DATA SHEET
www.onsemi.com
Small Signal MOSFET
RDS(on) MAX
V(BR)DSS
60 V, 380 mA, Single, N−Channel, SOT−23
ID MAX
1.6 W @ 10 V
60 V
380 mA
2.5 W @ 4.5 V
2N7002K, 2V7002K
SIMPLIFIED SCHEMATIC
Features
•
•
•
•
•
Gate
ESD Protected
Low RDS(on)
Surface Mount Package
2V Prefix for Automotive and Other Applications Requiring Unique
Site and Control Change Requirements; AEC−Q101 Qualified and
PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
3
(Top View)
3
Low Side Load Switch
Level Shift Circuits
DC−DC Converter
Portable Applications i.e. DSC, PDA, Cell Phone, etc.
Symbol
2
Value
Unit
VDSS
60
V
Gate−to−Source Voltage
VGS
±20
V
Drain Current (Note 2)
Steady State Minimum Pad
TA = 25°C
TA = 85°C
TA = 25°C
TA = 85°C
ID
ID
mA
380
270
mA
320
230
Power Dissipation
Steady State 1 sq in Pad
Steady State Minimum Pad
PD
Pulsed Drain Current (tp = 10 ms)
IDM
5.0
A
Operating Junction and Storage
Temperature Range
TJ, TSTG
−55 to
+150
°C
mW
420
300
SOT−23
CASE 318
STYLE 21
IS
300
mA
Lead Temperature for Soldering Purposes
(1/8″ from case for 10 s)
TL
260
°C
ESD
2000
V
704 MG
G
1
2
Gate
Source
704
= Specific Device Code*
M
= Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Specific Device Code, Date Code or overbar
orientation and/or location may vary depending upon manufacturing location. This is a
representation only and actual devices may
not match this drawing exactly.
ORDERING INFORMATION
Package
Shipping†
2N7002KT1G,
2V7002KT1G
SOT−23
(Pb−Free)
3000 / Tape & Reel
2N7002KT7G
SOT−23
(Pb−Free)
3500 / Tape & Reel
Device
Source Current (Body Diode)
Gate−Source ESD Rating
(HBM, Method 3015)
3
1
Drain−to−Source Voltage
Drain Current (Note 1)
Steady State 1 sq in Pad
MARKING DIAGRAM
& PIN ASSIGNMENT
Drain
MAXIMUM RATINGS (TJ = 25°C unless otherwise stated)
Rating
Drain
2
Source
Applications
•
•
•
•
1
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
1. Surface−mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
2. Surface−mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.
© Semiconductor Components Industries, LLC, 2007
August, 2021 − Rev. 18
1
Publication Order Number:
2N7002K/D
2N7002K, 2V7002K
THERMAL CHARACTERISTICS
Characteristic
Junction−to−Ambient − Steady State (Note 3)
Symbol
Max
Unit
RqJA
300
°C/W
Junction−to−Ambient − t ≤ 5 s (Note 3)
92
Junction−to−Ambient − Steady State (Note 4)
417
Junction−to−Ambient − t ≤ 5 s (Note 4)
154
3. Surface−mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
4. Surface−mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified)
Parameter
Symbol
Test Condition
Min
Drain−to−Source Breakdown Voltage
V(BR)DSS
VGS = 0 V, ID = 250 mA
60
Drain−to−Source Breakdown Voltage
Temperature Coefficient
V(BR)DSS/TJ
Typ
Max
Unit
OFF CHARACTERISTICS
Zero Gate Voltage Drain Current
IDSS
VGS = 0 V,
VDS = 60 V
VGS = 0 V,
VDS = 50 V
Gate−to−Source Leakage Current
IGSS
V
71
TJ = 25°C
mV/°C
1
TJ = 125°C
10
TJ = 25°C
100
mA
nA
VDS = 0 V, VGS = ±20 V
±10
mA
VDS = 0 V, VGS = ±10 V
450
nA
VDS = 0 V, VGS = ±5.0 V
150
nA
2.3
V
ON CHARACTERISTICS (Note 5)
Gate Threshold Voltage
VGS(TH)
Negative Threshold Temperature
Coefficient
VGS(TH)/TJ
Drain−to−Source On Resistance
RDS(on)
Forward Transconductance
gFS
VGS = VDS, ID = 250 mA
1.0
4.0
mV/°C
VGS = 10 V, ID = 500 mA
1.19
1.6
VGS = 4.5 V, ID = 200 mA
1.33
2.5
VDS = 5 V, ID = 200 mA
530
W
mS
CHARGES AND CAPACITANCES
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VGS = 0 V, f = 1 MHz,
VDS = 20 V
24.5
45
4.2
8.0
2.2
5.0
Total Gate Charge
QG(TOT)
0.7
Threshold Gate Charge
