EFM32 Gecko Family
EFM32TG Data Sheet
The EFM32 Gecko MCUs are the world’s most energy-friendly microcontrollers.
KEY FEATURES
The EFM32TG offers unmatched performance and ultra low power consumption in both
active and sleep modes. EFM32TG devices consume as little as 0.6 μA in Stop mode
and 150 μA/MHz in Run mode. It also features autonomous peripherals, high overall chip
and analog integration, and the performance of the industry standard 32-bit ARM CortexM3 processor, making it perfect for battery-powered systems and systems with high-performance, low-energy requirements.
• Industrial and home automation
• Alarm and security systems
• Health and fitness applications
Core / Memory
Clock Management
ARM CortexTM M3 processor
Flash Program
Memory
RAM Memory
• Ultra low power operation
• 0.6 μA current in Stop (EM3), with
brown-out detection and RAM retention
• 51 μA/MHz in EM1
• 150 μA/MHz in Run mode (EM0)
• Fast wake-up time of 2 µs
EFM32TG applications include the following:
• Smart metering
• Water metering
• Gas metering
• ARM Cortex-M3 at 32 MHz
Debug Interface
DMA Controller
High Frequency
Crystal Oscillator
High Frequency
RC Oscillator
Auxiliary High
Freq. RC Osc.
Low Freq.
RC Oscillator
Low Frequency
Crystal Oscillator
Watchdog
Oscillator
• Hardware cryptography (AES)
• Up to 32 kB of Flash and 4 kB of RAM
Energy Management
Voltage
Regulator
Voltage
Comparator
Power-on
Reset
Brown-out
Detector
Security
Hardware AES
32-bit bus
Peripheral Reflex System
Serial Interfaces
USART
Low Energy
UARTTM
I2C
I/O Ports
External
Interrupts
Pin Reset
Timers and Triggers
General
Purpose I/O
Analog Interfaces
Timer/Counter
LESENSE
ADC
DAC
Low Energy Timer
Real Time Counter
Operational
Amplifier
Analog
Comparator
Pulse Counter
Watchdog Timer
LCD Controller
Lowest power mode with peripheral operational:
EM0 - Active
EM1 - Sleep
silabs.com | Building a more connected world.
EM2 – Deep Sleep
EM3 - Stop
EM4 - Shutoff
Rev. 2.11
EFM32TG Data Sheet
Feature List
1. Feature List
• ARM Cortex-M3 CPU platform
• High Performance 32-bit processor @ up to 32 MHz
• Wake-up Interrupt Controller
• SysTick System Timer
• Flexible Energy Management System
• 20 nA @ 3 V Shutoff Mode
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
• 1.0 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU
retention
• 51 µA/MHz @ 3 V Sleep Mode
• 150 µA/MHz @ 3 V Run Mode, with code executed from flash
• 32/16/8 KB Flash
• 4/2 KB RAM
• Up to 56 General Purpose I/O pins
• Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
• Configurable peripheral I/O locations
• 16 asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode
• 8 Channel DMA Controller
• 8 Channel Peripheral Reflex System (PRS) for autonomous inter- peripheral signaling
• Hardware AES with 128/256-bit keys in 54/75 cycles
• Timers/Counters
• 2× 16-bit Timer/Counter
• 2×3 Compare/Capture/PWM channels
• 16-bit Low Energy Timer
• 1× 24-bit Real-Time Counter
• 1× 16-bit Pulse Counter
• Watchdog Timer with dedicated RC oscillator @ 50 nA
• Integrated LCD Controller for up to 8×20 segments
• Voltage boost, adjustable contrast and autonomous animation
• Communication interfaces
• Up to 2× Universal Synchronous/Asynchronous Receiver/ Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
• Low Energy UART
• Autonomous operation with DMA in Deep Sleep Mode
2
• I C Interface with SMBus support
• Address recognition in Stop Mode
• Ultra low power precision analog peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter
• 8 single ended channels/4 differential channels
• On-chip temperature sensor
• 12-bit 500 ksamples/s Digital to Analog Converter
• Up to 2× Analog Comparator
• Capacitive sensing with up to 8 inputs
• 3× Operational Amplifier
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain
• Supply Voltage Comparator
• Low Energy Sensor Interface (LESENSE)
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sensors and capacitive buttons
• Ultra efficient Power-on Reset and Brown-Out Detector
silabs.com | Building a more connected world.
Rev. 2.11 | 2
EFM32TG Data Sheet
Feature List
• 2-pin Serial Wire Debug interface
• 1-pin Serial Wire Viewer
• Pre-Programmed UART Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.98 to 3.8 V
• Packages:
• BGA48
• QFN24
• QFN32
• QFN64
• TQFP48
• TQFP64
silabs.com | Building a more connected world.
Rev. 2.11 | 3
EFM32TG Data Sheet
Ordering Information
2. Ordering Information
The following table shows the available EFM32TG devices.
Table 2.1. Ordering Information
Flash (kB)
RAM (kB)
Max Speed
(MHz)
Supply
Voltage (V)
Temperature
(ºC)
Package
EFM32TG108F4-D-QFN24
4
2
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG108F8-D-QFN24
8
2
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG108F16-D-QFN24
16
4
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG108F32-D-QFN24
32
4
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG110F4-D-QFN24
4
2
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG110F8-D-QFN24
8
2
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG110F16-D-QFN24
16
4
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG110F32-D-QFN24
32
4
32
1.98 - 3.8
-40 - 85
QFN24
EFM32TG210F8-D-QFN32
8
2
32
1.98 - 3.8
-40 - 85
QFN32
EFM32TG210F16-D-QFN32
16
4
32
1.98 - 3.8
-40 - 85
QFN32
EFM32TG210F32-D-QFN32
32
4
32
1.98 - 3.8
-40 - 85
QFN32
EFM32TG222F8-D-QFP48
8
2
32
1.98 - 3.8
-40 - 85
TQFP48
EFM32TG222F16-D-QFP48
16
4
32
1.98 - 3.8
-40 - 85
TQFP48
EFM32TG222F32-D-QFP48
32
4
32
1.98 - 3.8
-40 - 85
TQFP48
EFM32TG225F8-D-BGA48
8
2
32
1.98 - 3.8
-40 - 85
BGA48
EFM32TG225F16-D-BGA48
16
4
32
1.98 - 3.8
-40 - 85
BGA48
EFM32TG225F32-D-BGA48
32
4
32
1.98 - 3.8
-40 - 85
BGA48
EFM32TG230F8-D-QFN64
8
2
32
1.98 - 3.8
-40 - 85
QFN64
EFM32TG230F16-D-QFN64
16
4
32
1.98 - 3.8
-40 - 85
QFN64
EFM32TG230F32-D-QFN64
32
4
32
1.98 - 3.8
-40 - 85
QFN64
EFM32TG232F8-D-QFP64
8
2
32
1.98 - 3.8
-40 - 85
TQFP64
EFM32TG232F16-D-QFP64
16
4
32
1.98 - 3.8
-40 - 85
TQFP64
EFM32TG232F32-D-QFP64
32
4
32
1.98 - 3.8
-40 - 85
TQFP64
EFM32TG822F8-D-QFP48
8
2
32
1.98 - 3.8
-40 - 85
TQFP48
EFM32TG822F16-D-QFP48
16
4
32
1.98 - 3.8
-40 - 85
TQFP48
EFM32TG822F32-D-QFP48
32
4
32
1.98 - 3.8
-40 - 85
TQFP48
EFM32TG825F8-D-BGA48
8
2
32
1.98 - 3.8
-40 - 85
BGA48
EFM32TG825F16-D-BGA48
16
4
32
1.98 - 3.8
-40 - 85
BGA48
EFM32TG825F32-D-BGA48
32
4
32
1.98 - 3.8
-40 - 85
BGA48
EFM32TG840F8-D-QFN64
8
2
32
1.98 - 3.8
-40 - 85
QFN64
EFM32TG840F16-D-QFN64
16
4
32
1.98 - 3.8
-40 - 85
QFN64
EFM32TG840F32-D-QFN64
32
4
32
1.98 - 3.8
-40 - 85
QFN64
Ordering Code
silabs.com | Building a more connected world.
Rev. 2.11 | 4
EFM32TG Data Sheet
Ordering Information
Flash (kB)
RAM (kB)
Max Speed
(MHz)
Supply
Voltage (V)
Temperature
(ºC)
Package
EFM32TG842F8-D-QFP64
8
2
32
1.98 - 3.8
-40 - 85
TQFP64
EFM32TG842F16-D-QFP64
16
4
32
1.98 - 3.8
-40 - 85
TQFP64
EFM32TG842F32-D-QFP64
32
4
32
1.98 - 3.8
-40 - 85
TQFP64
Ordering Code
EFM32 TG 842 F
32 – D – QFP
64
R
Reel (Optional)
Pin Count
Package
Revision
Memory Size in kB
Memory Type (Flash)
Feature Set Code
Gecko
Energy Friendly Microcontroller 32-bit
Figure 2.1. Ordering Code Decoder
Adding the suffix 'R' to the part number (e.g. EFM32TG842F32-D-QFP64R) denotes reel.
Visit http://www.silabs.com for information on global distributors and representatives.
silabs.com | Building a more connected world.
Rev. 2.11 | 5
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. System Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
3.1 System Introduction . . . . . . . . . . . . . . . . . . .
3.1.1 ARM Cortex-M3 Core . . . . . . . . . . . . . . . . .
3.1.2 Debug Interface (DBG) . . . . . . . . . . . . . . . . .
3.1.3 Memory System Controller (MSC) . . . . . . . . . . . . .
3.1.4 Direct Memory Access Controller (DMA) . . . . . . . . . . .
3.1.5 Reset Management Unit (RMU) . . . . . . . . . . . . . .
3.1.6 Energy Management Unit (EMU) . . . . . . . . . . . . .
3.1.7 Clock Management Unit (CMU) . . . . . . . . . . . . . .
3.1.8 Watchdog (WDOG) . . . . . . . . . . . . . . . . . .
3.1.9 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
3.1.10 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . .
3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
3.1.12 Pre-Programmed UART Bootloader . . . . . . . . . . . .
3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
3.1.14 Timer/Counter (TIMER) . . . . . . . . . . . . . . . .
3.1.15 Real Time Counter (RTC) . . . . . . . . . . . . . . .
3.1.16 Low Energy Timer (LETIMER) . . . . . . . . . . . . . .
3.1.17 Pulse Counter (PCNT) . . . . . . . . . . . . . . . .
3.1.18 Analog Comparator (ACMP) . . . . . . . . . . . . . .
3.1.19 Voltage Comparator (VCMP) . . . . . . . . . . . . . .
3.1.20 Analog to Digital Converter (ADC) . . . . . . . . . . . .
3.1.21 Digital to Analog Converter (DAC) . . . . . . . . . . . .
3.1.22 Operational Amplifier (OPAMP) . . . . . . . . . . . . .
3.1.23 Low Energy Sensor Interface (LESENSE) . . . . . . . . . .
3.1.24 Advanced Encryption Standard Accelerator (AES) . . . . . . .
3.1.25 General Purpose Input/Output (GPIO) . . . . . . . . . . .
3.1.26 Liquid Crystal Display Driver (LCD) . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
.10
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.12
.12
.12
.12
.12
.12
.12
.12
.12
.12
.13
.13
.13
3.2 Configuration Summary
3.2.1 EFM32TG108 . .
3.2.2 EFM32TG110 . .
3.2.3 EFM32TG210 . .
3.2.4 EFM32TG222 . .
3.2.5 EFM32TG225 . .
3.2.6 EFM32TG230 . .
3.2.7 EFM32TG232 . .
3.2.8 EFM32TG822 . .
3.2.9 EFM32TG825 . .
3.2.10 EFM32TG840 .
3.2.11 EFM32TG842 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.14
.14
.15
.16
.17
.18
.19
.20
.21
.22
.23
.24
3.3 Memory Map
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.25
.
.
.
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 27
silabs.com | Building a more connected world.
Rev. 2.11 | 6
4.1 Test Conditions . . . . . . . .
4.1.1 Typical Values . . . . . .
4.1.2 Minimum and Maximum Values .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.27
.27
.27
4.2 Absolute Maximum Ratings.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.27
4.3 General Operating Conditions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.27
4.4 Current Consumption . . . .
4.4.1 EM2 Current Consumption
4.4.2 EM3 Current Consumption
4.4.3 EM4 Current Consumption
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.28
.29
.29
.30
4.5 Transition between Energy Modes .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.30
4.6 Power Management .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.31
4.7 Flash .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.31
4.8 General Purpose Input Output .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.32
4.9 Oscillators . .
4.9.1 LFXO. . .
4.9.2 HFXO . .
4.9.3 LFRCO . .
4.9.4 HFRCO . .
4.9.5 AUXHFRCO
4.9.6 ULFRCO .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.39
.40
.40
.41
.42
.46
.46
4.10 Analog Digital Converter (ADC) .
4.10.1 Typical Performance . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.47
.53
4.11 Digital Analog Converter (DAC) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.57
4.12 Operational Amplifier (OPAMP) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.59
4.13 Analog Comparator (ACMP) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
4.14 Voltage Comparator (VCMP) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.66
4.15 LCD .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.67
4.16 I2C
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.68
4.17 Digital Peripherals .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.69
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 EFM32TG108 (QFN24) . . . .
5.1.1 Pinout . . . . . . . .
5.1.2 Alternate Functionality Pinout
5.1.3 GPIO Pinout Overview . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.71
.71
.74
.76
5.2 EFM32TG110 (QFN24) . . . .
5.2.1 Pinout . . . . . . . .
5.2.2 Alternate Functionality Pinout
5.2.3 GPIO Pinout Overview . . .
5.2.4 Opamp Pinout Overview . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.77
.77
.80
.82
.83
5.3 EFM32TG210 (QFN32) . . . .
5.3.1 Pinout . . . . . . . .
5.3.2 Alternate Functionality Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.84
.84
.87
silabs.com | Building a more connected world.
Rev. 2.11 | 7
5.3.3 GPIO Pinout Overview . .
5.3.4 Opamp Pinout Overview .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.90
.90
5.4 EFM32TG222 (TQFP48) . . .
5.4.1 Pinout . . . . . . . .
5.4.2 Alternate Functionality Pinout
5.4.3 GPIO Pinout Overview . . .
5.4.4 Opamp Pinout Overview . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.91
.91
.95
.98
.98
5.5 EFM32TG225 (BGA48) . . . . . . . . . . . . . . . . . . . . . . . . . . .99
5.5.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
5.5.2 Alternate Functionality Pinout
. . . . . . . . . . . . . . . . . . . . . 103
.
5.5.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5.4 Opamp Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . .106
5.6 EFM32TG230 (QFN64) . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6.1 Pinout
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. 07
5.6.2 Alternate Functionality Pinout
. . . . . . . . . . . . . . . . . . . . . 112
.
5.6.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6.4 Opamp Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . .116
5.7 EFM32TG232 (TQFP64)
. . . . . . . . . . . . . . . . . . . . . . . . 117
.
5.7.1 Pinout
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. 17
5.7.2 Alternate Functionality Pinout
. . . . . . . . . . . . . . . . . . . . . 122
.
5.7.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7.4 Opamp Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . .126
5.8 EFM32TG822 (TQFP48)
. . . . . . . . . . . . . . . . . . . . . . . . 127
.
5.8.1 Pinout
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. 27
5.8.2 Alternate Functionality Pinout
. . . . . . . . . . . . . . . . . . . . . 131
.
5.8.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.8.4 Opamp Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . .135
5.9 EFM32TG825 (BGA48) . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9.1 Pinout
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
. 36
5.9.2 Alternate Functionality Pinout
. . . . . . . . . . . . . . . . . . . . . 140
.
5.9.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.9.4 Opamp Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . .144
5.10 EFM32TG840 (QFN64)
. . . . . . . . . . . . . . . . . . . . . . . . 145
.
5.10.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.10.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . .150
5.10.3 GPIO Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . 1
. 55
5.10.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . 155
5.11 EFM32TG842 (TQFP64) . . . . . . . . . . . . . . . . . . . . . . . . .156
5.11.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.11.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . .160
5.11.3 GPIO Pinout Overview
. . . . . . . . . . . . . . . . . . . . . . . 1
. 65
5.11.4 Opamp Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . 165
6. BGA48 Package Specifications
6.1 BGA48 Package Dimensions
6.2 BGA48 PCB Layout
.
.
silabs.com | Building a more connected world.
.
. . . . . . . . . . . . . . . . . . . . . . 166
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 166
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.167
Rev. 2.11 | 8
6.3 BGA48 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.169
7. QFN24 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 170
7.1 QFN24 Package Dimensions
7.2 QFN24 PCB Layout
.
.
7.3 QFN24 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 170
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.171
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.173
8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 174
8.1 QFN32 Package Dimensions
8.2 QFN32 PCB Layout
.
.
8.3 QFN32 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 174
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.175
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.177
9. QFN64 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 178
9.1 QFN64 Package Dimensions
9.2 QFN64 PCB Layout
.
.
9.3 QFN64 Package Marking
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 178
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.180
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.182
10. TQFP48 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 183
10.1 TQFP48 Package Dimensions
10.2 TQFP48 PCB Layout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.183
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.185
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1. 87
10.3 TQFP48 Package Marking
11. TQFP64 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 188
11.1 TQFP64 Package Dimensions
11.2 TQFP64 PCB Layout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.188
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.190
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 1. 92
11.3 TQFP64 Package Marking
12. Chip Revision, Solder Information, Errata
12.1 Chip Revision .
.
.
.
12.2 Soldering Information
12.3 Errata
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . .193
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 193
.
.
.193
. 193
.
13. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
silabs.com | Building a more connected world.
Rev. 2.11 | 9
EFM32TG Data Sheet
System Summary
3. System Summary
3.1 System Introduction
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM CortexM3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the
EFM32TG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and
low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of
the configuration for the EFM32TG devices. For a complete feature set and in-depth information on the modules, refer to the EFM32TG
Reference Manual.
A block diagram of the EFM32TG is shown in the following figure.
Core / Memory
Clock Management
ARM CortexTM M3 processor
Flash Program
Memory
Debug Interface
RAM Memory
DMA Controller
High Frequency
Crystal Oscillator
High Frequency
RC Oscillator
Auxiliary High
Freq. RC Osc.
Low Freq.
RC Oscillator
Low Frequency
Crystal Oscillator
Watchdog
Oscillator
Energy Management
Voltage
Regulator
Voltage
Comparator
Power-on
Reset
Brown-out
Detector
Security
Hardware AES
32-bit bus
Peripheral Reflex System
Serial Interfaces
USART
I2C
Low Energy
UARTTM
I/O Ports
External
Interrupts
Pin Reset
Timers and Triggers
General
Purpose I/O
Analog Interfaces
Timer/Counter
LESENSE
ADC
DAC
Low Energy Timer
Real Time Counter
Operational
Amplifier
Analog
Comparator
Pulse Counter
Watchdog Timer
LCD Controller
Lowest power mode with peripheral operational:
EM0 - Active
EM1 - Sleep
EM2 – Deep Sleep
EM3 - Stop
EM4 - Shutoff
Figure 3.1. Block Diagram
3.1.1 ARM Cortex-M3 Core
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A wake-up Interrupt
Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in
EFM32TG Reference Manual.
3.1.2 Debug Interface (DBG)
This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire
Viewer pin which can be used to output profiling information, data trace and software-generated messages.
3.1.3 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller. The flash memory is readable and
writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block.
Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock
bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations
are supported in the energy modes EM0 and EM1.
silabs.com | Building a more connected world.
Rev. 2.11 | 10
EFM32TG Data Sheet
System Summary
3.1.4 Direct Memory Access Controller (DMA)
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing
the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance
data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230
µDMA controller licensed from ARM.
3.1.5 Reset Management Unit (RMU)
The RMU is responsible for handling the reset functionality of the EFM32TG.
3.1.6 Energy Management Unit (EMU)
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32TG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.
3.1.7 Clock Management Unit (CMU)
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32TG. The CMU provides
the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the
available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not
wasting power on peripherals and oscillators that are inactive.
3.1.8 Watchdog (WDOG)
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may
e.g. be caused by an external event, such as an ESD pulse, or by a software failure.
3.1.9 Peripheral Reflex System (PRS)
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each
other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex
signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but
edge triggers and other functionality can be applied by the PRS.
3.1.10 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as both a master and a slave, and
supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all
the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant
system. The interface provided to software by the I2C module, allows both fine-grained control of the transmission process and close to
automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.
3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full
duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA, and I2S devices.
3.1.12 Pre-Programmed UART Bootloader
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are
supported. The autobaud feature, interface and commands are described further in the application note.
3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a
32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support
to make asynchronous serial communication possible with minimum of software intervention and energy consumption.
silabs.com | Building a more connected world.
Rev. 2.11 | 11
EFM32TG Data Sheet
System Summary
3.1.14 Timer/Counter (TIMER)
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse- Width Modulation (PWM) output.
3.1.15 Real Time Counter (RTC)
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC
oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time
since the RTC is enabled in EM2 where most of the device is powered down.
3.1.16 Low Energy Timer (LETIMER)
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0.
Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be
performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of
waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start
counting on compare matches from the RTC.
3.1.17 Pulse Counter (PCNT)
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either
the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.
3.1.18 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current
consumption can be configured by altering the current supply to the comparator.
3.1.19 Voltage Comparator (VCMP)
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply
falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by
altering the current supply to the comparator.
3.1.20 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per
second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.
3.1.21 Digital to Analog Converter (DAC)
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail,
with 12-bit resolution. It has two single-ended output buffers which can be combined into one differential output. The DAC may be used
for a number of different applications such as sensor interfaces or sound output.
3.1.22 Operational Amplifier (OPAMP)
The EFM32TG features up to three Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with railto-rail differential input and rail-to-rail single-ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin,
OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable
gain using internal resistors etc.
3.1.23 Low Energy Sensor Interface (LESENSE)
The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 8 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy
mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.
silabs.com | Building a more connected world.
Rev. 2.11 | 12
EFM32TG Data Sheet
System Summary
3.1.24 Advanced Encryption Standard Accelerator (AES)
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data
block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave
which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or
16-bit operations are not supported.
3.1.25 General Purpose Input/Output (GPIO)
In the EFM32TG, there are up to 56 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each.
These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive
strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed
through the Peripheral Reflex System to other peripherals.
3.1.26 Liquid Crystal Display Driver (LCD)
The LCD driver is capable of driving a segmented LCD display with up to 8x20 segments. A voltage boost function enables it to provide
the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations
on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame
Counter interrupt that can wake-up the device on a regular basis for updating data.
silabs.com | Building a more connected world.
Rev. 2.11 | 13
EFM32TG Data Sheet
System Summary
3.2 Configuration Summary
3.2.1 EFM32TG108
The features of the EFM32TG108 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.1. EFM32TG108 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[1:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[1:0], ACMP1_O
VCMP
Full configuration
NA
GPIO
17 pins
Available pins are shown in 5.1.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 14
EFM32TG Data Sheet
System Summary
3.2.2 EFM32TG110
The features of the EFM32TG110 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.2. EFM32TG110 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[1:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[1:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:6]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, Inputs: OPAMP_P1, OPAMP_N1
AES
Full configuration
NA
GPIO
17 pins
Available pins are shown in 5.2.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 15
EFM32TG Data Sheet
System Summary
3.2.3 EFM32TG210
The features of the EFM32TG210 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.3. EFM32TG210 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[1:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:5], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:4]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,
OPAMP_OUT2, Inputs: OPAMP_P1, OPAMP_N1, OPAMP_P2
AES
Full configuration
NA
GPIO
24 pins
Available pins are shown in 5.3.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 16
EFM32TG Data Sheet
System Summary
3.2.4 EFM32TG222
The features of the EFM32TG222 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.4. EFM32TG222 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[4:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:4]
DAC0
Full configuration
DAC0_OUT[1], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,
OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1,
OPAMP_P2
AES
Full configuration
NA
GPIO
37 pins
Available pins are shown in 5.4.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 17
EFM32TG Data Sheet
System Summary
3.2.5 EFM32TG225
The features of the EFM32TG225 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.5. EFM32TG225 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[3:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:4]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,
OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1,
OPAMP_P2
AES
Full configuration
NA
GPIO
37 pins
Available pins are shown in 5.5.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 18
EFM32TG Data Sheet
System Summary
3.2.6 EFM32TG230
The features of the EFM32TG230 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.6. EFM32TG230 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px,
OPAMP_Nx
AES
Full configuration
NA
GPIO
56 pins
Available pins are shown in 5.6.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 19
EFM32TG Data Sheet
System Summary
3.2.7 EFM32TG232
The features of the EFM32TG232 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.7. EFM32TG232 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:0], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:0], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px,
OPAMP_Nx
AES
Full configuration
NA
GPIO
53 pins
Available pins are shown in 5.7.3 GPIO Pinout Overview
silabs.com | Building a more connected world.
Rev. 2.11 | 20
EFM32TG Data Sheet
System Summary
3.2.8 EFM32TG822
The features of the EFM32TG822 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.8. EFM32TG822 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[4], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:5], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:4]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs:
OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2
AES
Full configuration
NA
GPIO
37 pins
Available pins are shown in 5.8.3 GPIO Pinout Overview
LCD
Full configuration
LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,
LCD_BEXT
silabs.com | Building a more connected world.
Rev. 2.11 | 21
EFM32TG Data Sheet
System Summary
3.2.9 EFM32TG825
The features of the EFM32TG825 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.9. EFM32TG825 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[4], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:5], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:4]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs:
OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2
AES
Full configuration
NA
GPIO
37 pins
Available pins are shown in 5.9.3 GPIO Pinout Overview
LCD
Full configuration
LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,
LCD_BEXT
silabs.com | Building a more connected world.
Rev. 2.11 | 22
EFM32TG Data Sheet
System Summary
3.2.10 EFM32TG840
The features of the EFM32TG840 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.10. EFM32TG840 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:4], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:4], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,
OPAMP_OUT2, Inputs: OPAMP_Px, OPAMP_Nx
AES
Full configuration
NA
GPIO
56 pins
Available pins are shown in 5.10.3 GPIO Pinout Overview
LCD
Full configuration
LCD_SEG[19:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,
LCD_BEXT
silabs.com | Building a more connected world.
Rev. 2.11 | 23
EFM32TG Data Sheet
System Summary
3.2.11 EFM32TG842
The features of the EFM32TG842 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.
Table 3.11. EFM32TG842 Configuration Summary
Module
Configuration
Pin Connections
Cortex-M3
Full configuration
NA
DBG
Full configuration
DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC
Full configuration
NA
DMA
Full configuration
NA
RMU
Full configuration
NA
EMU
Full configuration
NA
CMU
Full configuration
CMU_OUT0, CMU_OUT1
WDOG
Full configuration
NA
PRS
Full configuration
NA
I2C0
Full configuration
I2C0_SDA, I2C0_SCL
USART0
Full configuration with IrDA
US0_TX, US0_RX. US0_CLK, US0_CS
USART1
Full configuration with I2S
US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0
Full configuration
LEU0_TX, LEU0_RX
TIMER0
Full configuration
TIM0_CC[2:0]
TIMER1
Full configuration
TIM1_CC[2:0]
RTC
Full configuration
NA
LETIMER0
Full configuration
LET0_O[1:0]
PCNT0
Full configuration, 16-bit count register
PCNT0_S[1:0]
ACMP0
Full configuration
ACMP0_CH[7:4], ACMP0_O
ACMP1
Full configuration
ACMP1_CH[7:4], ACMP1_O
VCMP
Full configuration
NA
ADC0
Full configuration
ADC0_CH[7:0]
DAC0
Full configuration
DAC0_OUT[0], DAC0_OUTxALT
OPAMP
Full configuration
Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT,
OPAMP_OUT2, Inputs: OPAMP_Px, OPAMP_Nx
AES
Full configuration
NA
GPIO
53 pins
Available pins are shown in 5.11.3 GPIO Pinout Overview
LCD
Full configuration
LCD_SEG[17:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N,
LCD_BEXT
silabs.com | Building a more connected world.
Rev. 2.11 | 24
EFM32TG Data Sheet
System Summary
3.3 Memory Map
The EFM32TG memory map is shown in the following figure, with RAM and Flash sizes for the largest memory configuration.
Figure 3.2. System Address Space with Core and Code Space Listing
silabs.com | Building a more connected world.
Rev. 2.11 | 25
EFM32TG Data Sheet
System Summary
Figure 3.3. System Address Space with Peripheral Listing
silabs.com | Building a more connected world.
Rev. 2.11 | 26
EFM32TG Data Sheet
Electrical Characteristics
4. Electrical Characteristics
4.1 Test Conditions
4.1.1 Typical Values
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in 4.3 General Operating Conditions, unless otherwise specified.
4.1.2 Minimum and Maximum Values
The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined
in 4.3 General Operating Conditions, unless otherwise specified.
4.2 Absolute Maximum Ratings
The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond
the limits specified in the following table may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in 4.3 General Operating Conditions.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
TSTG
Maximum soldering temperature
TS
External main supply voltage
VDDMAX
Voltage on any I/O pin
VIOPIN
Current per I/O pin (sink)
Current per I/O pin (source)
Test Condition
Min
Typ
Max
Unit
-40
—
150
°C
—
—
260
°C
0
—
3.8
V
-0.3
—
VDD+0.3
V
IIOMAX_SINK
—
—
100
mA
IIOMAX_SOURCE
—
—
-100
mA
Latest IPC/JEDEC JSTD-020 Standard
4.3 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Min
Typ
Max
Unit
Ambient temperature range
TAMB
-40
—
85
°C
Operating supply voltage
VDDOP
1.98
—
3.8
V
Internal APB clock frequency
fAPB
—
—
32
MHz
Internal AHB clock frequency
fAHB
—
—
32
MHz
silabs.com | Building a more connected world.
Rev. 2.11 | 27
EFM32TG Data Sheet
Electrical Characteristics
4.4 Current Consumption
Table 4.3. Current Consumption
Parameter
EM0 current. No prescaling.
Running prime number calculation code from Flash. (Production test condition = 14 MHz)
EM1 current (Production test
condition = 14 MHz)
Symbol
IEM0
IEM1
EM2 current
IEM2
EM3 current
IEM3
EM4 current
IEM4
silabs.com | Building a more connected world.
Test Condition
Min
Typ
Max
Unit
32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V
—
157
—
µA/MHz
28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
150
170
µA/MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
153
172
µA/MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
155
175
µA/MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
157
178
µA/MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
162
183
µA/MHz
1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
200
240
µA/MHz
32 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V
—
53
—
µA/MHz
28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
51
57
µA/MHz
21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
55
59
µA/MHz
14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
56
61
µA/MHz
11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
58
63
µA/MHz
6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V
—
63
68
µA/MHz
1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V
—
100
122
µA/MHz
EM2 current with RTC prescaled to 1 Hz,
32.768 kHz LFRCO, VDD= 3.0 V,
TAMB=25ºC
—
1.0
1.2
µA
EM2 current with RTC prescaled to 1 Hz,
32.768 kHz LFRCO, VDD= 3.0 V,
TAMB=85ºC
—
2.4
5.0
µA
VDD= 3.0 V, TAMB=25ºC
—
0.59
1.0
µA
VDD= 3.0 V, TAMB=85ºC
—
2.0
4.5
µA
VDD= 3.0 V, TAMB=25ºC
—
0.02
0.055
µA
VDD= 3.0 V, TAMB=85ºC
—
0.25
0.70
µA
Rev. 2.11 | 28
EFM32TG Data Sheet
Electrical Characteristics
4.4.1 EM2 Current Consumption
Figure 4.1. EM2 Current Consumption, RTC prescaled to 1 kHz, 32.768 kHz LFRCO
4.4.2 EM3 Current Consumption
Figure 4.2. EM3 Current Consumption
silabs.com | Building a more connected world.
Rev. 2.11 | 29
EFM32TG Data Sheet
Electrical Characteristics
4.4.3 EM4 Current Consumption
Figure 4.3. EM4 Current Consumption
4.5 Transition between Energy Modes
The transition times are measured from the trigger to the first clock edge in the CPU.
Table 4.4. Energy Modes Transitions
Parameter
Symbol
Min
Typ
Max
Unit
Transition time from EM1 to EM0
tEM10
—
0
—
HFCORECLK cycles
Transition time from EM2 to EM0
tEM20
—
2
—
µs
Transition time from EM3 to EM0
tEM30
—
2
—
µs
Transition time from EM4 to EM0
tEM40
—
163
—
µs
silabs.com | Building a more connected world.
Rev. 2.11 | 30
EFM32TG Data Sheet
Electrical Characteristics
4.6 Power Management
The EFM32TG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level.
For practical schematic recommendations, please see the application note, AN0002 EFM32 Hardware Design Considerations.
Table 4.5. Power Management
Parameter
Symbol
BOD threshold on falling external supply voltage
Test Condition
Min
Typ
Max
Unit
VBODextthr-
1.74
—
1.96
V
BOD threshold on rising external supply voltage
VBODextthr+
—
1.85
1.98
V
Power-on Reset (POR) threshold on rising external supply
voltage
VPORthr+
—
—
1.98
V
Delay from reset is released un- tRESET
til program execution starts
Applies to Power-on Reset, Brownout Reset and pin reset.
—
163
—
µs
Voltage regulator decoupling
capacitor.
X5R capacitor recommended. Apply
between DECOUPLE pin and
GROUND
—
1
—
µF
Min
Typ
Max
Unit
20000
—
—
cycles
—
—
21
cycles
TAMB