MP8762H
High Efficiency, 10A, 18V
Synchronous Step-down Converter
The Future of Analog IC Technology
DESCRIPTION
FEATURES
The MP8762H is a fully integrated high
frequency synchronous rectified step-down
switch mode converter. It offers a very compact
solution to achieve 10A output current over a
wide input supply range with excellent load and
line regulation. The MP8762H operates at high
efficiency over a wide output current load range.
The MP8762H adopts Constant-On-Time (COT)
control mode that provides fast transient
response and eases loop stabilization.
Operation frequency can be programmed easily
from 200kHz to 1MHz by an external resistor
and keeps nearly constant as input supply
varies by the feedforward compensation.
VCC under voltage lockout is internally set at
3.8V, but can be increased by programming the
threshold with a resistor network on the enable
pin. The output voltage startup ramp is
controlled by the soft start pin. An open drain
power good signal indicates the output is within
its nominal voltage range.
Full integrated protection features include OCP,
OVP and thermal shutdown.
The MP8762H requires a minimum number of
readily available standard external components
and are available in QFN 3X4 package.
2.5V to 18V Operating Input Range with
External 5V Bias
4.5V to 18V Operating Input Range with
Internal Bias
10A Output Current
Low RDS(ON) Internal Power MOSFETs
Proprietary Switching Loss Reduction
Technique
Adaptive COT for Ultrafast Transient
Response
1.5% Reference Voltage Over -40C to
+125C Junction Temperature Range
Programmable Soft Start Time
Pre-Bias Start up
Programmable Switching Frequency from
200kHz to 1MHz
Non-latch OCP, OVP Protection and
Thermal Shutdown
Output Adjustable from 0.611V to 13V
APPLICATIONS
Set-top Boxes
XDSL Modem/DSLAM
Small-cell Base Stations
Personal Video Recorders
Flat Panel Television and Monitors
Distributed Power Systems
All MPS parts are lead-free, halogen free, and adhere to the RoHS
directive. For MPS green status, please visit MPS website under Quality
Assurance.
“MPS” and “The Future of Analog IC Technology” are Registered
Trademarks of Monolithic Power Systems, Inc.
TYPICAL APPLICATION
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
1
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
ORDERING INFORMATION
Part Number
Package
Top Marking
MP8762HGLE*
QFN-16 (3mm×4mm)
See Below
* For Tape & Reel, add suffix –Z (e.g. MP8762HGLE–Z)
TOP MARKING
MP: MPS prefix;
Y: year code;
W: week code;
8762: first four digits of the part number;
H: fifth digit of the part number;
LLL: lot number;
E: package type suffix
PACKAGE REFERENCE
TOP VIEW
QFN-16 (3mm×4mm)
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
2
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
ABSOLUTE MAXIMUM RATINGS (1)
Thermal Resistance (5)
Supply Voltage VIN ........................................ 21V
VSW ........................................ -0.3V to VIN + 0.3V
VSW (30ns) ................................... -3V to VIN + 3V
VBST........................................................ VSW + 6V
Enable Current IEN(2)................................ 2.5mA
All Other Pins ................................. –0.3V to +6V
Continuous Power Dissipation (TA=+25)(3)
QFN3X4……………………….…..…………2.7W
Junction Temperature ............................... 150C
Lead Temperature .................................... 260C
Storage Temperature ................-65C to +150C
QFN-16 (3mm×4mm).............. 46 ........ 9 .... C/W
Recommended Operating Conditions (4)
θJA
θJC
Notes:
1) Exceeding these ratings may damage the device.
2) Refer to the section “Configuring the EN Control”.
3) The maximum allowable power dissipation is a function of the
maximum junction temperature TJ(MAX), the junction-toambient thermal resistance θJA, and the ambient temperature
TA. The maximum allowable continuous power dissipation at
any ambient temperature is calculated by PD(MAX)=(TJ(MAX)TA)/θJA. Exceeding the maximum allowable power dissipation
will cause excessive die temperature, and the regulator will go
into thermal shutdown. Internal thermal shutdown circuitry
protects the device from permanent damage.
4) The device is not guaranteed to function outside of its
operating conditions.
5) Measured on JESD51-7, 4-layer PCB.
Supply Voltage VIN ........................... 4.5V to 18V
Output Voltage VOUT ..................... 0.611V to 13V
IEN ................................................... 0mA to 1mA
Operating Junction Temp. (TJ). -40°C to +125°C
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
3
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
ELECTRICAL CHARACTERISTICS
VIN = 12V, TJ = +25C, unless otherwise noted.
Parameters
Symbol
Condition
Min
Typ
Max
Units
760
0
860
1
960
μA
μA
Supply Current
Supply Current (Shutdown)
Supply Current (Quiescent)
IIN
IIN
VEN = 0V
VEN = 2V, VFB = 1V
MOSFET
High-side Switch On Resistance
HSRDS-ON
TJ =25C
19.6
26
mΩ
Low-side Switch On Resistance
LSRDS-ON
TJ =25C
VEN = 0V, VSW = 0V or 12V
5.7
16
mΩ
0
1
μA
10
13
16
A
-4
-2.5
-1
A
20
40
200
30
250
360
420
ns
ns
ns
117%
120%
123%
VFB
Switch Leakage
SWLKG
Current Limit
Low-side Valley Current Limit (6)
ILIMIT_VALLEY
Low-side Negative Current Limit (6) ILIMIT_NEGATIVE
Timer
Minimum On Time (6)
One-Shot On Time
Minimum Off Time(6)
TON_MIN
TON
TOFF_MIN
RFREQ=453kΩ, VOUT=1.2V
Over-voltage and Under-voltage Protection
OVP Non-latch Threshold
VOVP_NONLATCH
OVP Delay
TOVP
2
μs
UVP Threshold (6)
VUVP
50%
VFB
Reference And Soft Start
Reference Voltage
VREF
TJ = -40C to +125C (7)
602
611
620
TJ = +25C
605
611
617
Feedback Current
IFB
VFB = 650mV
Soft Start Charging Current
ISS
VSS=0V
mV
50
100
nA
16
20
25
μA
1.1
1.3
1.5
V
Enable And UVLO
Enable Input Low Voltage
Enable Hysteresis
Enable Input Current
VILEN
VEN-HYS
IEN
VEN = 2V
VEN = 0V
250
0
0
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
mV
μA
4
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
ELECTRICAL CHARACTERISTICS (continued)
VIN = 12V, TJ = +25C, unless otherwise noted.
Parameters
Symbol
Condition
Min
Typ
Max
Units
VCC Regulator
VCC Under Voltage Lockout
Threshold Rising
VCC Under Voltage Lockout
Threshold Hysteresis
VCC Regulator
VCC Load Regulation
Power Good
Power Good Rising Threshold
Power Good Falling Threshold
Power Good Lower to High Delay
Power Good Sink Current
Capability
Power Good Leakage Current
VCCVth
3.8
V
VCCHYS
500
mV
VCC
4.8
0.5
V
%
Icc=5mA
PGVth-Hi
PGVth-Lo
PGTd
87%
VPG
Sink 4mA
IPG_LEAK
VPG = 3.3V
91%
80%
2.5
10
94%
VFB
VFB
ms
0.4
V
100
nA
(6)
Thermal Protection
Thermal Shutdown
Thermal Shutdown Hysteresis
TSD
150
25
°C
°C
Note:
6) Guaranteed by design.
7) Not production test, guaranteed by characterization
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
5
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
PIN FUNCTIONS
PIN#
16-Pin
QFN
Name
1
EN
2
FREQ
3
FB
4
SS
5
AGND
6
PG
7
VCC
8
BST
9, 14
IN
10,11,12,
13
PGND
15, 16
SW
Description
Enable pin. EN is a digital input that turns the regulator on or off. Drive EN high to turn
on the regulator, drive it low to turn it off. Connect EN to IN through a pull-up resistor
or a resistive voltage divider for automatic startup. Do not float this pin. See Enable
Control section for more details.
Frequency set during CCM operation. A resistor connected between FREQ and IN is
required to set the switching frequency. The ON time is determined by the input
voltage and the resistor connected to the FREQ pin. IN connect through a resistor is
used for line feed-forward and makes the frequency basically constant during input
voltage’s variation.
Feedback. An external resistor divider from the output to GND, tapped to the FB pin,
sets the output voltage. It is recommended to place the resistor divider as close to FB
pin as possible. Vias should be avoided on the FB traces.
Soft Start. Connect an external capacitor to program the soft start time for the switch
mode regulator.
Analog ground. Select this pin as the control circuit reference point.
Power good output, the output of this pin is an open drain signal and a pull-up resistor
connected to a DC voltage is required to indicate high if the output voltage is higher
than 91% of the nominal voltage. There is a delay from FB ≥ 91% to PGOOD goes
high.
Internal 4.8V LDO output. The driver and control circuits are powered from this
voltage. Decouple with a minimum 1µF ceramic capacitor as close to the pin as
possible. X7R or X5R grade dielectric ceramic capacitors are recommended for their
stable temperature characteristics.
Bootstrap. A capacitor connected between SW and BST pins is required to form a
floating supply across the high-side switch driver.
Supply Voltage. The IN pin supplies power for internal MOSFET and regulator. The
MP8762H operates from a +2.5V to +18V input rail with 5V external bias and a +4.5V
to +18V input rail with internal bias. An input capacitor is needed to decouple the input
rail. Use wide PCB traces and multiple vias to make the connection.
System Ground. This pin is the reference ground of the regulated output voltage. For
this reason care must be taken in PCB layout. Use wide PCB traces to make the
connection.
Switch Output. Connect this pin to the inductor and bootstrap capacitor. This pin is
driven up to the VIN voltage by the high-side switch during the on-time of the PWM
duty cycle. The inductor current drives the SW pin negative during the off-time. The
on-resistance of the low-side switch and the internal Schottky diode fixes the negative
voltage. Use wide PCB traces to make the connection.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
6
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
TYPICAL CHARACTERISTICS
VIN = 12V, VOUT = 1V, L = 1µH, TA = 25ºC, unless otherwise noted.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
7
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
TYPICAL CHARACTERISTICS (continued)
VIN = 12V, VOUT = 1V, L = 1µH, TA = 25ºC, unless otherwise noted.
BST Voltage vs.
Temperature
5
13
4.8
11
9
7
5
0
5
10
15
20
700
IBST=0mA
4.6
IBST=5mA
4.4
4.2
4
-50
25
SWITCHING FREQUENCY (kHz)
15
BST VOLTAGE (V)
VALLEY CURRENT LIMIT (A)
Valley Curretn Limit vs.
Input Voltage
0
50
100
150
600
500
400
300
200
-50
0
50
100
150
INPUT VOLTAGE (V)
Switching Frequency vs.
RFREQ
Case Temperature Rise
vs. Output Current
SWITCHING FREQUENCY (kHz)
SWITCHING FREQUENCY (kHz)
1100
900
700
500
300
100
100
300
500
700
900
600
35
500
30
25
400
20
300
15
200
10
100
0
FSW=500kHz
5
0
2.5
5
7.5
OUTPUT CURRENT (A)
10
0
0
2
4
6
8
OUTPUT CURRENT (A)
10
FB Reference Voltage vs.
Temperature
FB REFERENCE VOLTAGE (V)
620
615
610
605
600
-50
0
50
100
150
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
8
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
TYPICAL PERFORMANCE CHARACTERISTICS
VIN = 12V, VOUT = 1V, L = 1µH, TA = 25ºC, unless otherwise noted.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
9
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN=12V, VOUT =1V, L=1µH, TA=+25°C, unless otherwise noted.
Start Up Through VIN
IOUT = 0A
EN
5V/div.
EN
5V/div.
VOUT
500mV/div.
VOUT
500mV/div.
VOUT
500mV/div.
VIN
10V/div.
SW
10V/div.
PG
5V/div.
PG
5V/div.
IL
2A/div.
Start Up Through VIN
Shutdown Through VIN
IOUT = 10A
Shutdown Through VIN
IOUT = 0A
IOUT = 10A
VOUT
1V/div.
VOUT
500mV/div.
VIN
10V/div.
SW
10V/div.
VOUT
500mV/div.
VIN
10V/div.
SW
10V/div.
VIN
5V/div.
SW
10V/div.
IL
10A/div.
IL
10A/div.
IL
10A/div.
VOUT
500mV/div.
Start up through EN
Start up through EN
Shutdown Through EN
IOUT = 0A
IOUT = 10A
IOUT = 0A
VOUT
500mV/div.
VOUT
500mV/div.
EN
5V/div.
EN
5V/div.
SW
10V/div.
EN
5V/div.
SW
10V/div.
SW
10V/div.
IL
2A/div.
IL
10A/div.
IL
2A/div.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
10
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
VIN=12V, VOUT =1V, L=1µH, TA=+25°C, unless otherwise noted.
Short Circuit Protection
VOUT
1V/div.
VOUT (AC)
500mV/div.
VOUT (AC)
100mV/div.
EN
5V/div.
SW
10V/div.
SW
10V/div.
IL
5A/div.
IL
10A/div.
IL
10A/div.
Thermal Shutdown
Thermal Recovery
IOUT = 0A
IOUT = 0A
VOUT
500mV/div.
VOUT
500mV/div.
SW
10V/div.
SW
10V/div.
IL
2A/div.
IL
2A/div.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
11
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
BLOCK DIAGRAM
Figure 1—Functional Block Diagram
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
12
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
OPERATION
PWM Operation
The MP8762H is fully integrated synchronous
rectified step-down switch mode converter.
Constant-on-time (COT) control is employed to
provide fast transient response and easy loop
stabilization. At the beginning of each cycle, the
high-side MOSFET (HS-FET) is turned ON when
the feedback voltage (VFB) is below the reference
voltage (VREF), which indicates insufficient output
voltage. The ON period is determined by the
input voltage and the frequency-set resistor as
follows:
6.1 R FREQ (k)
(1)
TON (ns)
VIN ( V ) 0.4
After the ON period elapses, the HS-FET is
turned off, or becomes OFF state. It is turned ON
again when VFB drops below VREF. By repeating
operation this way, the converter regulates the
output voltage. The integrated low-side MOSFET
(LS-FET) is turned on when the HS-FET is in its
OFF state to minimize the conduction loss. There
will be a dead short between input and GND if
both HS-FET and LS-FET are turned on at the
same time. It’s called shoot-through. In order to
avoid shoot-through, a dead-time (DT) is
internally generated between HS-FET off and LSFET on, or LS-FET off and HS-FET on.
Heavy-Load Operation
interval which is determined by one-shot on-timer
as equation 1 shown. When the HS-FET is
turned off, the LS-FET is turned on until next
period.
In CCM mode operation, the switching frequency
is fairly constant and it is called PWM mode.
Light-Load Operation
As the load decreases, the inductor current
decreases too. When the inductor current
touches zero, the operation is transited from
continuous-conduction-mode
(CCM)
to
discontinuous-conduction-mode (DCM).
The light load operation is shown in Figure 3.
When VFB is below VREF, HS-FET is turned on for
a fixed interval which is determined by one- shot
on-timer as equation 1 shown. When the HS-FET
is turned off, the LS-FET is turned on until the
inductor current reaches zero. In DCM operation,
the VFB does not reach VREF when the inductor
current is approaching zero. The LS-FET driver
turns into tri-state (high Z) whenever the inductor
current reaches zero. A current modulator takes
over the control of LS-FET and limits the inductor
current to less than -1mA. Hence, the output
capacitors discharge slowly to GND through LSFET. As a result, the efficiency at light load
condition is greatly improved. At light load
condition, the HS-FET is not turned ON as
frequently as at heavy load condition. This is
called skip mode.
At light load or no load condition, the output
drops very slowly and the MP8762H reduces the
switching frequency naturally and then high
efficiency is achieved at light load.
Figure 2—Heavy Load Operation
When the output current is high and the inductor
current is always above zero amps, it is called
continuous-conduction-mode (CCM). The CCM
mode operation is shown in Figure 2. When VFB
is below VREF, HS-FET is turned on for a fixed
Figure 3—Light Load Operation
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
13
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
As the output current increases from the light
load condition, the time period within which the
current modulator regulates becomes shorter.
The HS-FET is turned ON more frequently.
Hence, the switching frequency increases
correspondingly. The output current reaches the
critical level when the current modulator time is
zero. The critical level of the output current is
determined as follows:
IOUT
( VIN VOUT ) VOUT
2 L FSW VIN
(2)
Where FSW is the switching frequency.
It turns into PWM mode once the output current
exceeds the critical level. After that, the switching
frequency stays fairly constant over the output
current range.
High switching frequency makes it possible to
utilize small sized LC filter components to save
system PCB space.
Jitter and FB Ramp Slope
Figure 4 and Figure 5 show jitter occurring in
both PWM mode and skip mode. When there is
noise in the VFB downward slope, the ON time of
HS-FET deviates from its intended location and
produces jitter. It is necessary to understand that
there is a relationship between a system’s
stability and the steepness of the VFB ripple’s
downward slope. The slope steepness of the VFB
ripple dominates in noise immunity. The
magnitude of the VFB ripple doesn’t affect the
noise immunity directly.
Switching Frequency
The selection of switching frequency is a tradeoff
between efficiency and component size. Low
frequency operation increases efficiency by
reducing MOSFET switching losses, but requires
larger inductance and capacitance to maintain
low output voltage ripple.
For MP8762H , the on time can be set using
FREQ pin, then the frequency is set in steady
state operation at CCM mode.
Adaptive constant-on-time (COT) control is used
in MP8762H and there is no dedicated oscillator
in the IC. Connect FREQ pin to IN pin through
resistor RFREQ and the input voltage is feedforwarded to the one-shot on-time timer through
the resistor RFREQ. When in steady state
operation at CCM, the duty ratio is kept as
VOUT/VIN. Hence the switching frequency is fairly
constant over the input voltage range. The
switching frequency can be set as follows:
FSW (kHz )
6
10
(3)
6.1 R FREQ (k) VIN ( V )
TDELAY (ns)
VIN ( V ) 0.4
VOUT ( V )
Where TDELAY is the comparator delay. It’s about
5ns. After adding load, the frequency may be
affected a little because power MOSFET voltage
drop will affect the duty cycle.
Figure 4—Jitter in PWM Mode
Figure 5—Jitter in Skip Mode
Ramp with Large ESR Capacitor
In the case of POSCAP or other types of
capacitor with lager ESR is applied as output
capacitor, the ESR ripple dominates the output
ripple, and the slope on the FB is quite ESR
related. Figure 6 shows an equivalent circuit in
PWM mode with the HS-FET off and without an
external ramp circuit. Turn to application
information section for design steps with large
ESR capacitors.
Generally, the MP8762H is set for 200kHz to
1MHz application. It is optimized to operate at
high switching frequency with high efficiency.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
14
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
SW
Where:
VOUT
L
FB
ESR
R1
And the ramp on the VFB can then be estimated
as:
POSCAP
R2
VRAMP
Figure 6—Simplified Circuit in PWM Mode
without External Ramp Compensation
To realize the stability when no external ramp is
applied, usually the ESR value should be chosen
as follow:
RESR
TSW
T
ON
2
0.7
COUT
(4)
Where TSW is the switching period.
Ramp with Small ESR Capacitor
When the output capacitors are ceramic ones,
the ESR ripple is not high enough to stabilize the
system, and external ramp compensation is
needed. Skip to application information section
for design steps with small ESR caps.
R4
C4
IR4
IC4
R9
VIN VOUT
R1 // R2
TON
R 4 C4
R1 // R2 R9
The downward slope of the VFB ripple then
follows:
VSLOPE1
VOUT
VRAMP
TOFF
R 4 C4
TSW
T
ON RESR COUT
I 10 3
0.7
2
VSLOPE1
VOUT OUT
2 L COUT
TSW TON
(9)
Where IOUT is the load current.
R1
VOUT
Ceramic
R2
FB
R1
C OUT
Figure 7—Simplified Circuit in PWM Mode
with External Ramp Compensation
In PWM mode, an equivalent circuit with HS-FET
off and the use of an external ramp
compensation circuit (R4, C4) is simplified in
Figure 7. The external ramp is derived from the
inductor ripple current. If one chooses C4, R9,
R1 and R2 to meet the following condition:
1
2 FSW C4
1 R1 R2
R9
5 R1 R2
(8)
As can be seen from equation 8, if there is
instability in PWM mode, we can reduce either
R4 or C4. If C4 can not be reduced further due to
limitation from equation 5, then we can only
reduce R4. For a stable PWM operation, the
Vslope1 should be design follow equation 9.
IFB
FB
(7)
In skip mode, the downward slope of the VFB
ripple is almost same whether the external ramp
is used or not. Fig.8 shows the simplified circuit
of the skip mode when both the HS-FET and LSFET are off.
VOUT
L
SW
(6)
IR 4 I C 4 IFB IC 4
(5)
ROUT
R2
Figure 8—Simplified Circuit in skip Mode
The downward slope of the VFB ripple in skip
mode can be determined as follows:
VSLOPE 2
VREF
[(R1 R2) // ROUT ] COUT
(10)
Where ROUT is the equivalent load resistor.
As described in Fig.5, VSLOPE2 in the skip mode is
lower than that is in the PWM mode, so it is
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
15
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
reasonable that the jitter in the skip mode is
larger. If one wants a system with less jitter
during ultra light load condition, the values of the
VFB resistors should not be too big, however, that
will decrease the light load efficiency.
A typical pull-up resistor is 100kΩ.
Configuring the EN Control
En high to turn on the regulator and EN low to
turn it off. Do not float the pin.
Soft Start
The MP8762H employs soft start (SS)
mechanism to ensure smooth output during
power-up. When the EN pin becomes high, an
internal current source (20μA) charges up the SS
capacitor. The SS capacitor voltage takes over
the REF voltage to the PWM comparator. The
output voltage smoothly ramps up with the SS
voltage. Once the SS voltage reaches the same
level as the REF voltage, it keeps ramping up
while VREF takes over the PWM comparator. At
this point, the soft start finishes and it enters into
steady state operation.
For automatic start-up the EN pin can be pulled
up to input voltage through a resistive voltage
divider. Choose the values of the pull-up resistor
(RUP from VIN pin to EN pin) and the pull-down
resistor(RDOWN from EN pin to GND) to determine
the automatic start-up voltage:
VINSTART 1.5
(R UP R DOWN )
(V)
R DOWN
(11)
For example, for RUP=100kΩ and RDOWN=51kΩ,
the VIN-START is set at 4.44V.
To avoid noise, a 10nF ceramic capacitor from
EN to GND is recommended.
There is an internal zener diode on the EN pin,
which clamps the EN pin voltage to prevent it
from running away. The maximum pull up current
assuming a worst case 6V internal zener clamp
should be less than 1mA.
Therefore, when EN is driven by an external logic
signal, the EN voltage should be lower than 6V;
when EN is connected with VIN through a pull-up
resistor or a resistive voltage divider, the
resistance selection should ensure the maximum
pull up current less than 1mA.
If using a resistive voltage divider and VIN higher
than 6V, the allowed minimum pull-up resistor
RUP should meet the following equation:
VIN 6V
6V
1mA
R UP
R DOWN
(12)
Especially, just using the pull-up resistor RUP (the
pull-down resistor is not connected), the VIN-START
is determined by VCC UVLO, and the minimum
resistor value is:
R UP
VIN 6V
( )
1mA
(13)
External VCC bias
An external 5V VCC bias can disable the internal
LDO, in this case, Vin can be as low as 2.5V.
The SS capacitor value can be determined as
follows:
CSS nF
TSS ms ISS A
VREF V
(14)
If the output capacitors have large capacitance
value, it’s not recommended to set the SS time
too small. Otherwise, it’s easy to hit the current
limit during SS.
Pre-Bias Startup
The MP8762H has been designed for monotonic
startup into pre-biased loads. If the output is prebiased to a certain voltage during startup, the IC
will disable the switching of both high-side and
low-side switches until the voltage on the softstart capacitor exceeds the sensed output
voltage at the FB pin.
Power Good (PG)
The MP8762H have power-good (PG) output.
The PG pin is the open drain of a MOSFET. It
should be connected to VCC or other voltage
source that is less 5.5V through a pull-up resistor
(e.g. 100k). After VCC is ready, the MOSFET is
turned on so that the PG pin is pulled to GND
before SS is ready. After FB voltage reaches
91% of REF voltage, the PG pin is pulled high
after a 2.5ms delay.
When the FB voltage drops to 80% of REF
voltage or exceeds 120% of the nominal REF
voltage, the PG pin will be pulled low.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
16
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
If the MP8762H doesn’t work, the PG pin is also
pulled low even though this pin is tied to an
external DC source through a pull-up resistor(e.g.
100k).
Over-Current Protection (OCP)
MP8762H enter OCP mode if only the LS FET
sourcing valley current exceeds the valley current
limit. Once the OCP is triggered, the LS-FET
keeps ON state until the LS-FET sourcing valley
current is less than the valley current limit. And
then the LS-FET turns off, the HS-FET turns on
for a fixed time determined by frequency-set
resistor RFREQ and input voltage.
During OCP, the device tries to recover from the
over-current fault with hiccup mode: the chip
disables the output power stage, discharges the
soft-start capacitor and then automatically retries
soft-start. If the over-current condition still holds
after soft-start ends, the device repeats this
operation cycle until the over-current conditions
disappear and then output rises back to
regulation level. OCP offers non-latch protection.
Low-side negative current limit: If the LS-FET
sensed negative current exceeds the negative
current limit, e.g. over-voltage protection (OVP)
the LS-FET is turned off immediately for the the
rest of OFF time. In this situation, both MOSFETs
are off until the end of a fixed interval. The body
diode of HS-FET conducts the inductor current
for the fixed time.
Over -voltage Protection (OVP)
The MP8762H monitors the output voltage
through a resistor divider feedback (FB) voltage
to detect over-voltage on the output.
when the VCC voltage is lower than the UVLO
falling threshold voltage. This is non-latch
protection.
The MP8762H is disabled when the VCC voltage
falls below 3.3 V. If an application requires a
higher under-voltage lockout (UVLO), use the EN
pin as shown in Figure 9 to adjust the startup
input voltage by using two external resistors. It is
recommended to use the enable resistors to set
the input voltage falling threshold (VSTOP) above
3.6 V. The rising threshold (VSTART) should be set
to provide enough hysteresis to allow for any
input supply variations.
IN
RUP
RDOWN
EN Comparator
EN
Figure 9—Adjustable UVLO
Thermal Shutdown
Thermal shutdown is employed in the MP8762H.
The junction temperature of the IC is internally
monitored. If the junction temperature exceeds
the threshold value (minimum 150ºC), the
converter shuts off. This is a non-latch protection.
There is about 25ºC hysteresis. Once the
junction temperature drops to about 125ºC, it
initiates a soft startup.
If the FB voltage is higher than nominal REF
voltage but lower than 120% of the REF voltage
(0.611V), both MOSFETs are off,
When the FB voltage is higher than 120%, the
LS-FET will be turned on while the HS-FET
keeps off. The LS-FET keeps on until the FB
voltage drops below 110% of the REF voltage or
the low-side negative current limit is trigged.
UVLO protection
The MP8762H has under-voltage lock-out
protection (UVLO). When the VCC voltage is
higher than the UVLO rising threshold voltage,
the MP8762H will be powered up. It shuts off
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
17
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
APPLICATION INFORMATION
Setting the Output Voltage-Large ESR Caps
For applications that electrolytic capacitor or POS
capacitor with a controlled output of ESR is set
as output capacitors. The output voltage is set by
feedback resistors R1 and R2. As figure 10
shows.
SW
L
VOUT
FB
ESR
R1
POSCAP
R2
R1
Figure10—Simplified Circuit of POS Capacitor
First, choose a value for R2. R2 should be
chosen reasonably, a small R2 will lead to
considerable quiescent current loss while too
large R2 makes the FB noise sensitive. It is
recommended to choose a value within 5kΩ50kΩ for R2, using a comparatively larger R2
when VOUT is low, and a smaller R2 when VOUT is
high. Then R1 is determined as follow with the
output ripple considered:
1
VOUT VOUT VREF
2
R1
R2
VREF
(15)
VOUT is the output ripple determined by equation
24.
Setting the Output Voltage-Small ESR Caps
SW
FB
L
R4
VOUT
C4
R9
added to FB through resistor R4 and capacitor
C4. The output voltage is influenced by ramp
voltage VRAMP besides resistor divider as shown
in figure 11. The VRAMP can be calculated as
shown in equation 7. R2 should be chosen
reasonably, a small R2 will lead to considerable
quiescent current loss while too large R2 makes
the FB noise sensitive. It is recommended to
choose a value within 5kΩ-50kΩ for R2, using a
comparatively larger R2 when VOUT is low, and a
smaller R2 when VOUT is high. And the value of
R1 then is determined as follow:
R1
Ceramic
R2
Figure11—Simplified Circuit of Ceramic
Capacitor
When low ESR ceramic capacitor is used in the
output, an external voltage ramp should be
R2
VFB( AVG)
VOUT VFB( AVG)
R2
R4 R9
(16)
The VFB(AVG) is the average value on the FB.
VFB(AVG) varies with the VIN, VOUT, and load
condition, etc.. Its value on the skip mode would
be lower than that of the PWM mode, which
means the load regulation is strictly related to the
VFB(AVG). Also the line regulation is related to the
VFB(AVG) ,if one wants to gets a better load or line
regulation, a lower VRAMP is suggested once it
meets equation 9.
For PWM operation, VFB(AVG) value can be
deduced from equation 17.
1
(17)
VFB ( AVG) VREF VRAMP
2
Usually, R9 is set to 0Ω, and it can also be set
following equation 18 for a better noise immunity.
It also should be set to be 5 timers smaller than
R1//R2 to minimize its influence on VRAMP.
1 R1 R2
(18)
R9
5 R1 R2
Using equation 16 and 17 to calculate the output
voltage can be complicated. To simplify the
calculation of R1 in equation 11, a DC-blocking
capacitor CDC can be added to filter the DC
influence from R4 and R9. Figure 12 shows a
simplified
circuit
with
external
ramp
compensation and a DC-blocking capacitor. With
this capacitor, R1 can easily be obtained by
using equation 19 for PWM mode operation.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
18
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
R1
1
VRAMP
2
R2
1
VRAMP
2
VOUT VREF
VREF
(19)
CDC is suggested to be at least 10 times larger
than C4 for better DC blocking performance, and
should be not larger than 0.47uF considering
start up performance. In case one wants to use
larger CDC for a better FB noise immunity,
combined with reduced R1 and R2 to limit the
CDC in a reasonable value without affecting the
system start up. Be noted that even when the
Cdc is applied, the load and line regulation are
still VRAMP related.
SW
FB
L
VOUT
R4
C4
R1
C DC
Figure12—Simplified Circuit of Ceramic
Capacitor with DC blocking capacitor
Input Capacitor
The input current to the step-down converter is
discontinuous. Therefore, a capacitor is required
to supply the AC current to the step-down
converter while maintaining the DC input voltage.
Ceramic capacitors are recommended for best
performance. In the layout, it’s recommended to
put the input capacitors as close to the IN pin as
possible.
The capacitance varies significantly over
temperature. Capacitors with X5R and X7R
ceramic dielectrics are recommended because
they are fairly stable over temperature.
The capacitors must also have a ripple current
rating greater than the maximum input ripple
current of the converter. The input ripple current
can be estimated as follows:
VOUT
V
(1 OUT )
VIN
VIN
For simplification, choose the input capacitor
whose RMS current rating is greater than half of
the maximum load current.
The input capacitance value determines the input
voltage ripple of the converter. If there is input
voltage ripple requirement in the system design,
choose the input capacitor that meets the
specification
The input voltage ripple can be estimated as
follows:
IOUT
V
V
(22)
VIN
OUT (1 OUT )
VIN
FSW CIN
VIN
The worst-case condition occurs at VIN = 2VOUT,
where:
IOUT
1
(23)
VIN
4 FSW CIN
Ceramic
R2
ICIN IOUT
The worst-case condition occurs at VIN = 2VOUT,
where:
I
ICIN OUT
(21)
2
(20)
Output Capacitor
The output capacitor is required to maintain the
DC output voltage. Ceramic or POSCAP
capacitors are recommended. The output voltage
ripple can be estimated as:
VOUT
VOUT
V
1
)
(1 OUT ) (RESR
FSW L
VIN
8 FSW COUT
(24)
In the case of ceramic capacitors, the impedance
at the switching frequency is dominated by the
capacitance. The output voltage ripple is mainly
caused by the capacitance. For simplification,
the output voltage ripple can be estimated as:
VOUT
VOUT
2
8 FSW L COUT
(1
VOUT
)
VIN
(25)
The output voltage ripple caused by ESR is very
small. Therefore, an external ramp is needed to
stabilize the system. The external ramp can be
generated through resistor R4 and capacitor C4
following equation 5, 8 and 9.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
19
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
In the case of POSCAP capacitors, the ESR
dominates the impedance at the switching
frequency. The ramp voltage generated from the
ESR is high enough to stabilize the system.
Therefore, an external ramp is not needed. A
minimum ESR value around 12mΩ is required to
ensure stable operation of the converter. For
simplification, the output ripple can be
approximated as:
VOUT
VOUT
V
(1 OUT ) RESR
FSW L
VIN
(26)
Inductor
The inductor is required to supply constant
current to the output load while being driven by
the switching input voltage. A larger value
inductor will result in less ripple current and lower
output ripple voltage. However, a larger value
inductor will have a larger physical size, higher
series resistance, and/or lower saturation current.
A good rule for determining the inductor value is
to allow the peak-to-peak ripple current in the
inductor to be approximately 30~40% of the
maximum switch current limit. Also, make sure
that the peak inductor current is below the
maximum switch current limit. The inductance
value can be calculated as:
L
VOUT
V
(1 OUT )
FSW IL
VIN
(27)
Where ∆IL is the peak-to-peak inductor ripple
current.
Choose an inductor that will not saturate under
the maximum inductor peak current. The peak
inductor current can be calculated as:
ILP IOUT
VOUT
V
(1 OUT )
2 FSW L
VIN
(28)
The inductors listed in Table 1 are highly
recommended for the high efficiency they can
provide.
Table 1—Inductor Selection Guide
Part Number
Manufacturer
Inductance
(µH)
DCR
(mΩ)
Current
Rating (A)
Dimensions
L x W x H (mm3)
Switching
Frequency
(kHz)
PCMC-135T-R68MF
Cyntec
0.68
1.7
34
13.5 x 12.6 x 4.8
600
FDA1254-1R0M
FDA1254-1R2M
TOKO
TOKO
1
1.2
2
2.05
25.2
20.2
13.5 x 12.6 x 5.4
13.5 x 12.6 x 5.4
300~600
300~600
Typical Design Parameter Tables
The following tables include recommended
component values for typical output voltages (1V,
2.5V, 3.3V) and switching frequencies (500kHz).
Refer to Tables 2 for design cases without
external ramp compensation and Tables 3 for
design cases with external ramp compensation.
External ramp is not needed when high-ESR
capacitors, such as electrolytic or POSCAPs are
used. External ramp is needed when low-ESR
capacitors, such as ceramic capacitors are used.
For cases not listed in this datasheet, a calculator
in excel spreadsheet can also be requested
through a local sales representative to assist with
the calculation.
Table 2—FSW=500kHz, VIN=12V
VOUT
(V)
1
2.5
3.3
L
(μH)
1
1.5
2.2
R1
(kΩ)
12.7
61.9
88.7
R2
(kΩ)
20
20
20
R7
(kΩ)
340
825
1083
Table 3—FSW=500kHz, VIN=12V
VOUT
(V)
1
2.5
3.3
L
(μH)
1
1.5
2.2
R1
(kΩ)
12.7
64.9
93.1
R2
(kΩ)
20
20
20
R4
(kΩ)
750
1000
1200
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
C4
(pF)
220
220
220
R7
(kΩ)
340
825
1083
20
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
TYPICAL APPLICATION (8)
VIN
C1A
10uF
C1B
10uF
C1C
C1D
0.1uF 0.1uF
BST
IN
R7
R5
100K
340K
R3
0
C3
0.1uF
L1
1uH, TOKO FDU1250C-1R0M
SW
FREQ
VOUT
R1
EN
12.7K
R6
1uF
100K
C2A
220uF/20mΩ
C2B
0.1uF
MP8762H
FB
VCC
C5
+
R2
SS
C6
33nF
PG
PGND
20K
AGND
Figure 13 — Typical Application Circuit with No External Ramp
VIN=12V, VOUT=1V, IOUT=10A, FSW=500kHz
Figure 14 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1V, IOUT=10A, FSW=500kHz
Figure 15 — Typical Application Circuit with Low ESR Ceramic Capacitor
and DC-Blocking Capacitor.