QG(TH)
0.1
Gate−to−Source Charge
QGS
Gate−to−Drain Charge
QGD
VGS = 4.5 V, VDS = 10 V;
ID = 200 mA
pF
nC
0.3
0.1
SWITCHING CHARACTERISTICS, VGS = V (Note 6)
Turn−On Delay Time
td(ON)
Rise Time
Turn−Off Delay Time
tr
td(OFF)
Fall Time
ns
12.2
VGS = 10 V, VDD = 25 V,
ID = 500 mA, RG = 25 W
tf
9.0
55.8
29
DRAIN−SOURCE DIODE CHARACTERISTICS
Forward Diode Voltage
VSD
VGS = 0 V,
IS = 200 mA
TJ = 25°C
0.8
TJ = 85°C
0.7
1.2
V
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. Pulse Test: pulse width ≤ 300 ms, duty cycle ≤ 2%
6. Switching characteristics are independent of operating junction temperatures
www.onsemi.com
2
2N7002K, 2V7002K
TYPICAL CHARACTERISTICS
9.0 V
8.0 V
7.0 V
6.0 V
1.2
1.2
5.0 V
4.5 V
VGS = 10 V
4.0 V
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
1.6
3.5 V
0.8
3.0 V
0.4
0.8
TJ = 25°C
0.4
2.5 V
0
2
4
0
6
RDS(on), DRAIN−TO−SOURCE RESISTANCE (W)
TJ = 125°C
TJ = 85°C
TJ = 25°C
2.0
1.6
TJ = −55°C
1.2
0.8
0.4
0.2
0.4
0.6
0.8
1.0
1.2
6
3.2
VGS = 10 V
2.8
2.4
TJ = 125°C
2.0
TJ = 85°C
1.6
TJ = 25°C
1.2
TJ = −55°C
0.8
0.4
0
0
0.2
0.4
0.6
0.8
1.0
1.2
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
Figure 3. On−Resistance vs. Drain Current and
Temperature
Figure 4. On−Resistance vs. Drain Current and
Temperature
2.4
2.2
2.0
ID = 500 mA
1.6
ID = 200 mA
1.2
0.8
0.4
4
Figure 2. Transfer Characteristics
VGS = 4.5 V
0
2
Figure 1. On−Region Characteristics
2.4
0
0
TJ = −55°C
VGS, GATE−TO−SOURCE VOLTAGE (V)
3.2
2.8
TJ = 125°C
VDS, DRAIN−TO−SOURCE VOLTAGE (V)
RDS(on), DRAIN−TO−SOURCE
RESISTANCE (NORMALIZED)
RDS(on), DRAIN−TO−SOURCE RESISTANCE (W)
RDS(on), DRAIN−TO−SOURCE RESISTANCE (W)
0
2
4
6
8
ID = 0.2 A
1.8
VGS = 10 V
1.4
1.0
0.6
−50
10
VGS = 4.5 V
−25
0
25
50
75
100
125
VGS, GATE−TO−SOURCE VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (°C)
Figure 5. On−Resistance vs. Gate−to−Source
Voltage
Figure 6. On−Resistance Variation with
Temperature
www.onsemi.com
3
150
2N7002K, 2V7002K
TYPICAL CHARACTERISTICS
VGS, GATE−TO−SOURCE VOLTAGE (V)
30
C, CAPACITANCE (pF)
Ciss
20
TJ = 25°C
VGS = 0 V
Coss
10
0
Crss
0
4
8
12
16
20
TJ = 25°C
ID = 0.2 A
4
3
2
1
0
0
0.2
0.4
0.6
0.8
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (V)
Qg, TOTAL GATE CHARGE (nC)
Figure 7. Capacitance Variation
Figure 8. Gate−to−Source and
Drain−to−Source Voltage vs. Total Charge
VGS(TH), THRESHOLD VOLTAGE (V)
10
VGS = 0 V
IS, SOURCE CURRENT (A)
5
1
TJ = 85°C
TJ = 25°C
0.1
0.01
0.4
0.6
0.8
1.0
1.2
2.5
2.4 ID = 250 mA
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
−50 −25
0
25
50
75
100
125
VSD, SOURCE−TO−DRAIN VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (°C)
Figure 9. Diode Forward Voltage vs. Current
Figure 10. Threshold Voltage with
Temperature
www.onsemi.com
4
150
2N7002K, 2V7002K
TYPICAL CHARACTERISTICS
RqJA(t) (°C/W) EFFECTIVE TRANSIENT
THERMAL RESISTANCE
1000
Duty Cycle = 0.5
100
10
0.2
0.1
0.05
0.02
0.01
1
SINGLE PULSE
0.1
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
10
100
1000
t, PULSE TIME (s)
Figure 11. Thermal Response − 1 sq in pad
RqJA(t) (°C/W) EFFECTIVE TRANSIENT
THERMAL RESISTANCE
1000
Duty Cycle = 0.5
100
10
0.2
0.1
0.05
0.02
0.01
1
SINGLE PULSE
0.1
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
t, PULSE TIME (s)
Figure 12. Thermal Response − minimum pad
www.onsemi.com
5
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOT−23 (TO−236)
CASE 318−08
ISSUE AS
DATE 30 JAN 2018
SCALE 4:1
D
0.25
3
E
1
2
T
HE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
PROTRUSIONS, OR GATE BURRS.
