0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFR32MG14P632F256GM32-B

EFR32MG14P632F256GM32-B

  • 厂商:

    MURATA-PS(村田)

  • 封装:

  • 描述:

    MIGHTY PREMIUM QFN32 2.4G 10.5DB

  • 数据手册
  • 价格&库存
EFR32MG14P632F256GM32-B 数据手册
es ig ns EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet D The Mighty Gecko multi-protocol family of SoCs is part of the Wireless Gecko portfolio. Mighty Gecko SoCs are ideal for enabling energy-friendly multi-protocol, multi-band networking for IoT devices. KEY FEATURES N ew • 32-bit ARM® Cortex®-M4 core with 40 MHz maximum operating frequency • 256 kB of flash and 32 kB of RAM The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup times, a scalable power amplifier, and no-compromise MCU features. Mighty Gecko applications include: Core / Memory ARM CortexTM M4 processor with DSP extensions, FPU and MPU RAM Memory LDMA Controller BALUN I LNA RF Frontend Q FRC To Sub GHz receive I/Q mixers and PA AGC Frequency Synthesizer MOD To 2.4 GHz receive I/Q mixers and PA Voltage Regulator Voltage Monitor CRYPTO Auxiliary H-F RC Oscillator L-F RC Oscillator DC-DC Converter Power-On Reset CRC L-F Crystal Oscillator Ultra L-F RC Oscillator Brown-Out Detector SMU I/O Ports Timers and Triggers USART External Interrupts Timer/Counter Protocol Timer Low Energy UARTTM General Purpose I/O Low Energy Timer Low Energy Sensor Interface I2C Pin Reset Pulse Counter Watchdog Timer Pin Wakeup Real Time Counter and Calendar Cryotimer IFADC Q 2.4 GHz PA DEMOD PGA Other H-F RC Oscillator Analog I/F ADC Analog Comparator IDAC RAC N ot RFSENSE PA Energy Management H-F Crystal Oscillator Serial Interfaces CRC R I LNA RF Frontend • Robust peripheral set and up to 31 GPIO 32-bit bus BUFC ec Sub GHz • Integrated PA with up to 19 dBm (2.4 GHz) or 20 dBm (Sub-GHz) tx power Peripheral Reflex System Radio Transceiver RFSENSE • Autonomous Hardware Crypto Accelerator • Integrated balun for 2.4 GHz Clock Management Flash Program Memory om Debug Interface • 12-channel Peripheral Reflex System enabling autonomous interaction of MCU peripherals fo r IoT Multi-Protocol Devices Connected Home Lighting Health and Wellness Metering Home and Building Automation and Security m en de d • • • • • • • Pin-compatible across EFR32MG families (exceptions apply for 5V-tolerant pins) VDAC To Sub GHz and 2.4 GHz PA Op-Amp Lowest power mode with peripheral operational: EM0—Active EM1—Sleep silabs.com | Building a more connected world. EM2—Deep Sleep EM3—Stop EM4—Hibernate EM4—Shutoff Rev. 1.4 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Feature List 1. Feature List The EFR32MG14 highlighted features are listed below. N ew D es ig ns • Wide selection of MCU peripherals • 12-bit 1 Msps SAR Analog to Digital Converter (ADC) • 2 × Analog Comparator (ACMP) • 2 × Digital to Analog Converter (VDAC) • 2 × Operational Amplifier (Opamp) • Digital to Analog Current Converter (IDAC) • Low-Energy Sensor Interface (LESENSE) • Up to 31 pins connected to analog channels (APORT) shared between analog peripherals • Up to 31 General Purpose I/O pins with output state retention and asynchronous interrupts • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) • 2 × 16-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • 1 × 32-bit Timer/Counter • 3 Compare/Capture/PWM channels • 32-bit Real Time Counter and Calendar • 16-bit Low Energy Timer for waveform generation • 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode • 16-bit Pulse Counter with asynchronous operation • 2 × Watchdog Timer with dedicated RC oscillator • 2 × Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S) • Low Energy UART (LEUART™) om m en de d fo r • Low Power Wireless System-on-Chip • High Performance 32-bit 40 MHz ARM Cortex®-M4 with DSP instruction and floating-point unit for efficient signal processing • 256 kB flash program memory • 32 kB RAM data memory • 2.4 GHz and Sub-GHz radio operation • Transmit power: • 2.4 GHz radio: Up to 19 dBm • Sub-GHz radio: Up to 20 dBm • Low Energy Consumption • 10.2 mA RX current at 250 kbps, DSSS-OQPSK, 2.4 GHz • 8.8 mA RX current at 1 Mbps, GFSK, 2.4 GHz • 8.4 mA RX current at 38.4 kbps, GFSK, 169 MHz • 8.5 mA TX current at 0 dBm output power at 2.4 GHz • 35.3 mA TX current at 14 dBm output power at 868 MHz • 67 μA/MHz in Active Mode (EM0) • 1.3 μA EM2 DeepSleep current (16 kB RAM retention and RTCC running from LFRCO) • High Receiver Performance • -93.8 dBm sensitivity at 1 Mbit/s GFSK, 2.4 GHz • -103.3 dBm sensitivity at 250 kbps DSSS-OQPSK, 2.4 GHz • -126.2 dBm sensitivity at 600 bps, GFSK, 915 MHz • -120.6 dBm sensitivity at 2.4 kbps, GFSK, 868 MHz • -109.9 dBm sensitivity at 4.8 kbps, OOK, 433 MHz • -112.2 dBm sensitivity at 38.4 kbps, GFSK, 169 MHz • Supported Modulation Formats • 2/4 (G)FSK with fully configurable shaping • BPSK / DBPSK TX • OOK / ASK • Shaped OQPSK / (G)MSK • Configurable DSSS and FEC • Supported Protocols • Zigbee • Thread • Bluetooth® Low Energy (Bluetooth 5) • • • N ot R ec • Proprietary Protocols • Wireless M-Bus • Selected IEEE 802.15.4g SUN-FSK PHYs • Low Power Wide Area Networks • Suitable for Systems Targeting Compliance With: • FCC Part 90.210 Mask D, FCC part 15.247, 15.231, 15.249 • ETSI Category I Operation, EN 300 220, EN 300 328 • ARIB T-108, T-96 • China regulatory • • I2C interface with SMBus support and address recognition in EM3 Stop Wide Operating Range • 1.8 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C) and Extended (-40 °C to 125 °C) temperature grades available Support for Internet Security • General Purpose CRC • Random Number Generator • Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC QFN32 5x5 mm Package QFN48 7x7 mm Package silabs.com | Building a more connected world. Rev. 1.4 | 2 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Ordering Information 2. Ordering Information Table 2.1. Ordering Information EFR32MG14P733F256GM48-B Frequency Band @ Max TX Power Flash (kB) RAM (kB) GPIO Package Temp Range Bluetooth LE 2.4 GHz @ 19 dBm 256 32 28 QFN48 -40 to +85°C Zigbee Sub-GHz @ 20 dBm 256 32 28 QFN48 -40 to +125°C Thread EFR32MG14P733F256IM48-B Bluetooth LE 2.4 GHz @ 19 dBm Zigbee Sub-GHz @ 20 dBm D Proprietary EFR32MG14P732F256GM48-B Bluetooth LE 2.4 GHz @ 19 dBm 32 31 QFN48 -40 to +85°C 256 32 31 QFN48 -40 to +125°C 2.4 GHz @ 19 dBm 256 32 16 QFN32 -40 to +85°C 2.4 GHz @ 19 dBm 256 32 16 QFN32 -40 to +125°C 2.4 GHz @ 10 dBm 256 32 31 QFN48 -40 to +85°C 2.4 GHz @ 10 dBm 256 32 16 QFN32 -40 to +85°C Zigbee EFR32MG14P732F256IM48-B Bluetooth LE 256 fo r Thread Proprietary N ew Thread Proprietary es ig ns Ordering Code Protocol Stack 2.4 GHz @ 19 dBm m en de d Zigbee Thread Proprietary EFR32MG14P732F256GM32-B Bluetooth LE Zigbee Thread om Proprietary EFR32MG14P732F256IM32-B Bluetooth LE ec Zigbee N ot R EFR32MG14P632F256GM48-B EFR32MG14P632F256GM32-B Thread Proprietary Bluetooth LE Zigbee Thread Proprietary Bluetooth LE Zigbee Thread Proprietary silabs.com | Building a more connected world. Rev. 1.4 | 3 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Ordering Information EFR32 X G 1 4 P 733 F 256 G M 48 – A R Tape and Reel (Optional) es ig ns Revision Pin Count Package – M (QFN) Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) D Feature Set Code – r2r1r0 r2: Reserved r1: RF Type – 3 (TRX), 2 (RX), 1 (TX) r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band) N ew Performance Grade – P (Performance), B (Basic), V (Value) Device Configuration Series Gecko Family – M (Mighty), B (Blue), F (Flex) fo r Wireless Gecko 32-bit N ot R ec om m en de d Figure 2.1. Ordering Code Key silabs.com | Building a more connected world. Rev. 1.4 | 4 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . 3.2 Radio . . . . . . . . . . . . 3.2.1 Antenna Interface . . . . . . 3.2.2 Fractional-N Frequency Synthesizer 3.2.3 Receiver Architecture . . . . . 3.2.4 Transmitter Architecture . . . . 3.2.5 Wake on Radio . . . . . . . 3.2.6 RFSENSE . . . . . . . . . 3.2.7 Flexible Frame Handling . . . . 3.2.8 Packet and State Trace . . . . 3.2.9 Data Buffering . . . . . . . . 3.2.10 Radio Controller (RAC) . . . . 3.2.11 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Power . . . . . . . . . . . 3.3.1 Energy Management Unit (EMU) 3.3.2 DC-DC Converter . . . . . 3.3.3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . 9 . 9 . 9 . 9 .10 .10 .10 .10 .10 .11 .11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 .12 .12 .12 D . N ew . fo r . m en de d 3.1 Introduction . es ig ns 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.4 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .12 3.5 Clocking . . . . . . . . . . 3.5.1 Clock Management Unit (CMU) . 3.5.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 .13 .14 .14 .14 .14 3.7 Communications and Other Digital Peripherals . . . . . . . . . . 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .14 .14 .14 .15 3.8 Security Features . . . . . . . . . . . . . . 3.8.1 General Purpose Cyclic Redundancy Check (GPCRC) 3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . . 3.8.3 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .15 .15 .15 . . . N ot R ec om 3.6 Counters/Timers and PWM . . . . . . . . . 3.6.1 Timer/Counter (TIMER) . . . . . . . . 3.6.2 Wide Timer/Counter (WTIMER) . . . . . . 3.6.3 Real Time Counter and Calendar (RTCC) . . 3.6.4 Low Energy Timer (LETIMER) . . . . . . 3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.6.6 Pulse Counter (PCNT) . . . . . . . . . 3.6.7 Watchdog Timer (WDOG) . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . Rev. 1.4 | 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Reset Management Unit (RMU) . . . . . . . . . . . 3.11 Core and Memory . . . . . . . . . . . . 3.11.1 Processor Core . . . . . . . . . . . . 3.11.2 Memory System Controller (MSC) . . . . . 3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . 3.13 Configuration Summary . . . . . . . . . . . . . . . . . 4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .15 .15 .15 .16 .16 .16 . . . . . . . . .16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 .16 .16 .16 . . . . . . . . .17 . . . . . . . . .18 D . . . . . . . . . N ew . . . . . . . . . es ig ns 3.9 Analog. . . . . . . . . . . . . . 3.9.1 Analog Port (APORT) . . . . . . . 3.9.2 Analog Comparator (ACMP) . . . . . 3.9.3 Analog to Digital Converter (ADC) . . . 3.9.4 Digital to Analog Current Converter (IDAC) 3.9.5 Digital to Analog Converter (VDAC) . . 3.9.6 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N ot R ec om m en de d fo r 4.1 Electrical Characteristics . . . . . . . . 4.1.1 Absolute Maximum Ratings . . . . . . 4.1.2 Operating Conditions . . . . . . . . 4.1.3 Thermal Characteristics . . . . . . . 4.1.4 DC-DC Converter . . . . . . . . . 4.1.5 Current Consumption . . . . . . . . 4.1.6 Wake Up Times . . . . . . . . . . 4.1.7 Brown Out Detector (BOD) . . . . . . 4.1.8 Frequency Synthesizer . . . . . . . . 4.1.9 2.4 GHz RF Transceiver Characteristics . . 4.1.10 Sub-GHz RF Transceiver Characteristics . 4.1.11 Modem. . . . . . . . . . . . . 4.1.12 Oscillators . . . . . . . . . . . 4.1.13 Flash Memory Characteristics . . . . . 4.1.14 General-Purpose I/O (GPIO) . . . . . 4.1.15 Voltage Monitor (VMON) . . . . . . . 4.1.16 Analog to Digital Converter (ADC) . . . 4.1.17 Analog Comparator (ACMP) . . . . . 4.1.18 Digital to Analog Converter (VDAC) . . . 4.1.19 Current Digital to Analog Converter (IDAC) 4.1.20 Operational Amplifier (OPAMP) . . . . 4.1.21 Pulse Counter (PCNT) . . . . . . . 4.1.22 Analog Port (APORT) . . . . . . . . 4.1.23 I2C . . . . . . . . . . . . . . 4.1.24 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 .20 .22 .24 .25 .27 .37 .38 .39 .40 .49 .74 .75 .79 .80 .82 .83 .85 .88 .91 .93 .96 .96 .97 .100 4.2 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . .101 4.2.1 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 02 4.2.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . 107 . 4.2.3 2.4 GHz Radio . . . . . . . . . . . . . . . . . . . . . . . . . . 109 . 5. Typical Connection Diagrams silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . .111 Rev. 1.4 | 6 5.1 Power . . . . . . . 5.2 RF Matching Networks 5.3 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 . . . . .113 . . 114 6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout. . . . . . . . . . . . 6.2 QFN48 2.4 GHz Device Pinout . . . . . . . . . . . . . . 6.3 QFN32 2.4 GHz Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . es ig ns 6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 . . 6.5 Alternate Functionality Overview . . 6.6 Analog Port (APORT) Client Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 . . . . . . . . 117 . . . . . . . . . 119 . . . . . . . . . 1 . 21 . . . . . . . . D 6.4 GPIO Functionality Table . . . . . . . . 144 . .155 7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 162 7.2 QFN48 PCB Land Pattern . 7.3 QFN48 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N ew 7.1 QFN48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . 162 . . . . . . . .164 . . . . . . . . .166 8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 167 8.2 QFN32 PCB Land Pattern 8.3 QFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 . . . . . . . . . . . .169 . . . . . . . . . . . .170 m en de d . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 N ot R ec om 9. Revision History . . fo r 8.1 QFN32 Package Dimensions silabs.com | Building a more connected world. Rev. 1.4 | 7 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3. System Overview 3.1 Introduction es ig ns The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG14 Wireless Gecko Reference Manual. A block diagram of the EFR32MG14 family is shown in Figure 3.1 Detailed EFR32MG14 Block Diagram on page 8. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. Radio Transceiver Port I/O Configuration PA Frequency Synthesizer To RF Frontend Circuits Q AGC MOD D PCNT Port Mapper Brown Out / Power-On Reset ARM Cortex-M4 Core Up to 32 KB RAM Memory Protection Unit Energy Management PAVDD Voltage Monitor AVDD DVDD bypass VREGVDD DC-DC Converter VREGSW DECOUPLE PBn Port C Drivers PCn Port D Drivers PDn Port F Drivers PFn ULFRCO CRC LESENSE Analog Peripherals IDAC VDAC Internal Reference 12-bit ADC Op-Amp VDD Temp Sense LFXO HFRCO + Analog Comparator Figure 3.1. Detailed EFR32MG14 Block Diagram ec om HFXO R 3.2 Radio Clock Management LFRCO LFXTAL_N HFXTAL_P HFXTAL_N Voltage Regulator Watchdog Timer AUXHFRCO LFXTAL_P A A H P B B m en de d IOVDD CRYPTO Floating Point Unit DMA Controller RFVDD I2C Up to 256 KB ISP Flash Program Memory Mux & FB Debug Signals (shared w/GPIO) LEUART Input Mux Serial Wire Debug / Programming Port B Drivers RTC / RTCC fo r RESETn PAn CRYOTIMER USART Reset Management Unit Port A Drivers APORT I N ew BALUN 2G4RF_ION TIMER 2.4 GHz RF LNA 2G4RF_IOP IFADC PGA Q Digital Peripherals LETIMER RAC RFSENSE CRC PA FRC DEMOD LNA IOVDD + - SUBGRF_IP SUBGRF_IN SUBGRF_OP SUBGRF_ON BUFC Sub-GHz RF I N ot The Mighty Gecko family features a highly configurable radio transceiver supporting a wide range of wireless protocols. silabs.com | Building a more connected world. Rev. 1.4 | 8 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.2.1 Antenna Interface The EFR32MG14 family includes devices which support both single-band and dual-band RF communication over separate physical RF interfaces. The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The 2G4RF_ION pin should be grounded externally. es ig ns The sub-GHz antenna interface consists of a differential transmit interface (pins SUBGRF_OP and SUBGRF_ON) and a differential receive interface (pinsSUBGRF_IP and SUBGRF_IN). The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching Networks section. 3.2.2 Fractional-N Frequency Synthesizer D The EFR32MG14 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier. N ew The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption. 3.2.3 Receiver Architecture fo r The EFR32MG14 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC). The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency. m en de d The Automatic Gain Control (AGC) block adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz radio can be calibrated on-demand by the user for the desired frequency band. Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS) for 2.4 GHz and sub-GHz bands. A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception. ec om The EFR32MG14 features integrated support for antenna diversity to mitigate the problem of frequency-selective fading due to multipath propagation and improve link budget. Support for antenna diversity is available for specific PHY configurations in 2.4 GHz and sub-GHz bands. Internal configurable hardware controls an external switch for automatic switching between antennae during RF receive detection operations. R Note: Due to the shorter preamble of 802.15.4 and BLE packets, RX diversity is not supported. 3.2.4 Transmitter Architecture N ot The EFR32MG14 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping. Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32MG14. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access. silabs.com | Building a more connected world. Rev. 1.4 | 9 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.2.5 Wake on Radio The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG14 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals. 3.2.6 RFSENSE es ig ns The RFSENSE peripheral generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4. RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal RF reception. D Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals. 3.2.7 Flexible Frame Handling om m en de d fo r N ew EFR32MG14 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator: • Highly adjustable preamble length • Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts • Frame disassembly and address matching (filtering) to accept or reject frames • Automatic ACK frame assembly and transmission • Fully flexible CRC generation and verification: • Multiple CRC values can be embedded in a single frame • 8, 16, 24 or 32-bit CRC value • Configurable CRC bit and byte ordering • Selectable bit-ordering (least significant or most significant bit first) • Optional data whitening • Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding • Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing • Optional symbol interleaving, typically used in combination with FEC • Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware • UART encoding over air, with start and stop bit insertion / removal • Test mode support, such as modulated or unmodulated carrier output • Received frame timestamping 3.2.8 Packet and State Trace N ot R ec The EFR32MG14 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features: • Non-intrusive trace of transmit data, receive data and state information • Data observability on a single-pin UART data output, or on a two-pin SPI data output • Configurable data output bitrate / baudrate • Multiplexed transmitted data, received data and state / meta information in a single serial data stream 3.2.9 Data Buffering The EFR32MG14 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations. silabs.com | Building a more connected world. Rev. 1.4 | 10 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.2.10 Radio Controller (RAC) The Radio Controller controls the top level state of the radio subsystem in the EFR32MG14. It performs the following tasks: • Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry • Run-time calibration of receiver, transmitter and frequency synthesizer • Detailed frame transmission timing, including optional LBT or CSMA-CA es ig ns 3.2.11 Random Number Generator The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications. N ot R ec om m en de d fo r N ew D Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna. silabs.com | Building a more connected world. Rev. 1.4 | 11 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.3 Power The EFR32MG14 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. es ig ns The EFR32MG14 device family includes support for internal supply voltage scaling, as well as two different power domains groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption. AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.3.1 Energy Management Unit (EMU) N ew D The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. 3.3.2 DC-DC Converter 3.3.3 Power Domains m en de d fo r The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. The EFR32MG14 has two peripheral power domains for operation in EM2 and EM3. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device. Table 3.1. Peripheral Power Subdomains om Peripheral Power Domain 1 ACMP0 ADC0 ec PCNT0 Peripheral Power Domain 2 ACMP1 CSEN VDAC0 LEUART0 LESENSE I2C0 APORT IDAC N ot R LETIMER0 3.4 General Purpose Input/Output (GPIO) EFR32MG14 has up to 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. silabs.com | Building a more connected world. Rev. 1.4 | 12 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.5 Clocking 3.5.1 Clock Management Unit (CMU) es ig ns The Clock Management Unit controls oscillators and clocks in the EFR32MG14. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. 3.5.2 Internal and External Oscillators 3.6 Counters/Timers and PWM 3.6.1 Timer/Counter (TIMER) fo r N ew D The EFR32MG14 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. m en de d TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.6.2 Wide Timer/Counter (WTIMER) ec om WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only. 3.6.3 Real Time Counter and Calendar (RTCC) N ot R The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for application software. silabs.com | Building a more connected world. Rev. 1.4 | 13 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.6.4 Low Energy Timer (LETIMER) The unique LETIMER is a 16-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. es ig ns 3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. 