VIN=12V, VOUT=1V, IOUT=10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
21
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 16 — Efficiency Curve
VOUT=1V, IOUT=0.01A-10A, FSW=500kHz
Figure 17 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1V, IOUT=10A, FSW=300kHz
Figure 18 — Efficiency Curve
VOUT=1V, IOUT=0.01A-10A, FSW=300kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
22
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 19 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1V, IOUT=10A, FSW=800kHz
100
90
80
70
60
50
40
30
0.01
0.1
1
OUTPUT CURRENT (A)
10
Figure 20 — Efficiency Curve
VOUT=1V, IOUT=0.01A-10A, FSW=800kHz
Figure 21 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=0.8V, IOUT=10A, FSW=300kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
23
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 22 — Efficiency Curve
VOUT=0.8V, IOUT=0.01A-10A, FSW=300kHz
Figure 23 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=0.8V, IOUT=10A, FSW=500kHz
Figure 24 — Efficiency Curve
VOUT=0.8V, IOUT=0.01A-10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
24
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 25 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.2V, IOUT=10A, FSW=300kHz
Figure 26 — Efficiency Curve
VOUT=1.2V, IOUT=0.01A-10A, FSW=300kHz
Figure 27 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.2V, IOUT=10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
25
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 28 — Efficiency Curve
VOUT=1.2V, IOUT=0.01A-10A, FSW=500kHz
Figure 29 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.2V, IOUT=10A, FSW=800kHz
Figure 30 — Efficiency Curve
VOUT=1.2V, IOUT=0.01A-10A, FSW=800kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
26
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 31 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.5 V, IOUT=10A, FSW=300kHz
Figure 32 — Efficiency Curve
VOUT=1.5V, IOUT=0.01A-10A, FSW=300kHz
Figure 33 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.5 V, IOUT=10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
27
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 34 — Efficiency Curve
VOUT=1.5V, IOUT=0.01A-10A, FSW=500kHz
Figure 35 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.5 V, IOUT=10A, FSW=800kHz
Figure 36 — Efficiency Curve
VOUT=1.5V, IOUT=0.01A-10A, FSW=800kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
28
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 37 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.8 V, IOUT=10A, FSW=300kHz
Figure 38 — Efficiency Curve
VOUT=1.8V, IOUT=0.01A-10A, FSW=300kHz
Figure 39 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.8 V, IOUT=10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
29
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 40 — Efficiency Curve
VOUT=1.8V, IOUT=0.01A-10A, FSW=500kHz
Figure 41 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=1.8 V, IOUT=10A, FSW=800kHz
Figure 42 — Efficiency Curve
VOUT=1.8V, IOUT=0.01A-10A, FSW=800kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
30
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 43 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=3.3 V, IOUT=10A, FSW=300kHz
Figure 44 — Efficiency Curve
VOUT=3.3V, IOUT=0.01A-10A, FSW=300kHz
Figure 45 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=3.3 V, IOUT=10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
31
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 46 — Efficiency Curve
VOUT=3.3V, IOUT=0.01A-10A, FSW=500kHz
Figure 47 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=3.3 V, IOUT=10A, FSW=800kHz
Figure 48 — Efficiency Curve
VOUT=3.3V, IOUT=0.01A-10A, FSW=800kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
32
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 49 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=5 V, IOUT=10A, FSW=300kHz
Figure 50 — Efficiency Curve
VOUT=5V, IOUT=0.01A-10A, FSW=300kHz
Figure 51 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=5 V, IOUT=10A, FSW=500kHz
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
33
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
Figure 52 — Efficiency Curve
VOUT=5V, IOUT=0.01A-10A, FSW=500kHz
VIN
C1A
C1B
10uF
10uF
C1C
C1D
0.1uF 0.1uF
R7
BST
IN
R5
100K
1M
R3
0
C3
0.1uF
L1
1uH, TOKO FDU1250C-1R0M
SW
FREQ
VOUT
R4
1.2M
EN
MP8762H
FB
VCC
C5
R6
1uF
100K
C4
220pF
R9
100
R1
75K
C2A
C2B
C3C
47uF
47uF
47uF 0.1uF
C2D
C2E
0.1uF
R2
SS
C6
33nF
PG
PGND
10K
AGND
Figure 53 — Typical Application Circuit with Low ESR Ceramic Capacitor
VIN=12V, VOUT=5 V, IOUT=10A, FSW=800kHz
Figure 54 — Efficiency Curve
VOUT=5V, IOUT=0.01A-10A, FSW=800kHz
NOTE:
8) The all application circuits’ steady states are OK, but other performances are not tested. The frequency is a little different from equation (3),
which is caused by MOSFET voltage drop.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
34
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
LAYOUT RECOMMENDATION
1. Place high current paths (GND, IN, and SW)
very close to the device with short, direct and
wide traces.
2. Put a decoupling capacitor as close to the
VCC and AGND pins as possible.
3. Keep the switching node (SW) plane as small
as possible and far away from the feedback
network.
4. Place the external feedback resistors next to
the FB pin. Make sure that there are no vias
on the FB trace. The feedback resistors
should refer to AGND instead of PGND.
5. Keep the BST voltage path (BST, C3, and
SW) as short as possible.
6. Recommend strongly a four-layer layout to
improve thermal performance.
Inner1 Layer
Figure 55—Schematic for PCB Layout Guide
Inner2 Layer
C 1D
IN
PGND
PG N D
B ST
VC C
PG
AG N D
SW
SW
SS
FB
IN
PGND
P GN D
FR EQ
EN
Top Layer
Bottom Layer
Figure 56—PCB Layout Guide
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
35
MP8762H ― 10A, 18V, SYNCHRONOUS STEP-DOWN CONVERTER
PACKAGE INFORMATION
QFN-16 (3mm×4mm)
PIN 1 ID
0.125x45 ° TYP.
PIN 1 ID
MARKING
PIN 1 ID
INDEX AREA
BOTTOM VIEW
TOP VIEW
SIDE VIEW
NOTE:
0.125x45°
1) ALL DIMENSIONS ARE IN MILLIMETERS
.
2) EXPOSED PADDLE SIZE DOES NOT INCLUDE
MOLD FLASH.
3) LEAD COPLANARITY SHALL BE0.10
MILLIMETERS MAX.
4) JEDEC REFERENCE IS MO-220.
5) DRAWING IS NOT TO SCALE.
RECOMMENDED LAND PATTERN
NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third
party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not
assume any legal responsibility for any said applications.
MP8762H Rev. 1.2
www.MonolithicPower.com
2/26/2020
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.
© 2020 MPS. All Rights Reserved.
36