2 7 EN GND 3 6 REF VTTSEN 4 5 VDRV EXPOSED PAD ON BACKSIDE ABSOLUTE MAXIMUM RATINGS (1) Supply Voltage VDDQ........................ -0.3V to 3.6V Drive Voltage VDRV..................... -0.3V to 6.0V All Other Pins................................ -0.3V to 6.0V (2) Continuous Power Dissipation (TA = +25°C) ........................................................... 1.56W Junction Temperature...............................150oC Lead Temperature ....................................260oC Storage Temperature .............. -50oC to +150oC Recommended Operating Conditions (3) Drive Voltage VDRV.................... 3.0V to 3.5V Operating Junct. Temp (TJ) .......-40oC to +125oC MP20075 Rev. 1.2 7/15/2013 Thermal Resistance (4) θJA θJC MSOP8E.................................. 50...... 12... oC/W Notes: 1) Exceeding these ratings may damage the device. 2) The maximum allowable power dissipation is a function of the maximum junction temperature TJ(MAX), the junction-toambient thermal resistance θJA, and the ambient temperature TA. The maximum allowable continuous power dissipation at any ambient temperature is calculated by PD(MAX)=(TJ(MAX)TA)/ θJA. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage. 3) The device is not guaranteed to function outside of its operating conditions. 4) Measured on JESD51-7 4-layer board. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 2 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR ELECTRICAL CHARACTERISTICS VDRV = 3.3V, TA = +25oC, unless otherwise noted. Parameters Symbol VDRV Operating Voltage VDRV VDRV Shut down current IDRV_SD VDRV Operation Current IDRV Thermal Trip Point TSD Hysteresis TSDHYS VDDQ UVLO Upper VDDQUV+ Threshold VTT with Respect to 1/2VREF dVTT0 Test Condition Min Typ Max Unit ITT=3A VDRV =3.3 V, VDDQ=0V VEN_H, VTT=0.75V 3.0 3.3 0.2 1.3 150 25 3.5 1.0 3 V μA mA o C o C 0.9 1.0 V -30 -30 30 30 mV -30 -30 30 30 mV -30 -30 30 30 mV Rising Edge; hysteresis = 55mV 1/2VREF – VTT, VREF = 1.8V, IVTT = 0 to 3A (Sink Current) IVTT = 0 to 3A (Source Current) 1/2VREF – VTT, VREF = 1.5V, IVTT = 0 to 3A (Sink Current) IVTT = 0 to 3A (Source Current) 1/2VREF -VTT, VREF=1.35V IVTT = 0 to 3A (Sink Current) IVTT = 0 to 3A (Source Current) Source Current Limit ILIMVTsrc 4.0 A Sink Current Limit ILIMVTsnk 4.0 A ILIMVTSS 1.0 A Soft−Start Limit Source Current Maximum Soft−Start Time VTTREF Source Current VTTREF Accuracy Referred to 1/2VREF tssvttmax IVTTR dVTTR EN Pin Threshold High EN_H EN Pin Threshold Low EN_L EN Pin Input Current MP20075 Rev. 1.2 7/15/2013 IIN_EN VREF=1.8, VDRV=3.3V 9 VREF=1.5V, VDRV=3.3V 7 VREF = 1.8 V or 1.5 V 1/2VREF – VTTR, VREF = 1.8 V, IVTTR = 0mA to 10mA 1/2VREF – VTTR, VREF = 1.5 V, IVTTR = 0mA to 10mA μs 10 mA -18 18 mV -15 15 mV 1.4 EN = 3.3 V www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. V 0.5 V 1.0 μA 3 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR PIN FUNCTIONS Pin # Name 1 DDQ 2 VTT 4 GND, Exposed Pad VTTSEN 5 VDRV 6 REF 7 EN 8 VTTREF 3 MP20075 Rev. 1.2 7/15/2013 Description Power input for VTT regulator. Bypass with a 10μF ceramic capacitor. It is normally connected to the VDDQ of DDR2/3/3L/4 memory rail. Power output for the VTT LDO. Output is a precision VREF/2 voltage that tracks VREF. Recommended bypass is 2x10μF ceramic capacitors. The exposed pad and GND pin must be connected to the same ground plane. Kelvin sensed feedback signal. Chip bias Voltage. Connect to 3.3V supply and bypass with a 4.7μF capacitor. LDO signal input for generating VDDQ/2 reference. Bypass with a 0.1μF capacitor. VTT regulator enable input. EN HIGH will enable the MP20075 requires 100k pull-up resistor. Precision buffered output for the system with a drive capability up to 10mA. The receiving end of the DDR2/3/3L/4 memory cells requires this signal for their input comparator. Bypass with a 0.1μF capacitor. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 4 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR TYPICAL PERFORMANCE CHARACTERISTICS C1 =C2 = C3=10μF, C4 =C6 =0.1μF, C7 =4.7μF, VDRV =3.3V, TA=25 oC, unless otherwise noted. VTTREF Regulation DDR2 Regulation DDR3 Regulation 0.91 0.96 0.81 0.9 0.94 0.79 0.89 0.92 0.77 0.88 0.90 0.75 0.87 0.88 0.73 0.86 0 4 8 12 16 20 0.86 -4 -3 -2 -1 0 1 2 3 4 0.71 -4 LOAD CURRENT (A) 0.905 0.755 2.5 0.903 0.753 2.0 0.901 0.751 1.5 0.899 0.749 1.0 0.897 0.747 -10 20 50 80 110 0.895 -40 -10 20 50 80 110 0.745 -40 VTT 20mV/div. VTT 20mV/div. VDRV 2V/div. VDDQ 2V/div. VTT 0.5V/div. ITT 2A/div. ITT 2A/div. ITT 2A/div. MP20075 Rev. 1.2 7/15/2013 -2 -1 0 1 2 3 4 LOAD CURRENT (A) 3.0 0.5 -40 -3 -10 20 50 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 80 110 5 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR TYPICAL PERFORMANCE CHARACTERISTICS (continued) C1 =C2 = C3=10μF, C4 =C6 =0.1μF, C7 =4.7μF, VDRV =3.3V, TA=25 oC, unless otherwise noted. MP20075 Rev. 1.2 7/15/2013 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 6 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR DETAILED OPERATING DESCRIPTION VREF VDDQ DDQ REF Soft-Start 3.3V VDRV DDQ DDQ UVLO VTT Regulation & Deadband Control Current Limiter VTT VTT Current Limiter GND VTTSEN VTTSEN VTTREF EN VTTREF EN Figure 1—Function Block Diagram Control Logic The internal control logic is powered by VDRV. The IC is enabled whenever VDDQ UVLO is pulled low. VTTREF output begins to track VREF/2. When the VTTEN pin is high, the VTT regulator is activated. VTTREF Output The VTTREF output tracks VREF/2 with ±2% accuracy. It has source current capability of up to 10mA. VTTREF should be bypassed to analog ground with a 1.0μF ceramic capacitor for stable operation. The VTTREF is turned on as long as VDDQ is higher the UVLO threshold. VTTREF features a soft-start and tracks VREF/2. Output Voltages Sensing The VTT output voltage is sensed across the VTTSEN and GND pins. The VTTSEN should be connected to the VTT regulation point, which is usually the VTT local bypass capacitor, via a direct sense trace. The GND should be connected via a direct sense trace to the ground of the VTT local bypass capacitor for load. MP20075 Rev. 1.2 7/15/2013 VDDQ UVLO Protection For VDDQ under-voltage lockout (UVLO) protection, the MP20075 monitors VDDQ voltage. When the VDDQ voltage is lower than UVLO threshold voltage, the VTT regulator is shut off. Current Protection of VTT Active Terminator To provide protection for the internal FETs, over current limit (OCL) of 4A is implemented. The LDO has a constant overcurrent limit (OCL) at 4A. This trip point is reduced to 1.0A if the output voltage drops below 1/3 of the target voltage. Thermal Consideration of VTT Active Terminator The VTT terminator is designed to handle large transient output currents. If large currents are required for very long duration, then care should be taken to ensure the maximum junction temperature is not exceeded. The 8-pin MSOP with Exposed PAD has a thermal resistance of 50oC/W (dependent on air flow, and PCB design). www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 7 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR In order to take full advantage of the thermal capability of this package, the exposed pad should be soldered directly onto the PCB ground layer to allow good thermal contact. It is recommended that the PCB should have 10 to 15 vias with 0.3mm drill size underneath the exposed thermal pad connecting all the ground layers Supply Voltage Undervoltage Monitor The IC continuously monitors VDDQ. If VDDQ is set higher than its preset threshold and VTTEN is high too, the IC will start up. Thermal Shutdown When the chip junction temperature exceeds 150oC, the entire IC is shutdown. The IC resumes normal operation only after the junction temperature dropping below 125oC. MP20075 Rev. 1.2 7/15/2013 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 8 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR APPLICATION INFORMATION Input Capacitor Depending on the trace impedance from the power supply to the part, transient increase of source current is supplied mostly by the charge from the VDDQ input capacitor. Use a 10μF (or more) ceramic capacitor to supply this transient charge. Provide more input capacitance as more output capacitance is used at VTT. In general, use 1/2 COUT for input. The device does not sink and source the current at the same time and source/sink current varies rapidly with time. The actual power dissipation to be considered for thermal design is an average of the above values over time. Output Capacitor For stable operation, total capacitance of the VTT output terminal can be equal or greater than 20μF. Attach two 10μF ceramic capacitors in parallel to minimize the effect of ESR and ESL. If the ESR is greater than 10mΩ, insert an R-C filter between the output and the VTTSEN input to achieve loop stability. The R-C filter time constant should be almost the same or slightly lower than the time constant of the output capacitor and its ESR. PCB Layout Guidelines Good PCB layout design is critical to ensure high performance and stable operation of the DDR2/3/3L/4 power controller. The following items must be considered when preparing PCB layout: VDRV Capacitor Add a ceramic capacitor with a value between 1.0μF and 4.7μF placed close to the VDRV pin, to stabilize 3.3V from any parasitic impedance from the supply. Thermal design As the MP20075 is a linear regulator, the VTT current flow in both source and sink directions generate power dissipation from the device. In the source phase, the potential difference between VDDQ and VTT times VTT current becomes the power dissipation, Psource=(VDDQ-VTT) x Isource In this case, if VDDQ is connected to an alternative power supply lower than VDDQ voltage, power loss can be decreased. For the sink phase, VTT voltage is applied across the internal LDO regulator, and the power dissipation Psink is: Psink=VTT x Isink MP20075 Rev. 1.2 7/15/2013 Another power consumption is the current used for internal control circuitry from VDDQ supply. This power needs to be effectively dissipated from the package. 1. All high−current traces must be kept as short and wide as possible to reduce power loss. High−current traces are the trace from the input voltage terminal to VDDQ pin, the trace from the VTT output terminal to the load, the trace from the input ground terminal to the VTT output ground terminal, and the trace from VTT output ground terminal to the GND pin. Power handling and heaksinking of high−current traces can be improved by also routing the same high−current traces in the other layers by the same path and joining them together with multiple vias. 2. To ensure the proper function of the device, separated ground connections should be used for different parts of the application circuit according to their functions. The VTT output capacitor ground should be connected to the GND pin first with a short trace, it is then connected to the ground plane of GND. The input capacitor ground, the VTT output capacitor ground, the VDDQ decoupling capacitor ground should be connected to the GND plane. 3. The thermal pad of the 8-pin MSOP package should to be connected to GND for better thermal performance. It is recommended to use a PCB with 1 oz or 2oz copper foil. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 9 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR 4. A separate sense trace should be used to connect the VTT point of regulation, which is usually the local bypass capacitor for load, to the VTTSEN pin. 5. Separate sense trace should be used to connect the VREF point of regulation to the VTTREF pin to ensure the accuracy of the MP20075 Rev. 1.2 7/15/2013 reference voltage to VTT. 6. VDDQ should be connected to VREF Input with wide and short trace if VDDQ is used as the sourcing supply for VTT. An input capacitor of at least 10μF should be added close to the VDDQ pin and bypassed to GND if external voltage supply is used as the VTT sourcing supply. www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 10 MP20075 – 3A, 1.05V-3.6V INPUT, DDR2/3/3L MEMORY TERMINATION REGUALTOR PACKAGE INFORMATION MSOP8E (EXPOSED PAD) 0.087(2.20) 0.099(2.50) 0.114(2.90) 0.122(3.10) 5 8 0.114(2.90) 0.122(3.10) PIN 1 ID (NOTE 5) 0.187(4.75) 0.199(5.05) 0.062(1.58) 0.074(1.88) Exposed Pad 0.010(0.25) 0.014(0.35) 4 1 0.0256(0.65)BSC BOTTOM VIEW TOP VIEW GAUGE PLANE 0.010(0.25) 0.030(0.75) 0.037(0.95) 0.043(1.10)MAX SEATING PLANE 0.002(0.05) 0.006(0.15) FRONT VIEW NOTE: 0.181(4.60) 0.040(1.00) 0.016(0.40) 0.016(0.40) 0.026(0.65) SIDE VIEW 0.100(2.54) 0.075(1.90) 0o-6o 0.004(0.10) 0.008(0.20) 1) CONTROL DIMENSION IS IN INCHES. DIMENSION IN BRACKET IS IN MILLIMETERS. 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR. 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.004" INCHES MAX. 5) PIN 1 IDENTIFICATION HAS HALF OR FULL CIRCLE OPTION. 6) DRAWING MEETS JEDEC MO-187, VARIATION AA-T. 7) DRAWING IS NOT TO SCALE. 0.0256(0.65)BSC RECOMMENDED LAND PATTERN NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications. MP20075 Rev. 1.2 7/15/2013 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2013 MPS. All Rights Reserved. 11
MP20075DH-LF-P
物料型号:MP20075

器件简介: - MP20075是一款精密DDR2/3/3L/4终止LDO调节器,具有精确的VREF/2跟踪电压,用于准确的终止。 - VTT-LDO输出可以吸收或提供高达3A的电流。 - 该芯片支持Kelvin感测,并在-40°C至85°C的温度范围内规格化。

引脚分配: - DDQ:VTT调节器的电源输入,通常连接到DDR2/3/3L/4内存轨的VDDQ。 - VTT:VTT LDO的电源输出,输出是跟踪VREF的精确VREF/2电压。 - GND/Exposed Pad:暴露的垫和GND引脚必须连接到相同的地平面。 - VTTSEN:Kelvin感测反馈信号。 - VDRV:芯片偏置电压,连接到3.3V电源,并用4.7uF电容器旁路。 - REF:用于生成VDDQ/2参考的LDO信号输入。 - EN:VTT调节器使能输入,需要100k上拉电阻。 - VTTREF:系统用精密缓冲输出,驱动能力高达10mA。

参数特性: - VDDQ电压范围:1.05V至3.6V。 - 集成的吸/源线性调节器,准确VREF/2分压参考,用于DDR2/3/3L/4终止。 - 仅需要20μF陶瓷输出电容。 - 驱动电压:3.3V。 - 输入(VDDQ)为1.05V有助于减少总功耗。

功能详解: - 集成分压器跟踪VREF以实现准确的VTT和VTTREF输出电压。 - ±30mV的VTT精度和±18mV的VTTREF精度。 - 内置软启动、欠压锁定(UVLO)和热关断(OCL)。

应用信息: - 笔记本电脑DDR2/3/3L/4内存供电和终止电压。 - 在ACPI兼容系统中的主动终止总线。

封装信息: - 8引脚MSOP,带有暴露的PAD。
MP20075DH-LF-P 价格&库存

很抱歉,暂时无法提供与“MP20075DH-LF-P”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MP20075DH-LF-P
  •  国内价格 香港价格
  • 500+7.57373500+0.93952
  • 1000+7.029461000+0.87200
  • 1500+6.754761500+0.83793
  • 2500+6.448462500+0.79993
  • 3500+6.268493500+0.77761
  • 5000+6.094625000+0.75604
  • 12500+5.7174112500+0.70925

库存:3265

MP20075DH-LF-P
  •  国内价格 香港价格
  • 1+20.847931+2.58618
  • 10+13.4484710+1.66828
  • 25+11.4985125+1.42639
  • 100+9.29942100+1.15359
  • 250+8.22802250+1.02069

库存:3265