DIM
A
A1
b
c
D
E
e
L
L1
HE
T
L
3X b
L1
VIEW C
e
TOP VIEW
A
A1
SIDE VIEW
SEE VIEW C
c
MIN
0.89
0.01
0.37
0.08
2.80
1.20
1.78
0.30
0.35
2.10
0°
MILLIMETERS
NOM
MAX
1.00
1.11
0.06
0.10
0.44
0.50
0.14
0.20
2.90
3.04
1.30
1.40
1.90
2.04
0.43
0.55
0.54
0.69
2.40
2.64
−−−
10 °
MIN
0.035
0.000
0.015
0.003
0.110
0.047
0.070
0.012
0.014
0.083
0°
INCHES
NOM
0.039
0.002
0.017
0.006
0.114
0.051
0.075
0.017
0.021
0.094
−−−
MAX
0.044
0.004
0.020
0.008
0.120
0.055
0.080
0.022
0.027
0.104
10°
GENERIC
MARKING DIAGRAM*
END VIEW
RECOMMENDED
SOLDERING FOOTPRINT
XXXMG
G
1
3X
2.90
3X
XXX = Specific Device Code
M = Date Code
G
= Pb−Free Package
0.90
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
0.95
PITCH
0.80
DIMENSIONS: MILLIMETERS
STYLE 1 THRU 5:
CANCELLED
STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
STYLE 7:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
STYLE 9:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 10:
PIN 1. DRAIN
2. SOURCE
3. GATE
STYLE 11:
STYLE 12:
PIN 1. ANODE
PIN 1. CATHODE
2. CATHODE
2. CATHODE
3. CATHODE−ANODE
3. ANODE
STYLE 15:
PIN 1. GATE
2. CATHODE
3. ANODE
STYLE 16:
PIN 1. ANODE
2. CATHODE
3. CATHODE
STYLE 17:
PIN 1. NO CONNECTION
2. ANODE
3. CATHODE
STYLE 18:
STYLE 19:
STYLE 20:
PIN 1. NO CONNECTION PIN 1. CATHODE
PIN 1. CATHODE
2. CATHODE
2. ANODE
2. ANODE
3. GATE
3. ANODE
3. CATHODE−ANODE
STYLE 21:
PIN 1. GATE
2. SOURCE
3. DRAIN
STYLE 22:
PIN 1. RETURN
2. OUTPUT
3. INPUT
STYLE 23:
PIN 1. ANODE
2. ANODE
3. CATHODE
STYLE 24:
PIN 1. GATE
2. DRAIN
3. SOURCE
STYLE 27:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
STYLE 28:
PIN 1. ANODE
2. ANODE
3. ANODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42226B
SOT−23 (TO−236)
STYLE 8:
PIN 1. ANODE
2. NO CONNECTION
3. CATHODE
STYLE 13:
PIN 1. SOURCE
2. DRAIN
3. GATE
STYLE 25:
PIN 1. ANODE
2. CATHODE
3. GATE
STYLE 14:
PIN 1. CATHODE
2. GATE
3. ANODE
STYLE 26:
PIN 1. CATHODE
2. ANODE
3. NO CONNECTION
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative