0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFM32TG11B120F128IQ64-BR

EFM32TG11B120F128IQ64-BR

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    TQFP-64(10x10)

  • 描述:

    CPU内核:ARM-M系列;CPU最大主频:48MHz;程序存储容量:128KB;程序存储器类型:FLASH;RAM总容量:32KB;GPIO端口数量:53;

  • 详情介绍
  • 数据手册
  • 价格&库存
EFM32TG11B120F128IQ64-BR 数据手册
EFM32 Tiny Gecko Series 1 Family EFM32TG11 Family Data Sheet The EFM32 Tiny Gecko Series 1 MCUs are the world’s most energy-friendly microcontrollers, featuring new connectivity interfaces and rich analog features. EFM32TG11 includes a powerful and efficient 32-bit ARM® Cortex®-M0+ and provides robust security via a unique cryptographic hardware engine supporting AES, ECC, SHA, and True Random Number Generator (TRNG). New features include a CAN bus controller, highly robust capacitive sensing, and LESENSE/PCNT enhancements for smart energy meters. These features, combined with ultra-low current active mode and short wake-up time from energy-saving modes, make EFM32TG11 microcontrollers well suited for any battery-powered application, as well as other systems requiring high performance and low-energy consumption. Example applications: ENERGY FRIENDLY FEATURES • ARM Cortex-M0+ at 48 MHz • Ultra low energy operation: • 37 µA/MHz in Energy Mode 0 (EM0) • 1.30 µA EM2 Deep Sleep current • CAN 2.0 Bus Controller • Low energy analog peripherals: ADC, DAC, OPAMP, Comparator, Segment LCD • Hardware cryptographic engine supports AES, ECC, SHA, and TRNG • Robust capacitive touch sense • Smart energy meters • Industrial and factory automation • Home automation and security • Entry-level wearables • Personal medical devices • IoT devices Core / Memory Clock Management ARM CortexTM M0+ processor with MPU High Frequency Crystal Oscillator High Frequency RC Oscillator PLL Auxiliary High Freq. RC Osc. Flash Program Memory Debug Interface w/ MTB Ultra Low Freq. RC Oscillator RAM Memory LDMA Controller Low Frequency Crystal Oscillator Low Frequency RC Oscillator • Footprint compatible with select EFM32 packages • 5 V tolerant I/O Energy Management Voltage Regulator Voltage/Temp Monitor DC-DC Converter Power-On Reset Brown-Out Detector Backup Domain Other CRYPTO CRC True Random Number Generator SMU 32-bit bus Peripheral Reflex System Serial Interfaces I/O Ports USART UART CAN Low Energy UARTTM I2C External Interrupts General Purpose I/O Pin Reset Pin Wakeup Timers and Triggers Analog Interfaces Timer/Counter Low Energy Sensor IF Low Energy LCD Controller ADC Low Energy Timer Pulse Counter VDAC Operational Amplifier Watchdog Timer Real Time Counter and Calendar Analog Comparator Capacitive Sensing CRYOTIMER Lowest power mode with peripheral operational: EM0 - Active EM1 - Sleep silabs.com | Building a more connected world. EM2 – Deep Sleep EM3 - Stop EM4H - Hibernate EM4S - Shutoff Rev. 1.0 EFM32TG11 Family Data Sheet Feature List 1. Feature List The EFM32TG11 highlighted features are listed below. • ARM Cortex-M0+ CPU platform • High performance 32-bit processor @ up to 48 MHz • Memory Protection Unit • Wake-up Interrupt Controller • Flexible Energy Management System • 37 μA/MHz in Active Mode (EM0) • 1.30 μA EM2 Deep Sleep current (8 kB RAM retention and RTCC running from LFRCO) • Integrated DC-DC buck converter • Backup Power Domain • RTCC and retention registers in a separate power domain, available in all energy modes • Operation from backup battery when main power absent/ insufficient • Up to 128 kB flash program memory • Up to 32 kB RAM data memory • Communication Interfaces • CAN Bus Controller • Version 2.0A and 2.0B up to 1 Mbps • 4 × Universal Synchronous/Asynchronous Receiver/ Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S/LIN • Triple buffered full/half-duplex operation with flow control • Ultra high speed (24 MHz) operation on one instance • 1 × Universal Asynchronous Receiver/ Transmitter • 1 × Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode • 2 × I2C Interface with SMBus support • Address recognition in EM3 Stop Mode silabs.com | Building a more connected world. • Up to 67 General Purpose I/O Pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 5 V tolerance on select pins • Asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • Up to 8 Channel DMA Controller • Up to 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware Cryptography • AES 128/256-bit keys • ECC B/K163, B/K233, P192, P224, P256 • SHA-1 and SHA-2 (SHA-224 and SHA-256) • True Random Number Generator (TRNG) • Hardware CRC engine • Single-cycle computation with 8/16/32-bit data and 16-bit (programmable)/32-bit (fixed) polynomial • Security Management Unit (SMU) • Fine-grained access control for on-chip peripherals • Integrated Low-energy LCD Controller with up to 8 × 32 segments • Voltage boost, contrast and autonomous animation • Patented low-energy LCD driver • Ultra Low-Power Precision Analog Peripherals • 12-bit 1 Msamples/s Analog to Digital Converter (ADC) • On-chip temperature sensor • 2 × 12-bit 500 ksamples/s Digital to Analog Converter (VDAC) • Up to 2 × Analog Comparator (ACMP) • Up to 4 × Operational Amplifier (OPAMP) • Robust current-based capacitive sensing with up to 38 inputs and wake-on-touch (CSEN) • Up to 62 GPIO pins are analog-capable. Flexible analog peripheral-to-pin routing via Analog Port (APORT) • Supply Voltage Monitor Rev. 1.0 | 2 EFM32TG11 Family Data Sheet Feature List • Timers/Counters • 2 × 16-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels (4 + 4 on one timer instance) • Dead-Time Insertion on one timer instance • 2 × 32-bit Timer/Counter • 32-bit Real Time Counter and Calendar (RTCC) • 32-bit Ultra Low Energy CRYOTIMER for periodic wakeup from any Energy Mode • 16-bit Low Energy Timer for waveform generation • 16-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Up to 16 inputs • Ultra efficient Power-on Reset and Brown-Out Detector • Debug Interface • 2-pin Serial Wire Debug interface • 4-pin JTAG interface • Micro Trace Buffer (MTB) silabs.com | Building a more connected world. • Pre-Programmed UART Bootloader • Wide Operating Range • 1.8 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C TA) and Extended (-40 °C to 125 °C TJ) temperature grades available • Packages • QFN32 (5x5 mm) • TQFP48 (7x7 mm) • QFN64 (9x9 mm) • TQFP64 (10x10 mm) • QFN80 (9x9 mm) • TQFP80 (12x12 mm) Rev. 1.0 | 3 EFM32TG11 Family Data Sheet Ordering Information 2. Ordering Information Table 2.1. Ordering Information Flash (kB) RAM (kB) DC-DC Converter LCD GPIO Package Temp Range EFM32TG11B520F128GM80-B 128 32 Yes Yes 67 QFN80 -40 to +85°C EFM32TG11B520F128GQ80-B 128 32 Yes Yes 63 QFP80 -40 to +85°C EFM32TG11B520F128IM80-B 128 32 Yes Yes 67 QFN80 -40 to +125°C EFM32TG11B520F128IQ80-B 128 32 Yes Yes 63 QFP80 -40 to +125°C EFM32TG11B540F64GM80-B 64 32 Yes Yes 67 QFN80 -40 to +85°C EFM32TG11B540F64GQ80-B 64 32 Yes Yes 63 QFP80 -40 to +85°C EFM32TG11B540F64IM80-B 64 32 Yes Yes 67 QFN80 -40 to +125°C EFM32TG11B540F64IQ80-B 64 32 Yes Yes 63 QFP80 -40 to +125°C EFM32TG11B520F128GM64-B 128 32 Yes Yes 53 QFN64 -40 to +85°C EFM32TG11B520F128GQ64-B 128 32 Yes Yes 50 QFP64 -40 to +85°C EFM32TG11B520F128IM64-B 128 32 Yes Yes 53 QFN64 -40 to +125°C EFM32TG11B520F128IQ64-B 128 32 Yes Yes 50 QFP64 -40 to +125°C EFM32TG11B540F64GM64-B 64 32 Yes Yes 53 QFN64 -40 to +85°C EFM32TG11B540F64GQ64-B 64 32 Yes Yes 50 QFP64 -40 to +85°C EFM32TG11B540F64IM64-B 64 32 Yes Yes 53 QFN64 -40 to +125°C EFM32TG11B540F64IQ64-B 64 32 Yes Yes 50 QFP64 -40 to +125°C EFM32TG11B520F128GQ48-B 128 32 Yes Yes 34 QFP48 -40 to +85°C EFM32TG11B520F128IQ48-B 128 32 Yes Yes 34 QFP48 -40 to +125°C EFM32TG11B540F64GQ48-B 64 32 Yes Yes 34 QFP48 -40 to +85°C EFM32TG11B540F64IQ48-B 64 32 Yes Yes 34 QFP48 -40 to +125°C EFM32TG11B520F128GM32-B 128 32 Yes Yes 22 QFN32 -40 to +85°C EFM32TG11B520F128IM32-B 128 32 Yes Yes 22 QFN32 -40 to +125°C EFM32TG11B540F64GM32-B 64 32 Yes Yes 22 QFN32 -40 to +85°C EFM32TG11B540F64IM32-B 64 32 Yes Yes 22 QFN32 -40 to +125°C EFM32TG11B320F128GM64-B 128 32 No Yes 56 QFN64 -40 to +85°C EFM32TG11B320F128GQ64-B 128 32 No Yes 53 QFP64 -40 to +85°C EFM32TG11B320F128IM64-B 128 32 No Yes 56 QFN64 -40 to +125°C EFM32TG11B320F128IQ64-B 128 32 No Yes 53 QFP64 -40 to +125°C EFM32TG11B340F64GM64-B 64 32 No Yes 56 QFN64 -40 to +85°C EFM32TG11B340F64GQ64-B 64 32 No Yes 53 QFP64 -40 to +85°C EFM32TG11B340F64IM64-B 64 32 No Yes 56 QFN64 -40 to +125°C EFM32TG11B340F64IQ64-B 64 32 No Yes 53 QFP64 -40 to +125°C Ordering Code silabs.com | Building a more connected world. Rev. 1.0 | 4 EFM32TG11 Family Data Sheet Ordering Information Flash (kB) RAM (kB) DC-DC Converter LCD GPIO Package Temp Range EFM32TG11B320F128GQ48-B 128 32 No Yes 37 QFP48 -40 to +85°C EFM32TG11B320F128IQ48-B 128 32 No Yes 37 QFP48 -40 to +125°C EFM32TG11B340F64GQ48-B 64 32 No Yes 37 QFP48 -40 to +85°C EFM32TG11B340F64IQ48-B 64 32 No Yes 37 QFP48 -40 to +125°C EFM32TG11B120F128GM64-B 128 32 No No 56 QFN64 -40 to +85°C EFM32TG11B120F128GQ64-B 128 32 No No 53 QFP64 -40 to +85°C EFM32TG11B120F128IM64-B 128 32 No No 56 QFN64 -40 to +125°C EFM32TG11B120F128IQ64-B 128 32 No No 53 QFP64 -40 to +125°C EFM32TG11B140F64GM64-B 64 32 No No 56 QFN64 -40 to +85°C EFM32TG11B140F64GQ64-B 64 32 No No 53 QFP64 -40 to +85°C EFM32TG11B140F64IM64-B 64 32 No No 56 QFN64 -40 to +125°C EFM32TG11B140F64IQ64-B 64 32 No No 53 QFP64 -40 to +125°C EFM32TG11B120F128GQ48-B 128 32 No No 37 QFP48 -40 to +85°C EFM32TG11B120F128IQ48-B 128 32 No No 37 QFP48 -40 to +125°C EFM32TG11B140F64GQ48-B 64 32 No No 37 QFP48 -40 to +85°C EFM32TG11B140F64IQ48-B 64 32 No No 37 QFP48 -40 to +125°C EFM32TG11B120F128GM32-B 128 32 No No 24 QFN32 -40 to +85°C EFM32TG11B120F128IM32-B 128 32 No No 24 QFN32 -40 to +125°C EFM32TG11B140F64GM32-B 64 32 No No 24 QFN32 -40 to +85°C EFM32TG11B140F64IM32-B 64 32 No No 24 QFN32 -40 to +125°C Ordering Code silabs.com | Building a more connected world. Rev. 1.0 | 5 EFM32TG11 Family Data Sheet Ordering Information EFM32 T G 1 1 B 520 F 128 G M 80 – A R Tape and Reel (Optional) Revision Pin Count Package – M (QFN), Q (QFP) Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code Performance Grade – B (Basic) Device Configuration Series Gecko Family – T (Tiny) Energy Friendly Microcontroller 32-bit Figure 2.1. Ordering Code Key silabs.com | Building a more connected world. Rev. 1.0 | 6 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Introduction . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . . . . .10 3.2 Power . . . . . . . . . . . 3.2.1 Energy Management Unit (EMU) 3.2.2 DC-DC Converter . . . . . 3.2.3 EM2 and EM3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 .11 .11 .11 3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .12 3.4 Clocking . . . . . . . . . . 3.4.1 Clock Management Unit (CMU) . 3.4.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 .12 .13 .13 .13 .13 3.6 Communications and Other Digital Peripherals . . . . . . . . . . 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.6.2 Universal Asynchronous Receiver/Transmitter (UART) . . . . . . 3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.6.4 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.6.5 Controller Area Network (CAN) . . . . . . . . . . . . . . 3.6.6 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.6.7 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 .13 .13 .14 .14 .14 3.7 Security Features . . . . . . . . . . . . . . 3.7.1 GPCRC (General Purpose Cyclic Redundancy Check) 3.7.2 Crypto Accelerator (CRYPTO) . . . . . . . . 3.7.3 True Random Number Generator (TRNG) . . . . 3.7.4 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .14 .14 .14 3.8 Analog. . . . . . . . . . . . 3.8.1 Analog Port (APORT) . . . . . 3.8.2 Analog Comparator (ACMP) . . . 3.8.3 Analog to Digital Converter (ADC) . 3.8.4 Capacitive Sense (CSEN) . . . . 3.8.5 Digital to Analog Converter (VDAC) 3.8.6 Operational Amplifiers . . . . . 3.8.7 Liquid Crystal Display Driver (LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .15 .15 .15 .15 .15 .15 3.9 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . .15 . . . 3.5 Counters/Timers and PWM . . . . . . . . . 3.5.1 Timer/Counter (TIMER) . . . . . . . . 3.5.2 Wide Timer/Counter (WTIMER) . . . . . . 3.5.3 Real Time Counter and Calendar (RTCC) . . 3.5.4 Low Energy Timer (LETIMER) . . . . . . 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.5.6 Pulse Counter (PCNT) . . . . . . . . . 3.5.7 Watchdog Timer (WDOG) . . . . . . . . silabs.com | Building a more connected world. . . Rev. 1.0 | 7 3.10 Core and Memory . . . . . . . . . . . . 3.10.1 Processor Core . . . . . . . . . . . . 3.10.2 Memory System Controller (MSC) . . . . . 3.10.3 Linked Direct Memory Access Controller (LDMA) 3.10.4 Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 .16 .16 .16 .16 3.11 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 3.12 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .18 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Electrical Characteristics . . . . . 4.1.1 Absolute Maximum Ratings . . . 4.1.2 Operating Conditions . . . . . 4.1.3 Thermal Characteristics . . . . 4.1.4 DC-DC Converter . . . . . . 4.1.5 Backup Supply Domain . . . . 4.1.6 Current Consumption . . . . . 4.1.7 Wake Up Times . . . . . . . 4.1.8 Brown Out Detector (BOD) . . . 4.1.9 Oscillators . . . . . . . . . 4.1.10 Flash Memory Characteristics . . 4.1.11 General-Purpose I/O (GPIO) . . 4.1.12 Voltage Monitor (VMON) . . . . 4.1.13 Analog to Digital Converter (ADC) 4.1.14 Analog Comparator (ACMP) . . 4.1.15 Digital to Analog Converter (VDAC) 4.1.16 Capacitive Sense (CSEN) . . . 4.1.17 Operational Amplifier (OPAMP) . 4.1.18 LCD Driver . . . . . . . . 4.1.19 Pulse Counter (PCNT) . . . . 4.1.20 Analog Port (APORT) . . . . . 4.1.21 I2C . . . . . . . . . . . 4.1.22 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 .19 .20 .22 .23 .25 .26 .33 .34 .35 .41 .42 .44 .45 .47 .50 .53 .55 .58 .59 .59 .60 .63 4.2 Typical Performance Curves . 4.2.1 Supply Current . . . . 4.2.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 .65 .70 . . . . . . . . . 5. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.1 EFM32TG11B5xx in QFP80 Device Pinout . . . . . . . . . . . . . . . . . . . .72 5.2 EFM32TG11B5xx in QFN80 Device Pinout . . . . . . . . . . . . . . . . . . . .75 5.3 EFM32TG11B5xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . .78 5.4 EFM32TG11B3xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . .80 5.5 EFM32TG11B1xx in QFP64 Device Pinout . . . . . . . . . . . . . . . . . . . .82 5.6 EFM32TG11B5xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . .84 5.7 EFM32TG11B3xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . .86 5.8 EFM32TG11B1xx in QFN64 Device Pinout . . . . . . . . . . . . . . . . . . . .88 silabs.com | Building a more connected world. Rev. 1.0 | 8 5.9 EFM32TG11B5xx in QFP48 Device Pinout . . . . . . . . . . . . . . . . . . . .90 5.10 EFM32TG11B3xx in QFP48 Device Pinout . . . . . . . . . . . . . . . . . . . .92 5.11 EFM32TG11B1xx in QFP48 Device Pinout . . . . . . . . . . . . . . . . . . . .94 5.12 EFM32TG11B5xx in QFN32 Device Pinout . . . . . . . . . . . . . . . . . . . .96 5.13 EFM32TG11B1xx in QFN32 Device Pinout . . . . . . . . . . . . . . . . . . . .98 5.14 GPIO Functionality Table . . . . . 5.15 Alternate Functionality Overview . . 5.16 Analog Port (APORT) Client Maps . 6. TQFP80 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 . . . 104 . . . 115 . . . . . . . . . . . . . . . . . . . . . . .125 6.1 TQFP80 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2 TQFP80 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 127 . 6.3 TQFP80 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . 128 7. QFN80 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 129 7.1 QFN80 Package Dimensions 7.2 QFN80 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 129 . . . . . . . . . . . . . . . . . . . . . . . .131 . 7.3 QFN80 Package Marking . . . 8. TQFP64 Package Specifications . . . . . . . . . . . . . . . . . . . . . .133 . . . . . . . . . . . . . . . . . . . . . . .134 8.1 TQFP64 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 134 8.2 TQFP64 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . 136 . 8.3 TQFP64 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. QFN64 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 138 9.1 QFN64 Package Dimensions 9.2 QFN64 PCB Land Pattern 9.3 QFN64 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . 138 . . . . . . . . . . . . . . . . . . . . . . . .140 . . . . . . . . . . . . . . . . . . . . . . . . . .142 10. TQFP48 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 143 10.1 TQFP48 Package Dimensions 10.2 TQFP48 PCB Land Pattern . 10.3 TQFP48 Package Marking . . . . . . . . . . . . . . . . . . . . . . . .143 . . . . . . . . . . . . . . . . . . . . . . .145 . 11. QFN32 Package Specifications . . . . . . . . . . . . . . . . . . . . . 1. 46 . . . . . . . . . . . . . . . . . . . . . . .147 11.1 QFN32 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 147 11.2 QFN32 PCB Land Pattern. . . . . . . . . . . . . . . . . . . . . . . . 149 11.3 QFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . 151 12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 silabs.com | Building a more connected world. Rev. 1.0 | 9 EFM32TG11 Family Data Sheet System Overview 3. System Overview 3.1 Introduction The Tiny Gecko Series 1 product family is well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the MCU system. The detailed functional description can be found in the Tiny Gecko Series 1 Reference Manual. Any behavior that does not conform to the specifications in this data sheet or the functional descriptions in the Tiny Gecko Series 1 Reference Manual are detailed in the EFM32TG11 Errata document. A block diagram of the Tiny Gecko Series 1 family is shown in Figure 3.1 Detailed EFM32TG11 Block Diagram on page 10. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. Energy Management Port I/O Configuration Voltage Monitor DVDD Digital Peripherals bypass Voltage Regulator DECOUPLE BU_VIN Backup Domain Debug Signals (shared w/GPIO) Brown Out / Power-On Reset ARM Cortex-M0+ Core Reset Management Unit Up to 32 KB RAM Memory Protection Unit Serial Wire Debug / Programming Security Management LDMA Controller Clock Management ULFRCO AUXHFRCO LFXTAL_P HFXTAL_N I2C RTCC CRC CRYPTO LESENSE LFRCO LFXO HFRCO + DPLL HFXO Port A Drivers PAn Port B Drivers PBn Port C Drivers PCn Port D Drivers PDn Port E Drivers PEn Port F Drivers PFn TRNG Up to 128 KB ISP Flash Program Memory Watchdog Timer LFXTAL_N HFXTAL_P LEUART PCNT A A H P B B Analog Peripherals VDAC Internal Reference 12-bit ADC Mux & FB RESETn To BU_STAT BU_VOUT GPIO CRYOTIMER Input Mux VREGSW DC-DC Converter CAN USART / UART + - VREGVDD LETIMER TIMER / WTIMER Op-Amp Digital Port Mapper AVDD IOVDD0 Analog Port (APORT) IOVDD0 VDD Temp Sense Capacitive Touch + Analog Comparator Low-Energy LCD, up to 8x32 configuration Figure 3.1. Detailed EFM32TG11 Block Diagram silabs.com | Building a more connected world. Rev. 1.0 | 10 EFM32TG11 Family Data Sheet System Overview 3.2 Power The EFM32TG11 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. The EFM32TG11 device family includes support for internal supply voltage scaling, as well as two different power domain groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption. AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.2.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.2.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.2.3 EM2 and EM3 Power Domains The EFM32TG11 has three independent peripheral power domains for use in EM2 and EM3. Two of these domains are dynamic and can be shut down to save energy. Peripherals associated with the two dynamic power domains are listed in Table 3.1 EM2 and EM3 Peripheral Power Subdomains on page 11. If all of the peripherals in a peripheral power domain are unused, the power domain for that group will be powered off in EM2 and EM3, reducing the overall current consumption of the device. Other EM2, EM3, and EM4capable peripherals and functions not listed in the table below reside on the primary power domain, which is always on in EM2 and EM3. Table 3.1. EM2 and EM3 Peripheral Power Subdomains Peripheral Power Domain 1 Peripheral Power Domain 2 ACMP0 ACMP1 PCNT0 CSEN ADC0 VDAC0 LETIMER0 LEUART0 LESENSE I2C0 APORT I2C1 - IDAC - LCD silabs.com | Building a more connected world. Rev. 1.0 | 11 EFM32TG11 Family Data Sheet System Overview 3.3 General Purpose Input/Output (GPIO) EFM32TG11 has up to 67 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.4 Clocking 3.4.1 Clock Management Unit (CMU) The Clock Management Unit controls oscillators and clocks in the EFM32TG11. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. 3.4.2 Internal and External Oscillators The EFM32TG11 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 4 to 48 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. When crystal accuracy is not required, it can be operated in free-running mode at a number of factory-calibrated frequencies. A digital phase-locked loop (DPLL) feature allows the HFRCO to achieve higher accuracy and stability by referencing other available clock sources such as LFXO and HFXO. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. 3.5 Counters/Timers and PWM 3.5.1 Timer/Counter (TIMER) TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.5.2 Wide Timer/Counter (WTIMER) WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only. 3.5.3 Real Time Counter and Calendar (RTCC) The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. silabs.com | Building a more connected world. Rev. 1.0 | 12 EFM32TG11 Family Data Sheet System Overview 3.5.4 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.5.5 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. 3.5.6 Pulse Counter (PCNT) The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.5.7 Watchdog Timer (WDOG) The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.6 Communications and Other Digital Peripherals 3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.6.2 Universal Asynchronous Receiver/Transmitter (UART) The Universal Asynchronous Receiver/Transmitter is a subset of the USART peripheral, supporting full duplex asynchronous UART communication with hardware flow control and RS-485. 3.6.3 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.6.4 Inter-Integrated Circuit Interface (I2C) The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. silabs.com | Building a more connected world. Rev. 1.0 | 13 EFM32TG11 Family Data Sheet System Overview 3.6.5 Controller Area Network (CAN) The CAN peripheral provides support for communication at up to 1 Mbps over CAN protocol version 2.0 part A and B. It includes 32 message objects with independent identifier masks and retains message RAM in EM2. Automatic retransmittion may be disabled in order to support Time Triggered CAN applications. 3.6.6 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.6.7 Low Energy Sensor Interface (LESENSE) The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.7 Security Features 3.7.1 GPCRC (General Purpose Cyclic Redundancy Check) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.7.2 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. Tiny Gecko Series 1 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), and SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO peripheral allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. 3.7.3 True Random Number Generator (TRNG) The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation). 3.7.4 Security Management Unit (SMU) The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt. 3.8 Analog 3.8.1 Analog Port (APORT) The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. silabs.com | Building a more connected world. Rev. 1.0 | 14 EFM32TG11 Family Data Sheet System Overview 3.8.2 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. 3.8.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. 3.8.4 Capacitive Sense (CSEN) The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead. 3.8.5 Digital to Analog Converter (VDAC) The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3. 3.8.6 Operational Amplifiers The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip. 3.8.7 Liquid Crystal Display Driver (LCD) The LCD driver is capable of driving a segmented LCD display with up to 8x32 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. A patented charge redistribution driver can reduce the LCD peripheral supply current by up to 40%. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data. 3.9 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFM32TG11. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. silabs.com | Building a more connected world. Rev. 1.0 | 15 EFM32TG11 Family Data Sheet System Overview 3.10 Core and Memory 3.10.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M0+ RISC processor • Memory Protection Unit (MPU) supporting up to 8 memory segments • Micro-Trace Buffer (MTB) • Up to 128 kB flash program memory • Up to 32 kB RAM data memory • Configuration and event handling of all peripherals • 2-pin Serial-Wire debug interface 3.10.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.10.3 Linked Direct Memory Access Controller (LDMA) The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. 3.10.4 Bootloader All devices come pre-programmed with a UART bootloader. This bootloader resides in flash and can be erased if it is not needed. More information about the bootloader protocol and usage can be found in AN0003: UART Bootloader. Application notes can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio in the [Documentation] area. silabs.com | Building a more connected world. Rev. 1.0 | 16 EFM32TG11 Family Data Sheet System Overview 3.11 Memory Map The EFM32TG11 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. Figure 3.2. EFM32TG11 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.0 | 17 EFM32TG11 Family Data Sheet System Overview Figure 3.3. EFM32TG11 Memory Map — Peripherals 3.12 Configuration Summary The features of the EFM32TG11 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining peripherals support full configuration. Table 3.2. Configuration Summary Peripheral Configuration Pin Connections USART0 IrDA, SmartCard US0_TX, US0_RX, US0_CLK, US0_CS USART1 I2S, SmartCard US1_TX, US1_RX, US1_CLK, US1_CS USART2 IrDA, SmartCard, High-Speed US2_TX, US2_RX, US2_CLK, US2_CS USART3 I2S, SmartCard US3_TX, US3_RX, US3_CLK, US3_CS TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 - TIM1_CC[3:0] WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0] WTIMER1 - WTIM1_CC[3:0] silabs.com | Building a more connected world. Rev. 1.0 | 18 EFM32TG11 Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits. 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Table 4.1. Absolute Maximum Ratings Parameter Symbol Storage temperature range Test Condition Min Typ Max Unit TSTG -50 — 150 °C Voltage on any supply pin VDDMAX -0.3 — 3.8 V Voltage ramp rate on any supply pin VDDRAMPMAX — — 1 V / µs DC voltage on any GPIO pin VDIGPIN 5V tolerant GPIO pins1 2 3 -0.3 — Min of 5.25 and IOVDD +2 V LCD pins3 -0.3 — Min of 3.8 and IOVDD +2 V Standard GPIO pins -0.3 — IOVDD+0.3 V Total current into VDD power IVDDMAX lines Source — — 200 mA Total current into VSS ground lines IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -G grade devices -40 — 105 °C -I grade devices -40 — 125 °C Current for all I/O pins Junction temperature IIOALLMAX TJ Note: 1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.0 | 19 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.2 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be greater than or equal to AVDD, DVDD and all IOVDD supplies. • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD silabs.com | Building a more connected world. Rev. 1.0 | 20 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Parameter Symbol Test Condition Min Typ Max Unit Operating ambient temperature range1 TA -G temperature grade -40 25 85 °C -I temperature grade -40 25 125 °C AVDD supply voltage2 VAVDD 1.8 3.3 3.8 V VREGVDD operating supply voltage2 3 VVREGVDD DCDC in regulation 2.4 3.3 3.8 V DCDC in bypass, 50mA load 1.8 3.3 3.8 V DCDC not in use. DVDD externally shorted to VREGVDD 1.8 3.3 3.8 V DCDC in bypass, T ≤ 85 °C — — 200 mA DCDC in bypass, T > 85 °C — — 100 mA 1.62 — VVREGVDD V 1.62 — VVREGVDD V 0.75 1.0 2.75 µF VSCALE2, MODE = WS1 — — 48 MHz VSCALE2, MODE = WS0 — — 25 MHz VSCALE0, MODE = WS1 — — 20 MHz VSCALE0, MODE = WS0 — — 10 MHz VSCALE2 — — 48 MHz VSCALE0 — — 20 MHz VSCALE2 — — 48 MHz VSCALE0 — — 20 MHz VSCALE2 — — 48 MHz VSCALE0 — — 20 MHz VSCALE2 — — 48 MHz VSCALE0 — — 20 MHz VSCALE2 — — 48 MHz VSCALE0 — — 20 MHz VSCALE2 — — 48 MHz VSCALE0 — — 20 MHz VREGVDD current DVDD operating supply voltage IVREGVDD VDVDD IOVDD operating supply volt- VIOVDD age DECOUPLE output capacitor5 6 CDECOUPLE HFCORECLK frequency fCORE HFCLK frequency HFSRCCLK frequency HFBUSCLK frequency HFPERCLK frequency HFPERBCLK frequency HFPERCCLK frequency fHFCLK fHFSRCCLK fHFBUSCLK fHFPERCLK fHFPERBCLK fHFPERCCLK silabs.com | Building a more connected world. All IOVDD pins4 Rev. 1.0 | 21 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for TJ and THETAJA. 2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 3. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max. 4. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD. 5. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias. 6. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Parameter Symbol Test Condition Min Typ Max Unit Thermal resistance, QFN32 Package THETAJA_QFN32 4-Layer PCB, Air velocity = 0 m/s — 25.7 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 23.2 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 21.3 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 44.1 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 43.5 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 42.3 — °C/W THETAJA_QFN64 4-Layer PCB, Air velocity = 0 m/s — 20.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 18.2 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 16.4 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 37.3 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 35.6 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 33.8 — °C/W THETAJA_QFN80 4-Layer PCB, Air velocity = 0 m/s — 20.9 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 18.2 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 16.4 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 49.3 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 44.5 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 42.6 — °C/W Thermal resistance, TQFP48 THEPackage TAJA_TQFP48 Thermal resistance, QFN64 Package Thermal resistance, TQFP64 THEPackage TAJA_TQFP64 Thermal resistance, QFN80 Package Thermal resistance, TQFP80 THEPackage TAJA_TQFP80 silabs.com | Building a more connected world. Rev. 1.0 | 22 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Parameter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.8 — VVREGVDD_ V Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Output voltage programmable range1 VDCDC_O Regulation DC accuracy ACCDC Regulation window2 WINREG Steady-state output ripple VR Output voltage under/overshoot VOV MAX — VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low Noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low Power (LP) mode, LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA 1.63 — 2.2 V Low Power (LP) mode, LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V — 3 — mVpp CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — 25 60 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — 45 90 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 40 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 100 — mV DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.0 | 23 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive4, T ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive4, T > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive4 — — 100 mA Low noise (LN) mode, Light Drive4 — — 50 mA Low power (LP) mode, LPCMPBIASEMxx3 = 0 — — 75 µA Low power (LP) mode, LPCMPBIASEMxx3 = 3 — — 10 mA CDCDC 25% tolerance 1 4.7 4.7 µF DCDC nominal output induc- LDCDC tor 20% tolerance 4.7 4.7 4.7 µH — 1.2 2.5 Ω DCDC nominal output capacitor5 Resistance in Bypass mode RBYP Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD. 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits. 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode. 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. 5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details. silabs.com | Building a more connected world. Rev. 1.0 | 24 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.5 Backup Supply Domain Table 4.5. Backup Supply Domain Parameter Symbol Test Condition Min Typ Max Unit 1.8 — 3.8 V EMU_BUCTRL_PWRRES = RES0 3400 3900 4400 Ω EMU_BUCTRL_PWRRES = RES1 1450 1800 2150 Ω EMU_BUCTRL_PWRRES = RES2 1000 1330 1700 Ω EMU_BUCTRL_PWRRES = RES3 525 815 1100 Ω EMU_BUCTRL_VOUTRES = STRONG 35 110 185 Ω EMU_BUCTRL_VOUTRES = MED 475 775 1075 Ω EMU_BUCTRL_VOUTRES = WEAK 5600 6500 7400 Ω BU_VIN not powering backup domain, 25 °C — 10 100 nA BU_VIN powering backup domain, 25 °C 2 — 450 2500 nA Backup supply voltage range VBU_VIN PWRRES resistor Output impedance between BU_VIN and BU_VOUT 1 Supply current RPWRRES RBU_VOUT IBU_VIN Note: 1. BU_VOUT and BU_STAT signals are not available in all package configurations. Check the device pinout for availability. 2. Additional current required by backup circuitry when backup is active. Includes supply current of backup switches and backup regulator. Does not include supply current required for backed-up circuitry. silabs.com | Building a more connected world. Rev. 1.0 | 25 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.6 Current Consumption 4.1.6.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.6. Current Consumption 3.3 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 48 MHz crystal, CPU running while loop from flash — 45 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 44 50 µA/MHz 48 MHz HFRCO, CPU running Prime from flash — 57 — µA/MHz 48 MHz HFRCO, CPU running CoreMark loop from flash — 71 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 45 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 46 52 µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 50 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 161 240 µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 41 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 145 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 48 MHz crystal — 34 — µA/MHz 48 MHz HFRCO — 33 36 µA/MHz 32 MHz HFRCO — 34 — µA/MHz 26 MHz HFRCO — 35 40 µA/MHz 16 MHz HFRCO — 39 — µA/MHz 1 MHz HFRCO — 150 210 µA/MHz Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO — 32 — µA/MHz 1 MHz HFRCO — 136 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Full 32 kB RAM retention and RTCC running from LFXO — 1.48 — µA Full 32 kB RAM retention and RTCC running from LFRCO — 1.86 — µA 8 kB (1 bank) RAM retention and RTCC running from LFRCO1 — 1.59 2.8 µA Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 1.23 2.5 µA Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 26 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM4H mode, with voltage scaling enabled IEM4H_VS 128 byte RAM retention, RTCC running from LFXO — 0.82 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.45 — µA 128 byte RAM retention, no RTCC — 0.45 1 µA Current consumption in EM4S mode IEM4S No RAM retention, no RTCC — 0.07 0.1 µA Current consumption of peripheral power domain 1, with voltage scaling enabled IPD1_VS Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled2 — 0.18 — µA Current consumption of peripheral power domain 2, with voltage scaling enabled IPD2_VS Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled2 — 0.18 — µA Note: 1. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. silabs.com | Building a more connected world. Rev. 1.0 | 27 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.6.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.7. Current Consumption 3.3 V using DC-DC Converter Parameter Symbol Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, DCDC in Low Noise CCM mode2 Current consumption in EM0 IACTIVE_LPM mode with all peripherals disabled, DCDC in LP mode3 silabs.com | Building a more connected world. Test Condition Min Typ Max Unit 48 MHz crystal, CPU running while loop from flash — 38 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 37 — µA/MHz 48 MHz HFRCO, CPU running Prime from flash — 45 — µA/MHz 48 MHz HFRCO, CPU running CoreMark loop from flash — 53 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 43 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 47 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 61 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 587 — µA/MHz 48 MHz crystal, CPU running while loop from flash — 49 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 48 — µA/MHz 48 MHz HFRCO, CPU running Prime from flash — 55 — µA/MHz 48 MHz HFRCO, CPU running CoreMark loop from flash — 63 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 60 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 68 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 96 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1157 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 32 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 33 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 36 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 156 — µA/MHz Rev. 1.0 | 28 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM0 IACTIVE_CCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode2 19 MHz HFRCO, CPU running while loop from flash — 81 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1147 — µA/MHz Current consumption in EM0 IACTIVE_LPM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in LP mode3 19 MHz HFRCO, CPU running while loop from flash — 30 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 144 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 48 MHz crystal — 31 — µA/MHz 48 MHz HFRCO — 30 — µA/MHz 32 MHz HFRCO — 36 — µA/MHz 26 MHz HFRCO — 41 — µA/MHz 16 MHz HFRCO — 54 — µA/MHz 1 MHz HFRCO — 581 — µA/MHz 32 MHz HFRCO — 25 — µA/MHz 26 MHz HFRCO — 26 — µA/MHz 16 MHz HFRCO — 29 — µA/MHz 1 MHz HFRCO — 153 — µA/MHz Current consumption in EM1 IEM1_DCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise DCM mode1 19 MHz HFRCO — 46 — µA/MHz 1 MHz HFRCO — 573 — µA/MHz Current consumption in EM1 IEM1_LPM_VS mode with all peripherals disabled and voltage scaling enabled. DCDC in LP mode3 19 MHz HFRCO — 25 — µA/MHz 1 MHz HFRCO — 140 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled, DCDC in LP mode3 Full 32 kB RAM retention and RTCC running from LFXO — 1.26 — µA Full 32 kB RAM retention and RTCC running from LFRCO — 1.54 — µA 8 kB (1 bank) RAM retention and RTCC running from LFRCO4 — 1.30 — µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 0.93 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.78 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.50 — µA 128 byte RAM retention, no RTCC — 0.50 — µA No RAM retention, no RTCC — 0.06 — µA Current consumption in EM1 IEM1_LPM mode with all peripherals disabled, DCDC in Low Power mode3 Current consumption in EM4S mode IEM4H_VS IEM4S silabs.com | Building a more connected world. Rev. 1.0 | 29 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption of peIPD1_VS ripheral power domain 1, with voltage scaling enabled, DCDC in LP mode3 Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled5 — 0.18 — µA Current consumption of peIPD2_VS ripheral power domain 2, with voltage scaling enabled, DCDC in LP mode3 Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled5 — 0.18 — µA Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 2. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 3. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD. 4. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 5. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. silabs.com | Building a more connected world. Rev. 1.0 | 30 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.6.3 Current Consumption 1.8 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.8. Current Consumption 1.8 V without DC-DC Converter Parameter Symbol Min Typ Max Unit 48 MHz crystal, CPU running while loop from flash — 45 — µA/MHz 48 MHz HFRCO, CPU running while loop from flash — 44 — µA/MHz 48 MHz HFRCO, CPU running Prime from flash — 57 — µA/MHz 48 MHz HFRCO, CPU running CoreMark loop from flash — 71 — µA/MHz 32 MHz HFRCO, CPU running while loop from flash — 45 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 46 — µA/MHz 16 MHz HFRCO, CPU running while loop from flash — 49 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 158 — µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 41 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 142 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 48 MHz crystal — 34 — µA/MHz 48 MHz HFRCO — 33 — µA/MHz 32 MHz HFRCO — 34 — µA/MHz 26 MHz HFRCO — 35 — µA/MHz 16 MHz HFRCO — 39 — µA/MHz 1 MHz HFRCO — 147 — µA/MHz Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO — 32 — µA/MHz 1 MHz HFRCO — 133 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Full 32 kB RAM retention and RTCC running from LFXO — 1.39 — µA Full 32 kB RAM retention and RTCC running from LFRCO — 1.63 — µA 8 kB (1 bank) RAM retention and RTCC running from LFRCO1 — 1.37 — µA Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 1.10 — µA Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 31 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Current consumption in EM4H mode, with voltage scaling enabled IEM4H_VS 128 byte RAM retention, RTCC running from LFXO — 0.75 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.37 — µA 128 byte RAM retention, no RTCC — 0.37 — µA Current consumption in EM4S mode IEM4S No RAM retention, no RTCC — 0.05 — µA Current consumption of peripheral power domain 1, with voltage scaling enabled IPD1_VS Additional current consumption in EM2/3 when any peripherals on power domain 1 are enabled2 — 0.18 — µA Current consumption of peripheral power domain 2, with voltage scaling enabled IPD2_VS Additional current consumption in EM2/3 when any peripherals on power domain 2 are enabled2 — 0.18 — µA Note: 1. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 2. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See 3.2.3 EM2 and EM3 Power Domains for a list of the peripherals in each power domain. silabs.com | Building a more connected world. Rev. 1.0 | 32 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.7 Wake Up Times Table 4.9. Wake Up Times Parameter Symbol Wake up time from EM1 tEM1_WU Wake up from EM2 tEM2_WU Wake up from EM3 tEM3_WU Test Condition Min Typ Max Unit — 3 — AHB Clocks Code execution from flash — 10.1 — µs Code execution from RAM — 3.1 — µs Code execution from flash — 10.1 — µs Code execution from RAM — 3.1 — µs Wake up from EM4H1 tEM4H_WU Executing from flash — 88 — µs Wake up from EM4S1 tEM4S_WU Executing from flash — 282 — µs Time from release of reset source to first instruction execution tRESET Soft Pin Reset released — 50 — µs Any other reset released — 352 — µs Power mode scaling time tSCALE VSCALE0 to VSCALE2, HFCLK = 19 MHz2 3 — 31.8 — µs VSCALE2 to VSCALE0, HFCLK = 19 MHz4 — 4.3 — µs Note: 1. Time from wake up request until first instruction is executed. Wakeup results in device reset. 2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs. 3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs. silabs.com | Building a more connected world. Rev. 1.0 | 33 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.8 Brown Out Detector (BOD) Table 4.10. Brown Out Detector (BOD) Parameter Symbol Test Condition Min Typ Max Unit DVDD BOD threshold VDVDDBOD DVDD rising — — 1.62 V DVDD falling (EM0/EM1) 1.35 — — V DVDD falling (EM2/EM3) 1.3 — — V DVDD BOD hysteresis VDVDDBOD_HYST — 18 — mV DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs AVDD BOD threshold VAVDDBOD — — 1.8 V AVDD falling (EM0/EM1) 1.62 — — V AVDD falling (EM2/EM3) 1.53 — — V AVDD rising AVDD BOD hysteresis VAVDDBOD_HYST — 20 — mV AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD AVDD rising — — 1.7 V AVDD falling 1.45 — — V — 25 — mV — 300 — µs EM4 BOD hysteresis VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY silabs.com | Building a more connected world. Supply drops at 0.1V/µs rate Rev. 1.0 | 34 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.9 Oscillators 4.1.9.1 Low-Frequency Crystal Oscillator (LFXO) Table 4.11. Low-Frequency Crystal Oscillator (LFXO) Parameter Symbol Crystal frequency Test Condition Min Typ Max Unit fLFXO — 32.768 — kHz Supported crystal equivalent series resistance (ESR) ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 4. In CMU_LFXOCTRL register. silabs.com | Building a more connected world. Rev. 1.0 | 35 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.9.2 High-Frequency Crystal Oscillator (HFXO) Table 4.12. High-Frequency Crystal Oscillator (HFXO) Parameter Symbol Test Condition Crystal frequency fHFXO Supported crystal equivalent series resistance (ESR) ESRHFXO Nominal on-chip tuning cap range1 CHFXO_T On-chip tuning capacitance step SSHFXO Startup time tHFXO Current consumption after startup IHFXO Min Typ Max Unit No clock doubling 4 — 48 MHz 48 MHz crystal — — 50 Ω 24 MHz crystal — — 150 Ω 4 MHz crystal — — 180 Ω On each of HFXTAL_N and HFXTAL_P pins 8.7 — 51.7 pF — 0.084 — pF 48 MHz crystal, ESR = 50 Ohm, CL = 8 pF — 350 — µs 24 MHz crystal, ESR = 150 Ohm, CL = 6 pF — 700 — µs 4 MHz crystal, ESR = 180 Ohm, CL = 18 pF — 3 — ms 48 MHz crystal — 480 — µA 24 MHz crystal — 240 — µA 4 MHz crystal — 50 — µA Note: 1. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. silabs.com | Building a more connected world. Rev. 1.0 | 36 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.9.3 Low-Frequency RC Oscillator (LFRCO) Table 4.13. Low-Frequency RC Oscillator (LFRCO) Parameter Symbol Test Condition Min Typ Max Unit Oscillation frequency fLFRCO ENVREF1 = 1, T ≤ 85 °C 31.3 32.768 33.6 kHz ENVREF1 = 1, T > 85 °C 31 32.768 36.8 kHz ENVREF1 = 0, T ≤ 85 °C 31.3 32.768 33.4 kHz ENVREF1 = 0, T > 85 °C 30 32.768 33.6 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 370 — nA ENVREF = 0 in CMU_LFRCOCTRL — 520 — nA Startup time tLFRCO Current consumption 2 ILFRCO Note: 1. In CMU_LFRCOCTRL register. 2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. silabs.com | Building a more connected world. Rev. 1.0 | 37 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.9.4 High-Frequency RC Oscillator (HFRCO) Table 4.14. High-Frequency RC Oscillator (HFRCO) Parameter Symbol Test Condition Min Typ Max Unit Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — µs fHFRCO ≤ 4 MHz — 2.5 — µs Maximum DPLL lock time1 tDPLL_LOCK fREF = 32.768 kHz, fHFRCO = 39.98 MHz, N = 1219, M = 0 — 183 — µs Current consumption on all supplies IHFRCO fHFRCO = 48 MHz — 258 320 µA fHFRCO = 38 MHz — 218 280 µA fHFRCO = 32 MHz — 182 220 µA fHFRCO = 26 MHz — 156 200 µA fHFRCO = 19 MHz — 130 160 µA fHFRCO = 16 MHz — 112 130 µA fHFRCO = 13 MHz — 101 120 µA fHFRCO = 7 MHz — 80 100 µA fHFRCO = 4 MHz — 29 45 µA fHFRCO = 2 MHz — 26 40 µA fHFRCO = 1 MHz — 24 35 µA fHFRCO = 40 MHz, DPLL enabled — 393 450 µA fHFRCO = 32 MHz, DPLL enabled — 313 350 µA fHFRCO = 16 MHz, DPLL enabled — 180 220 µA fHFRCO = 4 MHz, DPLL enabled — 46 60 µA fHFRCO = 1 MHz, DPLL enabled — 33 45 µA — 0.8 — % Coarse trim step size (% of period) SSHFRCO_COARS E Fine trim step size (% of period) SSHFRCO_FINE — 0.1 — % Period jitter PJHFRCO — 0.2 — % RMS silabs.com | Building a more connected world. Rev. 1.0 | 38 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Frequency limits fHFRCO_BAND FREQRANGE = 0, FINETUNINGEN = 0 2 — 8 MHz FREQRANGE = 3, FINETUNINGEN = 0 4 — 14 MHz FREQRANGE = 6, FINETUNINGEN = 0 9 — 21 MHz FREQRANGE = 7, FINETUNINGEN = 0 10 — 27 MHz FREQRANGE = 8, FINETUNINGEN = 0 13 — 33 MHz FREQRANGE = 10, FINETUNINGEN = 0 15 — 46 MHz FREQRANGE = 11, FINETUNINGEN = 0 23 — 54 MHz FREQRANGE = 12, FINETUNINGEN = 0 29 — 64 MHz FREQRANGE = 13, FINETUNINGEN = 0 36 — 78 MHz Note: 1. Maximum DPLL lock time ~= 6 x (M+1) x tREF, where tREF is the reference clock period. silabs.com | Building a more connected world. Rev. 1.0 | 39 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.9.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Table 4.15. Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Parameter Symbol Test Condition Frequency accuracy fAUXHFRCO_ACC Start-up time tAUXHFRCO Current consumption on all supplies Coarse trim step size (% of period) IAUXHFRCO Min Typ Max Unit At production calibrated frequencies, across supply voltage and temperature -3 — 3 % fAUXHFRCO ≥ 19 MHz — 400 — ns 4 < fAUXHFRCO < 19 MHz — 1.4 — µs fAUXHFRCO ≤ 4 MHz — 2.5 — µs fAUXHFRCO = 48 MHz — 238 280 µA fAUXHFRCO = 38 MHz — 196 225 µA fAUXHFRCO = 32 MHz — 160 190 µA fAUXHFRCO = 26 MHz — 137 165 µA fAUXHFRCO = 19 MHz — 110 135 µA fAUXHFRCO = 16 MHz — 101 125 µA fAUXHFRCO = 13 MHz — 78 100 µA fAUXHFRCO = 7 MHz — 54 75 µA fAUXHFRCO = 4 MHz — 30 45 µA fAUXHFRCO = 2 MHz — 27 40 µA fAUXHFRCO = 1 MHz — 25 37 µA — 0.8 — % — 0.1 — % — 0.2 — % RMS Min Typ Max Unit 0.88 1 1.12 kHz SSAUXHFRCO_COARSE Fine trim step size (% of period) SSAUXHFRCO_FINE Period jitter PJAUXHFRCO 4.1.9.6 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.16. Ultra-low Frequency RC Oscillator (ULFRCO) Parameter Symbol Oscillation frequency fULFRCO silabs.com | Building a more connected world. Test Condition Rev. 1.0 | 40 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.10 Flash Memory Characteristics1 Table 4.17. Flash Memory Characteristics1 Parameter Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH Word (32-bit) programming time tW_PROG Test Condition Min Typ Max Unit 10000 — — cycles T ≤ 85 °C 10 — — years T ≤ 125 °C 10 — — years Burst write, 128 words, average time per word 20 26 32 µs Single word 59 68 83 µs Page erase time2 tPERASE 20 27 35 ms Mass erase time3 tMERASE 20 27 35 ms Device erase time4 5 tDERASE T ≤ 85 °C — 54 70 ms T ≤ 125 °C — 54 75 ms Page Erase — — 1.7 mA Mass or Device Erase — — 2.0 mA Erase current6 IERASE Write current6 IWRITE — — 3.5 mA Supply voltage during flash erase and write VFLASH 1.62 — 3.6 V Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 3. Mass erase is issued by the CPU and erases all flash. 4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.0 | 41 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.11 General-Purpose I/O (GPIO) Table 4.18. General-Purpose I/O (GPIO) Parameter Symbol Test Condition Min Typ Max Unit Input low voltage VIL GPIO pins — — IOVDD*0.3 V Input high voltage VIH GPIO pins IOVDD*0.7 — — V Output high voltage relative to IOVDD VOH Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 — — V IOVDD*0.6 — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 40 nA LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 60 nA All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C — — 150 nA LFXO Pins, GPIO ≤ IOVDD, T > 85 °C — — 300 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 µA 30 40 65 kΩ 15 25 45 ns DRIVESTRENGTH1 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Output low voltage relative to VOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Input leakage current IIOLEAK Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK I/O pin pull-up/pull-down resistor RPUD Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.0 | 42 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns — 2.2 — ns — 7.4 — ns DRIVESTRENGTH1 = STRONG, SLEWRATE1 = 0x6 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 CL = 50 pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 Note: 1. In GPIO_Pn_CTRL register. silabs.com | Building a more connected world. Rev. 1.0 | 43 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.12 Voltage Monitor (VMON) Table 4.19. Voltage Monitor (VMON) Parameter Symbol Test Condition Supply current (including I_SENSE) IVMON Loading of monitored supply ISENSE Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time tVMON_RES Hysteresis VVMON_HYST silabs.com | Building a more connected world. Min Typ Max Unit In EM0 or EM1, 1 active channel, T ≤ 85 °C — 6.3 11 µA In EM0 or EM1, All channels active, T ≤ 85 °C — 12.5 20 µA In EM2, EM3 or EM4, 1 channel active and above threshold — 62 — nA In EM2, EM3 or EM4, 1 channel active and below threshold — 62 — nA In EM2, EM3 or EM4, All channels active and above threshold — 99 — nA In EM2, EM3 or EM4, All channels active and below threshold — 99 — nA In EM0 or EM1 — 2 — µA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/µs rate — 460 — ns — 26 — mV Rev. 1.0 | 44 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.13 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.20. Analog to Digital Converter (ADC) Parameter Symbol Resolution VRESOLUTION Input voltage range1 VADCIN Test Condition Single ended Differential Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 — 12 Bits — — VFS V -VFS/2 — VFS/2 V 1 — VAVDD V Power supply rejection2 PSRRADC At DC — 80 — dB Analog input common mode rejection ratio CMRRADC At DC — 80 — dB 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 270 350 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4 — 125 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4 — 80 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 1 4 — 45 — µA — 8 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 105 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 70 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP Continuous operation. WARMUPMODE3 = KEEPADCWARM 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 325 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4 — 175 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4 — 125 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 0 4 — 85 — µA — 16 — µA Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP Continuous operation. WARMUPMODE3 = KEEPADCWARM Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 160 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 125 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 166 — µA IADC_CLK silabs.com | Building a more connected world. Rev. 1.0 | 45 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol ADC clock frequency Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time5 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — cycles WARMUPMODE3 = NORMAL — — 5 µs WARMUPMODE3 = KEEPINSTANDBY — — 2 µs WARMUPMODE3 = KEEPINSLOWACC — — 1 µs Internal reference6, differential measurement 58 67 — dB External reference7, differential measurement — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0 3 LSB Gain error in ADC VADCGAIN Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C Startup time of reference generator and ADC core SNDR at 1Msps and fIN = 10kHz Temperature sensor slope tADCSTART SNDRADC VTS_SLOPE Test Condition Note: 1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_CNTL register. 4. In ADCn_BIASPROG register. 5. Derived from ADCCLK. 6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. 7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. silabs.com | Building a more connected world. Rev. 1.0 | 46 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.14 Analog Comparator (ACMP) Table 4.21. Analog Comparator (ACMP) Parameter Symbol Test Condition Input voltage range VACMPIN Supply voltage VACMPVDD Active current not including voltage reference3 IACMP Current consumption of inter- IACMPREF nal voltage reference3 silabs.com | Building a more connected world. Min Typ Max Unit ACMPVDD = ACMPn_CTRL_PWRSEL 1 — — VACMPVDD V BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.8 — VVREGVDD_ V 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 1, FULLBIAS2 = 0 — 50 — nA BIASPROG2 = 0x10, FULLBIAS2 =0 — 306 — nA BIASPROG2 = 0x02, FULLBIAS2 =1 — 6.5 — µA BIASPROG2 = 0x20, FULLBIAS2 =1 — 74 100 µA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA MAX — VVREGVDD_ V MAX Rev. 1.0 | 47 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) VACMPHYST Comparator delay5 tACMPDELAY Min Typ Max Unit HYSTSEL4 = HYST0 -3 0 3 mV HYSTSEL4 = HYST1 5 18 27 mV HYSTSEL4 = HYST2 12 33 50 mV HYSTSEL4 = HYST3 17 46 67 mV HYSTSEL4 = HYST4 23 57 92 mV HYSTSEL4 = HYST5 26 68 108 mV HYSTSEL4 = HYST6 30 79 140 mV HYSTSEL4 = HYST7 34 90 160 mV HYSTSEL4 = HYST8 -3 0 3 mV HYSTSEL4 = HYST9 -27 -18 -5 mV HYSTSEL4 = HYST10 -50 -33 -12 mV HYSTSEL4 = HYST11 -67 -45 -17 mV HYSTSEL4 = HYST12 -92 -57 -23 mV HYSTSEL4 = HYST13 -108 -67 -26 mV HYSTSEL4 = HYST14 -140 -78 -30 mV HYSTSEL4 = HYST15 -160 -88 -34 mV BIASPROG2 = 1, FULLBIAS2 = 0 — 30 — µs BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 — µs BIASPROG2 = 0x02, FULLBIAS2 =1 — 360 — ns BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns -35 — 35 mV Offset voltage VACMPOFFSET BIASPROG2 =0x10, FULLBIAS2 =1 Reference voltage VACMPREF Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 1.98 2.5 2.8 V CSRESSEL6 = 0 — infinite — kΩ CSRESSEL6 = 1 — 15 — kΩ CSRESSEL6 = 2 — 27 — kΩ CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 100 — kΩ CSRESSEL6 = 6 — 162 — kΩ CSRESSEL6 = 7 — 235 — kΩ Capacitive sense internal re- RCSRES sistance silabs.com | Building a more connected world. Rev. 1.0 | 48 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. In ACMPn_CTRL register. 3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. 4. In ACMPn_HYSTERESIS registers. 5. ± 100 mV differential drive. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.0 | 49 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.15 Digital to Analog Converter (VDAC) DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output. Table 4.22. Digital to Analog Converter (VDAC) Parameter Symbol Test Condition Min Typ Max Unit Output voltage VDACOUT Single-Ended 0 — VVREF V -VVREF — VVREF V 500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4 — 396 — µA 44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4 — 72 — µA 200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, REFSEL = 4, SETTLETIME = 0x02, WARMUPTIME = 0x0A — 2 — µA Differential1 Current consumption including references (2 channels)2 IDAC Current from HFPERCLK3 IDAC_CLK — 5.8 — µA/MHz Sample rate SRDAC — — 500 ksps DAC clock frequency fDAC — — 1 MHz Conversion time tDACCONV fDAC = 1MHz 2 — — µs Settling time tDACSETTLE 50% fs step settling to 5 LSB — 2.5 — µs Startup time tDACSTARTUP Enable to 90% fs output, settling to 10 LSB — — 12 µs Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Full supply range — 2 — Ω DRIVESTRENGTH = 2, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Full supply range — 2 — Ω Vout = 50% fs. DC — 65.5 — dB Power supply rejection ratio4 PSRR silabs.com | Building a more connected world. Rev. 1.0 | 50 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Min Typ Max Unit 500 ksps, single-ended, internal 1.25V reference — 60.4 — dB 500 ksps, single-ended, internal 2.5V reference — 61.6 — dB 500 ksps, single-ended, 3.3V VDD reference — 64.0 — dB 500 ksps, differential, internal 1.25V reference — 63.3 — dB 500 ksps, differential, internal 2.5V reference — 64.4 — dB 500 ksps, differential, 3.3V VDD reference — 65.8 — dB Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal ratio (1 kHz sine wave), 1.25V reference Noise band limited to 22 kHz 500 ksps, single-ended, internal 2.5V reference — 65.3 — dB — 66.7 — dB 500 ksps, single-ended, 3.3V VDD reference — 70.0 — dB 500 ksps, differential, internal 1.25V reference — 67.8 — dB 500 ksps, differential, internal 2.5V reference — 69.0 — dB 500 ksps, differential, 3.3V VDD reference — 68.5 — dB — 70.2 — dB Signal to noise and distortion SNDRDAC ratio (1 kHz sine wave), Noise band limited to 250 kHz Test Condition Total harmonic distortion THD Differential non-linearity5 DNLDAC -1.5 — 1.5 LSB Intergral non-linearity INLDAC -4 — 4 LSB Offset error6 VOFFSET T = 25 °C -8 — 8 mV Across operating temperature range -25 — 25 mV T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -2.5 — 2.5 % Across operating temperature range, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -3.5 — 3.5 % — — 75 pF Gain error6 External load capactiance, OUTSCALE=0 VGAIN CLOAD silabs.com | Building a more connected world. Rev. 1.0 | 51 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range. 2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU. 4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale 5. Entire range is monotonic and has no missing codes. 6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain. silabs.com | Building a more connected world. Rev. 1.0 | 52 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.16 Capacitive Sense (CSEN) Table 4.23. Capacitive Sense (CSEN) Parameter Symbol Test Condition Single conversion time (1x accumulation) tCNV Maximum external capacitive CEXTMAX load Min Typ Max Unit 12-bit SAR Conversions — 20.2 — µs 16-bit SAR Conversions — 26.4 — µs Delta Modulation Conversion (single comparison) — 1.55 — µs IREFPROG=7 (Gain = 1x), including routing parasitics — 68 — pF IREFPROG=0 (Gain = 10x), including routing parasitics — 680 — pF — 1 — kΩ 12-bit SAR conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 326 — nA Delta Modulation conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 226 — nA 12-bit SAR conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 33 — nA Delta Modulation conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF)1 — 25 — nA 12-bit SAR conversions, 20 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 690 — nA Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 515 — nA 12-bit SAR conversions, 200 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 79 — nA Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan1 — 57 — nA Maximum external series im- REXTMAX pedance Supply current, EM2 bonded ICSEN_BOND conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 Supply current, EM2 scan conversions, WARMUPMODE=NORMAL, WARMUPCNT=0 ICSEN_EM2 silabs.com | Building a more connected world. Rev. 1.0 | 53 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Supply current, continuous conversions, WARMUPMODE=KEEPCSENWARM ICSEN_ACTIVE SAR or Delta Modulation conversions of 33 pF capacitor, IREFPROG=0 (Gain = 10x), always on — 90.5 — µA HFPERCLK supply current ICSEN_HFPERCLK Current contribution from HFPERCLK when clock to CSEN block is enabled. — 2.25 — µA/MHz Note: 1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)). silabs.com | Building a more connected world. Rev. 1.0 | 54 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.17 Operational Amplifier (OPAMP) Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes1 2. Table 4.24. Operational Amplifier (OPAMP) Parameter Symbol Test Condition Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input range Input voltage VIN Min Typ Max Unit 2 — 3.8 V HCMDIS = 1 1.62 — 3.8 V HCMDIS = 0, Rail-to-rail input range VVSS — VOPA V HCMDIS = 1 VVSS — VOPA-1.2 V Input impedance RIN 100 — — MΩ Output voltage VOUT VVSS — VOPA V Load capacitance3 CLOAD OUTSCALE = 0 — — 75 pF OUTSCALE = 1 — — 37.5 pF DRIVESTRENGTH = 2 or 3, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Buffer connection, Full supply range — 0.25 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Buffer connection, Full supply range — 0.6 — Ω DRIVESTRENGTH = 2 or 3, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Buffer connection, Full supply range — 0.4 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Buffer connection, Full supply range — 1 — Ω Buffer connection 0.99 1 1.01 - 3x Gain connection 2.93 2.99 3.05 - 16x Gain connection 15.07 15.7 16.33 - DRIVESTRENGTH = 3, OUTSCALE = 0 — 580 — µA DRIVESTRENGTH = 2, OUTSCALE = 0 — 176 — µA DRIVESTRENGTH = 1, OUTSCALE = 0 — 13 — µA DRIVESTRENGTH = 0, OUTSCALE = 0 — 4.7 — µA Output impedance Internal closed-loop gain Active current4 ROUT GCL IOPA silabs.com | Building a more connected world. Rev. 1.0 | 55 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Open-loop gain GOL Loop unit-gain frequency5 Phase margin Output voltage noise UGF PM NOUT silabs.com | Building a more connected world. Min Typ Max Unit DRIVESTRENGTH = 3 — 135 — dB DRIVESTRENGTH = 2 — 137 — dB DRIVESTRENGTH = 1 — 121 — dB DRIVESTRENGTH = 0 — 109 — dB DRIVESTRENGTH = 3, Buffer connection — 3.38 — MHz DRIVESTRENGTH = 2, Buffer connection — 0.9 — MHz DRIVESTRENGTH = 1, Buffer connection — 132 — kHz DRIVESTRENGTH = 0, Buffer connection — 34 — kHz DRIVESTRENGTH = 3, 3x Gain connection — 2.57 — MHz DRIVESTRENGTH = 2, 3x Gain connection — 0.71 — MHz DRIVESTRENGTH = 1, 3x Gain connection — 113 — kHz DRIVESTRENGTH = 0, 3x Gain connection — 28 — kHz DRIVESTRENGTH = 3, Buffer connection — 67 — ° DRIVESTRENGTH = 2, Buffer connection — 69 — ° DRIVESTRENGTH = 1, Buffer connection — 63 — ° DRIVESTRENGTH = 0, Buffer connection — 68 — ° DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz — 146 — µVrms DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz — 163 — µVrms DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz — 170 — µVrms DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz — 176 — µVrms DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz — 313 — µVrms DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz — 271 — µVrms DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz — 247 — µVrms DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz — 245 — µVrms Rev. 1.0 | 56 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Slew rate6 SR DRIVESTRENGTH = 3, INCBW=17 — 4.7 — V/µs DRIVESTRENGTH = 3, INCBW=0 — 1.5 — V/µs DRIVESTRENGTH = 2, INCBW=17 — 1.27 — V/µs DRIVESTRENGTH = 2, INCBW=0 — 0.42 — V/µs DRIVESTRENGTH = 1, INCBW=17 — 0.17 — V/µs DRIVESTRENGTH = 1, INCBW=0 — 0.058 — V/µs DRIVESTRENGTH = 0, INCBW=17 — 0.044 — V/µs DRIVESTRENGTH = 0, INCBW=0 — 0.015 — V/µs Startup time8 TSTART DRIVESTRENGTH = 2 — — 12 µs Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T = 25 °C -3 — 3 mV DRIVESTRENGTH = 1 or 0, T = 25 °C -3 — 3 mV DRIVESTRENGTH = 2 or 3, across operating temperature range -12 — 12 mV DRIVESTRENGTH = 1 or 0, across operating temperature range -30 — 30 mV DC power supply rejection ratio9 PSRRDC Input referred — 70 — dB DC common-mode rejection ratio9 CMRRDC Input referred — 70 — dB Total harmonic distortion THDOPA DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB silabs.com | Building a more connected world. Rev. 1.0 | 57 EFM32TG11 Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V, VOUTPUT = 0.5 V. 2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5 V. Nominal voltage gain is 3. 3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information. 4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 µA current when the OPAMP drives 1.5 V between output and ground. 5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range. 7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable. 8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV. 9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR and CMRR specifications do not apply to this transition region. 4.1.18 LCD Driver Table 4.25. LCD Driver Parameter Symbol Frame rate Min Typ Max Unit fLCDFR 30 — 100 Hz LCD supply range1 VLCDIN 1.8 — 3.8 V LCD output voltage range VLCD Current source mode, No external LCD capacitor 2.0 — VLCDIN-0.4 V Step-down mode with external LCD capacitor 2.0 — VLCDIN V Charge pump mode with external LCD capacitor 2.0 — Min of 3.8 and 1.9 * VLCDIN V Current source mode — 64 — mV Charge pump or Step-down mode — 43 — mV — +/-4 — % Contrast control step size STEPCONTRAST Contrast control step accura- ACCCONTRAST cy2 Test Condition Note: 1. VLCDIN is selectable between the AVDD or DVDD supply pins, depending on EMU_PWRCTRL_ANASW. 2. Step size accuracy is measured relative to the typical step size, and typ value represents one standard deviation. silabs.com | Building a more connected world. Rev. 1.0 | 58 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.19 Pulse Counter (PCNT) Table 4.26. Pulse Counter (PCNT) Parameter Symbol Test Condition Min Typ Max Unit Input frequency FIN Asynchronous Single and Quadrature Modes — — 20 MHz Sampled Modes with Debounce filter set to 0. — — 8 kHz Min Typ Max Unit 4.1.20 Analog Port (APORT) Table 4.27. Analog Port (APORT) Parameter Symbol Test Condition Supply current1 2 IAPORT Operation in EM0/EM1 — 7 — µA Operation in EM2/EM3 — 65 — nA Note: 1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current. 2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. silabs.com | Building a more connected world. Rev. 1.0 | 59 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.21 I2C 4.1.21.1 I2C Standard-mode (Sm)1 Table 4.28. I2C Standard-mode (Sm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 100 kHz SCL clock low time tLOW 4.7 — — µs SCL clock high time tHIGH 4 — — µs SDA set-up time tSU_DAT 250 — — ns SDA hold time3 tHD_DAT 100 — 3450 ns Repeated START condition set-up time tSU_STA 4.7 — — µs (Repeated) START condition tHD_STA hold time 4 — — µs STOP condition set-up time tSU_STO 4 — — µs Bus free time between a STOP and START condition tBUF 4.7 — — µs Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.0 | 60 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.21.2 I2C Fast-mode (Fm)1 Table 4.29. I2C Fast-mode (Fm)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — µs SCL clock high time tHIGH 0.6 — — µs SDA set-up time tSU_DAT 100 — — ns SDA hold time3 tHD_DAT 100 — 900 ns Repeated START condition set-up time tSU_STA 0.6 — — µs (Repeated) START condition tHD_STA hold time 0.6 — — µs STOP condition set-up time tSU_STO 0.6 — — µs Bus free time between a STOP and START condition tBUF 1.3 — — µs Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.0 | 61 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.21.3 I2C Fast-mode Plus (Fm+)1 Table 4.30. I2C Fast-mode Plus (Fm+)1 Parameter Symbol SCL clock frequency2 Test Condition Min Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — µs SCL clock high time tHIGH 0.26 — — µs SDA set-up time tSU_DAT 50 — — ns SDA hold time tHD_DAT 100 — — ns Repeated START condition set-up time tSU_STA 0.26 — — µs (Repeated) START condition tHD_STA hold time 0.26 — — µs STOP condition set-up time tSU_STO 0.26 — — µs Bus free time between a STOP and START condition tBUF 0.5 — — µs Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.0 | 62 EFM32TG11 Family Data Sheet Electrical Specifications 4.1.22 USART SPI SPI Master Timing Table 4.31. SPI Master Timing Parameter Symbol SCLK period 1 2 3 tSCLK CS to MOSI 1 2 tCS_MO SCLK to MOSI 1 2 tSCLK_MO MISO setup time 1 2 tSU_MI Test Condition Min Typ Max Unit 2* tHFPERCLK — — ns -19.8 — 18.9 ns -10 — 14.5 ns IOVDD = 1.62 V 75 — — ns IOVDD = 3.0 V 40 — — ns -10 — — ns tH_MI MISO hold time 1 2 Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_MO tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI MISO Figure 4.1. SPI Master Timing Diagram silabs.com | Building a more connected world. Rev. 1.0 | 63 EFM32TG11 Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.32. SPI Slave Timing Parameter Symbol SCLK period 1 2 3 Test Condition Min Typ Max Unit tSCLK 6* tHFPERCLK — — ns SCLK high time1 2 3 tSCLK_HI 2.5 * tHFPERCLK — — ns SCLK low time1 2 3 tSCLK_LO 2.5 * tHFPERCLK — — ns CS active to MISO 1 2 tCS_ACT_MI 20 — 70 ns CS disable to MISO 1 2 tCS_DIS_MI 15 — 150 ns MOSI setup time 1 2 tSU_MO 4 — — ns MOSI hold time 1 2 3 tH_MO 7 — — ns SCLK to MISO 1 2 3 tSCLK_MI 14 + 1.5 * tHFPERCLK — 40 + 2.5 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_ACT_MI tCS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 tSCLK_HI tSU_MO tSCLK_LO tSCLK tH_MO MOSI tSCLK_MI MISO Figure 4.2. SPI Slave Timing Diagram 4.2 Typical Performance Curves Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.0 | 64 EFM32TG11 Family Data Sheet Electrical Specifications 4.2.1 Supply Current Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.0 | 65 EFM32TG11 Family Data Sheet Electrical Specifications Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.0 | 66 EFM32TG11 Family Data Sheet Electrical Specifications Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.0 | 67 EFM32TG11 Family Data Sheet Electrical Specifications Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.0 | 68 EFM32TG11 Family Data Sheet Electrical Specifications Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply silabs.com | Building a more connected world. Rev. 1.0 | 69 EFM32TG11 Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.8. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.0 | 70 EFM32TG11 Family Data Sheet Electrical Specifications Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) DVDD DVDD 60mV/div offset:1.8V 20mV/div offset:1.8V 100mA VSW ILOAD 1mA 2V/div offset:1.8V 100μs/div 10μs/div Figure 4.9. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.0 | 71 EFM32TG11 Family Data Sheet Pin Definitions 5. Pin Definitions 5.1 EFM32TG11B5xx in QFP80 Device Pinout Figure 5.1. EFM32TG11B5xx in QFP80 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.1. EFM32TG11B5xx in QFP80 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 8 33 50 69 Digital IO power supply 0. PA6 7 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 72 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 9 24 51 70 Ground PB3 10 GPIO PB4 11 GPIO PB5 12 GPIO PB6 13 GPIO PC1 14 GPIO (5V) PC2 15 GPIO (5V) PC3 16 GPIO (5V) PC4 17 GPIO PC5 18 GPIO PB7 19 GPIO PB8 20 GPIO PA8 21 GPIO PA9 22 GPIO PA10 23 GPIO PA12 25 GPIO PA14 26 GPIO RESETn 27 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 28 GPIO PB12 29 GPIO AVDD 30 34 Analog power supply. PB13 31 GPIO PB14 32 GPIO PD0 35 GPIO (5V) PD1 36 GPIO PD3 37 GPIO PD4 38 GPIO PD5 39 GPIO PD6 40 GPIO PD7 41 GPIO PD8 42 GPIO PC6 43 GPIO PC7 44 GPIO VREGVSS 45 Voltage regulator VSS VREGSW 46 DCDC regulator switching node VREGVDD 47 Voltage regulator VDD input DVDD 48 Digital power supply. DECOUPLE 49 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 52 GPIO PE5 53 GPIO PE6 54 GPIO PE7 55 GPIO PC8 56 GPIO PC9 57 GPIO PC10 58 GPIO (5V) PC11 59 GPIO (5V) PC13 60 GPIO (5V) PC14 61 GPIO (5V) PC15 62 GPIO (5V) PF0 63 GPIO (5V) PF1 64 GPIO (5V) PF2 65 GPIO PF3 66 GPIO PF4 67 GPIO PF5 68 GPIO PE8 71 GPIO PE9 72 GPIO PE10 73 GPIO PE11 74 GPIO BODEN 75 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. silabs.com | Building a more connected world. Rev. 1.0 | 73 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PE12 76 GPIO PE13 77 GPIO PE14 78 GPIO PE15 79 GPIO PA15 80 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 74 EFM32TG11 Family Data Sheet Pin Definitions 5.2 EFM32TG11B5xx in QFN80 Device Pinout Figure 5.2. EFM32TG11B5xx in QFN80 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.2. EFM32TG11B5xx in QFN80 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 33 51 70 Digital IO power supply 0. PB3 9 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 75 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO PC0 13 GPIO (5V) PC1 14 GPIO (5V) PC2 15 GPIO (5V) PC3 16 GPIO (5V) PC4 17 GPIO PC5 18 GPIO PB7 19 GPIO PB8 20 GPIO PA8 21 GPIO PA9 22 GPIO PA10 23 GPIO PA12 24 GPIO PA13 25 GPIO (5V) PA14 26 GPIO RESETn 27 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 28 GPIO PB12 29 GPIO AVDD 30 34 Analog power supply. PB13 31 GPIO PB14 32 GPIO PD0 35 GPIO (5V) PD1 36 GPIO PD2 37 GPIO (5V) PD3 38 GPIO PD4 39 GPIO PD5 40 GPIO PD6 41 GPIO PD7 42 GPIO PD8 43 GPIO PC6 44 GPIO PC7 45 GPIO VREGVSS 46 Voltage regulator VSS VREGSW 47 DCDC regulator switching node VREGVDD 48 Voltage regulator VDD input DVDD 49 Digital power supply. DECOUPLE 50 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 52 GPIO PE5 53 GPIO PE6 54 GPIO PE7 55 GPIO PC8 56 GPIO PC9 57 GPIO PC10 58 GPIO (5V) PC11 59 GPIO (5V) PC12 60 GPIO (5V) PC13 61 GPIO (5V) PC14 62 GPIO (5V) PC15 63 GPIO (5V) PF0 64 GPIO (5V) PF1 65 GPIO (5V) PF2 66 GPIO PF3 67 GPIO PF4 68 GPIO PF5 69 GPIO PE8 71 GPIO PE9 72 GPIO PE10 73 GPIO PE11 74 GPIO BODEN 75 Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD. PE12 76 GPIO PE13 77 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 76 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description PE14 78 GPIO PA15 80 GPIO Pin Name PE15 Pin(s) 79 Description GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 77 EFM32TG11 Family Data Sheet Pin Definitions 5.3 EFM32TG11B5xx in QFP64 Device Pinout Figure 5.3. EFM32TG11B5xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.3. EFM32TG11B5xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 27 55 Digital IO power supply 0. VSS 8 23 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 78 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 24 28 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 29 GPIO (5V) PD1 30 GPIO PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC7 37 GPIO VREGVSS 38 Voltage regulator VSS VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input DVDD 41 Digital power supply. DECOUPLE 42 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 43 GPIO PE5 44 GPIO PE6 45 GPIO PE7 46 GPIO PC12 47 GPIO (5V) PC13 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 79 EFM32TG11 Family Data Sheet Pin Definitions 5.4 EFM32TG11B3xx in QFP64 Device Pinout Figure 5.4. EFM32TG11B3xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.4. EFM32TG11B3xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 26 55 Digital IO power supply 0. VSS 8 22 56 Ground PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO PB6 12 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 80 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA12 17 GPIO PA13 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 81 EFM32TG11 Family Data Sheet Pin Definitions 5.5 EFM32TG11B1xx in QFP64 Device Pinout Figure 5.5. EFM32TG11B1xx in QFP64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.5. EFM32TG11B1xx in QFP64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO IOVDD0 7 26 55 Digital IO power supply 0. VSS 8 22 56 Ground PC0 9 GPIO (5V) PC1 10 GPIO (5V) PC2 11 GPIO (5V) PC3 12 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.0 | 82 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA9 18 GPIO PA10 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC8 41 GPIO PC9 42 GPIO PC10 43 GPIO (5V) PC11 44 GPIO (5V) PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 57 GPIO PE9 58 GPIO PE10 59 GPIO PE11 60 GPIO PE12 61 GPIO PE13 62 GPIO PE14 63 GPIO PE15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 83 EFM32TG11 Family Data Sheet Pin Definitions 5.6 EFM32TG11B5xx in QFN64 Device Pinout Figure 5.6. EFM32TG11B5xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.6. EFM32TG11B5xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 27 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 84 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA12 18 GPIO PA13 19 GPIO (5V) PA14 20 GPIO RESETn 21 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 22 GPIO PB12 23 GPIO AVDD 24 28 Analog power supply. PB13 25 GPIO PB14 26 GPIO PD0 29 GPIO (5V) PD1 30 GPIO PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC7 37 GPIO VREGVSS 38 Voltage regulator VSS VREGSW 39 DCDC regulator switching node VREGVDD 40 Voltage regulator VDD input DVDD 41 Digital power supply. DECOUPLE 42 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 43 GPIO PE5 44 GPIO PE6 45 GPIO PE7 46 GPIO PC12 47 GPIO (5V) PC13 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 85 EFM32TG11 Family Data Sheet Pin Definitions 5.7 EFM32TG11B3xx in QFN64 Device Pinout Figure 5.7. EFM32TG11B3xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.7. EFM32TG11B3xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 26 55 Digital IO power supply 0. PB3 9 GPIO PB4 10 GPIO PB5 11 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 86 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB6 12 GPIO PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA12 17 GPIO PA13 18 GPIO (5V) PA14 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 41 GPIO PE5 42 GPIO PE6 43 GPIO PE7 44 GPIO PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 87 EFM32TG11 Family Data Sheet Pin Definitions 5.8 EFM32TG11B1xx in QFN64 Device Pinout Figure 5.8. EFM32TG11B1xx in QFN64 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.8. EFM32TG11B1xx in QFN64 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO PA3 4 GPIO PA4 5 GPIO PA5 6 GPIO PA6 7 GPIO IOVDD0 8 26 55 Digital IO power supply 0. PC0 9 GPIO (5V) PC1 10 GPIO (5V) PC2 11 GPIO (5V) silabs.com | Building a more connected world. Rev. 1.0 | 88 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PC3 12 GPIO (5V) PC4 13 GPIO PC5 14 GPIO PB7 15 GPIO PB8 16 GPIO PA8 17 GPIO PA9 18 GPIO PA10 19 GPIO RESETn 20 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 21 GPIO PB12 22 GPIO AVDD 23 27 Analog power supply. PB13 24 GPIO PB14 25 GPIO PD0 28 GPIO (5V) PD1 29 GPIO PD2 30 GPIO (5V) PD3 31 GPIO PD4 32 GPIO PD5 33 GPIO PD6 34 GPIO PD7 35 GPIO PD8 36 GPIO PC6 37 GPIO PC7 38 GPIO DVDD 39 Digital power supply. DECOUPLE 40 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC8 41 GPIO PC9 42 GPIO PC10 43 GPIO (5V) PC11 44 GPIO (5V) PC12 45 GPIO (5V) PC13 46 GPIO (5V) PC14 47 GPIO (5V) PC15 48 GPIO (5V) PF0 49 GPIO (5V) PF1 50 GPIO (5V) PF2 51 GPIO PF3 52 GPIO PF4 53 GPIO PF5 54 GPIO PE8 56 GPIO PE9 57 GPIO PE10 58 GPIO PE11 59 GPIO PE12 60 GPIO PE13 61 GPIO PE14 62 GPIO PE15 63 GPIO PA15 64 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 89 EFM32TG11 Family Data Sheet Pin Definitions 5.9 EFM32TG11B5xx in QFP48 Device Pinout Figure 5.9. EFM32TG11B5xx in QFP48 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.9. EFM32TG11B5xx in QFP48 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO IOVDD0 4 21 43 Digital IO power supply 0. VSS 5 17 44 Ground PB3 6 GPIO PB4 7 GPIO PB5 8 GPIO PB6 9 GPIO PB7 10 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 90 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB8 11 GPIO PA8 12 GPIO PA12 13 GPIO PA14 14 GPIO RESETn 15 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 16 GPIO AVDD 18 22 Analog power supply. PB13 19 GPIO PB14 20 GPIO PD4 23 GPIO PD5 24 GPIO PD6 25 GPIO PD7 26 GPIO PD8 27 GPIO VREGVSS 28 Voltage regulator VSS VREGSW 29 DCDC regulator switching node VREGVDD 30 Voltage regulator VDD input DVDD 31 Digital power supply. DECOUPLE 32 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 33 GPIO PE5 34 GPIO PE6 35 GPIO PE7 36 GPIO PF0 37 GPIO (5V) PF1 38 GPIO (5V) PF2 39 GPIO PF3 40 GPIO PF4 41 GPIO PF5 42 GPIO PE10 45 GPIO PE11 46 GPIO PE12 47 GPIO PE13 48 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 91 EFM32TG11 Family Data Sheet Pin Definitions 5.10 EFM32TG11B3xx in QFP48 Device Pinout Figure 5.10. EFM32TG11B3xx in QFP48 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.10. EFM32TG11B3xx in QFP48 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO IOVDD0 4 22 43 Digital IO power supply 0. VSS 5 18 44 Ground PB3 6 GPIO PB4 7 GPIO PB5 8 GPIO PB6 9 GPIO PC4 10 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 92 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB7 11 GPIO PB8 12 GPIO PA12 13 GPIO PA13 14 GPIO (5V) PA14 15 GPIO RESETn 16 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 17 GPIO AVDD 19 23 Analog power supply. PB13 20 GPIO PB14 21 GPIO PD4 24 GPIO PD5 25 GPIO PD6 26 GPIO PD7 27 GPIO DVDD 28 Digital power supply. DECOUPLE 29 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 30 GPIO PE5 31 GPIO PE6 32 GPIO PE7 33 GPIO PC13 34 GPIO (5V) PC14 35 GPIO (5V) PC15 36 GPIO (5V) PF0 37 GPIO (5V) PF1 38 GPIO (5V) PF2 39 GPIO PF3 40 GPIO PF4 41 GPIO PF5 42 GPIO PE10 45 GPIO PE11 46 GPIO PE12 47 GPIO PE13 48 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 93 EFM32TG11 Family Data Sheet Pin Definitions 5.11 EFM32TG11B1xx in QFP48 Device Pinout Figure 5.11. EFM32TG11B1xx in QFP48 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.11. EFM32TG11B1xx in QFP48 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO IOVDD0 4 22 43 Digital IO power supply 0. VSS 5 18 44 Ground PC0 6 GPIO (5V) PC1 7 GPIO (5V) PC2 8 GPIO (5V) PC3 9 GPIO (5V) PC4 10 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 94 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB7 11 GPIO PB8 12 GPIO PA8 13 GPIO PA9 14 GPIO PA10 15 GPIO RESETn 16 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 17 GPIO AVDD 19 23 Analog power supply. PB13 20 GPIO PB14 21 GPIO PD4 24 GPIO PD5 25 GPIO PD6 26 GPIO PD7 27 GPIO DVDD 28 Digital power supply. DECOUPLE 29 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC8 30 GPIO PC9 31 GPIO PC10 32 GPIO (5V) PC11 33 GPIO (5V) PC13 34 GPIO (5V) PC14 35 GPIO (5V) PC15 36 GPIO (5V) PF0 37 GPIO (5V) PF1 38 GPIO (5V) PF2 39 GPIO PF3 40 GPIO PF4 41 GPIO PF5 42 GPIO PE10 45 GPIO PE11 46 GPIO PE12 47 GPIO PE13 48 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 95 EFM32TG11 Family Data Sheet Pin Definitions 5.12 EFM32TG11B5xx in QFN32 Device Pinout Figure 5.12. EFM32TG11B5xx in QFN32 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.12. EFM32TG11B5xx in QFN32 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO IOVDD0 4 14 30 Digital IO power supply 0. PC0 5 GPIO (5V) PB7 6 GPIO PB8 7 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 96 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PA14 8 GPIO RESETn 9 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 10 GPIO AVDD 11 Analog power supply. PB13 12 GPIO PB14 13 GPIO PD4 15 GPIO PD5 16 GPIO PD6 17 GPIO PD7 18 GPIO VREGVSS 19 Voltage regulator VSS VREGSW 20 DCDC regulator switching node VREGVDD 21 Voltage regulator VDD input DVDD 22 Digital power supply. DECOUPLE 23 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PE4 24 GPIO PE5 25 GPIO PC15 26 GPIO (5V) PF0 27 GPIO (5V) PF1 28 GPIO (5V) PF2 29 GPIO PE11 31 GPIO PE12 32 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 97 EFM32TG11 Family Data Sheet Pin Definitions 5.13 EFM32TG11B1xx in QFN32 Device Pinout Figure 5.13. EFM32TG11B1xx in QFN32 Device Pinout The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 5.14 GPIO Functionality Table or 5.15 Alternate Functionality Overview. Table 5.13. EFM32TG11B1xx in QFN32 Device Pinout Pin Name Pin(s) Description Pin Name Pin(s) Description VSS 0 Ground PA0 1 GPIO PA1 2 GPIO PA2 3 GPIO IOVDD0 4 14 28 Digital IO power supply 0. PC0 5 GPIO (5V) PC1 6 GPIO (5V) PB7 7 GPIO silabs.com | Building a more connected world. Rev. 1.0 | 98 EFM32TG11 Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description PB8 8 GPIO RESETn 9 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PB11 10 GPIO AVDD 11 15 Analog power supply. PB13 12 GPIO PB14 13 GPIO PD4 16 GPIO PD5 17 GPIO PD6 18 GPIO PD7 19 GPIO DVDD 20 Digital power supply. DECOUPLE 21 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC13 22 GPIO (5V) PC14 23 GPIO (5V) PC15 24 GPIO (5V) PF0 25 GPIO (5V) PF1 26 GPIO (5V) PF2 27 GPIO PE10 29 GPIO PE11 30 GPIO PE12 31 GPIO PE13 32 GPIO Note: 1. GPIO with 5V tolerance are indicated by (5V). silabs.com | Building a more connected world. Rev. 1.0 | 99 EFM32TG11 Family Data Sheet Pin Definitions 5.14 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 5.15 Alternate Functionality Overview for a list of GPIO locations available for each function. Table 5.14. GPIO Functionality Table GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Other PA0 BUSBY BUSAX LCD_SEG13 TIM0_CC0 #0 TIM0_CC1 #7 PCNT0_S0IN #4 US1_RX #5 US3_TX #0 LEU0_RX #4 I2C0_SDA #0 CMU_CLK2 #0 PRS_CH0 #0 PRS_CH3 #3 GPIO_EM4WU0 PA1 BUSAY BUSBX LCD_SEG14 TIM0_CC0 #7 TIM0_CC1 #0 PCNT0_S1IN #4 US3_RX #0 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 PA2 BUSBY BUSAX LCD_SEG15 TIM0_CC2 #0 US1_RX #6 US3_CLK #0 CMU_CLK0 #0 PA3 BUSAY BUSBX LCD_SEG16 TIM0_CDTI0 #0 US3_CS #0 U0_TX #2 CMU_CLK2 #1 CMU_CLK2 #4 CMU_CLKI0 #1 LES_ALTEX2 PA4 BUSBY BUSAX LCD_SEG17 TIM0_CDTI1 #0 US3_CTS #0 U0_RX #2 LES_ALTEX3 PA5 BUSAY BUSBX LCD_SEG18 TIM0_CDTI2 #0 US3_RTS #0 U0_CTS #2 LES_ALTEX4 ACMP1_O #7 PA6 BUSBY BUSAX LCD_SEG19 WTIM0_CC0 #1 U0_RTS #2 PRS_CH6 #0 ACMP0_O #4 GPIO_EM4WU1 PA8 BU_STAT TIM0_CC0 #6 LETIM0_OUT0 #6 US2_RX #2 PA9 BUSAY BUSBX LCD_SEG26 TIM0_CC1 #6 LETIM0_OUT1 #6 US2_CLK #2 PA10 BUSBY BUSAX LCD_SEG27 TIM0_CC2 #6 US2_CS #2 PA12 BU_VOUT WTIM0_CDTI0 #2 US0_CLK #5 US2_RTS #2 PA13 BUSAY BUSBX TIM0_CC2 #7 WTIM0_CDTI1 #2 US0_CS #5 US2_TX #3 PA14 BUSBY BUSAX LCD_BEXT WTIM0_CDTI2 #2 US1_TX #6 US2_RX #3 US3_RTS #2 PA15 BUSAY BUSBX LCD_SEG12 PB3 BUSAY BUSBX LCD_SEG20 / LCD_COM4 TIM1_CC3 #2 WTIM0_CC0 #6 US2_TX #1 US3_TX #2 PB4 BUSBY BUSAX LCD_SEG21 / LCD_COM5 WTIM0_CC1 #6 US2_RX #1 PB5 BUSAY BUSBX LCD_SEG22 / LCD_COM6 WTIM0_CC2 #6 PCNT0_S0IN #6 US0_RTS #4 US2_CLK #1 silabs.com | Building a more connected world. CMU_CLK0 #5 ACMP1_O #3 ACMP1_O #4 US2_CLK #3 ACMP0_O #7 Rev. 1.0 | 100 EFM32TG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication PB6 BUSBY BUSAX LCD_SEG23 / LCD_COM7 TIM0_CC0 #3 PCNT0_S1IN #6 US0_CTS #4 US2_CS #1 PB7 LFXTAL_P TIM0_CDTI0 #4 TIM1_CC0 #3 US0_TX #4 US1_CLK #0 US3_RX #2 U0_CTS #4 PB8 LFXTAL_N TIM0_CDTI1 #4 TIM1_CC1 #3 US0_RX #4 US1_CS #0 U0_RTS #4 CMU_CLKI0 #2 PB11 BUSAY BUSBX VDAC0_OUT0 / OPA0_OUT LCD_SEG28 TIM0_CDTI2 #4 TIM1_CC2 #3 LETIM0_OUT0 #1 PCNT0_S1IN #7 US0_CTS #5 US1_CLK #5 US2_CS #3 I2C1_SDA #1 CMU_CLK1 #5 CMU_CLKI0 #7 ACMP0_O #3 GPIO_EM4WU7 PB12 BUSBY BUSAX VDAC0_OUT1 / OPA1_OUT LCD_SEG29 TIM1_CC3 #3 LETIM0_OUT1 #1 PCNT0_S0IN #7 US2_CTS #1 I2C1_SCL #1 PB13 BUSAY BUSBX HFXTAL_P WTIM1_CC0 #0 US0_CLK #4 US1_CTS #5 LEU0_TX #1 CMU_CLKI0 #3 PRS_CH7 #0 PB14 BUSBY BUSAX HFXTAL_N WTIM1_CC1 #0 US0_CS #4 US1_RTS #5 LEU0_RX #1 PRS_CH6 #1 PC0 VDAC0_OUT0ALT / OPA0_OUTALT #0 BUSACMP0Y BUSACMP0X TIM0_CC1 #3 PCNT0_S0IN #2 CAN0_RX #0 US0_TX #5 US1_TX #0 US1_CS #4 US2_RTS #0 US3_CS #3 I2C0_SDA #4 LES_CH0 PRS_CH2 #0 PC1 VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSACMP0Y BUSACMP0X TIM0_CC2 #3 WTIM0_CC0 #7 PCNT0_S1IN #2 CAN0_TX #0 US0_RX #5 US1_TX #4 US1_RX #0 US2_CTS #0 US3_RTS #1 I2C0_SCL #4 LES_CH1 PRS_CH3 #0 PC2 VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSACMP0Y BUSACMP0X TIM0_CDTI0 #3 WTIM0_CC1 #7 US1_RX #4 US2_TX #0 LES_CH2 PC3 VDAC0_OUT0ALT / OPA0_OUTALT #3 BUSACMP0Y BUSACMP0X TIM0_CDTI1 #3 WTIM0_CC2 #7 US1_CLK #4 US2_RX #0 LES_CH3 PC4 BUSACMP0Y BUSACMP0X OPA0_P LCD_SEG24 TIM0_CC0 #5 TIM0_CDTI2 #3 LETIM0_OUT0 #3 US2_CLK #0 U0_TX #4 I2C1_SDA #0 LES_CH4 GPIO_EM4WU6 PC5 BUSACMP0Y BUSACMP0X OPA0_N LCD_SEG25 TIM0_CC1 #5 LETIM0_OUT1 #3 US2_CS #0 U0_RX #4 I2C1_SCL #0 LES_CH5 PC6 BUSACMP0Y BUSACMP0X OPA3_P LCD_SEG32 WTIM1_CC3 #2 US0_RTS #2 US1_CTS #3 I2C0_SDA #2 LES_CH6 PC7 BUSACMP0Y BUSACMP0X OPA3_N LCD_SEG33 WTIM1_CC0 #3 US0_CTS #2 US1_RTS #3 I2C0_SCL #2 LES_CH7 PC8 BUSACMP1Y BUSACMP1X LCD_SEG34 US0_CS #2 LES_CH8 PRS_CH4 #0 PC9 BUSACMP1Y BUSACMP1X LCD_SEG35 US0_CLK #2 LES_CH9 PRS_CH5 #0 GPIO_EM4WU2 silabs.com | Building a more connected world. Other Rev. 1.0 | 101 EFM32TG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Other PC10 BUSACMP1Y BUSACMP1X US0_RX #2 LES_CH10 PC11 BUSACMP1Y BUSACMP1X US0_TX #2 I2C1_SDA #4 LES_CH11 PC12 VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSACMP1Y BUSACMP1X TIM1_CC3 #0 US0_RTS #3 US1_CTS #4 US2_CTS #4 U0_RTS #3 CMU_CLK0 #1 LES_CH12 PC13 VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSACMP1Y BUSACMP1X TIM0_CDTI0 #1 TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0 US0_CTS #3 US1_RTS #4 US2_RTS #4 U0_CTS #3 LES_CH13 PC14 VDAC0_OUT1ALT / OPA1_OUTALT #2 BUSACMP1Y BUSACMP1X TIM0_CDTI1 #1 TIM1_CC1 #0 TIM1_CC3 #4 LETIM0_OUT0 #5 PCNT0_S1IN #0 US0_CS #3 US1_CS #3 US2_RTS #3 US3_CS #2 U0_TX #3 LEU0_TX #5 LES_CH14 PRS_CH0 #2 PC15 VDAC0_OUT1ALT / OPA1_OUTALT #3 BUSACMP1Y BUSACMP1X TIM0_CDTI2 #1 TIM1_CC2 #0 WTIM0_CC0 #4 LETIM0_OUT1 #5 US0_CLK #3 US1_CLK #3 US3_RTS #3 U0_RX #3 LEU0_RX #5 LES_CH15 PRS_CH1 #2 PD0 VDAC0_OUT0ALT / OPA0_OUTALT #4 OPA2_OUTALT BUSADC0Y BUSADC0X WTIM1_CC2 #0 CAN0_RX #2 US1_TX #1 PD1 VDAC0_OUT1ALT / OPA1_OUTALT #4 BUSADC0Y BUSADC0X OPA3_OUT TIM0_CC0 #2 WTIM1_CC3 #0 CAN0_TX #2 US1_RX #1 PD2 BUSADC0Y BUSADC0X TIM0_CC1 #2 WTIM1_CC0 #1 US1_CLK #1 PD3 BUSADC0Y BUSADC0X OPA2_N LCD_SEG30 TIM0_CC2 #2 WTIM1_CC1 #1 US1_CS #1 PD4 BUSADC0Y BUSADC0X OPA2_P LCD_SEG31 WTIM0_CDTI0 #4 WTIM1_CC2 #1 US1_CTS #1 US3_CLK #2 LEU0_TX #0 I2C1_SDA #3 PD5 BUSADC0Y BUSADC0X OPA2_OUT WTIM0_CDTI1 #4 WTIM1_CC3 #1 US1_RTS #1 U0_CTS #5 LEU0_RX #0 I2C1_SCL #3 PD6 BUSADC0Y BUSADC0X ADC0_EXTP VDAC0_EXT OPA1_P TIM1_CC0 #4 WTIM0_CDTI2 #4 WTIM1_CC0 #2 LETIM0_OUT0 #0 PCNT0_S0IN #3 US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1 CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 #2 ACMP0_O #2 PD7 BUSADC0Y BUSADC0X ADC0_EXTN OPA1_N TIM1_CC1 #4 WTIM1_CC1 #2 LETIM0_OUT1 #0 PCNT0_S1IN #3 US1_TX #2 US3_CLK #1 U0_TX #6 I2C0_SCL #1 CMU_CLK0 #2 LES_ALTEX1 ACMP1_O #2 PD8 BU_VIN WTIM1_CC2 #2 US2_RTS #5 CMU_CLK1 #1 PE4 BUSDY BUSCX LCD_COM0 WTIM0_CC0 #0 WTIM1_CC1 #4 US0_CS #1 US1_CS #5 US3_CS #1 U0_RX #6 I2C0_SDA #7 silabs.com | Building a more connected world. CMU_CLKI0 #0 Rev. 1.0 | 102 EFM32TG11 Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication PE5 BUSCY BUSDX LCD_COM1 WTIM0_CC1 #0 WTIM1_CC2 #4 US0_CLK #1 US1_CLK #6 US3_CTS #1 I2C0_SCL #7 PE6 BUSDY BUSCX LCD_COM2 WTIM0_CC2 #0 WTIM1_CC3 #4 US0_RX #1 US3_TX #1 PRS_CH6 #2 PE7 BUSCY BUSDX LCD_COM3 WTIM1_CC0 #5 US0_TX #1 US3_RX #1 PRS_CH7 #2 PE8 BUSDY BUSCX LCD_SEG4 PE9 BUSCY BUSDX LCD_SEG5 PE10 BUSDY BUSCX LCD_SEG6 TIM1_CC0 #1 WTIM0_CDTI0 #0 US0_TX #0 PRS_CH2 #2 GPIO_EM4WU9 PE11 BUSCY BUSDX LCD_SEG7 TIM1_CC1 #1 WTIM0_CDTI1 #0 US0_RX #0 LES_ALTEX5 PRS_CH3 #2 PE12 BUSDY BUSCX LCD_SEG8 TIM1_CC2 #1 WTIM0_CDTI2 #0 LETIM0_OUT0 #4 US0_RX #3 US0_CLK #0 I2C0_SDA #6 CMU_CLK1 #2 CMU_CLKI0 #6 LES_ALTEX6 PRS_CH1 #3 PE13 BUSCY BUSDX LCD_SEG9 TIM1_CC3 #1 LETIM0_OUT1 #4 US0_TX #3 US0_CS #0 I2C0_SCL #6 LES_ALTEX7 PRS_CH2 #3 ACMP0_O #0 GPIO_EM4WU5 PE14 BUSDY BUSCX LCD_SEG10 US0_CTS #0 LEU0_TX #2 PE15 BUSCY BUSDX LCD_SEG11 US0_RTS #0 LEU0_RX #2 PF0 BUSDY BUSCX TIM0_CC0 #4 WTIM0_CC1 #4 LETIM0_OUT0 #2 CAN0_RX #1 US1_CLK #2 US2_TX #5 LEU0_TX #3 I2C0_SDA #5 DBG_SWCLKTCK BOOT_TX PF1 BUSCY BUSDX TIM0_CC1 #4 WTIM0_CC2 #4 LETIM0_OUT1 #2 US1_CS #2 US2_RX #5 U0_TX #5 LEU0_RX #3 I2C0_SCL #5 PRS_CH4 #2 DBG_SWDIOTMS GPIO_EM4WU3 BOOT_RX PF2 BUSDY BUSCX LCD_SEG0 TIM0_CC2 #4 TIM1_CC0 #5 CAN0_TX #1 US1_TX #5 US2_CLK #5 U0_RX #5 LEU0_TX #4 I2C1_SCL #4 CMU_CLK0 #4 PRS_CH0 #3 ACMP1_O #0 DBG_TDO GPIO_EM4WU4 PF3 BUSCY BUSDX LCD_SEG1 TIM0_CDTI0 #2 TIM1_CC1 #5 US1_CTS #2 CMU_CLK1 #4 PRS_CH0 #1 PF4 BUSDY BUSCX LCD_SEG2 TIM0_CDTI1 #2 TIM1_CC2 #5 US1_RTS #2 PRS_CH1 #1 PF5 BUSCY BUSDX LCD_SEG3 TIM0_CDTI2 #2 TIM1_CC3 #6 US2_CS #5 PRS_CH2 #1 DBG_TDI silabs.com | Building a more connected world. Other PRS_CH3 #1 Rev. 1.0 | 103 EFM32TG11 Family Data Sheet Pin Definitions 5.15 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 5.14 GPIO Functionality Table for a list of functions available on each GPIO pin. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 5.15. Alternate Functionality Overview Alternate Functionality ACMP0_O LOCATION 0-3 4-7 0: PE13 4: PA6 2: PD6 7: PB3 Description Analog comparator ACMP0, digital output. 3: PB11 ACMP1_O 0: PF2 4: PA14 2: PD7 7: PA5 Analog comparator ACMP1, digital output. 3: PA12 ADC0_EXTN 0: PD7 Analog to digital converter ADC0 external reference input negative pin. ADC0_EXTP 0: PD6 Analog to digital converter ADC0 external reference input positive pin. BOOT_RX 0: PF1 Bootloader RX. BOOT_TX 0: PF0 Bootloader TX. BU_STAT 0: PA8 Backup Power Domain status, whether or not the system is in backup mode. BU_VIN 0: PD8 Battery input for Backup Power Domain. BU_VOUT 0: PA12 Power output for Backup Power Domain. 0: PC0 CAN0_RX 1: PF0 CAN0 RX. 2: PD0 0: PC1 CAN0_TX 1: PF2 CAN0 TX. 2: PD1 CMU_CLK0 0: PA2 4: PF2 1: PC12 5: PA12 Clock Management Unit, clock output number 0. 2: PD7 CMU_CLK1 0: PA1 4: PF3 1: PD8 5: PB11 Clock Management Unit, clock output number 1. 2: PE12 0: PA0 CMU_CLK2 4: PA3 1: PA3 Clock Management Unit, clock output number 2. 2: PD6 silabs.com | Building a more connected world. Rev. 1.0 | 104 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality CMU_CLKI0 LOCATION 0-3 4-7 0: PD4 6: PE12 1: PA3 7: PB11 2: PB8 Description Clock Management Unit, clock input number 0. 3: PB13 DBG_SWCLKTCK DBG_SWDIOTMS 0: PF0 Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down. 0: PF1 Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up. 0: PF5 Debug-interface JTAG Test Data In. DBG_TDI Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. 0: PF2 Debug-interface JTAG Test Data Out. DBG_TDO Note that this function becomes available after the first valid JTAG command is received. GPIO_EM4WU0 0: PA0 Pin can be used to wake the system up from EM4 GPIO_EM4WU1 0: PA6 Pin can be used to wake the system up from EM4 GPIO_EM4WU2 0: PC9 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 0: PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 0: PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 0: PE13 Pin can be used to wake the system up from EM4 GPIO_EM4WU6 0: PC4 Pin can be used to wake the system up from EM4 GPIO_EM4WU7 0: PB11 Pin can be used to wake the system up from EM4 GPIO_EM4WU9 0: PE10 Pin can be used to wake the system up from EM4 HFXTAL_N 0: PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P 0: PB13 High Frequency Crystal positive pin. I2C0_SCL 0: PA1 4: PC1 1: PD7 5: PF1 2: PC7 6: PE13 I2C0 Serial Clock Line input / output. 7: PE5 I2C0_SDA 0: PA0 4: PC0 1: PD6 5: PF0 2: PC6 6: PE12 I2C0 Serial Data input / output. 7: PE4 0: PC5 I2C1_SCL 4: PF2 1: PB12 I2C1 Serial Clock Line input / output. 3: PD5 silabs.com | Building a more connected world. Rev. 1.0 | 105 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 0: PC4 I2C1_SDA 4-7 Description 4: PC11 1: PB11 I2C1 Serial Data input / output. 3: PD4 0: PA14 LCD external supply bypass in step down or charge pump mode. If using the LCD in step-down or charge pump mode, a 1 uF (minimum) capacitor between this pin and VSS is required. To reduce supply ripple, a larger capcitor of approximately 1000 times the total LCD segment capacitance may be used. LCD_BEXT If using the LCD with the internal supply source, this pin may be left unconnected or used as a GPIO. LCD_COM0 0: PE4 LCD driver common line number 0. LCD_COM1 0: PE5 LCD driver common line number 1. LCD_COM2 0: PE6 LCD driver common line number 2. LCD_COM3 0: PE7 LCD driver common line number 3. LCD_SEG0 0: PF2 LCD segment line 0. LCD_SEG1 0: PF3 LCD segment line 1. LCD_SEG2 0: PF4 LCD segment line 2. LCD_SEG3 0: PF5 LCD segment line 3. LCD_SEG4 0: PE8 LCD segment line 4. LCD_SEG5 0: PE9 LCD segment line 5. LCD_SEG6 0: PE10 LCD segment line 6. LCD_SEG7 0: PE11 LCD segment line 7. LCD_SEG8 0: PE12 LCD segment line 8. LCD_SEG9 0: PE13 LCD segment line 9. LCD_SEG10 0: PE14 LCD segment line 10. LCD_SEG11 0: PE15 LCD segment line 11. LCD_SEG12 0: PA15 LCD segment line 12. LCD_SEG13 0: PA0 LCD segment line 13. LCD_SEG14 0: PA1 LCD segment line 14. LCD_SEG15 0: PA2 LCD segment line 15. LCD_SEG16 0: PA3 LCD segment line 16. LCD_SEG17 0: PA4 LCD segment line 17. LCD_SEG18 0: PA5 LCD segment line 18. LCD_SEG19 0: PA6 LCD segment line 19. LCD_SEG20 / LCD_COM4 0: PB3 LCD_SEG21 / LCD_COM5 0: PB4 silabs.com | Building a more connected world. LCD segment line 20. This pin may also be used as LCD COM line 4 LCD segment line 21. This pin may also be used as LCD COM line 5 Rev. 1.0 | 106 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description LCD_SEG22 / LCD_COM6 0: PB5 LCD_SEG23 / LCD_COM7 0: PB6 LCD_SEG24 0: PC4 LCD segment line 24. LCD_SEG25 0: PC5 LCD segment line 25. LCD_SEG26 0: PA9 LCD segment line 26. LCD_SEG27 0: PA10 LCD segment line 27. LCD_SEG28 0: PB11 LCD segment line 28. LCD_SEG29 0: PB12 LCD segment line 29. LCD_SEG30 0: PD3 LCD segment line 30. LCD_SEG31 0: PD4 LCD segment line 31. LCD_SEG32 0: PC6 LCD segment line 32. LCD_SEG33 0: PC7 LCD segment line 33. LCD_SEG34 0: PC8 LCD segment line 34. LCD_SEG35 0: PC9 LCD segment line 35. LES_ALTEX0 0: PD6 LESENSE alternate excite output 0. LES_ALTEX1 0: PD7 LESENSE alternate excite output 1. LES_ALTEX2 0: PA3 LESENSE alternate excite output 2. LES_ALTEX3 0: PA4 LESENSE alternate excite output 3. LES_ALTEX4 0: PA5 LESENSE alternate excite output 4. LES_ALTEX5 0: PE11 LESENSE alternate excite output 5. LES_ALTEX6 0: PE12 LESENSE alternate excite output 6. LES_ALTEX7 0: PE13 LESENSE alternate excite output 7. LES_CH0 0: PC0 LESENSE channel 0. LES_CH1 0: PC1 LESENSE channel 1. LES_CH2 0: PC2 LESENSE channel 2. LES_CH3 0: PC3 LESENSE channel 3. LES_CH4 0: PC4 LESENSE channel 4. LES_CH5 0: PC5 LESENSE channel 5. LES_CH6 0: PC6 LESENSE channel 6. LES_CH7 0: PC7 LESENSE channel 7. LES_CH8 0: PC8 LESENSE channel 8. LES_CH9 0: PC9 LESENSE channel 9. LES_CH10 0: PC10 LESENSE channel 10. LES_CH11 0: PC11 LESENSE channel 11. LES_CH12 0: PC12 LESENSE channel 12. silabs.com | Building a more connected world. LCD segment line 22. This pin may also be used as LCD COM line 6 LCD segment line 23. This pin may also be used as LCD COM line 7 Rev. 1.0 | 107 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description LES_CH13 0: PC13 LESENSE channel 13. LES_CH14 0: PC14 LESENSE channel 14. LES_CH15 0: PC15 LESENSE channel 15. LETIM0_OUT0 0: PD6 4: PE12 1: PB11 5: PC14 2: PF0 6: PA8 Low Energy Timer LETIM0, output channel 0. 3: PC4 LETIM0_OUT1 0: PD7 4: PE13 1: PB12 5: PC15 2: PF1 6: PA9 Low Energy Timer LETIM0, output channel 1. 3: PC5 LEU0_RX 0: PD5 4: PA0 1: PB14 5: PC15 2: PE15 LEUART0 Receive input. 3: PF1 LEU0_TX 0: PD4 4: PF2 1: PB13 5: PC14 2: PE14 LEUART0 Transmit output. Also used as receive input in half duplex communication. 3: PF0 0: PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P 0: PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. OPA0_N 0: PC5 Operational Amplifier 0 external negative input. OPA0_P 0: PC4 Operational Amplifier 0 external positive input. OPA1_N 0: PD7 Operational Amplifier 1 external negative input. OPA1_P 0: PD6 Operational Amplifier 1 external positive input. OPA2_N 0: PD3 Operational Amplifier 2 external negative input. OPA2_OUT 0: PD5 Operational Amplifier 2 output. OPA2_OUTALT 0: PD0 Operational Amplifier 2 alternative output. OPA2_P 0: PD4 Operational Amplifier 2 external positive input. OPA3_N 0: PC7 Operational Amplifier 3 external negative input. OPA3_OUT 0: PD1 Operational Amplifier 3 output. OPA3_P 0: PC6 Operational Amplifier 3 external positive input. LFXTAL_N PCNT0_S0IN 0: PC13 4: PA0 2: PC0 6: PB5 3: PD6 7: PB12 silabs.com | Building a more connected world. Pulse Counter PCNT0 input number 0. Rev. 1.0 | 108 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality PCNT0_S1IN LOCATION 0-3 4-7 0: PC14 4: PA1 2: PC1 6: PB6 3: PD7 7: PB11 Description Pulse Counter PCNT0 input number 1. 0: PA0 PRS_CH0 1: PF3 Peripheral Reflex System PRS, channel 0. 2: PC14 3: PF2 0: PA1 PRS_CH1 1: PF4 Peripheral Reflex System PRS, channel 1. 2: PC15 3: PE12 0: PC0 PRS_CH2 1: PF5 Peripheral Reflex System PRS, channel 2. 2: PE10 3: PE13 0: PC1 PRS_CH3 1: PE8 Peripheral Reflex System PRS, channel 3. 2: PE11 3: PA0 PRS_CH4 PRS_CH5 0: PC8 Peripheral Reflex System PRS, channel 4. 2: PF1 0: PC9 Peripheral Reflex System PRS, channel 5. 2: PD6 0: PA6 PRS_CH6 1: PB14 Peripheral Reflex System PRS, channel 6. 2: PE6 PRS_CH7 TIM0_CC0 0: PB13 Peripheral Reflex System PRS, channel 7. 2: PE7 0: PA0 4: PF0 2: PD1 5: PC4 3: PB6 6: PA8 Timer 0 Capture Compare input / output channel 0. 7: PA1 TIM0_CC1 0: PA1 4: PF1 2: PD2 5: PC5 3: PC0 6: PA9 Timer 0 Capture Compare input / output channel 1. 7: PA0 silabs.com | Building a more connected world. Rev. 1.0 | 109 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality TIM0_CC2 TIM0_CDTI0 LOCATION 0-3 4-7 0: PA2 4: PF2 2: PD3 6: PA10 3: PC1 7: PA13 0: PA3 4: PB7 1: PC13 Description Timer 0 Capture Compare input / output channel 2. Timer 0 Complimentary Dead Time Insertion channel 0. 2: PF3 3: PC2 0: PA4 TIM0_CDTI1 4: PB8 1: PC14 Timer 0 Complimentary Dead Time Insertion channel 1. 2: PF4 3: PC3 0: PA5 TIM0_CDTI2 4: PB11 1: PC15 Timer 0 Complimentary Dead Time Insertion channel 2. 2: PF5 3: PC4 TIM1_CC0 0: PC13 4: PD6 1: PE10 5: PF2 Timer 1 Capture Compare input / output channel 0. 3: PB7 TIM1_CC1 0: PC14 4: PD7 1: PE11 5: PF3 Timer 1 Capture Compare input / output channel 1. 3: PB8 TIM1_CC2 0: PC15 4: PC13 1: PE12 5: PF4 Timer 1 Capture Compare input / output channel 2. 3: PB11 TIM1_CC3 0: PC12 4: PC14 1: PE13 6: PF5 2: PB3 Timer 1 Capture Compare input / output channel 3. 3: PB12 U0_CTS U0_RTS U0_RX 2: PA5 4: PB7 3: PC13 5: PD5 2: PA6 4: PB8 3: PC12 5: PD6 2: PA4 4: PC5 3: PC15 5: PF2 UART0 Clear To Send hardware flow control input. UART0 Request To Send hardware flow control output. UART0 Receive input. 6: PE4 silabs.com | Building a more connected world. Rev. 1.0 | 110 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality U0_TX LOCATION 0-3 4-7 2: PA3 4: PC4 3: PC14 5: PF1 Description UART0 Transmit output. Also used as receive input in half duplex communication. 6: PD7 US0_CLK 0: PE12 4: PB13 1: PE5 5: PA12 2: PC9 USART0 clock input / output. 3: PC15 US0_CS 0: PE13 4: PB14 1: PE4 5: PA13 2: PC8 USART0 chip select input / output. 3: PC14 US0_CTS 0: PE14 4: PB6 2: PC7 5: PB11 USART0 Clear To Send hardware flow control input. 3: PC13 US0_RTS 0: PE15 4: PB5 2: PC6 5: PD6 USART0 Request To Send hardware flow control output. 3: PC12 US0_RX 0: PE11 4: PB8 1: PE6 5: PC1 2: PC10 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). 3: PE12 US0_TX 0: PE10 4: PB7 1: PE7 5: PC0 2: PC11 USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI). 3: PE13 US1_CLK 0: PB7 4: PC3 1: PD2 5: PB11 2: PF0 6: PE5 USART1 clock input / output. 3: PC15 US1_CS 0: PB8 4: PC0 1: PD3 5: PE4 2: PF1 USART1 chip select input / output. 3: PC14 US1_CTS 1: PD4 4: PC12 2: PF3 5: PB13 USART1 Clear To Send hardware flow control input. 3: PC6 silabs.com | Building a more connected world. Rev. 1.0 | 111 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality US1_RTS LOCATION 0-3 4-7 1: PD5 4: PC13 2: PF4 5: PB14 Description USART1 Request To Send hardware flow control output. 3: PC7 US1_RX US1_TX US2_CLK 0: PC1 4: PC2 1: PD1 5: PA0 2: PD6 6: PA2 0: PC0 4: PC1 1: PD0 5: PF2 USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. 2: PD7 6: PA14 USART1 Synchronous mode Master Output / Slave Input (MOSI). 0: PC4 5: PF2 1: PB5 USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). USART2 clock input / output. 2: PA9 3: PA15 0: PC5 US2_CS 5: PF5 1: PB6 USART2 chip select input / output. 2: PA10 3: PB11 US2_CTS US2_RTS 0: PC1 4: PC12 1: PB12 5: PD6 0: PC0 4: PC13 2: PA12 5: PD8 USART2 Clear To Send hardware flow control input. USART2 Request To Send hardware flow control output. 3: PC14 0: PC3 US2_RX 5: PF1 1: PB4 USART2 Asynchronous Receive. 2: PA8 USART2 Synchronous mode Master Input / Slave Output (MISO). 3: PA14 0: PC2 US2_TX 5: PF0 1: PB3 USART2 Asynchronous Transmit. Also used as receive input in half duplex communication. 3: PA13 USART2 Synchronous mode Master Output / Slave Input (MOSI). 0: PA2 US3_CLK 1: PD7 USART3 clock input / output. 2: PD4 0: PA3 US3_CS 1: PE4 2: PC14 USART3 chip select input / output. 3: PC0 silabs.com | Building a more connected world. Rev. 1.0 | 112 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality LOCATION 0-3 4-7 Description 0: PA4 US3_CTS USART3 Clear To Send hardware flow control input. 1: PE5 2: PD6 0: PA5 US3_RTS 1: PC1 USART3 Request To Send hardware flow control output. 2: PA14 3: PC15 0: PA1 US3_RX USART3 Asynchronous Receive. 1: PE7 USART3 Synchronous mode Master Input / Slave Output (MISO). 2: PB7 0: PA0 1: PE6 USART3 Asynchronous Transmit. Also used as receive input in half duplex communication. 2: PB3 USART3 Synchronous mode Master Output / Slave Input (MOSI). VDAC0_EXT 0: PD6 Digital to analog converter VDAC0 external reference input pin. VDAC0_OUT0 / OPA0_OUT 0: PB11 US3_TX 0: PC0 VDAC0_OUT0ALT / OPA0_OUTALT Digital to Analog Converter DAC0 output channel number 0. 4: PD0 1: PC1 Digital to Analog Converter DAC0 alternative output for channel 0. 2: PC2 3: PC3 VDAC0_OUT1 / OPA1_OUT 0: PB12 0: PC12 VDAC0_OUT1ALT / OPA1_OUTALT Digital to Analog Converter DAC0 output channel number 1. 4: PD1 1: PC13 Digital to Analog Converter DAC0 alternative output for channel 1. 2: PC14 3: PC15 WTIM0_CC0 0: PE4 4: PC15 1: PA6 6: PB3 Wide timer 0 Capture Compare input / output channel 0. 7: PC1 0: PE5 WTIM0_CC1 4: PF0 6: PB4 Wide timer 0 Capture Compare input / output channel 1. 7: PC2 0: PE6 WTIM0_CC2 4: PF1 6: PB5 Wide timer 0 Capture Compare input / output channel 2. 7: PC3 silabs.com | Building a more connected world. Rev. 1.0 | 113 EFM32TG11 Family Data Sheet Pin Definitions Alternate Functionality WTIM0_CDTI0 WTIM0_CDTI1 WTIM0_CDTI2 LOCATION 0-3 0: PE10 4: PD4 2: PA12 0: PE11 4: PD5 2: PA13 0: PE12 4: PD6 2: PA14 0: PB13 WTIM1_CC0 4-7 Description Wide timer 0 Complimentary Dead Time Insertion channel 0. Wide timer 0 Complimentary Dead Time Insertion channel 1. Wide timer 0 Complimentary Dead Time Insertion channel 2. 5: PE7 1: PD2 Wide timer 1 Capture Compare input / output channel 0. 2: PD6 3: PC7 0: PB14 WTIM1_CC1 4: PE4 1: PD3 Wide timer 1 Capture Compare input / output channel 1. 2: PD7 0: PD0 WTIM1_CC2 4: PE5 1: PD4 Wide timer 1 Capture Compare input / output channel 2. 2: PD8 0: PD1 WTIM1_CC3 4: PE6 1: PD5 Wide timer 1 Capture Compare input / output channel 3. 2: PC6 silabs.com | Building a more connected world. Rev. 1.0 | 114 EFM32TG11 Family Data Sheet Pin Definitions 5.16 Analog Port (APORT) Client Maps PF0 PF1 PF2 PF3 PF4 PF5 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PA0 PA15 PC15 The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 5.14 APORT Connection Diagram on page 115 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. POS 0X 1X 2X 3X 4X NEXT1 NEXT0 NEG 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 ACMP0 PA1 PA2 PA3 POS PA4 0X 1X 2X 3X 4X NEXT1 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT1 NEXT0 OPA0_P 1X 2X 3X 4X PA5 NEG OPA0 PB3 OUT PB4 PB5 PB6 OUT0 OUT0ALT OUT1 OUT2 OUT3 OUT4 NEXT0 OPA2_P 1X 2X 3X 4X NEG OPA2_N 1Y 2Y 3Y 4Y PC0 OPA0_ALT OUT OPA0_ALT PC2 OUT2 OUT2ALT OUT1 OUT2 OUT3 OUT4 NEXT2 OPA0_ALT PC3 OPA0_ALT NEG OUT1 OUT1ALT OUT1 OUT2 OUT3 OUT4 NEXT1 OUT OPA3_P 1X 2X 3X 4X POS OPA3_N 1Y 2Y 3Y 4Y NEG OUT3 OUT3ALT OUT1 OUT2 OUT3 OUT4 NEXT3 OUT PC12 PC11 OPA1 PE7 PE6 PE5 PE4 OPA3 PC7 OPA2_N PC6 OPA2_N POS PD7 ADC_EXTN OPA1_N ADC0 OUT2 EXTP EXTN OPA2_P NEG OPA2_N 2X 2Y 4X 4Y OPA1_N 1Y 2Y 3Y 4Y PC13 ALT0OUT OUT3 CEXT_SENSE OUT1 OUT0 OPA0_N PC11 POS ALT0OUT OPA2_ALT CSEN OPA0_P PC5 PC13 PC12 OPA1_P 1X 2X 3X 4X 0X 1X 2X 3X 4X NEXT2 NEXT0 0Y 1Y 2Y 3Y 4Y NEXT3 NEXT1 PC14 ADC_EXTP OPA1_P PC4 1X 1Y 3X 3Y CEXT ACMP1 NEG ADC1Y ADC1X ACMP0X ACMP0Y POS OPA2 PC1 OPA0_N 1Y 2Y 3Y 4Y POS ACMP1X ACMP1Y PA6 OPA1_ALT CX CY DX DY BY BX AY AX PB14 PB13 PB12 PB11 PA14 PA13 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PA9 BUSACMP0X, BUSACMP1Y, ... PA10 ACMP0X, ACMP1Y, … OPA3_OUT BUSADC0X, BUSADC0Y VDAC0_OUT0ALT OPA2_ALT BUSAX, BUSBY, ... ADC0X, ADC0Y OPA0_OUT APORTnX, APORTnY AX, BY, … OPA1_OUT nX, nY Figure 5.14. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin silabs.com | Building a more connected world. Rev. 1.0 | 115 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF5 PF3 BUSCY BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP0Y BUSACMP0X Bus APORT0Y EFM32TG11 Family Data Sheet Pin Definitions PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. Table 5.16. ACMP0 Bus and Pin Mapping Rev. 1.0 | 116 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF5 PF3 BUSCY BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSACMP1Y BUSACMP1X Bus APORT0Y EFM32TG11 Family Data Sheet Pin Definitions Table 5.17. ACMP1 Bus and Pin Mapping Rev. 1.0 | 117 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 PF5 PF3 BUSCY BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X APORT0X Port PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 BUSADC0Y BUSADC0X Bus APORT0Y EFM32TG11 Family Data Sheet Pin Definitions Table 5.18. ADC0 Bus and Pin Mapping Rev. 1.0 | 118 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSDX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX APORT4Y APORT4X APORT2Y APORT2X PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT3Y APORT3X APORT1Y APORT1X CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32TG11 Family Data Sheet Pin Definitions Table 5.19. CSEN Bus and Pin Mapping CEXT CEXT_SENSE Rev. 1.0 | 119 silabs.com | Building a more connected world. PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32TG11 Family Data Sheet Pin Definitions Table 5.20. VDAC0 / OPA Bus and Pin Mapping OPA0_N OPA0_P Rev. 1.0 | 120 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32TG11 Family Data Sheet Pin Definitions OPA1_N OPA1_P OPA2_N Rev. 1.0 | 121 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32TG11 Family Data Sheet Pin Definitions OPA2_OUT OPA2_P OPA3_N Rev. 1.0 | 122 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSDX PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSCX PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSBX PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSAX APORT4X APORT3X APORT2X APORT1X PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32TG11 Family Data Sheet Pin Definitions OPA3_OUT OPA3_P VDAC0_OUT0 / OPA0_OUT Rev. 1.0 | 123 silabs.com | Building a more connected world. PE4 PE6 PE8 PE10 PE12 PE14 PF0 PF2 PF4 BUSDY PE5 PE7 PE9 PE11 PE13 PE15 PF1 PF3 PF5 BUSCY PA0 PA2 PA4 PA6 PA10 PA14 PB4 PB6 PB12 PB14 BUSBY PA1 PA3 PA5 PA9 PA13 PA15 PB3 PB5 PB11 PB13 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFM32TG11 Family Data Sheet Pin Definitions VDAC0_OUT1 / OPA1_OUT Rev. 1.0 | 124 EFM32TG11 Family Data Sheet TQFP80 Package Specifications 6. TQFP80 Package Specifications 6.1 TQFP80 Package Dimensions Figure 6.1. TQFP80 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 125 EFM32TG11 Family Data Sheet TQFP80 Package Specifications Table 6.1. TQFP80 Package Dimensions Dimension Min Typ Max A — — 1.20 A1 0.05 — 0.15 A2 0.95 1.00 1.05 b 0.17 0.20 0.27 c 0.09 — 0.20 D 14.00 BSC D1 12.00 BSC e 0.50 BSC E 14.00 BSC E1 12.00 BSC L 0.45 L1 θ 0.60 0.75 1.00 REF 0 3.5 aaa 0.20 bbb 0.20 ccc 0.08 ddd 0.08 eee 0.05 7 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This package outline conforms to JEDEC MS-026, variant ADD. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 126 EFM32TG11 Family Data Sheet TQFP80 Package Specifications 6.2 TQFP80 PCB Land Pattern Figure 6.2. TQFP80 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 127 EFM32TG11 Family Data Sheet TQFP80 Package Specifications Table 6.2. TQFP80 PCB Land Pattern Dimensions Dimension Min Max C1 13.30 13.40 C2 13.30 13.40 E 0.50 BSC X 0.20 0.30 Y 1.40 1.50 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 6.3 TQFP80 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 6.3. TQFP80 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 128 EFM32TG11 Family Data Sheet QFN80 Package Specifications 7. QFN80 Package Specifications 7.1 QFN80 Package Dimensions Figure 7.1. QFN80 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 129 EFM32TG11 Family Data Sheet QFN80 Package Specifications Table 7.1. QFN80 Package Dimensions Dimension Min Typ Max A 0.70 0.75 0.80 A1 0.00 — 0.05 b 0.15 0.2 0.25 A3 0.203 REF D 9.00 BSC e 0.40 BSC E 9.00 BSC D2 7.10 7.20 7.30 E2 7.10 7.20 7.30 L 0.35 0.40 0.45 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 130 EFM32TG11 Family Data Sheet QFN80 Package Specifications 7.2 QFN80 PCB Land Pattern Figure 7.2. QFN80 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 131 EFM32TG11 Family Data Sheet QFN80 Package Specifications Table 7.2. QFN80 PCB Land Pattern Dimensions Dimension Typ C1 8.90 C2 8.90 E 0.40 X1 0.20 Y1 0.85 X2 7.30 Y2 7.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad. 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 132 EFM32TG11 Family Data Sheet QFN80 Package Specifications 7.3 QFN80 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 7.3. QFN80 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 133 EFM32TG11 Family Data Sheet TQFP64 Package Specifications 8. TQFP64 Package Specifications 8.1 TQFP64 Package Dimensions Figure 8.1. TQFP64 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 134 EFM32TG11 Family Data Sheet TQFP64 Package Specifications Table 8.1. TQFP64 Package Dimensions Dimension Min Typ Max A — 1.15 1.20 A1 0.05 — 0.15 A2 0.95 1.00 1.05 b 0.17 0.22 0.27 b1 0.17 0.20 0.23 c 0.09 — 0.20 c1 0.09 — 0.16 D 12.00 BSC D1 10.00 BSC e 0.50 BSC E 12.00 BSC E1 10.00 BSC L 0.45 L1 0.60 0.75 1.00 REF R1 0.08 — — R2 0.08 — 0.20 S 0.20 — — θ 0 3.5 7 ϴ1 0 — 0.10 ϴ2 11 12 13 ϴ3 11 12 13 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 135 EFM32TG11 Family Data Sheet TQFP64 Package Specifications 8.2 TQFP64 PCB Land Pattern Figure 8.2. TQFP64 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 136 EFM32TG11 Family Data Sheet TQFP64 Package Specifications Table 8.2. TQFP64 PCB Land Pattern Dimensions Dimension Min Max C1 11.30 11.40 C2 11.30 11.40 E 0.50 BSC X 0.20 0.30 Y 1.40 1.50 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 8.3 TQFP64 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 8.3. TQFP64 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 137 EFM32TG11 Family Data Sheet QFN64 Package Specifications 9. QFN64 Package Specifications 9.1 QFN64 Package Dimensions Figure 9.1. QFN64 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 138 EFM32TG11 Family Data Sheet QFN64 Package Specifications Table 9.1. QFN64 Package Dimensions Dimension Min Typ Max A 0.70 0.75 0.80 A1 0.00 — 0.05 b 0.20 0.25 0.30 A3 0.203 REF D 9.00 BSC e 0.50 BSC E 9.00 BSC D2 7.10 7.20 7.30 E2 7.10 7.20 7.30 L 0.40 0.45 0.50 L1 0.00 — 0.10 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 139 EFM32TG11 Family Data Sheet QFN64 Package Specifications 9.2 QFN64 PCB Land Pattern Figure 9.2. QFN64 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 140 EFM32TG11 Family Data Sheet QFN64 Package Specifications Table 9.2. QFN64 PCB Land Pattern Dimensions Dimension Typ C1 8.90 C2 8.90 E 0.50 X1 0.30 Y1 0.85 X2 7.30 Y2 7.30 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm. 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 8. A 3x3 array of 1.45 mm square openings on a 2.00 mm pitch can be used for the center ground pad. 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 141 EFM32TG11 Family Data Sheet QFN64 Package Specifications 9.3 QFN64 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 9.3. QFN64 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 142 EFM32TG11 Family Data Sheet TQFP48 Package Specifications 10. TQFP48 Package Specifications 10.1 TQFP48 Package Dimensions Figure 10.1. TQFP48 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 143 EFM32TG11 Family Data Sheet TQFP48 Package Specifications Table 10.1. TQFP48 Package Dimensions Dimension Min Typ A 7.00 BSC A1 3.50 BSC B 7.00 BSC B1 3.50 BSC Max C 1.00 — 1.20 D 0.17 — 0.27 E 0.95 — 1.05 F 0.17 — 0.23 G 0.50 BSC H 0.05 — 0.15 J 0.09 — 0.20 K 0.50 — 0.70 L 0 — 7 M N 12 REF 0.09 P R — 0.16 0.25 BSC 0.150 — S 9.00 BSC S1 4.50 BSC V 9.00 BSC V1 4.50 BSC W 0.20 BSC AA 1.00 BSC 0.250 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 144 EFM32TG11 Family Data Sheet TQFP48 Package Specifications 10.2 TQFP48 PCB Land Pattern Figure 10.2. TQFP48 PCB Land Pattern Drawing Table 10.2. TQFP48 PCB Land Pattern Dimensions Dimension Typ C1 8.50 C2 8.50 E 0.50 X 0.30 Y 1.60 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all pads. 7. A No-Clean, Type-3 solder paste is recommended. 8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 145 EFM32TG11 Family Data Sheet TQFP48 Package Specifications 10.3 TQFP48 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 10.3. TQFP48 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 146 EFM32TG11 Family Data Sheet QFN32 Package Specifications 11. QFN32 Package Specifications 11.1 QFN32 Package Dimensions Figure 11.1. QFN32 Package Drawing silabs.com | Building a more connected world. Rev. 1.0 | 147 EFM32TG11 Family Data Sheet QFN32 Package Specifications Table 11.1. QFN32 Package Dimensions Dimension Min Typ Max A 0.70 0.75 0.80 A1 0.00 — 0.05 A3 b 0.203 REF 0.20 D D2/E2 0.25 5.0 BSC 3.60 3.70 E 5.0 BSC e 0.50 BSC L 0.30 0.35 0.40 aaa 0.10 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 3.80 0.45 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 148 EFM32TG11 Family Data Sheet QFN32 Package Specifications 11.2 QFN32 PCB Land Pattern Figure 11.2. QFN32 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.0 | 149 EFM32TG11 Family Data Sheet QFN32 Package Specifications Table 11.2. QFN32 PCB Land Pattern Dimensions Dimension Typ C1 5.00 C2 5.00 E 0.50 X1 0.30 Y1 0.80 X2 3.80 Y2 3.80 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 2x2 array of 0.9 mm square openings on a 1.2 mm pitch should be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.0 | 150 EFM32TG11 Family Data Sheet QFN32 Package Specifications 11.3 QFN32 Package Marking EFM32 PPPPPPPPPP TTTTTT YYWW Figure 11.3. QFN32 Package Marking The package marking consists of: • PPPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. silabs.com | Building a more connected world. Rev. 1.0 | 151 EFM32TG11 Family Data Sheet Revision History 12. Revision History Revision 1.0 November, 2018 • • • • • • • • • Table 2.1 Ordering Information on page 4 updated with revision B part numbers. 4.1 Electrical Characteristics updated with final characterization data and production test limits. 4.1 Electrical Characteristics sorted all table footnotes in order of appearance. Split VSS and VREGVSS pin definitions into separate entries in Table 5.2 EFM32TG11B5xx in QFN80 Device Pinout on page 75, Table 5.6 EFM32TG11B5xx in QFN64 Device Pinout on page 84, and Table 5.12 EFM32TG11B5xx in QFN32 Device Pinout on page 96. Replaced VREGVSS name and description with VSS in Table 5.7 EFM32TG11B3xx in QFN64 Device Pinout on page 86, Table 5.8 EFM32TG11B1xx in QFN64 Device Pinout on page 88, and Table 5.13 EFM32TG11B1xx in QFN32 Device Pinout on page 98. Table 5.14 GPIO Functionality Table on page 100 sorted by GPIO name in alphabetical order. Table 5.15 Alternate Functionality Overview on page 104 changed vertical white space. Table 7.1 QFN80 Package Dimensions on page 130 corrected dimension 'b'. Figure 7.2 QFN80 PCB Land Pattern Drawing on page 131 corrected dimension 'X1'. Revision 0.5 February, 2018 • • • • 4.1 Electrical Characteristics updated with latest characterization data and production test limits. Added 4.1.3 Thermal Characteristics. Added 4.2 Typical Performance Curves section. Corrected OPA / VDAC output connections in Figure 5.14 APORT Connection Diagram on page 115. Revision 0.1 May 1st, 2017 Initial release. silabs.com | Building a more connected world. Rev. 1.0 | 152 Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
EFM32TG11B120F128IQ64-BR
物料型号:文档中没有明确列出具体的物料型号,但从上下文中可以推断,文档描述的可能是EFM32TG11系列的微控制器。

器件简介:文档提供了EFM32TG11系列微控制器的电气特性和典型性能曲线,但没有提供详细的器件简介

引脚分配:文档详细列出了不同封装类型(如QFP80、QFN80、QFP64、QFN64、TQFP48、QFN32)的引脚分配和功能描述。

参数特性:文档中列出了微控制器的多种电气参数,例如电源电流、I2C和SPI接口的时序参数等。

功能详解:文档中对一些特定的功能模块,如LCD控制器、ADC、DAC、OPA(运算放大器)、PRS(外设反射系统)等进行了详细的电气特性描述。

应用信息:文档中没有直接提供应用信息,但通过电气特性和典型性能曲线可以推断该微控制器适用于需要低功耗和高性能的应用场景。

封装信息:文档提供了不同封装类型的详细尺寸和PCB布局指南,包括TQFP80、QFN80、QFP64、QFN64、TQFP48和QFN32等。
EFM32TG11B120F128IQ64-BR 价格&库存

很抱歉,暂时无法提供与“EFM32TG11B120F128IQ64-BR”相匹配的价格&库存,您可以联系我们找货

免费人工找货