3.6.6 Pulse Counter (PCNT) N ew D The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. 3.6.7 Watchdog Timer (WDOG) 3.7 Communications and Other Digital Peripherals fo r The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. m en de d 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) om The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. ec 3.7.3 Inter-Integrated Circuit Interface (I2C) N ot R The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.7.4 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. silabs.com | Building a more connected world. Rev. 1.4 | 14 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.7.5 Low Energy Sensor Interface (LESENSE) es ig ns The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 3.8 Security Features 3.8.1 General Purpose Cyclic Redundancy Check (GPCRC) D The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.8.2 Crypto Accelerator (CRYPTO) N ew The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. fo r The CRYPTO block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. m en de d 3.8.3 Security Management Unit (SMU) The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt. 3.9 Analog om 3.9.1 Analog Port (APORT) ec The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.9.2 Analog Comparator (ACMP) N ot R The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. 3.9.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. silabs.com | Building a more connected world. Rev. 1.4 | 15 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.9.4 Digital to Analog Current Converter (IDAC) The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.9.5 Digital to Analog Converter (VDAC) es ig ns The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3. 3.9.6 Operational Amplifiers N ew D The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip. 3.10 Reset Management Unit (RMU) fo r The RMU is responsible for handling reset of the EFR32MG14. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. 3.11 Core and Memory m en de d 3.11.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • Configuration and event handling of all peripherals • 2-pin Serial-Wire debug interface om 3.11.2 Memory System Controller (MSC) R ec The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.11.3 Linked Direct Memory Access Controller (LDMA) N ot The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. silabs.com | Building a more connected world. Rev. 1.4 | 16 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet System Overview 3.12 Memory Map m en de d fo r N ew D es ig ns The EFR32MG14 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. N ot R ec om Figure 3.2. EFR32MG14 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.4 | 17 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet m en de d fo r N ew D es ig ns System Overview Figure 3.3. EFR32MG14 Memory Map — Peripherals 3.13 Configuration Summary Module R USART0 ec om The features of the EFR32MG14 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration. N ot USART1 Table 3.2. Configuration Summary Configuration Pin Connections IrDA US0_TX, US0_RX, US0_CLK, US0_CS SmartCard I2S US1_TX, US1_RX, US1_CLK, US1_CS SmartCard TIMER0 with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 - TIM1_CC[3:0] WTIMER0 with DTI WTIM0_CC[2:0], WTIM0_CDTI[2:0] silabs.com | Building a more connected world. Rev. 1.4 | 18 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. es ig ns • Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω source or load. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. N ot R ec om m en de d fo r N ew D Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits. silabs.com | Building a more connected world. Rev. 1.4 | 19 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Symbol Test Condition Storage temperature range TSTG -50 Voltage on any supply pin VDDMAX -0.3 Voltage ramp rate on any supply pin VDDRAMPMAX DC voltage on any GPIO pin VDIGPIN — Voltage differential between RF pins (2G4RF_IOP 2G4RF_ION) VMAXDIFF2G4 Absolute voltage on RF pins 2G4RF_IOP and 2G4RF_ION VMAX2G4 Absolute voltage on SubGHz RF pins VMAXSUBG Unit — 150 °C — 3.8 V — 1 V / µs Min of 5.25 and IOVDD +2 V — N ew PRFMAX2G4 Max — IOVDD+0.3 V -0.3 — 1.4 V — — 10 dBm -50 — 50 mV -0.3 — 3.3 V Pins SUBGRF_OP and SUBGRF_ON -0.3 — 3.3 V Pins SUBGRF_IP and SUBGRF_IN, -0.3 — 0.3 V fo r Input RF level on pins 2G4RF_IOP and 2G4RF_ION Typ -0.3 m en de d VHFXOPIN -0.3 5V tolerant GPIO pins1 2 3 Standard GPIO pins Voltage on HFXO pins Min D Parameter es ig ns Table 4.1. Absolute Maximum Ratings Source — — 200 mA Total current into VSS ground lines IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -G grade devices -40 — 105 °C -I grade devices -40 — 125 °C ec om Total current into VDD power IVDDMAX lines R Current for all I/O pins N ot Junction temperature IIOALLMAX TJ silabs.com | Building a more connected world. Rev. 1.4 | 20 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d fo r N ew D es ig ns Note: 1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.4 | 21 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.2 Operating Conditions N ot R ec om m en de d fo r N ew D es ig ns When assigning supply sources, the following requirements must be observed: • VREGVDD must be greater than or equal to AVDD, DVDD, RFVDD, PAVDD and all IOVDD supplies. • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD • RFVDD ≤ AVDD • PAVDD ≤ AVDD silabs.com | Building a more connected world. Rev. 1.4 | 22 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Symbol Test Condition Min Typ Max Unit Operating ambient temperature range1 TA -G temperature grade -40 25 85 °C -I temperature grade -40 25 125 °C AVDD supply voltage2 VAVDD 3.3 3.8 V VREGVDD operating supply voltage2 3 VVREGVDD 3.3 3.8 V 3.3 3.8 V 3.3 3.8 V — 200 mA 2.4 DCDC in bypass, 50mA load 1.8 DCDC not in use. DVDD externally shorted to VREGVDD 1.8 DCDC in bypass, T ≤ 85 °C — VRFVDD DVDD operating supply voltage VDVDD PAVDD operating supply voltage VPAVDD DECOUPLE output capacitor4 5 — 100 mA 1.62 — VVREGVDD V 1.62 — VVREGVDD V 1.62 — VVREGVDD V 1.62 — VVREGVDD V 0.75 1.0 2.75 µF — — 0.1 V VSCALE2, MODE = WS1 — — 40 MHz VSCALE2, MODE = WS0 — — 25 MHz VSCALE0, MODE = WS2 — — 20 MHz VSCALE0, MODE = WS1 — — 14 MHz VSCALE0, MODE = WS0 — — 7 MHz VSCALE2 — — 40 MHz VSCALE0 — — 20 MHz All IOVDD pins m en de d IOVDD operating supply volt- VIOVDD age — fo r DCDC in bypass, T > 85 °C RFVDD operating supply voltage CDECOUPLE Difference between AVDD dVDD and VREGVDD, ABS(AVDDVREGVDD)2 fCORE ec om HFCORECLK frequency fHFCLK N ot R HFCLK frequency D IVREGVDD DCDC in regulation N ew VREGVDD current 1.8 es ig ns Parameter silabs.com | Building a more connected world. Rev. 1.4 | 23 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for TJ and THETAJA. es ig ns 2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 3. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max. D 4. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias. 5. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). N ew 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Symbol Thermal resistance, QFN48 Package Min Typ Max Unit THETAJA_QFN48 2-Layer PCB, Air velocity = 0 m/s — 64.5 — °C/W 2-Layer PCB, Air velocity = 1 m/s — 51.6 — °C/W 2-Layer PCB, Air velocity = 2 m/s — 47.7 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 26.2 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 23.1 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 22.1 — °C/W THETAJA_QFN32 2-Layer PCB, Air velocity = 0 m/s — 82.1 — °C/W 2-Layer PCB, Air velocity = 1 m/s — 64.7 — °C/W 2-Layer PCB, Air velocity = 2 m/s — 56.3 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 36.8 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 32 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 30.6 — °C/W m en de d N ot R ec om Thermal resistance, QFN32 Package Test Condition fo r Parameter silabs.com | Building a more connected world. Rev. 1.4 | 24 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Symbol Test Condition Min Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.8 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 ACCDC Regulation window2 WINREG Unit VVREGVDD_ V MAX — VVREGVDD_ V MAX — VVREGVDD_ V D Regulation DC accuracy — 1.8 — VVREGVDD V Low Noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low Power (LP) mode, LPCMPBIASEMxx3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA 1.63 — 2.2 V Low Power (LP) mode, LPCMPBIASEMxx3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V N ew VDCDC_O Max MAX m en de d fo r Output voltage programmable range1 Typ es ig ns Parameter VR Radio disabled — 3 — mVpp Output voltage under/overshoot VOV CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — 25 60 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — 45 90 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 40 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 100 — mV N ot R ec om Steady-state output ripple DC line regulation VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % silabs.com | Building a more connected world. Rev. 1.4 | 25 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive4, T ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive4, T > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive4 — — 100 mA Low noise (LN) mode, Light Drive4 — Low power (LP) mode, LPCMPBIASEMxx3 = 0 — Low power (LP) mode, LPCMPBIASEMxx3 = 3 — CDCDC 25% tolerance 1 DCDC nominal output induc- LDCDC tor 20% tolerance DCDC nominal output capacitor5 Resistance in Bypass mode es ig ns Test Condition — 50 mA — 75 µA — 10 mA D Symbol 4.7 µF 4.7 N ew Parameter RBYP 4.7 4.7 4.7 µH — 1.2 2.5 Ω fo r Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD. N ot R ec om m en de d 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits. 3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode. 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. 5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details. silabs.com | Building a more connected world. Rev. 1.4 | 26 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.5 Current Consumption 4.1.5.1 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Symbol Min Typ Max Unit 123 — µA/MHz 96 — µA/MHz 38.4 MHz crystal, CPU running while loop from flash1 — 38 MHz HFRCO, CPU running Prime from flash — 38 MHz HFRCO, CPU running while loop from flash — 93 103 µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 116 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 95 106 µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 227 384 µA/MHz 19 MHz HFRCO, CPU running while loop from flash — 82 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 198 — µA/MHz 38.4 MHz crystal1 — 73 — µA/MHz 38 MHz HFRCO — 44 47 µA/MHz 26 MHz HFRCO — 46 51 µA/MHz 1 MHz HFRCO — 178 335 µA/MHz Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO — 41 — µA/MHz 1 MHz HFRCO — 158 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Full 32 kB RAM retention and RTCC running from LFXO — 1.9 — µA Full 32 kB RAM retention and RTCC running from LFRCO — 2.2 — µA 1 bank (16 kB) RAM retention and RTCC running from LFRCO2 — 1.9 3.3 µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 1.44 3.0 µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.89 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.55 — µA 128 byte RAM retention, no RTCC — 0.54 0.8 µA m en de d Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled fo r N ew Current consumption in EM0 IACTIVE mode with all peripherals disabled Test Condition D Parameter es ig ns Table 4.5. Current Consumption 3.3 V without DC-DC Converter N ot R ec om Current consumption in EM1 IEM1 mode with all peripherals disabled IEM4H_VS silabs.com | Building a more connected world. Rev. 1.4 | 27 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Current consumption in EM4S mode IEM4S No RAM retention, no RTCC Min Typ Max Unit — 0.04 0.085 µA N ot R ec om m en de d fo r N ew D es ig ns Note: 1. CMU_HFXOCTRL_LOWPOWER=0. 2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.4 | 28 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.5.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.6. Current Consumption 3.3 V using DC-DC Converter Min 38 MHz HFRCO, CPU running Prime from flash — 38 MHz HFRCO, CPU running while loop from flash — 38 MHz HFRCO, CPU running CoreMark from flash — 26 MHz HFRCO, CPU running while loop from flash Max Unit — µA/MHz 68 — µA/MHz 67 — µA/MHz 80 — µA/MHz — 73 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 606 — µA/MHz 38.4 MHz crystal, CPU running while loop from flash2 — 94 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 79 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 78 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 90 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 90 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1109 — µA/MHz Current consumption in EM0 IACTIVE_CCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode3 19 MHz HFRCO, CPU running while loop from flash — 97 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 1093 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 38.4 MHz crystal2 — 55 — µA/MHz 38 MHz HFRCO — 38 — µA/MHz 26 MHz HFRCO — 45 — µA/MHz 1 MHz HFRCO — 580 — µA/MHz 19 MHz HFRCO — 48 — µA/MHz 1 MHz HFRCO — 569 — µA/MHz N ew — Typ 84 N ot R ec om m en de d Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, DCDC in Low Noise CCM mode3 38.4 MHz crystal, CPU running while loop from flash2 fo r Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 Test Condition es ig ns Symbol D Parameter Current consumption in EM1 IEM1_DCM_VS mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise DCM mode1 silabs.com | Building a more connected world. Rev. 1.4 | 29 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Current consumption in EM4H mode, with voltage scaling enabled Current consumption in EM4S mode IEM4H_VS IEM4S Min Typ Max Unit Full 32 kB RAM retention and RTCC running from LFXO — 1.4 — µA Full 32 kB RAM retention and RTCC running from LFRCO — 1.5 — µA 1 bank (16 kB) RAM retention and RTCC running from LFRCO5 — 1.3 — µA Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 128 byte RAM retention, RTCC running from LFXO — 128 byte RAM retention, CRYOTIMER running from ULFRCO — 128 byte RAM retention, no RTCC — es ig ns Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled, DCDC in LP mode4 Test Condition 1.02 — µA 0.74 — µA 0.48 — µA D Symbol — µA — µA 0.48 N ew Parameter No RAM retention, no RTCC — 0.07 N ot R ec om m en de d fo r Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 2. CMU_HFXOCTRL_LOWPOWER=0. 3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 4. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD. 5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.4 | 30 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.5.3 Current Consumption 1.8 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.8 V. T = 25 °C. DCDC is off. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.7. Current Consumption 1.8 V without DC-DC Converter Min — 38 MHz HFRCO, CPU running Prime from flash — 38 MHz HFRCO, CPU running while loop from flash — 38 MHz HFRCO, CPU running CoreMark from flash — 26 MHz HFRCO, CPU running while loop from flash Typ Max Unit 123 — µA/MHz 96 — µA/MHz 93 — µA/MHz 115 — µA/MHz — 95 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 224 — µA/MHz Current consumption in EM0 IACTIVE_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO, CPU running while loop from flash — 81 — µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 195 — µA/MHz Current consumption in EM1 IEM1 mode with all peripherals disabled 38.4 MHz crystal1 — 74 — µA/MHz 38 MHz HFRCO — 44 — µA/MHz 26 MHz HFRCO — 46 — µA/MHz 1 MHz HFRCO — 175 — µA/MHz Current consumption in EM1 IEM1_VS mode with all peripherals disabled and voltage scaling enabled 19 MHz HFRCO — 41 — µA/MHz 1 MHz HFRCO — 155 — µA/MHz Current consumption in EM2 IEM2_VS mode, with voltage scaling enabled Full 32 kB RAM retention and RTCC running from LFXO — 1.7 — µA Full 32 kB RAM retention and RTCC running from LFRCO — 1.9 — µA 1 bank (16 kB) RAM retention and RTCC running from LFRCO2 — 1.7 — µA Current consumption in EM3 IEM3_VS mode, with voltage scaling enabled Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 1.33 — µA Current consumption in EM4H mode, with voltage scaling enabled 128 byte RAM retention, RTCC running from LFXO — 0.80 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.44 — µA 128 byte RAM retention, no RTCC — 0.43 — µA no RAM retention, no RTCC — 0.04 — µA fo r N ew 38.4 MHz crystal, CPU running while loop from flash1 N ot R ec om m en de d Current consumption in EM0 IACTIVE mode with all peripherals disabled Test Condition es ig ns Symbol D Parameter Current consumption in EM4S mode IEM4H_VS IEM4S silabs.com | Building a more connected world. Rev. 1.4 | 31 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d fo r N ew D es ig ns Note: 1. CMU_HFXOCTRL_LOWPOWER=0. 2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1 silabs.com | Building a more connected world. Rev. 1.4 | 32 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC Test Condition Min Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C IRX_ACTIVE 500 kbit/s, 2GFSK, F = 915 MHz, Radio clock prescaled by 4 — 38.4 kbit/s, 2GFSK, F = 868 MHz, Radio clock prescaled by 4 — 38.4 kbit/s, 2GFSK, F = 490 MHz, Radio clock prescaled by 4 — 50 kbit/s, 2GFSK, F = 433 MHz, Radio clock prescaled by 4 — 38.4 kbit/s, 2GFSK, F = 315 MHz, Radio clock prescaled by 4 Typ Unit 10.2 mA 8.6 10.2 mA 8.6 10.2 mA 8.6 10.2 mA — 8.6 10.2 mA 38.4 kbit/s, 2GFSK, F = 169 MHz, Radio clock prescaled by 4 — 8.4 10.2 mA 1 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 8.8 — mA 802.15.4 receiving frame, F = 2.4 GHz, Radio clock prescaled by 3 — 10.2 — mA 500 kbit/s, 2GFSK, F = 915 MHz, Radio clock prescaled by 4 — — 13 mA 38.4 kbit/s, 2GFSK, F = 868 MHz, Radio clock prescaled by 4 — — 13 mA 38.4 kbit/s, 2GFSK, F = 490 MHz, Radio clock prescaled by 4 — — 13 mA 50 kbit/s, 2GFSK, F = 433 MHz, Radio clock prescaled by 4 — — 13 mA 38.4 kbit/s, 2GFSK, F = 315 MHz, Radio clock prescaled by 4 — — 13 mA 38.4 kbit/s, 2GFSK, F = 169 MHz, Radio clock prescaled by 4 — — 13 mA fo r N ew 9.3 m en de d IRX_ACTIVE_HT N ot R ec om Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T > 85 °C Max es ig ns Symbol D Parameter silabs.com | Building a more connected world. Rev. 1.4 | 33 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Max Unit 500 kbit/s, 2GFSK, F = 915 MHz, No radio clock prescaling — 10.2 11 mA 38.4 kbit/s, 2GFSK, F = 868 MHz, No radio clock prescaling — 9.5 11 mA 38.4 kbit/s, 2GFSK, F = 490 MHz, No radio clock prescaling — 9.5 11 mA 50 kbit/s, 2GFSK, F = 433 MHz, No radio clock prescaling — 38.4 kbit/s, 2GFSK, F = 315 MHz, No radio clock prescaling — 38.4 kbit/s, 2GFSK, F = 169 MHz, No radio clock prescaling — 1 Mbit/s, 2GFSK, F = 2.4 GHz, No radio clock prescaling es ig ns Typ 9.5 11 mA 9.4 11 mA 9.3 11 mA — 9.6 — mA 802.15.4, F = 2.4 GHz, No radio clock prescaling — 11.1 — mA 500 kbit/s, 2GFSK, F = 915 MHz, No radio clock prescaling — — 14 mA 38.4 kbit/s, 2GFSK, F = 868 MHz, No radio clock prescaling — — 14 mA 38.4 kbit/s, 2GFSK, F = 490 MHz, No radio clock prescaling — — 14 mA 50 kbit/s, 2GFSK, F = 433 MHz, No radio clock prescaling — — 14 mA 38.4 kbit/s, 2GFSK, F = 315 MHz, No radio clock prescaling — — 14 mA 38.4 kbit/s, 2GFSK, F = 169 MHz, No radio clock prescaling — — 14 mA N ot R ec om m en de d Current consumption in reIRX_LISTEN_HT ceive mode, listening for packet (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T > 85 °C Min D Current consumption in reIRX_LISTEN ceive mode, listening for packet (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C Test Condition N ew Symbol fo r Parameter silabs.com | Building a more connected world. Rev. 1.4 | 34 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C ITX F = 915 MHz, CW, 20 dBm match, External PA supply = 3.3V — 90.2 134.3 mA F = 915 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — 36 42.5 mA F = 868 MHz, CW, 20 dBm match, External PA supply = 3.3V — 79.7 106.7 mA F = 868 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — 35.3 41 mA F = 490 MHz, CW, 20 dBm match, External PA supply = 3.3V — 93.8 125.4 mA F = 433 MHz, CW, 10 dBm match, External PA supply connected to DC-DC output — 20.3 24 mA es ig ns Test Condition D Symbol N ew Parameter — 34 41.5 mA F = 315 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — 33.5 42 mA F = 169 MHz, CW, 20 dBm match, External PA supply = 3.3V — 88.6 116.7 mA F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 3 — 8.5 — mA F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 1 — 9.5 — mA F = 2.4 GHz, CW, 3 dBm output power — 16.5 — mA F = 2.4 GHz, CW, 8 dBm output power — 26.0 — mA F = 2.4 GHz, CW, 10.5 dBm output power — 34.0 — mA F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply — 91.6 — mA F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply — 131.0 — mA N ot R ec om m en de d fo r F = 433 MHz, CW, 14 dBm match, External PA supply connected to DCDC output silabs.com | Building a more connected world. Rev. 1.4 | 35 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T > 85 °C ITX_HT F = 915 MHz, CW, 20 dBm match, External PA supply = 3.3V — — 134.3 mA F = 915 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — — 42.5 mA F = 868 MHz, CW, 20 dBm match, External PA supply = 3.3V — — 109.8 mA F = 868 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — — 41.3 mA F = 490 MHz, CW, 20 dBm match, External PA supply = 3.3V — — 130.8 mA F = 433 MHz, CW, 10 dBm match, External PA supply connected to DC-DC output — — 24.4 mA es ig ns Test Condition D Symbol N ew Parameter — — 41.5 mA F = 315 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — — 42 mA — — 122.8 mA fo r F = 433 MHz, CW, 14 dBm match, External PA supply connected to DCDC output N ot R ec om m en de d F = 169 MHz, CW, 20 dBm match, External PA supply = 3.3V silabs.com | Building a more connected world. Rev. 1.4 | 36 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.6 Wake Up Times Symbol Wake up time from EM1 tEM1_WU Wake up from EM2 tEM2_WU Wake up from EM3 tEM3_WU Test Condition Min Typ Max Unit — 3 — AHB Clocks 10 — µs 3 — µs 10 — µs 3 — µs 86 — µs 290 — µs Code execution from flash — Code execution from RAM — Code execution from flash — Code execution from RAM — tEM4H_WU Executing from flash — Wake up from EM4S1 tEM4S_WU Executing from flash — Time from release of reset source to first instruction execution tRESET Soft Pin Reset released Power mode scaling time tSCALE N ew Wake up from EM4H1 es ig ns Parameter D Table 4.9. Wake Up Times — 50 — µs — 340 — µs VSCALE0 to VSCALE2, HFCLK = 19 MHz2 3 — 31.8 — µs VSCALE2 to VSCALE0, HFCLK = 19 MHz4 — 4.3 — µs fo r Any other reset released N ot R ec om m en de d Note: 1. Time from wake up request until first instruction is executed. Wakeup results in device reset. 2. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs. 3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA (with a 2.7 µF capacitor). 4. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs. silabs.com | Building a more connected world. Rev. 1.4 | 37 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.7 Brown Out Detector (BOD) Table 4.10. Brown Out Detector (BOD) Symbol Test Condition DVDD BOD threshold VDVDDBOD DVDD rising Min Typ Max Unit — — 1.62 V — — V — — V 18 — mV 2.4 — µs — 1.8 V DVDD falling (EM0/EM1) 1.35 DVDD falling (EM2/EM3) 1.3 DVDD BOD hysteresis VDVDDBOD_HYST — DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate — AVDD BOD threshold VAVDDBOD — 1.62 — — V AVDD falling (EM2/EM3) 1.53 — — V — 20 — mV N ew AVDD falling (EM0/EM1) D AVDD rising es ig ns Parameter AVDD BOD hysteresis VAVDDBOD_HYST AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD — — 1.7 V 1.45 — — V — 25 — mV — 300 — µs AVDD falling VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY Supply drops at 0.1V/µs rate N ot R ec om m en de d EM4 BOD hysteresis fo r AVDD rising silabs.com | Building a more connected world. Rev. 1.4 | 38 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.8 Frequency Synthesizer Table 4.11. Frequency Synthesizer Symbol Test Condition Min Typ Max Unit RF synthesizer frequency range fRANGE 2400 - 2483.5 MHz 2400 — 2483.5 MHz 779 - 956 MHz 779 — 956 MHz 584 - 717 MHz 584 — 717 MHz 358 - 574 MHz 358 — 574 MHz 191 - 358 MHz 191 — 358 MHz 110 - 191 MHz 110 — 191 MHz 2400 - 2483.5 MHz — D fRES — 73 Hz 779 - 956 MHz — — 24 Hz — — 18.3 Hz — — 12.2 Hz — — 7.3 Hz — — 4.6 Hz 2400 - 2483.5 MHz — — 73 Hz 779 - 956 MHz — — 24 Hz 584 - 717 MHz — — 18.3 Hz 358 - 574 MHz — — 12.2 Hz 191 - 358 MHz — — 7.3 Hz 110 - 191 MHz — — 4.6 Hz 2400 - 2483.5 MHz — — 1677 kHz 779 - 956 MHz — — 559 kHz 584 - 717 MHz — — 419 kHz 358 - 574 MHz — — 280 kHz 191 - 358 MHz — — 167 kHz 110 - 191 MHz — — 105 kHz 584 - 717 MHz 358 - 574 MHz 191 - 358 MHz dfMAX N ot R ec om Maximum frequency deviation with 38.4 MHz crystal dfRES m en de d Frequency deviation resolution with 38.4 MHz crystal fo r 110 - 191 MHz N ew LO tuning frequency resolution with 38.4 MHz crystal es ig ns Parameter silabs.com | Building a more connected world. Rev. 1.4 | 39 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.9 2.4 GHz RF Transceiver Characteristics 4.1.9.1 RF Transmitter General Characteristics for 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Typ Max Unit 19.5 — dBm 10.5 — dBm D Parameter Symbol Test Condition Min Maximum TX power1 POUTMAX 19 dBm-rated part numbers. PAVDD connected directly to external 3.3V supply — 10 dBm-rated part numbers — -30 — dBm 1 — dB — 0.5 — dB 1.8 V < VVREGVDD < 3.3 V, PAVDD connected directly to external supply, for output power > 10 dBm. — 4.5 — dB 1.8 V < VVREGVDD < 3.3 V, PAVDD connected directly to external supply, for output power = 10 dBm. — 3.8 — dB 1.8 V < VVREGVDD < 3.3 V using DC-DC converter — 2.2 — dB From -40 to +85 °C, PAVDD connected to DC-DC output — 1.5 — dB From -40 to +125 °C, PAVDD connected to DC-DC output — 2.6 — dB From -40 to +85 °C, PAVDD connected to external supply — 1.5 — dB From -40 to +125 °C, PAVDD connected to external supply — 2.0 — dB Over RF tuning frequency range — 0.4 — dB 2400 — 2483.5 MHz POUTMIN CW Output power step size POUTSTEP -5 dBm< Output power < 0 dBm 0 dBm < output power < POUTMAX POUTVAR_T om Output power variation vs temperature at POUTMAX m en de d fo r POUTVAR_V ec Output power variation vs RF POUTVAR_F frequency at POUTMAX FRANGE R RF tuning frequency range — N ew Minimum active TX Power Output power variation vs supply at POUTMAX es ig ns Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band N ot Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 40 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.9.2 RF Receiver General Characteristics for 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band RF tuning frequency range FRANGE Receive mode maximum spurious emission SPURRX Test Condition Min 2400 — 1 GHz to 12 GHz — Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216 MHz to 960 MHz, Conducted Measurement — Above 960 MHz, Conducted Measurement — Level above which RFSENSE will trigger1 RFSENSETRIG CW at 2.45 GHz — Level below which RFSENSE will not trigger1 RFSENSETHRES CW at 2.45 GHz 1% PER sensitivity SENS2GFSK 2 Mbps 2GFSK signal fo r 250 kbps 2GFSK signal Max Unit — 2483.5 MHz -57 — dBm -47 — dBm -55.2 — dBm -47.2 — dBm -24 — dBm N ew 30 MHz to 1 GHz Typ es ig ns Symbol D Parameter — -50 — dBm — -89.6 — dBm — -100.7 — dBm N ot R ec om m en de d Note: 1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 41 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.9.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4MHz. RF center frequency 2.45 GHz. Maximum duty cycle of 85%. Test Condition Max Unit Transmit 6dB bandwidth TXBW 10 dBm — 761 — kHz Power spectral density limit PSDLIMIT Per FCC part 15.247 at 10 dBm — -9.5 — dBm/ 3kHz Per FCC part 15.247 at 20 dBm — -2 — dBm/ 3kHz Per ETSI 300.328 at 10 dBm/1 MHz — 10 — dBm Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 99% BW at highest and lowest channels in band, 10 dBm — 1.1 — MHz In-band spurious emissions, with allowed exceptions1 At ± 2 MHz, 10 dBm — -39.5 — dBm — -44.3 — dBm — — -20 dBm At ± 3 MHz, 20 dBm — — -30 dBm 2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier — -47 — dBm Per FCC part 15.205/15.209, Above 2.483 GHz or below 2.4 GHz; continuous transmission of CW carrier, Restricted Bands2 3 — -47 — dBm Per FCC part 15.247, Above 2.483 GHz or below 2.4 GHz; continuous transmission of CW carrier, Non-Restricted Bands — -26 — dBc [2400-BW to 2400] MHz, [2483.5 to 2483.5+BW] MHz — -16 — dBm [2400-2BW to 2400-BW] MHz, [2483.5+BW to 2483.5+2BW] MHz per ETSI 300.328 — -26 — dBm 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz — -60 — dBm 25-1000 MHz — -42 — dBm 1-12 GHz — -36 — dBm At ± 3 MHz, 10 dBm SPURHRM_FCC Spurious emissions out-ofband, excluding harmonics captured in SPURHARM,FCC. Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply SPUROOB_FCC Spurious emissions out-ofband; per ETSI 300.328 SPURETSI328 ec om m en de d Emissions of harmonics outof-band, per FCC part 15.247 fo r At ± 2 MHz, 20 dBm Min N ot R Spurious emissions per ETSI SPURETSI440 EN300.440 es ig ns Symbol N ew Parameter SPURINB Typ D Table 4.14. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Note: 1. Per Bluetooth Core_5.0, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less. 2. For 2476 MHz, 1.5 dB of power backoff is used to achieve this value. 3. For 2478 MHz, 4.2 dB of power backoff is used to achieve this value. silabs.com | Building a more connected world. Rev. 1.4 | 42 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.9.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4MHz. RF center frequency 2.45 GHz. Table 4.15. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Test Condition Min Max usable receiver input level, 0.1% BER SAT Signal is reference signal1. Packet length is 20 bytes. — Sensitivity, 0.1% BER SENS Signal is reference signal1. Using DC-DC converter. — With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1. — Signal to co-channel interfer- C/ICC er, 0.1% BER Desired signal 3 dB above reference sensitivity. — N+1 adjacent channel selec- C/I1+ tivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at +1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — N-1 adjacent channel selec- C/I1tivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at -1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm C/I2 Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm C/I3 Typ Max Unit es ig ns Symbol 10 — dBm -93.8 — dBm -93.6 — dBm D Parameter — dB -4.7 — dB — -4.8 — dB Interferer is reference signal at ± 2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -45.8 — dB Interferer is reference signal at ± 3 MHz offset. Desired frequency 2404 MHz ≤ Fc ≤ 2480 MHz — -49.4 — dB Selectivity to image frequen- C/IIM cy, 0.1% BER. Desired is reference signal at -67 dBm Interferer is reference signal at image frequency with 1 MHz precision — -40.5 — dB Selectivity to image frequency ± 1 MHz, 0.1% BER. Desired is reference signal at -67 dBm Interferer is reference signal at image frequency ± 1 MHz with 1 MHz precision — -49.4 — dB Interferer frequency 30 MHz ≤ f ≤ 2000 MHz -5 — — dBm Interferer frequency 2003 MHz ≤ f ≤ 2399 MHz3 -10 — — dBm Interferer frequency 2484 MHz ≤ f ≤ 2997 MHz -10 — — dBm Interferer frequency 3 GHz ≤ f ≤ 6 GHz -10 — — dBm Interferer frequency 6 GHz ≤ f ≤ 12.75 GHz -17 — — dBm Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3 — -22.2 — dBm N ew fo r m en de d ec om C/IIM+1 N ot R Blocking, less than 0.1% BLOCKOOB BER. Desired is -67dBm BLE reference signal at 2426MHz. Interferer is CW in OOB range2 Intermodulation performance IM silabs.com | Building a more connected world. 11.25 Rev. 1.4 | 43 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d fo r N ew D es ig ns Note: 1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm. 2. Interferer max power limited by equipment capabilities and path loss. Minimum specified at 25 °C. 3. Except -13 dBm at Desired Frequency - Crystal Frequency. silabs.com | Building a more connected world. Rev. 1.4 | 44 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.9.5 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Maximum duty cycle of 66%. Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Symbol Test Condition Min Typ Max Unit 3.8 — % rms -26 — dBc/ 100kHz -36 — dBm/ 100kHz -4.0 — dBm/ 3kHz es ig ns Parameter Average across frequency. Signal is DSSS-OQPSK reference packet1 — Power spectral density limit Relative, at carrier ± 3.5 MHz, output power at POUTMAX — Absolute, at carrier ± 3.5 MHz, output power at POUTMAX2 — Per FCC part 15.247, output power at POUTMAX — ETSI — 12.1 — dBm N ew PSDLIMIT D Error vector magnitude (off- EVM set EVM), per 802.15.4-2011 99% BW at highest and lowest channels in band — 2.25 — MHz Spurious emissions of harSPURHRM_FCC_ monics in restricted bands R per FCC Part 15.205/15.209, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz Continuous transmission of modulated carrier — -45.8 — dBm Spurious emissions of harSPURHRM_FCC_ monics in non-restricted NRR bands per FCC Part 15.247/15.35, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz Continuous transmission of modulated carrier — -26 — dBc Spurious emissions out-ofband (above 2.483 GHz or below 2.4 GHz) in restricted bands, per FCC part 15.205/15.209, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz Restricted bands 30-88 MHz; continuous transmission of modulated carrier — -61 — dBm Restricted bands 88-216 MHz; continuous transmission of modulated carrier — -58 — dBm Restricted bands 216-960 MHz; continuous transmission of modulated carrier — -55 — dBm Restricted bands >960 MHz; continuous transmission of modulated carrier3 4 — -47 — dBm m en de d fo r Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 om SPUROOB_FCC_ N ot R ec R silabs.com | Building a more connected world. Rev. 1.4 | 45 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit -26 — dBc Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier — Spurious emissions out-ofband; per ETSI 300.3285 [2400-BW to 2400], [2483.5 to 2483.5+BW]; — [2400-2BW to 2400-BW], [2483.5+BW to 2483.5+2BW]; per ETSI 300.328 — 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz — 25-1000 MHz, excluding above frequencies — SPURETSI328 Spurious emissions per ETSI SPURETSI440 EN300.4405 -16 — dBm -26 — dBm -60 — dBm — dBm — dBm -42 N ew SPUROOB_FCC_ Spurious emissions out-ofband in non-restricted bands NR per FCC Part 15.247, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz es ig ns Symbol D Parameter 1G-14G — -36 N ot R ec om m en de d fo r Note: 1. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with pseudo-random packet data content. 2. For 2415 MHz, 2 dB of power backoff is used to achieve this value. 3. For 2475 MHz, 2 dB of power backoff is used to achieve this value. 4. For 2480 MHz, 13 dB of power backoff is used to achieve this value. 5. Specified at maximum power output level of 10 dBm. silabs.com | Building a more connected world. Rev. 1.4 | 46 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.9.6 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Table 4.17. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Test Condition Min Max usable receiver input level, 1% PER SAT Signal is reference signal1. Packet length is 20 octets. — Sensitivity, 1% PER SENS Signal is reference signal. Packet length is 20 octets. Using DC-DC converter. Typ Max Unit es ig ns Symbol 10 — dBm — -103.3 — dBm Signal is reference signal. Packet length is 20 octets. Without DCDC converter. — -103.3 — dBm D Parameter — dB CCR Desired signal 3 dB above sensitivity limit — High-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level2 ACRP1 Interferer is reference signal at +1 channel-spacing. — 40.7 — dB Interferer is filtered reference signal3 at +1 channel-spacing. — 47 — dB Interferer is CW at +1 channelspacing4. — 60.1 — dB Interferer is reference signal at -1 channel-spacing. — 40.8 — dB Interferer is filtered reference signal3 at -1 channel-spacing. — 47.5 — dB Interferer is CW at -1 channelspacing. — 61.6 — dB Interferer is reference signal at ± 2 channel-spacing — 51.5 — dB Interferer is filtered reference signal3 at ± 2 channel-spacing — 53.7 — dB Interferer is CW at ± 2 channelspacing — 66.4 — dB Interferer is CW in image band4 — 50.4 — dB Blocking rejection of all other BLOCK channels. 1% PER, Desired is reference signal at 3dB above reference sensitivity level2. Interferer is reference signal Interferer frequency < Desired frequency - 3 channel-spacing — 58.5 — dB Interferer frequency > Desired frequency + 3 channel-spacing — 56.4 — dB Blocking rejection of 802.11g BLOCK80211G signal centered at +12MHz or -13MHz5 Desired is reference signal at 6dB above reference sensitivity level2 — 54.8 — dB ACR2 om Alternate channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level2 fo r ACRM1 m en de d Low-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level2 N ot R ec Image rejection , 1% PER, IR Desired is reference signal at 3dB above reference sensitivity level2 -4.6 N ew Co-channel interferer rejection, 1% PER silabs.com | Building a more connected world. Rev. 1.4 | 47 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Symbol Min Typ Max Unit RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 — — dBm RSSI resolution RSSIRES RSSI accuracy in the linear region as defined by 802.15.4-2003 RSSILIN Test Condition over RSSIMIN to RSSIMAX — — es ig ns Parameter 0.25 — dB +/-6 — dB N ot R ec om m en de d fo r N ew D Note: 1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s. 2. Reference sensitivity level is -85 dBm. 3. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier. 4. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster. 5. This is an IEEE 802.11b/g ERP-PBCC 22 MBit/s signal as defined by the IEEE 802.11 specification and IEEE 802.11g addendum. silabs.com | Building a more connected world. Rev. 1.4 | 48 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications N ot R ec om m en de d fo r N ew D es ig ns 4.1.10 Sub-GHz RF Transceiver Characteristics silabs.com | Building a more connected world. Rev. 1.4 | 49 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 915 MHz. Table 4.18. Sub-GHz RF Transmitter characteristics for 915 MHz Band Symbol RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition Min 902 External PA supply = 3.3V, 20 dBm output power setting External PA supply connected to DC-DC output, 14 dBm output power setting 18 12.6 Max Unit — 930 MHz 19.8 23.3 dBm 14.2 16.1 dBm -45.5 — dBm 0.5 — dB POUTMIN Output power step size POUTSTEP output power > 0 dBm Output power variation vs supply at POUTMAX POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = 3.3 V, T = 25 °C — 4.8 — dB 1.8 V < VVREGVDD < 3.3 V, External PA supply connected to DCDC output, T = 25 °C — 1.9 — dB -40 to +85 °C with External PA supply = 3.3 V — 0.6 1.3 dB -40 to +125 °C with External PA supply = 3.3 V — 0.8 1.6 dB -40 to +85 °C with External PA supply connected to DC-DC output — 0.7 1.4 dB -40 to +125 °C with External PA supply connected to DC-DC output — 1.0 1.9 dB External PA supply = 3.3 V, T = 25 °C — 0.2 0.6 dB External PA supply connected to DC-DC output, T = 25 °C — 0.3 0.6 dB SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 — -45 -42 dBm — -26 -20 dBc N ew fo r m en de d POUTVAR_T — om Output power variation vs RF POUTVAR_F frequency _20 In non-restricted bands, per FCC Part 15.247 N ot R ec Spurious emissions of harmonics at 20 dBm output power, Conducted measurement, 20dBm match, External PA supply = 3.3V, Test Frequency = 915 MHz D Minimum active TX Power Output power variation vs temperature, peak to peak — Typ es ig ns Parameter silabs.com | Building a more connected world. Rev. 1.4 | 50 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Typ Max Unit In non-restricted bands, per FCC Part 15.247 — -26 -20 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -62 -56 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -61 -56 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -52 dBm -47 -42 dBm -47 -42 dBm -20 dBc SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 _14 — In non-restricted bands, per FCC Part 15.247 — In non-restricted bands, per FCC Part 15.247 — -26 -20 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -62 -56 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -61 -56 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — -58 -52 dBm In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -45 -42 dBm Signal is DSSS-OQPSK reference packet. Modulated according to 802.15.4-2011 DSSS-OQPSK in the 915MHz band, with pseudorandom packet data content. External PA supply = 3.3V. — 1.0 2.8 %rms Relative, at carrier ± 1.2 MHz. Average spectral power shall be measured using a 100kHz resolution bandwidth. The reference level shall be the highest average spectral power measured within ± 600kHz of the carrier frequency. External PA supply = 3.3V. — -37.1 -24.8 dBc/ 100kHz Absolute, at carrier ± 1.2 MHz. Average spectral power shall be measured using a 100kHz resolution bandwidth. External PA supply = 3.3V. — -24.2 -20 dBm/ 100kHz m en de d Spurious emissions out-ofSPUROOB_FCC_ band at 14 dBm output pow- 14 er, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 915 MHz om Error vector magnitude (off- EVM set EVM), per 802.15.4-2011 PSD N ot R ec Power spectral density limit2 -58 silabs.com | Building a more connected world. -26 N ew Spurious emissions of harmonics at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 915 MHz Min es ig ns SPUROOB_FCC_ Spurious emissions out-ofband at 20 dBm output pow- 20 er, Conducted measurement, 20dBm match, External PA supply = 3.3V, Test Frequency = 915 MHz Test Condition D Symbol fo r Parameter Rev. 1.4 | 51 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d fo r N ew D es ig ns Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. 2. Definition of reference signal is O-QPSK DSSS per 802.15.4, Frequency Range = 902-928 MHz, Data rate = 250 kbps, 16-chip PN sequence mapping. silabs.com | Building a more connected world. Rev. 1.4 | 52 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 915 MHz. Table 4.19. Sub-GHz RF Receiver Characteristics for 915 MHz Band Symbol Tuning frequency range FRANGE Test Condition Min 902 Typ Max Unit es ig ns Parameter — 930 MHz 10 — dBm Desired is reference 500 kbps GFSK signal1 — Sensitivity Desired is reference 4.8 kbps OOK signal2, 20% PER, T ≤ 85 °C — -107.8 -100.7 dBm Desired is reference 4.8 kbps OOK signal2, 20% PER, T > 85 °C — — -99.5 dBm Desired is reference 600 bps GFSK signal3, 0.1% BER — -126.2 — dBm Desired is reference 50 kbps GFSK signal4, 0.1% BER, T ≤ 85 °C — -108.2 -104.2 dBm Desired is reference 50 kbps GFSK signal4, 0.1% BER, T > 85 °C — — -103.1 dBm Desired is reference 100 kbps GFSK signal5, 0.1% BER, T ≤ 85 °C — -105.1 -101.5 dBm Desired is reference 100 kbps GFSK signal5, 0.1% BER, T > 85 °C — — -101.3 dBm Desired is reference 500 kbps GFSK signal1, 0.1% BER, T ≤ 85 °C — -98.2 -93.2 dBm Desired is reference 500 kbps GFSK signal1, 0.1% BER, T > 85 °C — — -93.1 dBm Desired is reference 400 kbps 4GFSK signal6, 1% PER, T ≤ 85 °C — -95.2 -91 dBm Desired is reference 400 kbps 4GFSK signal6, 1% PER, T > 85 °C — — -91 dBm Desired is reference O-QPSK DSSS signal7, 1% PER, Payload length is 20 octets — -100.1 — dBm N ot R ec om m en de d fo r N ew SENS D Max usable input level, 0.1% SAT500K BER Level above which RFSENSE will trigger8 RFSENSETRIG CW at 915 MHz — -28.1 — dBm Level below which RFSENSE will not trigger8 RFSENSETHRES CW at 915 MHz — -50 — dBm silabs.com | Building a more connected world. Rev. 1.4 | 53 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 Desired is 4.8 kbps OOK signal2 at 3dB above sensitivity level, 20% PER — 48.1 — dB Desired is 600 bps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 71.4 — dB Desired is 50 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — Desired is 500 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — es ig ns Test Condition 49.8 — dB 51.1 — dB 48.1 — dB D Symbol N ew Parameter 41.4 — dB Desired is reference O-QPSK DSSS signal7 at 3dB above sensitivity level, 1% PER — 49.1 — dB Desired is 4.8 kbps OOK signal2 at 3dB above sensitivity level, 20% PER — 56.3 — dB Desired is 600 bps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 74.7 — dB Desired is 50 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 55.8 — dB Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 56.4 — dB Desired is 500 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 51.8 — dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — 46.8 — dB Desired is reference O-QPSK DSSS signal7 at 3dB above sensitivity level, 1% PER — 57.7 — dB fo r — N ot R ec om m en de d Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER silabs.com | Building a more connected world. Rev. 1.4 | 54 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Image rejection, Interferer is CW at image frequency C/IIMAGE Desired is 4.8 kbps OOK signal2 at 3dB above sensitivity level, 20% PER — 48.4 — dB Desired is 50 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 54.9 — dB Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — Desired is 500 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — es ig ns Test Condition 49.1 — dB 47.9 — dB 42.8 — dB D Symbol N ew Parameter — 48.9 — dB Interferer CW at Desired ± 1 MHz — 58.7 — dB Interferer CW at Desired ± 2 MHz — 62.5 — dB Interferer CW at Desired ± 10 MHz — 76.4 — dB Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level — 45 — dB Upper limit of input power RSSIMAX range over which RSSI resolution is maintained — — 5 dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216-960 MHz — -55 -49.2 dBm Above 960 MHz — -47 -41.2 dBm Max spurious emissions dur- SPURRX_ARIB ing active receive mode,per ARIB STD-T108 Section 3.3 Below 710 MHz, RBW=100kHz — -60 -54 dBm 710-900 MHz, RBW=1MHz — -61 -55 dBm 900-915 MHz, RBW=100kHz — -61 -55 dBm 915-930 MHz, RBW=100kHz — -61 -55 dBm 930-1000 MHz, RBW=100kHz — -61 -55 dBm Above 1000 MHz, RBW=1MHz — -53 -47 dBm C/IBLOCKER Intermod selectivity, 0.1% BER. CW interferers at 400 kHz and 800 kHz offsets C/IIM RSSIRES N ot R ec om RSSI resolution m en de d Blocking selectivity, 0.1% BER. Desired is 100 kbps GFSK signal at 3dB above sensitivity level fo r Desired is reference O-QPSK DSSS signal7 at 3dB above sensitivity level, 1% PER silabs.com | Building a more connected world. Rev. 1.4 | 55 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d fo r N ew D es ig ns Note: 1. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 175 kHz, RX channel BW = 835.076 kHz, channel spacing = 1 MHz. 2. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 306.036 kHz, channel spacing = 500 kHz. 3. Definition of reference signal is 600 bps 2GFSK, BT=0.5, Δf = 0.3 kHz, RX channel BW = 1.2 kHz, channel spacing = 300 kHz. 4. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 99.012 kHz, channel spacing = 200 kHz. 5. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz, channel spacing = 400 kHz. 6. Definition of reference signal is 400 kbps 4GFSK, BT=0.5, inner deviation = 33.3 kHz, RX channel BW = 368.920 kHz, channel spacing = 600 kHz. 7. Definition of reference signal is O-QPSK DSSS per 802.15.4, Frequency Range = 902-928 MHz, Data rate = 250 kbps, 16-chip PN sequence mapping. 8. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 56 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 868 MHz. Table 4.20. Sub-GHz RF Transmitter characteristics for 868 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition Min 863 Typ Max Unit es ig ns Symbol — 876 MHz 19.3 22.9 dBm 13.7 16.5 dBm — D Parameter -43.5 — dBm — 0.5 — dB External PA connected directly to 3.3V supply, 20 dBm output power setting 17.1 External PA supply connected to DC-DC output, 14 dBm output power setting 11.4 POUTMIN Output power step size POUTSTEP output power > 0 dBm Output power variation vs supply at POUTMAX POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = 3.3 V, T = 25 °C — 5 — dB 1.8 V < VVREGVDD < 3.3 V, External PA supply connected to DCDC output, T = 25 °C — 2 — dB -40 to +85 °C with External PA supply = 3.3 V — 0.6 0.9 dB -40 to +125 °C with External PA supply = 3.3 V — 0.8 1.3 dB -40 to +85 °C with External PA supply connected to DC-DC output — 0.5 1.2 dB -40 to +125 °C with External PA supply connected to DC-DC output — 0.7 1.5 dB External PA supply = 3.3 V, T = 25 °C — 0.2 0.6 dB External PA supply connected to DC-DC output, T = 25 °C — 0.2 0.8 dB SPURHARM_ETSI Per ETSI EN 300-220, Section 7.8.2.1, External PA supply connected to: DCDC at 14 dBm, or 3.3 V at 19.5 dBm — -35 -30 dBm fo r POUTVAR_T m en de d Output power variation vs temperature, peak to peak N ew Minimum active TX Power om Output power variation vs RF POUTVAR_F frequency N ot R ec Spurious emissions of harmonics, Conducted measurement, Test Frequency = 868 MHz silabs.com | Building a more connected world. Rev. 1.4 | 57 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Spurious emissions out-ofband, Conducted measurement, Test Frequency = 868 MHz SPUROOB_ETSI Error vector magnitude (off- EVM set EVM), per 802.15.4-2015 Min Typ Max Unit Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz), External PA supply connected to: DCDC at 14 dBm, or 3.3 V at 19.5 dBm — -59 -54 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz), External PA supply connected to: DCDC at 14 dBm, or 3.3 V at 19.5 dBm — -42 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz), External PA supply connected to: DCDC at 14 dBm, or 3.3 V at 19.5 dBm — -36 -30 dBm Signal is DSSS-BPSK reference packet. Modulated according to 802.15.4-2015 DSSS-BPSK in the 868MHz band, with pseudo-random packet data content. External PA supply connected to external 3.3V supply — — %rms es ig ns Test Condition D Symbol 5.7 N ew Parameter N ot R ec om m en de d fo r Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 58 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.4 Sub-GHz RF Receiver Characteristics for 868 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 868 MHz. Table 4.21. Sub-GHz RF Receiver Characteristics for 868 MHz Band Symbol Tuning frequency range FRANGE Test Condition Min 863 Typ Max Unit es ig ns Parameter — 876 MHz 10 — dBm 10 — dBm -120.6 — dBm -105.4 dBm Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -105.2 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER — -96.4 — dBm CW at 868 MHz — -28.1 — dBm — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 44.5 56.9 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 35.4 43 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 56.8 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 48.2 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 50.2 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 48.7 — dB Interferer CW at Desired ± 1 MHz — 72.1 — dB Interferer CW at Desired ± 2 MHz — 77.5 — dB Interferer CW at Desired ± 10 MHz — 90.4 — dB -109.5 fo r N ew SENS D Max usable input level, 0.1% SAT2k4 BER RFSENSETRIG Level below which RFSENSE will not trigger4 RFSENSETHRES CW at 868 MHz Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 m en de d Level above which RFSENSE will trigger4 ec om Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing N ot R Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level C/IIMAGE C/IBLOCKER silabs.com | Building a more connected world. Rev. 1.4 | 59 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Symbol Min Typ Max Unit RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 — — dBm RSSI resolution RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Test Condition Over RSSIMIN to RSSIMAX range — 30 MHz to 1 GHz — 1 GHz to 12 GHz — es ig ns Parameter 0.25 — dBm -63 -57 dBm -53 -47 dBm N ot R ec om m en de d fo r N ew D Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.797 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz. 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 60 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.5 Sub-GHz RF Transmitter characteristics for 490 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 490 MHz. Table 4.22. Sub-GHz RF Transmitter characteristics for 490 MHz Band Symbol Test Condition Min RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — Output power variation vs supply, peak to peak POUTVAR_V at 20 dBm;1.8 V < VVREGVDD < 3.3 V, External PA supply connected directly to external supply, T = 25 °C — Output power variation vs temperature, peak to peak POUTVAR_T -40 to +85 °C at 20 dBm 470 -40 to +125 °C at 20 dBm Unit 510 MHz 20.3 23.7 dBm -44.9 — dBm 0.5 — dB 4.3 — dB D 18.1 Max — N ew External PA supply = 3.3V Typ es ig ns Parameter — 0.2 0.9 dB — 0.3 1.3 dB — 0.2 0.4 dB T = 25 °C Harmonic emissions, 20 dBm output power setting, 490 MHz Per China SRW Requirement, Section 2.1, frequencies below 1GHz — -40 -36 dBm Per China SRW Requirement, Section 2.1, frequencies above 1GHz — -36 -30 dBm Per China SRW Requirement, Section 3 (48.5-72.5MHz, 76-108MHz, 167-223MHz, 470-556MHz, and 606-798MHz) — -54 — dBm Per China SRW Requirement, Section 2.1 (other frequencies below 1GHz) — -42 — dBm Per China SRW Requirement, Section 2.1 (frequencies above 1GHz) — -36 — dBm m en de d SPURHARM_CN fo r Output power variation vs RF POUTVAR_F frequency om Spurious emissions, 20 dBm SPUROOB_CN output power setting, 490 MHz N ot R ec Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 61 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 490 MHz. Table 4.23. Sub-GHz RF Receiver Characteristics for 490 MHz Band Symbol Tuning frequency range FRANGE Test Condition Min 470 Typ Max Unit es ig ns Parameter — 510 MHz 10 — dBm 10 — dBm -122.2 — dBm -108.9 dBm Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -107.9 dBm Desired is reference 10 kbps GFSK signal3, 0.1% BER, T ≤ 85 °C — -116.8 -113.9 dBm Desired is reference 10 kbps GFSK signal3, 0.1% BER, T > 85 °C — — -113.2 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER, T ≤ 85 °C — -107.3 -104.7 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER, T > 85 °C — — -104 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER — -28.1 — dBm — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 48 60.3 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 38.3 45.6 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 60.4 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 52.6 — dB -111.4 m en de d fo r N ew SENS D Max usable input level, 0.1% SAT2k4 BER RFSENSETRIG Level below which RFSENSE will not trigger5 RFSENSETHRES CW at 490 MHz ec om Level above which RFSENSE will trigger5 C/I1 N ot R Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing silabs.com | Building a more connected world. Rev. 1.4 | 62 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Image rejection, Interferer is CW at image frequency C/IIMAGE Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level C/IBLOCKER Min Typ Max Unit Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 56.5 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 54.1 — dB Interferer CW at Desired ± 1 MHz — Interferer CW at Desired ± 2 MHz — Interferer CW at Desired ± 10 MHz — — RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 RSSI resolution RSSIRES — dB 75.4 — dB 90.2 — dB — 5 dBm — dBm — Over RSSIMIN to RSSIMAX range — 0.25 — dBm 30 MHz to 1 GHz — -53 -47 dBm — -53 -47 dBm 1 GHz to 12 GHz fo r Max spurious emissions dur- SPURRX ing active receive mode 73.9 N ew RSSIMAX Upper limit of input power range over which RSSI resolution is maintained es ig ns Symbol D Parameter N ot R ec om m en de d Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 10 kbps 2GFSK, BT=0.5, Δf = 5 kHz, RX channel BW = 20.038 kHz. 4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz. 5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 63 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.7 Sub-GHz RF Transmitter characteristics for 433 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 433 MHz. Table 4.24. Sub-GHz RF Transmitter characteristics for 433 MHz Band FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP Min 426 Max Unit — 445 MHz 15.1 17.4 dBm 10.6 13.3 dBm — -42 — dBm — 0.5 — dB External PA supply connected to DC-DC output, 14dBm output power 12.5 External PA supply connected to DC-DC output, 10dBm output power 8.3 output power > 0 dBm Typ es ig ns RF tuning frequency range Test Condition D Symbol N ew Parameter At 10 dBm;1.8 V < VVREGVDD < 3.3 V, External PA supply = DCDC output, T = 25 °C — 1.7 — dB Output power variation vs temperature, peak to peak, Pout= 10dBm -40 to +85C at 10dBm — 0.5 1.2 dB -40 to +125C at 10dBm — 0.7 1.7 dB T = 25 °C — 0.1 0.2 dB POUTVAR_T Output power variation vs RF POUTVAR_F frequency, Pout = 10dBm fo r Output power variation vs POUTVAR_V supply, peak to peak, Pout = 10dBm SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 — -47 -42 dBm In non-restricted bands, per FCC Part 15.231 — -26 -20 dBc Spurious emissions out-ofband FCC, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz SPUROOB_FCC In non-restricted bands, per FCC Part 15.231 — -26 -20 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -52 -46 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -61 -56 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — -58 -52 dBm In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -47 -42 dBm SPURHARM_ETSI Per ETSI EN 300-220, Section 7.8.2.1 (frequencies below 1Ghz) — -42 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1Ghz) — -36 -30 dBm R ec om m en de d Spurious emissions of harmonics FCC, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz N ot Spurious emissions of harmonics ETSI, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz silabs.com | Building a more connected world. Rev. 1.4 | 64 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Symbol Test Condition Min Typ Max Unit Spurious emissions out-ofband ETSI, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz SPUROOB_ETSI Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -60 -54 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz) — -42 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz) — es ig ns Parameter -36 -30 dBm N ot R ec om m en de d fo r N ew D Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 65 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.8 Sub-GHz RF Receiver Characteristics for 433 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 433 MHz. Table 4.25. Sub-GHz RF Receiver Characteristics for 433 MHz Band Symbol Tuning frequency range FRANGE Test Condition Min 426 Typ Max Unit es ig ns Parameter — 445 MHz 10 — dBm 10 — dBm -109.9 — dBm -105 dBm Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT50k BER Desired is reference 50 kbps GFSK signal2 — Sensitivity Desired is reference 4.8 kbps OOK signal3, 20% PER — Desired is reference 100 kbps GFSK signal4, 0.1% BER, T ≤ 85 °C — Desired is reference 100 kbps GFSK signal4, 0.1% BER, T > 85 °C — — -104 dBm Desired is reference 50 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -110.3 -107.2 dBm Desired is reference 50 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -106.6 dBm Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — -123.1 — dBm Desired is reference 9.6 kbps GFSK signal5, 1% PER, T ≤ 85 °C -112.6 -109 dBm Desired is reference 9.6 kbps GFSK signal5, 1% PER, T > 85 °C — — -108 dBm -107.3 RFSENSETRIG CW at 433 MHz — -28.1 — dBm Level below which RFSENSE will not trigger6 RFSENSETHRES CW at 433 MHz — -50 — dBm N ot R ec om — Level above which RFSENSE will trigger6 m en de d fo r N ew SENS D Max usable input level, 0.1% SAT2k4 BER silabs.com | Building a more connected world. Rev. 1.4 | 66 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 Desired is 4.8 kbps OOK signal3 at 3dB above sensitivity level, 20% PER — 51.6 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER 35 44.1 — dB Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 47 Desired is 50 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 45.6 ec R N ot Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level C/IBLOCKER silabs.com | Building a more connected world. dB 53.1 — dB 35.7 — dB — 61.5 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 54.6 — dB Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 62.4 — dB Desired is 50 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 58.1 — dB Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER — 50.6 — dB Desired is 4.8 kbps OOK signal3 at 3dB above sensitivity level, 20% PER — 46.5 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 51.7 — dB Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 57.5 — dB Desired is 50 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 54.4 — dB Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER — 48 — dB Interferer CW at Desired ± 1 MHz — 75.7 — dB Interferer CW at Desired ± 2 MHz — 77.2 — dB Interferer CW at Desired ± 10 MHz — 92 — dB m en de d C/IIMAGE om Image rejection, Interferer is CW at image frequency — Desired is 4.8 kbps OOK signal3 at 3dB above sensitivity level, 20% PER fo r Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing — 61.5 N ew Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER es ig ns Symbol D Parameter Rev. 1.4 | 67 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Intermod selectivity, 0.1% BER. CW interferers at 12.5 kHz and 25 kHz offsets C/IIM Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level — 58.8 — dB RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 RSSIRES — — dBm 0.25 — dBm -55 -49 dBm -47 -41 dBm Over RSSIMIN to RSSIMAX range — Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216-960 MHz — Above 960 MHz — Max spurious emissions dur- SPURRX_ETSI ing active receive mode, per ETSI 300-220 Section 8.6 Below 1000 MHz — -63 -57 dBm Above 1000 MHz — -53 -47 dBm Max spurious emissions dur- SPURRX_ARIB ing active receive mode, per ARIB STD T67 Section 3.3(5) Below 710 MHz, RBW=100kHz — -60 -54 dBm N ew RSSI resolution es ig ns Symbol D Parameter N ot R ec om m en de d fo r Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 99.012 kHz, channel spacing = 200 kHz. 3. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 306.036 kHz, channel spacing = 500 kHz. 4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz, channel spacing = 200 kHz. 5. Definition of reference signal is 9.6 kbps 4GFSK, BT=0.5, inner deviation = 0.8 kHz, RX channel BW = 8.5 kHz, channel spacing = 12.5 kHz. 6. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 68 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.9 Sub-GHz RF Transmitter characteristics for 315 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 315 MHz. Table 4.26. Sub-GHz RF Transmitter characteristics for 315 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — Output power variation vs supply POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = DC-DC output, T = 25 °C — Output power variation vs temperature POUTVAR_T -40 to +85C Min 195 13.8 Max Unit — 358 MHz 17.2 21.1 dBm -43.9 — dBm 0.5 — dB 1.8 — dB N ew External PA supply connected to DC-DC output Typ — 0.5 1.2 dB — 0.7 1.5 dB — 0.1 0.7 dB SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 — -47 -42 dBm In non-restricted bands, per FCC Part 15.231 — -26 -20 dBc In non-restricted bands, per FCC Part 15.231 — -26 -20 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -52 -46 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -61 -56 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — -58 -52 dBm In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -47 -42 dBm -40 to +125C T = 25 °C m en de d fo r Output power variation vs RF POUTVAR_F frequency Spurious emissions of harmonics at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 303 MHz Test Condition es ig ns Symbol D Parameter ec om Spurious emissions out-ofSPUROOB_FCC band at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 303 MHz N ot R Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 69 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 315 MHz. Table 4.27. Sub-GHz RF Receiver Characteristics for 315 MHz Band Symbol Tuning frequency range FRANGE Test Condition Min 195 Typ Max Unit es ig ns Parameter — 358 MHz 10 — dBm 10 — dBm -123.2 -120.7 dBm Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER, T ≤ 85 °C — Desired is reference 2.4 kbps GFSK signal1, 0.1% BER, T > 85 °C — — -120 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -111.4 -108.6 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -107.9 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T ≤ 85 °C — -98.8 -95.5 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T > 85 °C — — -94.5 dBm m en de d fo r N ew SENS D Max usable input level, 0.1% SAT2k4 BER RFSENSETRIG CW at 315 MHz — -28.1 — dBm Level below which RFSENSE will not trigger4 RFSENSETHRES CW at 315 MHz — -50 — dBm Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 54.1 63.6 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 49.9 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 64.2 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level2, 0.1% BER — 56.2 — dB R ec om Level above which RFSENSE will trigger4 N ot Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing silabs.com | Building a more connected world. Rev. 1.4 | 70 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Image rejection, Interferer is CW at image frequency C/IIMAGE Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level C/IBLOCKER Min Typ Max Unit Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 53 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51.4 — dB Interferer CW at Desired ± 1 MHz — Interferer CW at Desired ± 2 MHz — Interferer CW at Desired ± 10 MHz 72.6 — RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 RSSI resolution RSSIRES — dB 76.5 — dB 91.9 — dB — 5 dBm — dBm — Over RSSIMIN to RSSIMAX range — 0.25 — dBm 216-960 MHz — -63 -57 dBm — -53 -47 dBm Above 960MHz fo r Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 75 N ew RSSIMAX Upper limit of input power range over which RSSI resolution is maintained es ig ns Symbol D Parameter N ot R ec om m en de d Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz. 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 71 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.11 Sub-GHz RF Transmitter Characteristics for 169 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 169 MHz. Table 4.28. Sub-GHz RF Transmitter Characteristics for 169 MHz Band Test Condition RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — Output power variation vs supply, peak to peak POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = 3.3 V, T = 25 °C — Output power variation vs temperature, peak to peak POUTVAR_T -40 to +85 °C at 20 dBm — 169 18.1 Max Unit — 170 MHz 19.7 22.4 dBm -42.6 — dBm 0.5 — dB 4.8 5.0 dB 1.2 dB 0.6 0.8 1.5 dB Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -42 — dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz)2 — -38 — dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz)2 — -36 — dBm Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -42 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz) — -42 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz) — -36 -30 dBm fo r — m en de d om Spurious emissions out-ofSPUROOB_ETSI band, Conducted measurement, External PA supply = 3.3 V, Test Frequency = 169 MHz Typ N ew External PA supply = 3.3 V -40 to +125 °C at 20 dBm Spurious emissions of harSPURHARM_ETSI monics, Conducted measurement, External PA supply = 3.3 V, Test Frequency = 169 MHz Min es ig ns Symbol D Parameter N ot R ec Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. 2. Typical value marginally passes specification. Additional margin can be obtained by increasing the order of the harmonic filter. silabs.com | Building a more connected world. Rev. 1.4 | 72 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.10.12 Sub-GHz RF Receiver Characteristics for 169 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 169 MHz. Table 4.29. Sub-GHz RF Receiver Characteristics for 169 MHz Band Symbol Tuning frequency range FRANGE Test Condition Min 169 Typ Max Unit es ig ns Parameter — 170 MHz 10 — dBm 10 — dBm -124 — dBm -108 dBm Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -107 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T ≤ 85 °C — -99.2 -96 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T > 85 °C — — -95 dBm -112.2 m en de d fo r N ew SENS D Max usable input level, 0.1% SAT2k4 BER RFSENSETRIG CW at 169 MHz — -28.1 — dBm Level below which RFSENSE will not trigger4 RFSENSETHRES CW at 169 MHz — -50 — dBm Adjacent channel selectivity, Interferer is CW at ± 1 x channel-spacing C/I1 Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 64.8 — dB Desired is 38.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 43.3 51.4 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 67.4 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 60.6 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 47.1 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 47.1 — dB ec om Level above which RFSENSE will trigger4 N ot R Alternate channel selectivity, C/I2 Interferer is CW at ± 2 x channel-spacing Image rejection, Interferer is CW at image frequency C/IIMAGE silabs.com | Building a more connected world. Rev. 1.4 | 73 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level C/IBLOCKER Interferer CW at Desired ± 1 MHz — 73.4 — dB Interferer CW at Desired ± 2 MHz — 75 — dB Interferer CW at Desired ± 10 MHz 80 90.1 — dB RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 — — dBm 0.25 — dBm -63 -57 dBm -53 -47 dBm RSSI resolution RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Over RSSIMIN to RSSIMAX range — 30 MHz to 1 GHz — 1 GHz to 12 GHz — es ig ns Symbol D Parameter fo r N ew Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz. 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. m en de d 4.1.11 Modem Table 4.30. Modem Symbol Test Condition Min Typ Max Unit Receive bandwidth BWRX Configurable range with 38.4 MHz crystal 0.1 — 2530 kHz IF frequency fIF Configurable range with 38.4 MHz crystal. Selected steps available. 150 — 1371 kHz om Parameter SLDSSS Configurable in steps of 1 chip 2 — 32 chips DSSS bits per symbol BPSDSSS Configurable 1 — 4 bits/ symbol N ot R ec DSSS symbol length silabs.com | Building a more connected world. Rev. 1.4 | 74 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.12 Oscillators 4.1.12.1 Low-Frequency Crystal Oscillator (LFXO) Typ Max Unit — 32.768 — kHz ESRLFXO — — 70 kΩ Supported range of crystal load capacitance 1 CLFXO_CL 6 — 18 pF On-chip tuning cap range 2 CLFXO_T 8 D Crystal frequency fLFXO Supported crystal equivalent series resistance (ESR) Test Condition Min — 40 pF On-chip tuning cap step size SSLFXO — 0.25 — pF Current consumption after startup 3 ILFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2, AGC4 = 1 — 273 — nA Start- up time tLFXO ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2 — 308 — ms On each of LFXTAL_N and LFXTAL_P pins N ew Symbol fo r Parameter es ig ns Table 4.31. Low-Frequency Crystal Oscillator (LFXO) N ot R ec om m en de d Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 4. In CMU_LFXOCTRL register. silabs.com | Building a more connected world. Rev. 1.4 | 75 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.12.2 High-Frequency Crystal Oscillator (HFXO) Parameter Symbol Test Condition Typ Max Unit Crystal frequency fHFXO 38.4 MHz required for radio transciever operation 38 38.4 40 MHz Supported crystal equivalent series resistance (ESR) ESRHFXO_38M4 Crystal frequency 38.4 MHz — — 60 Ω Supported range of crystal load capacitance 1 CHFXO_CL — 12 pF On-chip tuning cap range 2 CHFXO_T 20 25 pF On-chip tuning capacitance step SSHFXO — pF Startup time tHFXO 38.4 MHz, ESR = 50 Ohm, CL = 10 pF — 300 — µs Frequency tolerance for the crystal FTHFXO 38.4 MHz, ESR = 50 Ohm, CL = 10 pF -40 — 40 ppm es ig ns Min D Table 4.32. High-Frequency Crystal Oscillator (HFXO) 6 On each of HFXTAL_N and HFXTAL_P pins 9 0.04 N ew — m en de d fo r Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 4.1.12.3 Low-Frequency RC Oscillator (LFRCO) Table 4.33. Low-Frequency RC Oscillator (LFRCO) Symbol Test Condition Min Typ Max Unit Oscillation frequency fLFRCO ENVREF1 = 1, T ≤ 85 °C 31.3 32.768 33.6 kHz ENVREF1 = 1, T > 85 °C 31.6 32.768 36.8 kHz ENVREF1 = 0, T ≤ 85 °C 31.3 32.768 33.4 kHz ENVREF1 = 0, T > 85 °C 30 32.768 33.4 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 342 — nA ENVREF = 0 in CMU_LFRCOCTRL — 494 — nA ec om Parameter tLFRCO Current consumption 2 ILFRCO N ot R Startup time Note: 1. In CMU_LFRCOCTRL register. 2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. silabs.com | Building a more connected world. Rev. 1.4 | 76 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.12.4 High-Frequency RC Oscillator (HFRCO) Table 4.34. High-Frequency RC Oscillator (HFRCO) Symbol Test Condition Min Typ Max Unit Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 % Start-up time tHFRCO fHFRCO ≥ 19 MHz — 300 — ns 4 < fHFRCO < 19 MHz — 1 — µs fHFRCO ≤ 4 MHz — 2.5 — µs fHFRCO = 38 MHz — 231 260 µA fHFRCO = 32 MHz — 193 218 µA fHFRCO = 26 MHz D IHFRCO N ew Current consumption on all supplies es ig ns Parameter — 165 186 µA — 137 155 µA — 118 131 µA — 106 119 µA fHFRCO = 7 MHz — 83 94 µA fHFRCO = 4 MHz — 31 40 µA fHFRCO = 2 MHz — 27 37 µA fHFRCO = 1 MHz — 25 35 µA — 0.8 — % fHFRCO = 19 MHz fHFRCO = 16 MHz m en de d fo r fHFRCO = 13 MHz Coarse trim step size (% of period) SSHFRCO_COARS Fine trim step size (% of period) SSHFRCO_FINE — 0.1 — % Period jitter PJHFRCO — 0.2 — % RMS Frequency limits fHFRCO_BAND FREQRANGE = 0, FINETUNINGEN = 0 3.47 — 6.15 MHz FREQRANGE = 3, FINETUNINGEN = 0 6.24 — 11.45 MHz FREQRANGE = 6, FINETUNINGEN = 0 11.3 — 19.8 MHz FREQRANGE = 7, FINETUNINGEN = 0 13.45 — 22.8 MHz FREQRANGE = 8, FINETUNINGEN = 0 16.5 — 29.0 MHz FREQRANGE = 10, FINETUNINGEN = 0 23.11 — 40.63 MHz FREQRANGE = 11, FINETUNINGEN = 0 27.27 — 48 MHz FREQRANGE = 12, FINETUNINGEN = 0 33.33 — 54 MHz N ot R ec om E silabs.com | Building a more connected world. Rev. 1.4 | 77 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.12.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Table 4.35. Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Frequency accuracy fAUXHFRCO_ACC Start-up time tAUXHFRCO Current consumption on all supplies IAUXHFRCO Min Typ Max Unit At production calibrated frequencies, across supply voltage and temperature -3 — 3 % fAUXHFRCO ≥ 19 MHz — 400 — ns 4 < fAUXHFRCO < 19 MHz — 1.4 — µs fAUXHFRCO ≤ 4 MHz — 2.5 — µs fAUXHFRCO = 38 MHz — 237 265 µA fAUXHFRCO = 32 MHz — 194 218 µA fAUXHFRCO = 26 MHz — 165 186 µA — 131 148 µA — 119 134 µA — 92 104 µA fAUXHFRCO = 7 MHz — 61 70 µA fAUXHFRCO = 4 MHz — 34 42 µA fAUXHFRCO = 2 MHz — 29 37 µA fAUXHFRCO = 1 MHz — 26 34 µA — 0.8 — % — 0.1 — % — 0.2 — % RMS Min Typ Max Unit 0.95 1 1.07 kHz fAUXHFRCO = 19 MHz fAUXHFRCO = 16 MHz m en de d fo r fAUXHFRCO = 13 MHz Coarse trim step size (% of period) CO_COARSE Fine trim step size (% of period) CO_FINE Period jitter PJAUXHFRCO es ig ns Test Condition D Symbol N ew Parameter SSAUXHFR- om SSAUXHFR- ec 4.1.12.6 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.36. Ultra-low Frequency RC Oscillator (ULFRCO) Symbol Oscillation frequency fULFRCO Test Condition N ot R Parameter silabs.com | Building a more connected world. Rev. 1.4 | 78 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.13 Flash Memory Characteristics1 Table 4.37. Flash Memory Characteristics1 Symbol Flash erase cycles before failure ECFLASH Flash data retention RETFLASH tW_PROG Min Typ Max Unit 10000 — — cycles — — years — — years 26.1 30 µs 68.5 80 µs T ≤ 85 °C 10 T ≤ 125 °C 10 Burst write, 128 words, average time per word 20 Single word 60 tPERASE 20 28.8 40 ms Mass erase time3 tMERASE 20 28.7 40 ms Device erase time4 5 tDERASE — 54.4 70 ms — 54.4 75 ms — — 1.6 mA — — 3.5 mA 1.62 — 3.6 V N ew Page erase time2 D Word (32-bit) programming time Test Condition es ig ns Parameter T ≤ 85 °C T ≤ 125 °C IERASE Write current6 IWRITE Supply voltage during flash erase and write VFLASH Page Erase fo r Erase current6 N ot R ec om m en de d Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 3. Mass erase is issued by the CPU and erases all flash. 4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.4 | 79 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.14 General-Purpose I/O (GPIO) Table 4.38. General-Purpose I/O (GPIO) Symbol Test Condition Min Typ Max Unit Input low voltage1 VIL GPIO pins — — IOVDD*0.3 V Input high voltage1 VIH GPIO pins IOVDD*0.7 — — V Output high voltage relative to IOVDD VOH Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 — — V — — V DRIVESTRENGTH2 = WEAK IOVDD*0.6 D Sourcing 1.2 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = WEAK IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 30 nA LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 50 nA All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C — — 110 nA LFXO Pins, GPIO ≤ IOVDD, T > 85 °C — — 250 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 µA 30 40 65 kΩ 15 25 45 ns N ew Sourcing 20 mA, IOVDD ≥ 3 V, es ig ns Parameter DRIVESTRENGTH2 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = STRONG Sinking 3 mA, IOVDD ≥ 3 V, fo r Output low voltage relative to VOL IOVDD DRIVESTRENGTH2 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, m en de d DRIVESTRENGTH2 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH2 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH2 = STRONG IIOLEAK R ec om Input leakage current N ot Input leakage current on 5VTOL pads above IOVDD I/O pin pull-up/pull-down resistor3 I5VTOLLEAK RPUD Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.4 | 80 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns DRIVESTRENGTH2 = STRONG, DRIVESTRENGTH2 = WEAK, SLEWRATE2 = 0x6 Output rise time, From 30% to 70% of VIO tIOOR CL = 50 pF, — DRIVESTRENGTH2 = STRONG, SLEWRATE = 0x62 CL = 50 pF, — 2.2 — ns D CL = 50 pF, es ig ns SLEWRATE2 = 0x6 — ns 7.4 SLEWRATE2 = 0x6 N ew DRIVESTRENGTH2 = WEAK, N ot R ec om m en de d fo r Note: 1. GPIO input threshold are proportional to the IOVDD supply, except for RESETn which is proportional to AVDD. 2. In GPIO_Pn_CTRL register. 3. GPIO pull-ups are referenced to the IOVDD supply, except for RESETn, which connects to AVDD. silabs.com | Building a more connected world. Rev. 1.4 | 81 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.15 Voltage Monitor (VMON) Symbol Test Condition Typ Max Unit Supply current (including I_SENSE) IVMON In EM0 or EM1, 1 active channel, T ≤ 85 °C — 6.3 8 µA In EM0 or EM1, 1 active channel, T > 85 °C — — 11 µA In EM0 or EM1, All channels active, T ≤ 85 °C — 12.5 15 µA In EM0 or EM1, All channels active, T > 85 °C — — 18 µA In EM2, EM3 or EM4, 1 channel active and above threshold — — nA In EM2, EM3 or EM4, 1 channel active and below threshold — 62 — nA In EM2, EM3 or EM4, All channels active and above threshold — 99 — nA In EM2, EM3 or EM4, All channels active and below threshold — 99 — nA In EM0 or EM1 — 2 — µA In EM2, EM3 or EM4 — 2 — nA 1.62 — 3.4 V Coarse — 200 — mV Fine — 20 — mV Supply drops at 1V/µs rate — 460 — ns — 26 — mV 62 ISENSE m en de d Loading of monitored supply fo r N ew Parameter es ig ns Min D Table 4.39. Voltage Monitor (VMON) Threshold range VVMON_RANGE Threshold step size NVMON_STESP tVMON_RES Hysteresis VVMON_HYST N ot R ec om Response time silabs.com | Building a more connected world. Rev. 1.4 | 82 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.16 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.40. Analog to Digital Converter (ADC) Resolution VRESOLUTION Input voltage range1 VADCIN Test Condition Single ended Min Typ Max Unit 6 — 12 Bits — VFS V — VFS/2 V — VAVDD V 80 — dB 80 — dB — Differential -VFS/2 Input range of external refer- VADCREFIN_P ence voltage, single ended and differential 1 PSRRADC At DC — Analog input common mode rejection ratio CMRRADC At DC — Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP Continuous operation. WARMUPMODE3 = KEEPADCWARM N ew Power supply rejection2 es ig ns Symbol D Parameter — 270 304 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4 — 125 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4 — 80 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 1 4 — 45 — µA — 8 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 105 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 70 — µA 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 325 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4 — 175 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4 — 125 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 0 4 — 85 — µA — 16 — µA m en de d fo r 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 N ot R ec om Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP Continuous operation. WARMUPMODE3 = KEEPADCWARM Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 160 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 125 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 150 — µA IADC_CLK silabs.com | Building a more connected world. Rev. 1.4 | 83 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time5 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — WARMUPMODE3 = NORMAL — WARMUPMODE3 = KEEPINSTANDBY — WARMUPMODE3 = KEEPINSLOWACC — Internal reference6, differential measurement 58 Startup time of reference generator and ADC core SNDR at 1Msps and fIN = 10kHz tADCSTART SNDRADC es ig ns ADC clock frequency Test Condition 13 — cycles — 5 µs — 2 µs — 1 µs D Symbol — dB 67 N ew Parameter — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0 3 LSB Gain error in ADC VADCGAIN Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C m en de d Temperature sensor slope fo r External reference7, differential measurement VTS_SLOPE N ot R ec om Note: 1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_CTRL register. 4. In ADCn_BIASPROG register. 5. Derived from ADCCLK. 6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. 7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. silabs.com | Building a more connected world. Rev. 1.4 | 84 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.17 Analog Comparator (ACMP) Table 4.41. Analog Comparator (ACMP) Symbol Test Condition Input voltage range VACMPIN Supply voltage VACMPVDD Max Unit ACMPVDD = ACMPn_CTRL_PWRSEL 1 — — VACMPVDD V BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.8 — VVREGVDD_ V 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 1, FULLBIAS2 = 0 — BIASPROG2 = 0x10, FULLBIAS2 =0 — BIASPROG2 = 0x02, FULLBIAS2 =1 — BIASPROG2 = 0x20, FULLBIAS2 =1 MAX — V MAX 50 — nA 306 — nA 6.1 10 µA — 74 92 µA VLP selected as input using 2.5 V Reference / 4 (0.625 V) — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA fo r N ot R ec om m en de d Current consumption of inter- IACMPREF nal voltage reference3 VVREGVDD_ D IACMP Typ N ew Active current not including voltage reference3 Min es ig ns Parameter silabs.com | Building a more connected world. Rev. 1.4 | 85 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) VACMPHYST HYSTSEL4 = HYST0 -3 0 3 mV HYSTSEL4 = HYST1 5 18 27 mV HYSTSEL4 = HYST2 12 33 50 mV HYSTSEL4 = HYST3 17 46 67 mV HYSTSEL4 = HYST4 23 HYSTSEL4 = HYST5 26 HYSTSEL4 = HYST6 30 HYSTSEL4 = HYST7 34 HYSTSEL4 = HYST8 -3 HYSTSEL4 = HYST9 HYSTSEL4 = HYST10 86 mV 68 104 mV 79 130 mV 90 155 mV 0 3 mV -27 -18 -5 mV -50 -33 -12 mV -67 -45 -17 mV -86 -57 -23 mV -104 -67 -26 mV HYSTSEL4 = HYST14 -130 -78 -30 mV HYSTSEL4 = HYST15 -155 -88 -34 mV — 30 95 µs BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 10 µs BIASPROG2 = 0x02, FULLBIAS2 =1 — 360 1000 ns BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns BIASPROG2 =0x10, FULLBIAS2 =1 -35 — 35 mV Internal 1.25 V reference 1 1.25 1.47 V Internal 2.5 V reference 1.98 2.5 2.8 V CSRESSEL6 = 0 — infinite — kΩ CSRESSEL6 = 1 — 15 — kΩ CSRESSEL6 = 2 — 27 — kΩ CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 102 — kΩ CSRESSEL6 = 6 — 164 — kΩ CSRESSEL6 = 7 — 239 — kΩ HYSTSEL4 = HYST12 tACMPDELAY BIASPROG2 = 1, FULLBIAS2 = 0 m en de d VACMPOFFSET om Offset voltage Reference voltage fo r HYSTSEL4 = HYST13 VACMPREF N ot R ec Capacitive sense internal re- RCSRES sistance silabs.com | Building a more connected world. N ew 57 HYSTSEL4 = HYST11 Comparator delay5 es ig ns Symbol D Parameter Rev. 1.4 | 86 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. In ACMPn_CTRL register. 3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. N ot R ec om m en de d fo r N ew D es ig ns 4. In ACMPn_HYSTERESIS registers. 5. ± 100 mV differential drive. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.4 | 87 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.18 Digital to Analog Converter (VDAC) DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output. Table 4.42. Digital to Analog Converter (VDAC) Test Condition Output voltage VDACOUT Single-Ended Max Unit 0 — VVREF V — VVREF V 396 — µA 72 — µA 1.2 — µA 500 ksps, 12-bit, DRIVESTRENGTH = 2, REFSEL = 4 — 44.1 ksps, 12-bit, DRIVESTRENGTH = 1, REFSEL = 4 — 200 Hz refresh rate, 12-bit Sample-Off mode in EM2, DRIVESTRENGTH = 2, REFSEL = 4, SETTLETIME = 0x02, WARMUPTIME = 0x0A — N ew IDAC Typ -VVREF Differential1 IDAC_CLK — 5 — µA/MHz Sample rate SRDAC — — 500 ksps DAC clock frequency fDAC — — 1 MHz Conversion time tDACCONV fDAC = 1MHz 2 — — µs Settling time tDACSETTLE 50% fs step settling to 5 LSB — 2.5 — µs Startup time tDACSTARTUP Enable to 90% fs output, settling to 10 LSB — — 12 µs Output impedance ROUT DRIVESTRENGTH = 2, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Full supply range — 2 — Ω DRIVESTRENGTH = 2, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Full supply range — 2 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Full supply range — 2 — Ω Vout = 50% fs. DC — 65.5 — dB ec om m en de d Current from HFPERCLK3 fo r Current consumption including references (2 channels)2 Min es ig ns Symbol D Parameter N ot R Power supply rejection ratio4 PSRR silabs.com | Building a more connected world. Rev. 1.4 | 88 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit 500 ksps, single-ended, internal 1.25V reference — 60.4 — dB 500 ksps, single-ended, internal 2.5V reference — 61.6 — dB 500 ksps, single-ended, 3.3V VDD reference — 64.0 — dB 500 ksps, differential, internal 1.25V reference — 500 ksps, differential, internal 2.5V reference — 500 ksps, differential, 3.3V VDD reference — Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal 1.25V reference ratio (1 kHz sine wave), Noise band limited to 22 kHz 500 ksps, single-ended, internal 2.5V reference 63.3 — dB 64.4 — dB 65.8 — dB — 65.3 — dB — 66.7 — dB 500 ksps, single-ended, 3.3V VDD reference — 70.0 — dB 500 ksps, differential, internal 1.25V reference — 67.8 — dB 500 ksps, differential, internal 2.5V reference — 69.0 — dB 500 ksps, differential, 3.3V VDD reference — 68.5 — dB — 70.2 — dB m en de d fo r N ew Signal to noise and distortion SNDRDAC ratio (1 kHz sine wave), Noise band limited to 250 kHz Test Condition es ig ns Symbol D Parameter THD Differential non-linearity5 DNLDAC -0.99 — 1 LSB Intergral non-linearity INLDAC -4 — 4 LSB Offset error6 VOFFSET T = 25 °C -8 — 8 mV Across operating temperature range -25 — 25 mV T = 25 °C, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -2.5 — 2.5 % T = 25 °C, Internal reference (REFSEL = 1V25 or 2V5) -5 — 5 % T = 25 °C, External reference (REFSEL = VDD or EXT) -1.8 — 1.8 % Across operating temperature range, Low-noise internal reference (REFSEL = 1V25LN or 2V5LN) -3.5 — 3.5 % Across operating temperature range, Internal reference (REFSEL = 1V25 or 2V5) -7.5 — 7.5 % Across operating temperature range, External reference (REFSEL = VDD or EXT) -2.0 — 2.0 % VGAIN N ot R ec Gain error6 om Total harmonic distortion silabs.com | Building a more connected world. Rev. 1.4 | 89 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol External load capactiance, OUTSCALE=0 CLOAD Test Condition Min Typ Max Unit — — 75 pF es ig ns Note: 1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range. 2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load. 3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU. 4. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale N ot R ec om m en de d fo r N ew D 5. Entire range is monotonic and has no missing codes. 6. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at 10% of full scale to ideal VDAC output at 10% of full scale with the measured gain. silabs.com | Building a more connected world. Rev. 1.4 | 90 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.19 Current Digital to Analog Converter (IDAC) Table 4.43. Current Digital to Analog Converter (IDAC) NIDAC_RANGES Output current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC — 4 — ranges — 1.6 µA — 4.7 µA — 16 µA — 64 µA 1.6 RANGESEL1 = RANGE2 0.5 RANGESEL1 = RANGE3 2 — 32 — steps — 50 — nA — 100 — nA — 500 — nA — 2 — µA EM0 or EM1, AVDD=3.3 V, T = 25 °C -3 — 3 % EM0 or EM1, Across operating temperature range -18 — 22 % EM2 or EM3, Source mode, RANGESEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2 — % EM2 or EM3, Source mode, RANGESEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.7 — % EM2 or EM3, Source mode, RANGESEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.8 — % EM2 or EM3, Source mode, RANGESEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -0.7 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -0.6 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGESEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % RANGESEL1 = RANGE0 fo r m en de d om ec R Unit RANGESEL1 = RANGE1 RANGESEL1 = RANGE3 N ot Max 0.05 RANGESEL1 = RANGE2 silabs.com | Building a more connected world. Typ RANGESEL1 = RANGE0 RANGESEL1 = RANGE1 Total accuracy, STEPSEL1 = ACCIDAC 0x10 Min es ig ns Number of ranges Test Condition D Symbol N ew Parameter Rev. 1.4 | 91 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Test Condition Start up time tIDAC_SU IIDAC Unit Output within 1% of steady state value — 5 — µs Range setting is changed — 5 — µs Step value is changed — 1 — µs EM0 or EM1 Source mode, excluding output current, Across operating temperature range — 11 15 µA EM0 or EM1 Sink mode, excluding output current, Across operating temperature range — 13 18 µA EM2 or EM3 Source mode, excluding output current, T = 25 °C — 0.050 — µA EM2 or EM3 Sink mode, excluding output current, T = 25 °C — — µA R ec om Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD 0.075 EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C — 11 — µA EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C — 13 — µA RANGESEL1 = RANGE0, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.11 — % RANGESEL1 = RANGE1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.06 — % RANGESEL1 = RANGE2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.04 — % RANGESEL1 = RANGE3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.03 — % RANGESEL1 = RANGE0, output voltage = 100 mV — 0.12 — % RANGESEL1 = RANGE1, output voltage = 100 mV — 0.05 — % RANGESEL1 = RANGE2, output voltage = 150 mV — 0.04 — % RANGESEL1 = RANGE3, output voltage = 250 mV — 0.03 — % m en de d Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Max fo r Current consumption2 Typ es ig ns Symbol N ew Parameter Settling time, (output settled tIDAC_SETTLE within 1% of steady state value), Min D Electrical Specifications N ot Note: 1. In IDAC_CURPROG register. 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.4 | 92 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.20 Operational Amplifier (OPAMP) Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAINOUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as specified in table footnotes1 2. Symbol Test Condition Supply voltage (from AVDD) VOPA HCMDIS = 0, Rail-to-rail input range VIN Input impedance RIN Output voltage VOUT Load capacitance3 CLOAD HCMDIS = 1 1.62 HCMDIS = 0, Rail-to-rail input range VVSS HCMDIS = 1 VVSS 100 IOPA N ot R Active current4 silabs.com | Building a more connected world. — 3.8 V — 3.8 V — VOPA V — VOPA-1.2 V — — MΩ VOPA V — — 75 pF — — 37.5 pF DRIVESTRENGTH = 2 or 3, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -8 mA < IOUT < 8 mA, Buffer connection, Full supply range — 0.25 — Ω DRIVESTRENGTH = 0 or 1, 0.4 V ≤ VOUT ≤ VOPA - 0.4 V, -400 µA < IOUT < 400 µA, Buffer connection, Full supply range — 0.6 — Ω DRIVESTRENGTH = 2 or 3, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -2 mA < IOUT < 2 mA, Buffer connection, Full supply range — 0.4 — Ω DRIVESTRENGTH = 0 or 1, 0.1 V ≤ VOUT ≤ VOPA - 0.1 V, -100 µA < IOUT < 100 µA, Buffer connection, Full supply range — 1 — Ω Buffer connection 0.99 1 1.01 - 3x Gain connection 2.93 2.99 3.05 - 16x Gain connection 15.07 15.7 16.33 - DRIVESTRENGTH = 3, OUTSCALE = 0 — 580 — µA DRIVESTRENGTH = 2, OUTSCALE = 0 — 176 — µA DRIVESTRENGTH = 1, OUTSCALE = 0 — 13 — µA DRIVESTRENGTH = 0, OUTSCALE = 0 — 4.7 — µA OUTSCALE = 0 m en de d om GCL ec Internal closed-loop gain Unit — fo r ROUT Max VVSS OUTSCALE = 1 Output impedance 2 Typ N ew Input voltage Min D Parameter es ig ns Table 4.44. Operational Amplifier (OPAMP) Rev. 1.4 | 93 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Symbol Test Condition Open-loop gain GOL Max Unit DRIVESTRENGTH = 3 — 135 — dB DRIVESTRENGTH = 2 — 137 — dB DRIVESTRENGTH = 1 — 121 — dB DRIVESTRENGTH = 0 — 109 — dB DRIVESTRENGTH = 3, Buffer connection — DRIVESTRENGTH = 2, Buffer connection — DRIVESTRENGTH = 1, Buffer connection — DRIVESTRENGTH = 0, Buffer connection — DRIVESTRENGTH = 3, 3x Gain connection — DRIVESTRENGTH = 2, 3x Gain connection — DRIVESTRENGTH = 1, 3x Gain connection 3.38 — MHz 0.9 — MHz 132 — kHz 34 — kHz 2.57 — MHz 0.71 — MHz — 113 — kHz DRIVESTRENGTH = 0, 3x Gain connection — 28 — kHz DRIVESTRENGTH = 3, Buffer connection — 67 — ° DRIVESTRENGTH = 2, Buffer connection — 69 — ° DRIVESTRENGTH = 1, Buffer connection — 63 — ° DRIVESTRENGTH = 0, Buffer connection — 68 — ° DRIVESTRENGTH = 3, Buffer connection, 10 Hz - 10 MHz — 146 — µVrms DRIVESTRENGTH = 2, Buffer connection, 10 Hz - 10 MHz — 163 — µVrms DRIVESTRENGTH = 1, Buffer connection, 10 Hz - 1 MHz — 170 — µVrms DRIVESTRENGTH = 0, Buffer connection, 10 Hz - 1 MHz — 176 — µVrms DRIVESTRENGTH = 3, 3x Gain connection, 10 Hz - 10 MHz — 313 — µVrms DRIVESTRENGTH = 2, 3x Gain connection, 10 Hz - 10 MHz — 271 — µVrms DRIVESTRENGTH = 1, 3x Gain connection, 10 Hz - 1 MHz — 247 — µVrms DRIVESTRENGTH = 0, 3x Gain connection, 10 Hz - 1 MHz — 245 — µVrms D UGF Typ PM NOUT N ot R ec om Output voltage noise m en de d Phase margin fo r N ew Loop unit-gain frequency5 Min es ig ns Parameter silabs.com | Building a more connected world. Rev. 1.4 | 94 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Slew rate6 SR DRIVESTRENGTH = 3, INCBW=17 — 4.7 — V/µs DRIVESTRENGTH = 3, INCBW=0 — 1.5 — V/µs DRIVESTRENGTH = 2, INCBW=17 — 1.27 — V/µs DRIVESTRENGTH = 2, INCBW=0 — DRIVESTRENGTH = 1, INCBW=17 — DRIVESTRENGTH = 1, INCBW=0 DRIVESTRENGTH = 0, INCBW=17 DRIVESTRENGTH = 0, INCBW=0 es ig ns Test Condition 0.42 — V/µs 0.17 — V/µs — 0.058 — V/µs — D Symbol — V/µs 0.044 N ew Parameter — 0.015 — V/µs — — 12 µs -2 — 2 mV DRIVESTRENGTH = 1 or 0, T = 25 °C -2 — 2 mV DRIVESTRENGTH = 2 or 3, across operating temperature range -12 — 12 mV DRIVESTRENGTH = 1 or 0, across operating temperature range -30 — 30 mV TSTART DRIVESTRENGTH = 2 Input offset voltage VOSI DRIVESTRENGTH = 2 or 3, T = 25 °C m en de d fo r Startup time8 PSRRDC Input referred — 70 — dB DC common-mode rejection ratio9 CMRRDC Input referred — 70 — dB DRIVESTRENGTH = 2, 3x Gain connection, 1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB DRIVESTRENGTH = 0, 3x Gain connection, 0.1 kHz, VOUT = 0.1 V to VOPA - 0.1 V — 90 — dB om DC power supply rejection ratio9 THDOPA N ot R ec Total harmonic distortion silabs.com | Building a more connected world. Rev. 1.4 | 95 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit Note: 1. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V, VOUTPUT = 0.5 V. es ig ns 2. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5 V. Nominal voltage gain is 3. 3. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information. 4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause another ~10 µA current when the OPAMP drives 1.5 V between output and ground. 5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth product of the OPAMP and 1/3 attenuation of the feedback network. 6. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range. N ew D 7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3, or the OPAMP may not be stable. 8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV. 9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR and CMRR specifications do not apply to this transition region. fo r 4.1.21 Pulse Counter (PCNT) Table 4.45. Pulse Counter (PCNT) Symbol Input frequency FIN Parameter Min Typ Max Unit Asynchronous Single and Quadrature Modes — — 10 MHz Sampled Modes with Debounce filter set to 0. — — 8 kHz Min Typ Max Unit Table 4.46. Analog Port (APORT) Symbol Test Condition IAPORT Operation in EM0/EM1 — 7 — µA Operation in EM2/EM3 — 63 — nA ec Supply current1 2 om 4.1.22 Analog Port (APORT) Test Condition m en de d Parameter N ot R Note: 1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current. 2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number. silabs.com | Building a more connected world. Rev. 1.4 | 96 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.23 I2C 4.1.23.1 I2C Standard-mode (Sm)1 Test Condition SCL clock frequency2 fSCL 0 SCL clock low time tLOW 4.7 SCL clock high time tHIGH 4 SDA set-up time tSU_DAT 250 SDA hold time3 tHD_DAT Repeated START condition set-up time tSU_STA tSU_STO Bus free time between a STOP and START condition tBUF Min fo r (Repeated) START condition tHD_STA hold time STOP condition set-up time Typ Max Unit — 100 kHz — — µs — — µs — — ns 100 D Symbol — 3450 ns 4.7 — — µs 4 — — µs 4 — — µs 4.7 — — µs N ew Parameter es ig ns Table 4.47. I2C Standard-mode (Sm)1 N ot R ec om m en de d Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.4 | 97 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.23.2 I2C Fast-mode (Fm)1 Symbol SCL clock frequency2 Typ Max Unit fSCL 0 — 400 kHz SCL clock low time tLOW 1.3 — — µs SCL clock high time tHIGH 0.6 — — µs SDA set-up time tSU_DAT 100 — — ns SDA hold time3 tHD_DAT 100 — 900 ns Repeated START condition set-up time tSU_STA 0.6 — — µs (Repeated) START condition tHD_STA hold time 0.6 — — µs 0.6 — — µs 1.3 — — µs STOP condition set-up time tSU_STO Bus free time between a STOP and START condition tBUF Test Condition N ew Parameter es ig ns Min D Table 4.48. I2C Fast-mode (Fm)1 N ot R ec om m en de d fo r Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.4 | 98 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.23.3 I2C Fast-mode Plus (Fm+)1 Symbol SCL clock frequency2 Typ Max Unit fSCL 0 — 1000 kHz SCL clock low time tLOW 0.5 — — µs SCL clock high time tHIGH 0.26 — — µs SDA set-up time tSU_DAT 50 — — ns SDA hold time tHD_DAT 100 — — ns Repeated START condition set-up time tSU_STA 0.26 — — µs (Repeated) START condition tHD_STA hold time 0.26 — — µs 0.26 — — µs 0.5 — — µs STOP condition set-up time tSU_STO Bus free time between a STOP and START condition tBUF Test Condition N ew Parameter es ig ns Min D Table 4.49. I2C Fast-mode Plus (Fm+)1 N ot R ec om m en de d fo r Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.4 | 99 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.1.24 USART SPI SPI Master Timing Symbol SCLK period 1 2 3 tSCLK CS to MOSI 1 2 tCS_MO SCLK to MOSI 1 2 tSCLK_MO MISO setup time 1 2 tSU_MI Test Condition Min 2* tHFPERCLK -34 -17.5 Max Unit — — ns — 34 ns — 17.5 ns — — ns IOVDD = 1.62 V 94 IOVDD = 3.0 V 48 — — ns -9 — — ns N ew tH_MI MISO hold time 1 2 Typ D Parameter es ig ns Table 4.50. SPI Master Timing Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). tCS_MO m en de d CS fo r 3. tHFPERCLK is one period of the selected HFPERCLK. tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI Figure 4.1. SPI Master Timing Diagram N ot R ec om MISO silabs.com | Building a more connected world. Rev. 1.4 | 100 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.51. SPI Slave Timing Min Typ Max Unit tSCLK 6* tHFPERCLK — — ns SCLK high time1 2 3 tSCLK_HI 2.5 * tHFPERCLK SCLK low time1 2 3 tSCLK_LO 2.5 * tHFPERCLK CS active to MISO 1 2 tCS_ACT_MI 4 CS disable to MISO 1 2 tCS_DIS_MI 4 MOSI setup time 1 2 tSU_MO MOSI hold time 1 2 3 tH_MO SCLK to MISO 1 2 3 tSCLK_MI 12.5 es ig ns SCLK period 1 2 3 Test Condition — — ns — — ns — 70 ns — 50 ns — — ns D Symbol N ew Parameter 13 — — ns 6 + 1.5 * tHFPERCLK — 45 + 2.5 * tHFPERCLK ns CS SCLK CLKPOL = 0 SCLK CLKPOL = 1 tCS_ACT_MI om MOSI m en de d 3. tHFPERCLK is one period of the selected HFPERCLK. fo r Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). tSCLK_HI tSU_MO tCS_DIS_MI tSCLK_LO tSCLK tH_MO tSCLK_MI Figure 4.2. SPI Slave Timing Diagram R ec MISO 4.2 Typical Performance Curves N ot Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.4 | 101 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications N ot R ec om m en de d fo r N ew D es ig ns 4.2.1 Supply Current Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature silabs.com | Building a more connected world. Rev. 1.4 | 102 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature N ot R ec om m en de d fo r N ew D es ig ns Electrical Specifications Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.4 | 103 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature N ot R ec om m en de d fo r N ew D es ig ns Electrical Specifications silabs.com | Building a more connected world. Rev. 1.4 | 104 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply N ot R ec om m en de d fo r N ew D es ig ns Electrical Specifications Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.4 | 105 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply N ot R ec om m en de d fo r N ew D es ig ns Electrical Specifications silabs.com | Building a more connected world. Rev. 1.4 | 106 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter N ot R ec om m en de d fo r N ew D es ig ns Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz Figure 4.8. DC-DC Converter Typical Performance Characteristics silabs.com | Building a more connected world. Rev. 1.4 | 107 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications DVDD DVDD 60mV/div offset:1.8V 20mV/div offset:1.8V 100mA ILOAD 1mA 2V/div offset:1.8V 10μs/div 100μs/div N ot R ec om m en de d fo r N ew Figure 4.9. DC-DC Converter Transition Waveforms D VSW es ig ns Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) silabs.com | Building a more connected world. Rev. 1.4 | 108 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Electrical Specifications N ot R ec om m en de d fo r N ew D es ig ns 4.2.3 2.4 GHz Radio Figure 4.10. 2.4 GHz RF Transmitter Output Power silabs.com | Building a more connected world. Rev. 1.4 | 109 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet N ew D es ig ns Electrical Specifications N ot R ec om m en de d fo r Figure 4.11. 2.4 GHz RF Receiver Sensitivity silabs.com | Building a more connected world. Rev. 1.4 | 110 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Typical Connection Diagrams 5. Typical Connection Diagrams 5.1 Power Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure. VDD + – VREGVDD AVDD VREGSW es ig ns Main Supply IOVDD HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P PAVDD N ew RFVDD D DECOUPLE Figure 5.1. EFR32MG14 Typical Application Circuit: Direct Supply Configuration without DC-DC converter fo r Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm. VDD + – m en de d Main Supply VREGVDD VDCDC VREGSW VREGVSS IOVDD HFXTAL_N HFXTAL_P LFXTAL_N LFXTAL_P DECOUPLE RFVDD PAVDD ec om DVDD AVDD N ot R Figure 5.2. EFR32MG14 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) silabs.com | Building a more connected world. Rev. 1.4 | 111 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Typical Connection Diagrams VDD + – VREGVDD VDCDC AVDD VREGSW IOVDD HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE PAVDD D RFVDD es ig ns Main Supply N ot R ec om m en de d fo r N ew Figure 5.3. EFR32MG14 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD) silabs.com | Building a more connected world. Rev. 1.4 | 112 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Typical Connection Diagrams 5.2 RF Matching Networks 4-Element Match for 2.4GHz Band 2-Element Match for 2.4GHz Band PAVDD PAVDD PAVDD L0 2G4RF_IOP 50Ω 2G4RF_IOP C0 C0 2G4RF_ION L1 50Ω C1 N ew 2G4RF_ION L0 D PAVDD es ig ns Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 113 for applications in the 2.4 GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 113 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32xG13 Reference Manual. For low RF transmit power applications less than 13 dBm, the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13 dBm). Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits fo r Sub-GHz Match Topology I (169-500 MHz) PAVDD L1 L2 C0 L3 C5 m en de d SUBGRF_IN L5 L6 L7 50Ω C2 C4 L0 C7 C8 C9 C10 C3 SUBGRF_IP C1 SUBGRF_ON om SUBGRF_OP L4 C0 C6 BAL1 Sub-GHz Match Topology 2 (500-915 MHz) L3 PAVDD L5 L6 50Ω ec SUBGRF_IN L0 C4 C7 C8 C9 R SUBGRF_IP C1 L4 BAL1 SUBGRF_ON N ot SUBGRF_OP Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits silabs.com | Building a more connected world. Rev. 1.4 | 113 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Typical Connection Diagrams 5.3 Other Connections N ot R ec om m en de d fo r N ew D es ig ns Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes). silabs.com | Building a more connected world. Rev. 1.4 | 114 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions 6. Pin Definitions om m en de d fo r N ew D es ig ns 6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout Figure 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout R ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.4 GPIO Functionality Table or 6.5 Alternate Functionality Overview. N ot Pin Name Pin(s) Table 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout Description Pin Name Pin(s) Description VSS 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) PF4 5 GPIO (5V) PF5 6 GPIO (5V) PF6 7 GPIO (5V) PF7 8 GPIO (5V) RFVDD 9 Radio power supply HFXTAL_N 10 High Frequency Crystal input pin. HFXTAL_P 11 High Frequency Crystal output pin. silabs.com | Building a more connected world. Rev. 1.4 | 115 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description SUBGRF_OP 13 Sub GHz Differential RF output, positive path. SUBGRF_IP 15 Sub GHz Differential RF input, positive path. 12 SUBGRF_ON 14 Sub GHz Differential RF output, negative path. SUBGRF_IN 16 Sub GHz Differential RF input, negative path. RFVSS 17 Radio Ground PAVSS 18 Power Amplifier (PA) voltage regulator VSS 2G4RF_ION 19 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 2G4RF_IOP 20 2.4 GHz Differential RF input/output, positive path. PAVDD 21 Power Amplifier (PA) voltage regulator VDD input PD13 22 GPIO PD14 23 GPIO PD15 24 GPIO PA0 25 GPIO PA1 26 GPIO PA2 27 GPIO PA3 28 GPIO PA4 29 GPIO PA5 30 GPIO (5V) PB11 31 GPIO (5V) PB12 32 GPIO (5V) PB13 33 GPIO (5V) AVDD 34 Analog power supply. PB14 35 GPIO PB15 36 GPIO VREGVSS 37 Voltage regulator VSS VREGSW 38 DCDC regulator switching node VREGVDD 39 Voltage regulator VDD input DECOUPLE 41 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. m en de d fo r N ew D es ig ns RESETn Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. 40 Digital power supply. IOVDD 42 Digital IO power supply. PC6 43 GPIO (5V) PC7 44 GPIO (5V) PC8 45 GPIO (5V) PC9 46 GPIO (5V) PC10 47 GPIO (5V) PC11 48 GPIO (5V) ec om DVDD N ot R Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 116 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions m en de d fo r N ew D es ig ns 6.2 QFN48 2.4 GHz Device Pinout om Figure 6.2. QFN48 2.4 GHz Device Pinout ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.4 GPIO Functionality Table or 6.5 Alternate Functionality Overview. Pin(s) R Pin Name Table 6.2. QFN48 2.4 GHz Device Pinout Description Pin Name Pin(s) Description 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) PF4 5 GPIO (5V) PF5 6 GPIO (5V) PF6 7 GPIO (5V) PF7 8 GPIO (5V) RFVDD 9 Radio power supply HFXTAL_N 10 High Frequency Crystal input pin. HFXTAL_P 11 High Frequency Crystal output pin. N ot VSS silabs.com | Building a more connected world. Rev. 1.4 | 117 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description NC 13 No Connect. PAVSS 15 Power Amplifier (PA) voltage regulator VSS 12 RFVSS 14 Radio Ground 2G4RF_ION 16 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 2G4RF_IOP 17 2.4 GHz Differential RF input/output, positive path. PAVDD 18 Power Amplifier (PA) voltage regulator VDD input PD10 19 GPIO (5V) PD11 20 GPIO (5V) PD12 21 GPIO (5V) PD13 22 GPIO PD14 23 GPIO PD15 24 GPIO PA0 25 GPIO PA1 26 GPIO PA2 27 GPIO PA3 28 GPIO PA4 29 GPIO PA5 30 GPIO (5V) PB11 31 GPIO (5V) PB12 32 GPIO (5V) PB13 33 GPIO (5V) AVDD 34 Analog power supply. PB14 35 GPIO PB15 36 GPIO VREGVSS 37 Voltage regulator VSS VREGSW 38 DCDC regulator switching node 39 Voltage regulator VDD input DECOUPLE 41 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. m en de d fo r N ew D es ig ns RESETn Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. VREGVDD 40 Digital power supply. IOVDD 42 Digital IO power supply. PC6 43 GPIO (5V) PC7 44 GPIO (5V) PC8 45 GPIO (5V) PC9 46 GPIO (5V) PC10 47 GPIO (5V) PC11 48 GPIO (5V) om DVDD N ot R ec Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 118 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions m en de d fo r N ew D es ig ns 6.3 QFN32 2.4 GHz Device Pinout om Figure 6.3. QFN32 2.4 GHz Device Pinout ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.4 GPIO Functionality Table or 6.5 Alternate Functionality Overview. Pin(s) R Pin Name Table 6.3. QFN32 2.4 GHz Device Pinout Description Pin Name Pin(s) Description 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) RFVDD 5 Radio power supply HFXTAL_N 6 High Frequency Crystal input pin. HFXTAL_P 7 High Frequency Crystal output pin. N ot VSS silabs.com | Building a more connected world. Rev. 1.4 | 119 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name RESETn 8 Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. PAVSS 10 Power Amplifier (PA) voltage regulator VSS 2G4RF_IOP 12 2.4 GHz Differential RF input/output, positive path. PD13 14 PD15 Pin(s) Description 9 Radio Ground 2G4RF_ION 11 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. PAVDD 13 Power Amplifier (PA) voltage regulator VDD input GPIO PD14 15 GPIO 16 GPIO PA0 17 GPIO PA1 18 GPIO PB11 19 GPIO (5V) PB12 20 GPIO (5V) PB13 21 GPIO (5V) AVDD 22 Analog power supply. PB14 23 GPIO PB15 24 GPIO VREGVSS 25 Voltage regulator VSS VREGSW 26 DCDC regulator switching node VREGVDD 27 Voltage regulator VDD input Digital power supply. IOVDD 30 Digital IO power supply. PC11 32 GPIO (5V) D N ew 29 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits. 31 GPIO (5V) fo r 28 DECOUPLE m en de d DVDD es ig ns RFVSS PC10 N ot R ec om Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 120 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions 6.4 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 6.5 Alternate Functionality Overview for a list of GPIO locations available for each function. Pin Alternate Functionality / Description TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 PA0 BUSDY TIM1_CC0 #0 BUSCX TIM1_CC1 #31 ADC0_EXTN TIM1_CC2 #30 TIM1_CC3 #29 WTIM0_CC0 #0 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 Radio Other US0_CTS #28 FRC_DCLK #0 CMU_CLK1 #0 US0_RTS #27 FRC_DOUT #31 PRS_CH6 #0 US1_TX #0 FRC_DFRAME #30 PRS_CH7 #10 US1_RX #31 MODEM_DCLK #0 PRS_CH8 #9 US1_CLK #30 MODEM_DIN #31 PRS_CH9 #8 US1_CS #29 MODEM_DOUT #30 ACMP0_O #0 US1_CTS #28 MODEM_ANT0 #29 ACMP1_O #0 US1_RTS #27 MODEM_ANT1 #28 LES_CH8 m en de d LETIM0_OUT0 #0 Communication D Timers N ew Analog fo r GPIO Name es ig ns Table 6.4. GPIO Functionality Table LETIM0_OUT1 #31 PCNT0_S0IN #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 N ot R ec om PCNT0_S1IN #31 LEU0_TX #0 silabs.com | Building a more connected world. Rev. 1.4 | 121 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Alternate Functionality / Description TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 BUSCY BUSDX PA1 ADC0_EXTP VDAC0_EXT TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 WTIM0_CC0 #1 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 PA2 om VDAC0_OUT1ALT / OPA1_OUTALT #1 BUSDY BUSCX N ot R ec OPA0_P silabs.com | Building a more connected world. Other US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 FRC_DCLK #1 CMU_CLK0 #0 US0_RTS #28 FRC_DOUT #0 PRS_CH6 #1 US1_TX #1 FRC_DFRAME #31 PRS_CH7 #0 US1_RX #0 MODEM_DCLK #1 PRS_CH8 #10 US1_CLK #31 MODEM_DIN #0 PRS_CH9 #9 US1_CS #30 MODEM_DOUT #31 ACMP0_O #1 US1_CTS #29 MODEM_ANT0 #30 ACMP1_O #1 US1_RTS #28 MODEM_ANT1 #29 LES_CH9 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 US0_TX #2 m en de d TIM0_CC0 #2 Radio es ig ns TIM0_CC0 #1 Communication D Timers N ew Analog fo r GPIO Name TIM0_CC1 #1 US0_RX #1 TIM0_CC2 #0 US0_CLK #0 TIM0_CDTI0 #31 US0_CS #31 TIM0_CDTI1 #30 US0_CTS #30 FRC_DCLK #2 TIM0_CDTI2 #29 US0_RTS #29 FRC_DOUT #1 TIM1_CC0 #2 US1_TX #2 FRC_DFRAME #0 TIM1_CC1 #1 US1_RX #1 MODEM_DCLK #2 TIM1_CC2 #0 US1_CLK #0 MODEM_DIN #1 TIM1_CC3 #31 US1_CS #31 MODEM_DOUT #0 WTIM0_CC0 #2 US1_CTS #30 MODEM_ANT0 #31 WTIM0_CC1 #0 US1_RTS #29 MODEM_ANT1 #30 LETIM0_OUT0 #2 LEU0_TX #2 LETIM0_OUT1 #1 LEU0_RX #1 PCNT0_S0IN #2 I2C0_SDA #2 PCNT0_S1IN #1 I2C0_SCL #1 PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 LES_CH10 Rev. 1.4 | 122 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description TIM0_CC0 #3 US0_TX #3 TIM0_CC1 #2 US0_RX #2 TIM0_CC2 #1 US0_CLK #1 TIM0_CDTI0 #0 US0_CS #0 TIM0_CDTI1 #31 US0_CTS #31 FRC_DCLK #3 PRS_CH6 #3 TIM0_CDTI2 #30 US0_RTS #30 FRC_DOUT #2 PRS_CH7 #2 BUSCY TIM1_CC0 #3 US1_TX #3 FRC_DFRAME #1 PRS_CH8 #1 BUSDX TIM1_CC1 #2 US1_RX #2 MODEM_DCLK #3 PRS_CH9 #0 VDAC0_OUT0 / OPA0_OUT TIM1_CC2 #1 US1_CLK #1 MODEM_DIN #2 ACMP0_O #3 TIM1_CC3 #0 US1_CS #0 MODEM_DOUT #1 ACMP1_O #3 WTIM0_CC0 #3 US1_CTS #31 MODEM_ANT0 #0 LES_CH11 WTIM0_CC1 #1 US1_RTS #30 MODEM_ANT1 #31 GPIO_EM4WU8 LETIM0_OUT0 #3 LEU0_TX #3 LETIM0_OUT1 #2 LEU0_RX #2 PCNT0_S0IN #3 I2C0_SDA #3 PCNT0_S1IN #2 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 PA4 TIM1_CC0 #4 om VDAC0_OUT1ALT / OPA1_OUTALT #2 TIM1_CC1 #3 OPA0_N WTIM0_CC0 #4 BUSDY N ot R ec BUSCX silabs.com | Building a more connected world. TIM1_CC2 #2 TIM1_CC3 #1 WTIM0_CC1 #2 WTIM0_CC2 #0 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 Other D I2C0_SCL #2 US0_TX #4 m en de d TIM0_CC0 #4 Radio es ig ns Communication N ew PA3 Timers fo r Analog US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 FRC_DCLK #4 US0_RTS #31 FRC_DOUT #3 US1_TX #4 FRC_DFRAME #2 US1_RX #3 MODEM_DCLK #4 US1_CLK #2 MODEM_DIN #3 US1_CS #1 MODEM_DOUT #2 US1_CTS #0 MODEM_ANT0 #1 US1_RTS #31 MODEM_ANT1 #0 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 LES_CH12 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 Rev. 1.4 | 123 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Alternate Functionality / Description TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 VDAC0_OUT0ALT / OPA0_OUTALT #0 PA5 BUSCY BUSDX TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 WTIM0_CC0 #5 WTIM0_CC1 #3 WTIM0_CC2 #1 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 Other US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 FRC_DCLK #5 CMU_CLKI0 #4 US0_RTS #0 FRC_DOUT #4 PRS_CH6 #5 US1_TX #5 FRC_DFRAME #3 PRS_CH7 #4 US1_RX #4 MODEM_DCLK #5 PRS_CH8 #3 US1_CLK #3 MODEM_DIN #4 PRS_CH9 #2 US1_CS #2 MODEM_DOUT #3 ACMP0_O #5 US1_CTS #1 MODEM_ANT0 #2 ACMP1_O #5 US1_RTS #0 MODEM_ANT1 #1 LES_CH13 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 N ot R ec om m en de d PCNT0_S1IN #4 Radio es ig ns TIM0_CC0 #5 Communication D Timers N ew Analog fo r GPIO Name silabs.com | Building a more connected world. Rev. 1.4 | 124 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CDTI0 #3 US0_RX #5 TIM0_CDTI1 #2 US0_CLK #4 TIM0_CDTI2 #1 US0_CS #3 TIM1_CC0 #6 US0_CTS #2 FRC_DCLK #6 TIM1_CC1 #5 US0_RTS #1 FRC_DOUT #5 PRS_CH6 #6 TIM1_CC2 #4 US1_TX #6 FRC_DFRAME #4 PRS_CH7 #5 BUSCY TIM1_CC3 #3 US1_RX #5 MODEM_DCLK #6 PRS_CH8 #4 BUSDX WTIM0_CC0 #15 US1_CLK #4 MODEM_DIN #5 PRS_CH9 #3 WTIM0_CC1 #13 US1_CS #3 MODEM_DOUT #4 ACMP0_O #6 WTIM0_CC2 #11 US1_CTS #2 MODEM_ANT0 #3 ACMP1_O #6 WTIM0_CDTI0 #7 US1_RTS #1 MODEM_ANT1 #2 WTIM0_CDTI1 #5 LEU0_TX #6 WTIM0_CDTI2 #3 D N ew LEU0_RX #5 I2C0_SDA #6 m en de d LETIM0_OUT0 #6 es ig ns US0_TX #6 fo r PB11 TIM0_CC2 #4 LETIM0_OUT1 #5 I2C0_SCL #5 PCNT0_S0IN #6 N ot R ec om PCNT0_S1IN #5 silabs.com | Building a more connected world. Rev. 1.4 | 125 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CDTI0 #4 US0_RX #6 TIM0_CDTI1 #3 US0_CLK #5 TIM0_CDTI2 #2 US0_CS #4 TIM1_CC0 #7 US0_CTS #3 FRC_DCLK #7 TIM1_CC1 #6 US0_RTS #2 FRC_DOUT #6 PRS_CH6 #7 TIM1_CC2 #5 US1_TX #7 FRC_DFRAME #5 PRS_CH7 #6 BUSDY TIM1_CC3 #4 US1_RX #6 MODEM_DCLK #7 PRS_CH8 #5 BUSCX WTIM0_CC0 #16 US1_CLK #5 MODEM_DIN #6 PRS_CH9 #4 WTIM0_CC1 #14 US1_CS #4 MODEM_DOUT #5 ACMP0_O #7 WTIM0_CC2 #12 US1_CTS #3 MODEM_ANT0 #4 ACMP1_O #7 WTIM0_CDTI0 #8 US1_RTS #2 MODEM_ANT1 #3 WTIM0_CDTI1 #6 LEU0_TX #7 WTIM0_CDTI2 #4 D N ew LEU0_RX #6 I2C0_SDA #7 m en de d LETIM0_OUT0 #7 es ig ns US0_TX #7 fo r PB12 TIM0_CC2 #5 LETIM0_OUT1 #6 I2C0_SCL #6 PCNT0_S0IN #7 N ot R ec om PCNT0_S1IN #6 silabs.com | Building a more connected world. Rev. 1.4 | 126 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CDTI0 #5 US0_RX #7 TIM0_CDTI1 #4 US0_CLK #6 TIM0_CDTI2 #3 US0_CS #5 TIM1_CC0 #8 US0_CTS #4 FRC_DCLK #8 TIM1_CC1 #7 US0_RTS #3 FRC_DOUT #7 TIM1_CC2 #6 US1_TX #8 FRC_DFRAME #6 BUSCY TIM1_CC3 #5 US1_RX #7 MODEM_DCLK #8 BUSDX WTIM0_CC0 #17 US1_CLK #6 MODEM_DIN #7 WTIM0_CC1 #15 US1_CS #5 MODEM_DOUT #6 WTIM0_CC2 #13 US1_CTS #4 MODEM_ANT0 #5 WTIM0_CDTI0 #9 US1_RTS #3 MODEM_ANT1 #4 WTIM0_CDTI1 #7 LEU0_TX #8 WTIM0_CDTI2 #5 D N ew CMU_CLKI0 #0 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 LEU0_RX #7 I2C0_SDA #8 m en de d LETIM0_OUT0 #8 es ig ns US0_TX #8 fo r PB13 TIM0_CC2 #6 LETIM0_OUT1 #7 I2C0_SCL #7 PCNT0_S0IN #8 N ot R ec om PCNT0_S1IN #7 silabs.com | Building a more connected world. Rev. 1.4 | 127 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #9 TIM0_CC1 #8 BUSCX LFXTAL_N US0_RX #8 TIM0_CDTI1 #5 US0_CLK #7 TIM0_CDTI2 #4 US0_CS #6 TIM1_CC0 #9 US0_CTS #5 FRC_DCLK #9 TIM1_CC1 #8 US0_RTS #4 FRC_DOUT #8 TIM1_CC2 #7 US1_TX #9 FRC_DFRAME #7 TIM1_CC3 #6 US1_RX #8 MODEM_DCLK #9 WTIM0_CC0 #18 US1_CLK #7 MODEM_DIN #8 WTIM0_CC1 #16 US1_CS #6 MODEM_DOUT #7 WTIM0_CC2 #14 US1_CTS #5 MODEM_ANT0 #6 WTIM0_CDTI0 #10 US1_RTS #4 MODEM_ANT1 #5 WTIM0_CDTI1 #8 LEU0_TX #9 WTIM0_CDTI2 #6 D CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9 LEU0_RX #8 I2C0_SDA #9 m en de d LETIM0_OUT0 #9 es ig ns TIM0_CDTI0 #6 N ew PB14 US0_TX #9 fo r BUSDY TIM0_CC2 #7 LETIM0_OUT1 #8 I2C0_SCL #8 PCNT0_S0IN #9 N ot R ec om PCNT0_S1IN #8 silabs.com | Building a more connected world. Rev. 1.4 | 128 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #10 TIM0_CC1 #9 BUSDX LFXTAL_P US0_RX #9 TIM0_CDTI1 #6 US0_CLK #8 TIM0_CDTI2 #5 US0_CS #7 TIM1_CC0 #10 US0_CTS #6 FRC_DCLK #10 TIM1_CC1 #9 US0_RTS #5 FRC_DOUT #9 TIM1_CC2 #8 US1_TX #10 FRC_DFRAME #8 TIM1_CC3 #7 US1_RX #9 MODEM_DCLK #10 WTIM0_CC0 #19 US1_CLK #8 MODEM_DIN #9 WTIM0_CC1 #17 US1_CS #7 MODEM_DOUT #8 WTIM0_CC2 #15 US1_CTS #6 MODEM_ANT0 #7 WTIM0_CDTI0 #11 US1_RTS #5 MODEM_ANT1 #6 WTIM0_CDTI1 #9 LEU0_TX #10 WTIM0_CDTI2 #7 D CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10 LEU0_RX #9 I2C0_SDA #10 m en de d LETIM0_OUT0 #10 es ig ns TIM0_CDTI0 #7 N ew PB15 US0_TX #10 fo r BUSCY TIM0_CC2 #8 LETIM0_OUT1 #9 I2C0_SCL #9 PCNT0_S0IN #10 N ot R ec om PCNT0_S1IN #9 silabs.com | Building a more connected world. Rev. 1.4 | 129 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CDTI0 #8 US0_RX #10 TIM0_CDTI1 #7 US0_CLK #9 TIM0_CDTI2 #6 US0_CS #8 TIM1_CC0 #11 US0_CTS #7 FRC_DCLK #11 CMU_CLK0 #2 TIM1_CC1 #10 US0_RTS #6 FRC_DOUT #10 CMU_CLKI0 #2 TIM1_CC2 #9 US1_TX #11 FRC_DFRAME #9 PRS_CH0 #8 BUSBY TIM1_CC3 #8 US1_RX #10 MODEM_DCLK #11 PRS_CH9 #11 BUSAX WTIM0_CC0 #26 US1_CLK #9 MODEM_DIN #10 PRS_CH10 #0 WTIM0_CC1 #24 US1_CS #8 MODEM_DOUT #9 PRS_CH11 #5 WTIM0_CC2 #22 US1_CTS #7 MODEM_ANT0 #8 ACMP0_O #11 WTIM0_CDTI0 #18 US1_RTS #6 MODEM_ANT1 #7 ACMP1_O #11 WTIM0_CDTI1 #16 LEU0_TX #11 WTIM0_CDTI2 #14 D N ew LEU0_RX #10 I2C0_SDA #11 m en de d LETIM0_OUT0 #11 es ig ns US0_TX #11 fo r PC6 TIM0_CC2 #9 LETIM0_OUT1 #10 I2C0_SCL #10 PCNT0_S0IN #11 N ot R ec om PCNT0_S1IN #10 silabs.com | Building a more connected world. Rev. 1.4 | 130 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CDTI0 #9 US0_RX #11 TIM0_CDTI1 #8 US0_CLK #10 TIM0_CDTI2 #7 US0_CS #9 TIM1_CC0 #12 US0_CTS #8 FRC_DCLK #12 TIM1_CC1 #11 US0_RTS #7 FRC_DOUT #11 TIM1_CC2 #10 US1_TX #12 FRC_DFRAME #10 BUSAY TIM1_CC3 #9 US1_RX #11 MODEM_DCLK #12 BUSBX WTIM0_CC0 #27 US1_CLK #10 MODEM_DIN #11 WTIM0_CC1 #25 US1_CS #9 MODEM_DOUT #10 WTIM0_CC2 #23 US1_CTS #8 MODEM_ANT0 #9 WTIM0_CDTI0 #19 US1_RTS #7 MODEM_ANT1 #8 WTIM0_CDTI1 #17 LEU0_TX #12 WTIM0_CDTI2 #15 D N ew CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12 LEU0_RX #11 I2C0_SDA #12 m en de d LETIM0_OUT0 #12 es ig ns US0_TX #12 fo r PC7 TIM0_CC2 #10 LETIM0_OUT1 #11 I2C0_SCL #11 PCNT0_S0IN #12 N ot R ec om PCNT0_S1IN #11 silabs.com | Building a more connected world. Rev. 1.4 | 131 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CDTI0 #10 US0_RX #12 TIM0_CDTI1 #9 US0_CLK #11 TIM0_CDTI2 #8 US0_CS #10 TIM1_CC0 #13 US0_CTS #9 FRC_DCLK #13 TIM1_CC1 #12 US0_RTS #8 FRC_DOUT #12 PRS_CH0 #10 TIM1_CC2 #11 US1_TX #13 FRC_DFRAME #11 PRS_CH9 #13 BUSBY TIM1_CC3 #10 US1_RX #12 MODEM_DCLK #13 PRS_CH10 #2 BUSAX WTIM0_CC0 #28 US1_CLK #11 MODEM_DIN #12 PRS_CH11 #1 WTIM0_CC1 #26 US1_CS #10 MODEM_DOUT #11 ACMP0_O #13 WTIM0_CC2 #24 US1_CTS #9 MODEM_ANT0 #10 ACMP1_O #13 WTIM0_CDTI0 #20 US1_RTS #8 MODEM_ANT1 #9 WTIM0_CDTI1 #18 LEU0_TX #13 WTIM0_CDTI2 #16 D N ew LEU0_RX #12 I2C0_SDA #13 m en de d LETIM0_OUT0 #13 es ig ns US0_TX #13 fo r PC8 TIM0_CC2 #11 LETIM0_OUT1 #12 I2C0_SCL #12 PCNT0_S0IN #13 N ot R ec om PCNT0_S1IN #12 silabs.com | Building a more connected world. Rev. 1.4 | 132 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CDTI0 #11 US0_RX #13 TIM0_CDTI1 #10 US0_CLK #12 TIM0_CDTI2 #9 US0_CS #11 TIM1_CC0 #14 US0_CTS #10 FRC_DCLK #14 TIM1_CC1 #13 US0_RTS #9 FRC_DOUT #13 PRS_CH0 #11 TIM1_CC2 #12 US1_TX #14 FRC_DFRAME #12 PRS_CH9 #14 BUSAY TIM1_CC3 #11 US1_RX #13 MODEM_DCLK #14 PRS_CH10 #3 BUSBX WTIM0_CC0 #29 US1_CLK #12 MODEM_DIN #13 PRS_CH11 #2 WTIM0_CC1 #27 US1_CS #11 MODEM_DOUT #12 ACMP0_O #14 WTIM0_CC2 #25 US1_CTS #10 MODEM_ANT0 #11 ACMP1_O #14 WTIM0_CDTI0 #21 US1_RTS #9 MODEM_ANT1 #10 WTIM0_CDTI1 #19 LEU0_TX #14 WTIM0_CDTI2 #17 D N ew LEU0_RX #13 I2C0_SDA #14 m en de d LETIM0_OUT0 #14 es ig ns US0_TX #14 fo r PC9 TIM0_CC2 #12 LETIM0_OUT1 #13 I2C0_SCL #13 PCNT0_S0IN #14 N ot R ec om PCNT0_S1IN #13 silabs.com | Building a more connected world. Rev. 1.4 | 133 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CDTI0 #12 US0_RX #14 TIM0_CDTI1 #11 US0_CLK #13 TIM0_CDTI2 #10 US0_CS #12 TIM1_CC0 #15 US0_CTS #11 FRC_DCLK #15 CMU_CLK1 #3 TIM1_CC1 #14 US0_RTS #10 FRC_DOUT #14 PRS_CH0 #12 TIM1_CC2 #13 US1_TX #15 FRC_DFRAME #13 PRS_CH9 #15 BUSBY TIM1_CC3 #12 US1_RX #14 MODEM_DCLK #15 PRS_CH10 #4 BUSAX WTIM0_CC0 #30 US1_CLK #13 MODEM_DIN #14 PRS_CH11 #3 WTIM0_CC1 #28 US1_CS #12 MODEM_DOUT #13 ACMP0_O #15 WTIM0_CC2 #26 US1_CTS #11 MODEM_ANT0 #12 ACMP1_O #15 WTIM0_CDTI0 #22 US1_RTS #10 MODEM_ANT1 #11 GPIO_EM4WU12 WTIM0_CDTI1 #20 LEU0_TX #15 WTIM0_CDTI2 #18 D N ew LEU0_RX #14 I2C0_SDA #15 m en de d LETIM0_OUT0 #15 es ig ns US0_TX #15 fo r PC10 TIM0_CC2 #13 LETIM0_OUT1 #14 I2C0_SCL #14 PCNT0_S0IN #15 N ot R ec om PCNT0_S1IN #14 silabs.com | Building a more connected world. Rev. 1.4 | 134 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CDTI0 #13 US0_RX #15 TIM0_CDTI1 #12 US0_CLK #14 TIM0_CDTI2 #11 US0_CS #13 TIM1_CC0 #16 US0_CTS #12 FRC_DCLK #16 CMU_CLK0 #3 TIM1_CC1 #15 US0_RTS #11 FRC_DOUT #15 PRS_CH0 #13 TIM1_CC2 #14 US1_TX #16 FRC_DFRAME #14 PRS_CH9 #16 BUSAY TIM1_CC3 #13 US1_RX #15 MODEM_DCLK #16 PRS_CH10 #5 BUSBX WTIM0_CC0 #31 US1_CLK #14 MODEM_DIN #15 PRS_CH11 #4 WTIM0_CC1 #29 US1_CS #13 MODEM_DOUT #14 ACMP0_O #16 WTIM0_CC2 #27 US1_CTS #12 MODEM_ANT0 #13 ACMP1_O #16 WTIM0_CDTI0 #23 US1_RTS #11 MODEM_ANT1 #12 DBG_SWO #3 WTIM0_CDTI1 #21 LEU0_TX #16 WTIM0_CDTI2 #19 D N ew LEU0_RX #15 I2C0_SDA #16 m en de d LETIM0_OUT0 #16 es ig ns US0_TX #16 fo r PC11 TIM0_CC2 #14 LETIM0_OUT1 #15 I2C0_SCL #15 PCNT0_S0IN #16 N ot R ec om PCNT0_S1IN #15 silabs.com | Building a more connected world. Rev. 1.4 | 135 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #18 TIM0_CC2 #16 US0_RX #17 TIM0_CDTI0 #15 US0_CLK #16 TIM0_CDTI1 #14 US0_CS #15 TIM0_CDTI2 #13 US0_CTS #14 FRC_DCLK #18 CMU_CLK1 #4 TIM1_CC0 #18 US0_RTS #13 FRC_DOUT #17 PRS_CH3 #9 TIM1_CC1 #17 US1_TX #18 FRC_DFRAME #16 PRS_CH4 #1 BUSDY TIM1_CC2 #16 US1_RX #17 MODEM_DCLK #18 PRS_CH5 #0 BUSCX TIM1_CC3 #15 US1_CLK #16 MODEM_DIN #17 PRS_CH6 #12 WTIM0_CC2 #30 US1_CS #15 MODEM_DOUT #16 ACMP0_O #18 WTIM0_CDTI0 #26 US1_CTS #14 MODEM_ANT0 #15 ACMP1_O #18 WTIM0_CDTI1 #24 US1_RTS #13 MODEM_ANT1 #14 LES_CH2 WTIM0_CDTI2 #22 LEU0_TX #18 LETIM0_OUT0 #18 LEU0_RX #17 LETIM0_OUT1 #17 D N ew I2C0_SDA #18 I2C0_SCL #17 m en de d PCNT0_S0IN #18 es ig ns US0_TX #18 fo r PD10 TIM0_CC1 #17 N ot R ec om PCNT0_S1IN #17 silabs.com | Building a more connected world. Rev. 1.4 | 136 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other TIM0_CC0 #19 TIM0_CC2 #17 US0_RX #18 TIM0_CDTI0 #16 US0_CLK #17 TIM0_CDTI1 #15 US0_CS #16 TIM0_CDTI2 #14 US0_CTS #15 FRC_DCLK #19 TIM1_CC0 #19 US0_RTS #14 FRC_DOUT #18 TIM1_CC1 #18 US1_TX #19 FRC_DFRAME #17 BUSCY TIM1_CC2 #17 US1_RX #18 MODEM_DCLK #19 BUSDX TIM1_CC3 #16 US1_CLK #17 MODEM_DIN #18 WTIM0_CC2 #31 US1_CS #16 MODEM_DOUT #17 WTIM0_CDTI0 #27 US1_CTS #15 MODEM_ANT0 #16 WTIM0_CDTI1 #25 US1_RTS #14 MODEM_ANT1 #15 WTIM0_CDTI2 #23 LEU0_TX #19 LETIM0_OUT0 #19 LEU0_RX #18 LETIM0_OUT1 #18 D N ew PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_O #19 ACMP1_O #19 LES_CH3 I2C0_SDA #19 I2C0_SCL #18 m en de d PCNT0_S0IN #19 es ig ns US0_TX #19 fo r PD11 TIM0_CC1 #18 PCNT0_S1IN #18 TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 om TIM0_CDTI1 #16 ec VDAC0_OUT1ALT / OPA1_OUTALT #0 BUSDY BUSCX N ot R PD12 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 WTIM0_CDTI0 #28 WTIM0_CDTI1 #26 WTIM0_CDTI2 #24 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 silabs.com | Building a more connected world. US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 FRC_DCLK #20 US0_RTS #15 FRC_DOUT #19 US1_TX #20 FRC_DFRAME #18 US1_RX #19 MODEM_DCLK #20 US1_CLK #18 MODEM_DIN #19 US1_CS #17 MODEM_DOUT #18 US1_CTS #16 MODEM_ANT0 #17 US1_RTS #15 MODEM_ANT1 #16 PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 LES_CH4 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 Rev. 1.4 | 137 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Alternate Functionality / Description TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 VDAC0_OUT0ALT / OPA0_OUTALT #1 BUSCY PD13 BUSDX OPA1_P TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 WTIM0_CDTI0 #29 WTIM0_CDTI1 #27 WTIM0_CDTI2 #25 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 om TIM0_CDTI2 #17 BUSDY PD14 BUSCX N ot R ec VDAC0_OUT1 / OPA1_OUT TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 WTIM0_CDTI0 #30 WTIM0_CDTI1 #28 WTIM0_CDTI2 #26 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 silabs.com | Building a more connected world. Other US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 FRC_DCLK #21 US0_RTS #16 FRC_DOUT #20 US1_TX #21 FRC_DFRAME #19 US1_RX #20 MODEM_DCLK #21 US1_CLK #19 MODEM_DIN #20 US1_CS #18 MODEM_DOUT #19 US1_CTS #17 MODEM_ANT0 #18 US1_RTS #16 MODEM_ANT1 #17 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 LES_CH5 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 m en de d PCNT0_S1IN #20 Radio es ig ns TIM0_CC0 #21 Communication D Timers N ew Analog fo r GPIO Name US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 FRC_DCLK #22 US0_RTS #17 FRC_DOUT #21 US1_TX #22 FRC_DFRAME #20 US1_RX #21 MODEM_DCLK #22 US1_CLK #20 MODEM_DIN #21 US1_CS #19 MODEM_DOUT #20 US1_CTS #18 MODEM_ANT0 #19 US1_RTS #17 MODEM_ANT1 #18 LEU0_TX #22 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 LES_CH6 GPIO_EM4WU4 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 Rev. 1.4 | 138 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Alternate Functionality / Description TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 VDAC0_OUT0ALT / OPA0_OUTALT #2 BUSCY PD15 BUSDX OPA1_N TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 WTIM0_CDTI0 #31 WTIM0_CDTI1 #29 WTIM0_CDTI2 #27 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 FRC_DCLK #23 US0_RTS #18 FRC_DOUT #22 US1_TX #23 FRC_DFRAME #21 US1_RX #22 MODEM_DCLK #23 US1_CLK #21 MODEM_DIN #22 US1_CS #20 MODEM_DOUT #21 US1_CTS #19 MODEM_ANT0 #20 US1_RTS #18 MODEM_ANT1 #19 LEU0_TX #23 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 LES_CH7 DBG_SWO #2 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 US0_TX #24 TIM0_CC1 #23 US0_RX #23 TIM0_CC2 #22 US0_CLK #22 TIM0_CDTI0 #21 US0_CS #21 TIM0_CDTI1 #20 US0_CTS #20 FRC_DCLK #24 PRS_CH0 #0 TIM0_CDTI2 #19 US0_RTS #19 FRC_DOUT #23 PRS_CH1 #7 TIM1_CC0 #24 US1_TX #24 FRC_DFRAME #22 PRS_CH2 #6 BUSBY TIM1_CC1 #23 US1_RX #23 MODEM_DCLK #24 PRS_CH3 #5 BUSAX TIM1_CC2 #22 US1_CLK #22 MODEM_DIN #23 ACMP0_O #24 TIM1_CC3 #21 US1_CS #21 MODEM_DOUT #22 ACMP1_O #24 WTIM0_CDTI1 #30 US1_CTS #20 MODEM_ANT0 #21 DBG_SWCLKTCK WTIM0_CDTI2 #28 US1_RTS #19 MODEM_ANT1 #20 BOOT_TX LETIM0_OUT0 #24 LEU0_TX #24 LETIM0_OUT1 #23 LEU0_RX #23 PCNT0_S0IN #24 I2C0_SDA #24 PCNT0_S1IN #23 I2C0_SCL #23 om TIM0_CC0 #24 N ot R ec PF0 Other US0_TX #23 m en de d PCNT0_S1IN #22 Radio es ig ns TIM0_CC0 #23 Communication D Timers N ew Analog fo r GPIO Name silabs.com | Building a more connected world. Rev. 1.4 | 139 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description TIM0_CC0 #25 US0_TX #25 TIM0_CC1 #24 US0_RX #24 TIM0_CC2 #23 US0_CLK #23 TIM0_CDTI0 #22 US0_CS #22 TIM0_CDTI1 #21 US0_CTS #21 FRC_DCLK #25 PRS_CH0 #1 TIM0_CDTI2 #20 US0_RTS #20 FRC_DOUT #24 PRS_CH1 #0 TIM1_CC0 #25 US1_TX #25 FRC_DFRAME #23 PRS_CH2 #7 BUSAY TIM1_CC1 #24 US1_RX #24 MODEM_DCLK #25 PRS_CH3 #6 BUSBX TIM1_CC2 #23 US1_CLK #23 MODEM_DIN #24 ACMP0_O #25 TIM1_CC3 #22 US1_CS #22 MODEM_DOUT #23 ACMP1_O #25 WTIM0_CDTI1 #31 US1_CTS #21 MODEM_ANT0 #22 DBG_SWDIOTMS WTIM0_CDTI2 #29 US1_RTS #20 MODEM_ANT1 #21 BOOT_RX LETIM0_OUT0 #25 LEU0_TX #25 LETIM0_OUT1 #24 LEU0_RX #24 PCNT0_S0IN #25 I2C0_SDA #25 PCNT0_S1IN #24 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 om BUSBY BUSAX N ot R ec PF2 silabs.com | Building a more connected world. TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 WTIM0_CDTI2 #30 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 Other D I2C0_SCL #24 US0_TX #26 m en de d TIM0_CC0 #26 Radio es ig ns Communication N ew PF1 Timers fo r Analog US0_RX #25 US0_CLK #24 US0_CS #23 CMU_CLK0 #6 US0_CTS #22 FRC_DCLK #26 PRS_CH0 #2 US0_RTS #21 FRC_DOUT #25 PRS_CH1 #1 US1_TX #26 FRC_DFRAME #24 PRS_CH2 #0 US1_RX #25 MODEM_DCLK #26 PRS_CH3 #7 US1_CLK #24 MODEM_DIN #25 ACMP0_O #26 US1_CS #23 MODEM_DOUT #24 ACMP1_O #26 US1_CTS #22 MODEM_ANT0 #23 DBG_TDO US1_RTS #21 MODEM_ANT1 #22 DBG_SWO #0 LEU0_TX #26 GPIO_EM4WU0 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 Rev. 1.4 | 140 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Pin Alternate Functionality / Description TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 BUSAY PF3 BUSBX TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 WTIM0_CDTI2 #31 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 Radio Other US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 es ig ns TIM0_CC0 #27 Communication US0_CTS #23 FRC_DCLK #27 CMU_CLK1 #6 US0_RTS #22 FRC_DOUT #26 PRS_CH0 #3 US1_TX #27 FRC_DFRAME #25 PRS_CH1 #2 US1_RX #26 MODEM_DCLK #27 PRS_CH2 #1 US1_CLK #25 MODEM_DIN #26 PRS_CH3 #0 US1_CS #24 MODEM_DOUT #25 ACMP0_O #27 D Timers N ew Analog US1_CTS #23 MODEM_ANT0 #24 ACMP1_O #27 US1_RTS #22 MODEM_ANT1 #23 DBG_TDI LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 fo r GPIO Name I2C0_SCL #26 m en de d US0_TX #28 TIM0_CC1 #27 US0_CLK #26 TIM0_CC2 #26 US0_CS #25 TIM0_CDTI0 #25 US0_CTS #24 FRC_DCLK #28 TIM0_CDTI1 #24 US0_RTS #23 FRC_DOUT #27 PRS_CH0 #4 TIM0_CDTI2 #23 US1_TX #28 FRC_DFRAME #26 PRS_CH1 #3 BUSBY TIM1_CC0 #28 US1_RX #27 MODEM_DCLK #28 PRS_CH2 #2 BUSAX TIM1_CC1 #27 US1_CLK #26 MODEM_DIN #27 PRS_CH3 #1 TIM1_CC2 #26 US1_CS #25 MODEM_DOUT #26 ACMP0_O #28 TIM1_CC3 #25 US1_CTS #24 MODEM_ANT0 #25 ACMP1_O #28 LETIM0_OUT0 #28 US1_RTS #23 MODEM_ANT1 #24 LETIM0_OUT1 #27 LEU0_TX #28 PCNT0_S0IN #28 LEU0_RX #27 PCNT0_S1IN #27 I2C0_SDA #28 om US0_RX #27 N ot R ec PF4 TIM0_CC0 #28 silabs.com | Building a more connected world. I2C0_SCL #27 Rev. 1.4 | 141 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other US0_TX #29 TIM0_CC1 #28 US0_CLK #27 TIM0_CC2 #27 US0_CS #26 TIM0_CDTI0 #26 US0_CTS #25 FRC_DCLK #29 TIM0_CDTI1 #25 US0_RTS #24 FRC_DOUT #28 PRS_CH0 #5 TIM0_CDTI2 #24 US1_TX #29 FRC_DFRAME #27 PRS_CH1 #4 BUSAY TIM1_CC0 #29 US1_RX #28 MODEM_DCLK #29 PRS_CH2 #3 BUSBX TIM1_CC1 #28 US1_CLK #27 MODEM_DIN #28 PRS_CH3 #2 TIM1_CC2 #27 US1_CS #26 MODEM_DOUT #27 ACMP0_O #29 TIM1_CC3 #26 US1_CTS #25 MODEM_ANT0 #26 LETIM0_OUT0 #29 US1_RTS #24 MODEM_ANT1 #25 LETIM0_OUT1 #28 LEU0_TX #29 PCNT0_S0IN #29 LEU0_RX #28 PCNT0_S1IN #28 I2C0_SDA #29 N ew D es ig ns US0_RX #28 ACMP1_O #29 fo r PF5 TIM0_CC0 #29 I2C0_SCL #28 m en de d US0_TX #30 TIM0_CC1 #29 US0_CLK #28 TIM0_CC2 #28 US0_CS #27 TIM0_CDTI0 #27 US0_CTS #26 FRC_DCLK #30 TIM0_CDTI1 #26 US0_RTS #25 FRC_DOUT #29 TIM0_CDTI2 #25 US1_TX #30 FRC_DFRAME #28 BUSBY TIM1_CC0 #30 US1_RX #29 MODEM_DCLK #30 BUSAX TIM1_CC1 #29 US1_CLK #28 MODEM_DIN #29 TIM1_CC2 #28 US1_CS #27 MODEM_DOUT #28 TIM1_CC3 #27 US1_CTS #26 MODEM_ANT0 #27 LETIM0_OUT0 #30 US1_RTS #25 MODEM_ANT1 #26 LETIM0_OUT1 #29 LEU0_TX #30 PCNT0_S0IN #30 LEU0_RX #29 PCNT0_S1IN #29 I2C0_SDA #30 om US0_RX #29 N ot R ec PF6 TIM0_CC0 #30 silabs.com | Building a more connected world. CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 I2C0_SCL #29 Rev. 1.4 | 142 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Analog Timers Communication Radio Other US0_TX #31 TIM0_CC1 #30 US0_CLK #29 TIM0_CC2 #29 US0_CS #28 TIM0_CDTI0 #28 US0_CTS #27 FRC_DCLK #31 TIM0_CDTI1 #27 US0_RTS #26 FRC_DOUT #30 TIM0_CDTI2 #26 US1_TX #31 FRC_DFRAME #29 BUSAY TIM1_CC0 #31 US1_RX #30 MODEM_DCLK #31 BUSBX TIM1_CC1 #30 US1_CLK #29 MODEM_DIN #30 TIM1_CC2 #29 US1_CS #28 MODEM_DOUT #29 TIM1_CC3 #28 US1_CTS #27 MODEM_ANT0 #28 LETIM0_OUT0 #31 US1_RTS #26 MODEM_ANT1 #27 LETIM0_OUT1 #30 LEU0_TX #31 PCNT0_S0IN #31 LEU0_RX #30 PCNT0_S1IN #30 I2C0_SDA #31 N ew D es ig ns US0_RX #30 CMU_CLKI0 #1 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1 fo r PF7 TIM0_CC0 #31 N ot R ec om m en de d I2C0_SCL #30 silabs.com | Building a more connected world. Rev. 1.4 | 143 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions 6.5 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 6.4 GPIO Functionality Table for a list of functions available on each GPIO pin. Table 6.5. Alternate Functionality Overview Alternate LOCATION ACMP1_O 8 - 11 12 - 15 16 - 19 20 - 23 0: PA0 4: PA4 8: PB13 1: PA1 5: PA5 2: PA2 12: PC7 16: PC11 20: PD12 24: PF0 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 3: PA3 7: PB12 11: PC6 15: PC10 0: PA0 4: PA4 8: PB13 12: PC7 1: PA1 5: PA5 9: PB14 2: PA2 6: PB11 3: PA3 7: PB12 0: PA0 0: PA1 ADC0_EXTP BOOT_RX 0: PF1 BOOT_TX 0: PF0 CMU_CLK0 28: PF4 27: PF3 31: PF7 16: PC11 20: PD12 24: PF0 28: PF4 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 11: PC6 15: PC10 27: PF3 31: PF7 23: PD15 Description Analog comparator ACMP0, digital output. Analog comparator ACMP1, digital output. Analog to digital converter ADC0 external reference input negative pin. Analog to digital converter ADC0 external reference input positive pin. Bootloader RX. Bootloader TX. 5: PD14 om 0: PA1 28 - 31 23: PD15 m en de d ADC0_EXTN 24 - 27 D 4-7 N ew ACMP0_O 0-3 fo r Functionality es ig ns Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. 1: PB15 6: PF2 2: PC6 7: PF7 Clock Management Unit, clock output number 0. ec 3: PC11 4: PD10 1: PB14 5: PD15 2: PC7 6: PF3 3: PC10 7: PF6 0: PB13 4: PA5 R 0: PA0 N ot CMU_CLK1 CMU_CLKI0 1: PF7 2: PC6 silabs.com | Building a more connected world. Clock Management Unit, clock output number 1. Clock Management Unit, clock input number 0. Rev. 1.4 | 144 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Alternate LOCATION Functionality 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PF0 Debug-interface Serial Wire clock input and JTAG Test Clock. DBG_SWCLKTCK es ig ns Note that this function is enabled to the pin out of reset, and has a built-in pull down. D 0: PF1 N ew DBG_SWDIOTMS 0: PF2 fo r 1: PB13 2: PD15 3: PC11 0: PF3 ec Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is received. R DBG_TDO N ot Debug-interface Serial Wire viewer Output. Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. 0: PF2 FRC_DCLK Note that this function is enabled to the pin out of reset, and has a built-in pull up. Debug-interface JTAG Test Data In. om DBG_TDI Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is not enabled after reset, and must be enabled by software to be used. m en de d DBG_SWO Description 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 28: PF4 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 3: PA3 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 31: PF7 silabs.com | Building a more connected world. Frame Controller, Data Sniffer Clock. Rev. 1.4 | 145 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions LOCATION Functionality FRC_DFRAME FRC_DOUT 16 - 19 20 - 23 12: PC9 16: PD10 20: PD14 24: PF2 28: PF6 9: PC6 13: PC10 17: PD11 21: PD15 25: PF3 29: PF7 6: PB13 10: PC7 14: PC11 18: PD12 22: PF0 26: PF4 30: PA0 3: PA5 7: PB14 11: PC8 19: PD13 23: PF1 27: PF5 0: PA1 4: PA5 8: PB14 12: PC8 17: PD10 20: PD13 24: PF1 1: PA2 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 2: PA3 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 3: PA4 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 es ig ns Alternate 0-3 4-7 8 - 11 12 - 15 0: PA2 4: PB11 8: PB15 1: PA3 5: PB12 2: PA4 0: PF7 GPIO_EM4WU1 0: PD14 0: PA3 0: PB13 0: PC10 GPIO_EM4WU12 0: PA1 LES_CH4 LES_CH5 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 24: PF1 28: PF5 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 3: PA4 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 31: PA0 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 28: PF4 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 31: PF7 ec N ot LES_CH3 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 20: PD13 2: PA3 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 17: PD10 1: PA2 Frame Controller, Data Sniffer Output. 31: PA0 12: PC8 3: PA3 LES_CH2 30: PF7 8: PB14 R I2C0_SDA 29: PF6 4: PA5 om I2C0_SCL m en de d GPIO_EM4WU8 Frame Controller, Data Sniffer Frame active 28: PF5 fo r GPIO_EM4WU4 Description 31: PA1 N ew GPIO_EM4WU0 GPIO_EM4WU9 28 - 31 D 0: PF2 24 - 27 I2C0 Serial Clock Line input / output. I2C0 Serial Data input / output. 0: PD10 LESENSE channel 2. 0: PD11 LESENSE channel 3. 0: PD12 LESENSE channel 4. 0: PD13 LESENSE channel 5. silabs.com | Building a more connected world. Rev. 1.4 | 146 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Alternate LOCATION Functionality LES_CH12 LES_CH13 LETIM0_OUT0 LETIM0_OUT1 Description LESENSE channel 6. 0: PD15 LESENSE channel 7. 0: PA0 LESENSE channel 8. 0: PA1 LESENSE channel 9. 0: PA2 LESENSE channel 10. 0: PA3 0: PA4 0: PA5 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 28: PF4 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 2: PA2 6: PB11 10: PB15 14: PC9 22: PD14 26: PF2 30: PF6 3: PA3 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 31: PF7 0: PA1 4: PA5 8: PB14 12: PC8 17: PD10 20: PD13 24: PF1 28: PF5 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 31: PA0 4: PA5 8: PB14 12: PC8 17: PD10 20: PD13 24: PF1 28: PF5 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 23: PF0 27: PF4 31: PA0 1: PA2 2: PA3 0: PA1 1: PA2 2: PA3 19: PD11 7: PB13 11: PC7 15: PC11 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 28: PF4 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 3: PA3 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 31: PF7 ec 3: PA4 R LEU0_TX 28 - 31 0: PD14 3: PA4 LEU0_RX 24 - 27 es ig ns LES_CH11 20 - 23 D LES_CH10 16 - 19 N ew LES_CH9 12 - 15 fo r LES_CH8 8 - 11 m en de d LES_CH7 4-7 om LES_CH6 0-3 LESENSE channel 11. LESENSE channel 12. LESENSE channel 13. Low Energy Timer LETIM0, output channel 0. Low Energy Timer LETIM0, output channel 1. LEUART0 Receive input. LEUART0 Transmit output. Also used as receive input in half duplex communication. Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. 0: PB15 Low Frequency Crystal (typically 32.768 kHz) positive pin. N ot 0: PB14 LFXTAL_N LFXTAL_P silabs.com | Building a more connected world. Rev. 1.4 | 147 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions LOCATION MODEM_DIN MODEM_DOUT 16 - 19 20 - 23 4: PB12 1: PA4 8: PC6 12: PC10 16: PD11 20: PD15 24: PF3 28: PF7 5: PB13 9: PC7 13: PC11 17: PD12 21: PF0 25: PF4 29: PA0 2: PA5 6: PB14 10: PC8 15: PD10 18: PD13 22: PF1 26: PF5 30: PA1 3: PB11 7: PB15 11: PC9 19: PD14 23: PF2 27: PF6 0: PA4 4: PB13 8: PC7 12: PC11 16: PD12 20: PF0 24: PF4 1: PA5 5: PB14 9: PC8 14: PD10 17: PD13 21: PF1 25: PF5 2: PB11 6: PB15 10: PC9 15: PD11 18: PD14 22: PF2 26: PF6 3: PB12 7: PC6 11: PC10 19: PD15 23: PF3 27: PF7 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 3: PA3 7: PB12 11: PC6 15: PC10 0: PA1 4: PA5 8: PB14 12: PC8 1: PA2 5: PB11 9: PB15 2: PA3 6: PB12 3: PA4 0: PA2 1: PA3 2: PA4 3: PA5 0: PA4 OPA0_N 0: PA2 28 - 31 29: PA1 30: PA2 28: PF4 29: PF5 26: PF2 30: PF6 23: PD15 27: PF3 31: PF7 17: PD10 20: PD13 24: PF1 28: PF5 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 31: PA0 4: PB11 8: PB15 12: PC9 20: PD14 24: PF2 28: PF6 5: PB12 9: PC6 13: PC10 17: PD11 21: PD15 25: PF3 29: PF7 6: PB13 10: PC7 14: PC11 18: PD12 22: PF0 26: PF4 30: PA0 7: PB14 11: PC8 19: PD13 23: PF1 27: PF5 31: PA1 MODEM data in. MODEM data out. Operational Amplifier 0 external positive input. Operational Amplifier 1 external negative input. ec R N ot PCNT0_S0IN MODEM data clock out. Operational Amplifier 0 external negative input. 0: PD13 OPA1_P MODEM antenna control output 1, used for antenna diversity. 31: PA3 0: PD15 OPA1_N MODEM antenna control output 0, used for antenna diversity. 28: PA0 22: PD14 16: PD10 Description 31: PA2 om OPA0_P 24 - 27 D 0: PA3 8 - 11 N ew MODEM_DCLK 4-7 fo r MODEM_ANT1 0-3 m en de d Functionality MODEM_ANT0 12 - 15 es ig ns Alternate Operational Amplifier 1 external positive input. 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 28: PF4 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 3: PA3 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 31: PF7 silabs.com | Building a more connected world. Pulse Counter PCNT0 input number 0. Rev. 1.4 | 148 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions LOCATION PRS_CH2 PRS_CH3 12 - 15 20 - 23 0: PA1 4: PA5 8: PB14 1: PA2 5: PB11 2: PA3 12: PC8 17: PD10 20: PD13 24: PF1 28: PF5 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 3: PA4 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 0: PF0 4: PF4 8: PC6 12: PC10 1: PF1 5: PF5 9: PC7 13: PC11 2: PF2 6: PF6 10: PC8 3: PF3 7: PF7 11: PC9 0: PF1 4: PF5 1: PF2 5: PF6 2: PF3 6: PF7 3: PF4 7: PF0 0: PF2 4: PF6 1: PF3 5: PF7 2: PF4 6: PF0 3: PF5 7: PF1 0: PF3 4: PF7 1: PF4 2: PF5 3: PF6 1: PD10 PRS_CH4 2: PD11 3: PD12 1: PD11 9: PD10 Description Pulse Counter PCNT0 input number 1. 31: PA0 Peripheral Reflex System PRS, channel 1. Peripheral Reflex System PRS, channel 2. 12: PD13 5: PF0 10: PD11 13: PD14 6: PF1 11: PD12 14: PD15 Peripheral Reflex System PRS, channel 3. 7: PF2 4: PD13 5: PD14 6: PD15 Peripheral Reflex System PRS, channel 4. 4: PD14 Peripheral Reflex System PRS, channel 5. 5: PD15 2: PD12 ec PRS_CH5 28 - 31 Peripheral Reflex System PRS, channel 0. om 0: PD10 24 - 27 D 8 - 11 N ew PRS_CH1 4-7 fo r PRS_CH0 0-3 m en de d Functionality PCNT0_S1IN 16 - 19 es ig ns Alternate 3: PD13 0: PA0 8: PB13 12: PD10 16: PD14 1: PA1 5: PA5 9: PB14 13: PD11 17: PD15 2: PA2 6: PB11 10: PB15 14: PD12 3: PA3 7: PB12 0: PA1 4: PA5 8: PB14 1: PA2 5: PB11 9: PB15 2: PA3 6: PB12 10: PA0 3: PA4 7: PB13 R 4: PA4 N ot PRS_CH6 PRS_CH7 silabs.com | Building a more connected world. Peripheral Reflex System PRS, channel 6. 15: PD13 Peripheral Reflex System PRS, channel 7. Rev. 1.4 | 149 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions LOCATION PRS_CH9 PRS_CH10 4-7 8 - 11 12 - 15 0: PA2 4: PB11 8: PB15 1: PA3 5: PB12 9: PA0 2: PA4 6: PB13 10: PA1 3: PA5 7: PB14 0: PA3 4: PB12 8: PA0 12: PC7 1: PA4 5: PB13 9: PA1 13: PC8 2: PA5 6: PB14 10: PA2 14: PC9 3: PB11 7: PB15 11: PC6 15: PC10 0: PC6 4: PC10 1: PC7 5: PC11 16 - 19 16: PC11 1: PC8 5: PC6 2: PC9 3: PC10 0: PA0 1: PA1 24: PF0 28: PF4 18: PD10 21: PD13 25: PF1 29: PF5 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 31: PF7 4: PA5 8: PB14 12: PC8 17: PD10 20: PD13 24: PF1 28: PF5 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 31: PA0 0: PA2 4: PB11 8: PB15 12: PC9 16: PD10 20: PD14 24: PF2 28: PF6 1: PA3 5: PB12 9: PC6 13: PC10 17: PD11 21: PD15 25: PF3 29: PF7 2: PA4 6: PB13 10: PC7 14: PC11 18: PD12 22: PF0 26: PF4 30: PA0 3: PA5 7: PB14 11: PC8 19: PD13 23: PF1 27: PF5 31: PA1 0: PA3 4: PB12 8: PC6 12: PC10 16: PD11 20: PD15 24: PF3 28: PF7 1: PA4 5: PB13 9: PC7 13: PC11 17: PD12 21: PF0 25: PF4 29: PA0 2: PA5 6: PB14 10: PC8 15: PD10 18: PD13 22: PF1 26: PF5 30: PA1 3: PB11 7: PB15 11: PC9 19: PD14 23: PF2 27: PF6 31: PA2 0: PA4 4: PB13 8: PC7 12: PC11 16: PD12 20: PF0 24: PF4 28: PA0 1: PA5 5: PB14 9: PC8 14: PD10 17: PD13 21: PF1 25: PF5 29: PA1 2: PB11 6: PB15 10: PC9 15: PD11 18: PD14 22: PF2 26: PF6 30: PA2 3: PB12 7: PC6 11: PC10 19: PD15 23: PF3 27: PF7 31: PA3 2: PA2 1: PA2 2: PA3 om ec R N ot TIM0_CDTI1 20: PD12 13: PC8 3: PA4 TIM0_CDTI0 16: PC11 9: PB14 0: PA1 TIM0_CC2 12: PC7 5: PA5 3: PA3 TIM0_CC1 8: PB13 m en de d TIM0_CC0 4: PA4 fo r PRS_CH11 28 - 31 silabs.com | Building a more connected world. Description Peripheral Reflex System PRS, channel 9. 3: PC9 4: PC11 24 - 27 Peripheral Reflex System PRS, channel 8. 2: PC8 0: PC7 20 - 23 D PRS_CH8 0-3 N ew Functionality es ig ns Alternate Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. Timer 0 Capture Compare input / output channel 0. Timer 0 Capture Compare input / output channel 1. Timer 0 Capture Compare input / output channel 2. Timer 0 Complimentary Dead Time Insertion channel 0. Timer 0 Complimentary Dead Time Insertion channel 1. Rev. 1.4 | 150 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions LOCATION TIM1_CC2 TIM1_CC3 16 - 19 4: PB14 1: PB11 8: PC8 13: PD10 16: PD13 20: PF1 24: PF5 28: PA1 5: PB15 9: PC9 14: PD11 17: PD14 21: PF2 25: PF6 29: PA2 2: PB12 6: PC6 10: PC10 15: PD12 18: PD15 22: PF3 26: PF7 30: PA3 3: PB13 7: PC7 11: PC11 19: PF0 23: PF4 27: PA0 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 3: PA3 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 0: PA1 4: PA5 8: PB14 12: PC8 17: PD10 20: PD13 24: PF1 1: PA2 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 2: PA3 6: PB12 10: PC6 14: PC10 19: PD12 3: PA4 7: PB13 11: PC7 15: PC11 0: PA2 4: PB11 8: PB15 12: PC9 1: PA3 5: PB12 9: PC6 2: PA4 6: PB13 10: PC7 3: PA5 7: PB14 11: PC8 0: PA3 4: PB12 8: PC6 1: PA4 30: PF6 28: PF5 29: PF6 26: PF3 30: PF7 23: PF0 27: PF4 31: PA0 16: PD10 20: PD14 24: PF2 28: PF6 13: PC10 17: PD11 21: PD15 25: PF3 29: PF7 14: PC11 18: PD12 22: PF0 26: PF4 30: PA0 19: PD13 23: PF1 27: PF5 31: PA1 16: PD11 20: PD15 24: PF3 28: PF7 25: PF4 29: PA0 6: PB14 10: PC8 15: PD10 18: PD13 22: PF1 26: PF5 30: PA1 7: PB15 11: PC9 19: PD14 23: PF2 27: PF6 31: PA2 4: PB11 8: PB15 12: PC9 16: PD10 20: PD14 24: PF2 28: PF6 5: PB12 9: PC6 13: PC10 17: PD11 21: PD15 25: PF3 29: PF7 6: PB13 10: PC7 14: PC11 18: PD12 22: PF0 26: PF4 30: PA0 7: PB14 11: PC8 19: PD13 23: PF1 27: PF5 31: PA1 0: PA3 4: PB12 8: PC6 12: PC10 16: PD11 20: PD15 24: PF3 28: PF7 1: PA4 5: PB13 9: PC7 13: PC11 17: PD12 21: PF0 25: PF4 29: PA0 2: PA5 6: PB14 10: PC8 15: PD10 18: PD13 22: PF1 26: PF5 30: PA1 3: PB11 7: PB15 11: PC9 19: PD14 23: PF2 27: PF6 31: PA2 0: PA4 4: PB13 8: PC7 12: PC11 16: PD12 20: PF0 24: PF4 28: PA0 1: PA5 5: PB14 9: PC8 14: PD10 17: PD13 21: PF1 25: PF5 29: PA1 2: PB11 6: PB15 10: PC9 15: PD11 18: PD14 22: PF2 26: PF6 30: PA2 3: PB12 7: PC6 11: PC10 19: PD15 23: PF3 27: PF7 31: PA3 0: PA5 4: PB14 8: PC8 13: PD10 16: PD13 20: PF1 24: PF5 28: PA1 1: PB11 5: PB15 9: PC9 14: PD11 17: PD14 21: PF2 25: PF6 29: PA2 2: PB12 6: PC6 10: PC10 15: PD12 18: PD15 22: PF3 26: PF7 30: PA3 3: PB13 7: PC7 11: PC11 19: PF0 23: PF4 27: PA0 31: PA4 1: PA3 2: PA4 om ec silabs.com | Building a more connected world. Timer 1 Capture Compare input / output channel 0. 31: PF7 21: PF0 R N ot US0_RTS 29: PF5 17: PD12 2: PA5 Timer 0 Complimentary Dead Time Insertion channel 2. 28: PF4 22: PD15 12: PC10 Description 31: PA4 13: PC11 3: PA5 US0_CTS 28 - 31 9: PC7 0: PA2 US0_CS 24 - 27 5: PB13 3: PB11 US0_CLK 20 - 23 D 0: PA5 8 - 11 N ew TIM1_CC1 4-7 fo r TIM1_CC0 0-3 m en de d Functionality TIM0_CDTI2 12 - 15 es ig ns Alternate Timer 1 Capture Compare input / output channel 1. Timer 1 Capture Compare input / output channel 2. Timer 1 Capture Compare input / output channel 3. USART0 clock input / output. USART0 chip select input / output. USART0 Clear To Send hardware flow control input. USART0 Request To Send hardware flow control output. Rev. 1.4 | 151 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Functionality US0_RX 0-3 4-7 8 - 11 12 - 15 20 - 23 0: PA1 4: PA5 8: PB14 1: PA2 5: PB11 2: PA3 24 - 27 28 - 31 12: PC8 17: PD10 20: PD13 24: PF1 28: PF5 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 3: PA4 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 0: PA0 4: PA4 8: PB13 12: PC7 16: PC11 20: PD12 24: PF0 1: PA1 5: PA5 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 2: PA2 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 3: PA3 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 0: PA2 4: PB11 8: PB15 12: PC9 16: PD10 20: PD14 24: PF2 28: PF6 1: PA3 5: PB12 9: PC6 13: PC10 17: PD11 21: PD15 25: PF3 29: PF7 2: PA4 6: PB13 10: PC7 14: PC11 18: PD12 22: PF0 26: PF4 30: PA0 3: PA5 7: PB14 11: PC8 19: PD13 23: PF1 27: PF5 31: PA1 0: PA3 4: PB12 8: PC6 12: PC10 16: PD11 20: PD15 24: PF3 28: PF7 1: PA4 5: PB13 9: PC7 13: PC11 17: PD12 21: PF0 25: PF4 29: PA0 2: PA5 6: PB14 10: PC8 15: PD10 18: PD13 22: PF1 26: PF5 30: PA1 7: PB15 11: PC9 19: PD14 23: PF2 27: PF6 31: PA2 4: PB13 8: PC7 12: PC11 16: PD12 20: PF0 24: PF4 28: PA0 5: PB14 9: PC8 14: PD10 17: PD13 21: PF1 25: PF5 29: PA1 6: PB15 10: PC9 15: PD11 18: PD14 22: PF2 26: PF6 30: PA2 7: PC6 11: PC10 19: PD15 23: PF3 27: PF7 31: PA3 4: PB14 8: PC8 13: PD10 16: PD13 20: PF1 24: PF5 28: PA1 31: PA0 28: PF4 29: PF5 30: PF6 31: PF7 3: PB11 0: PA4 US1_CTS 1: PA5 2: PB11 3: PB12 0: PA5 1: PB11 5: PB15 9: PC9 14: PD11 17: PD14 21: PF2 25: PF6 29: PA2 2: PB12 6: PC6 10: PC10 15: PD12 18: PD15 22: PF3 26: PF7 30: PA3 3: PB13 7: PC7 11: PC11 19: PF0 23: PF4 27: PA0 31: PA4 0: PA1 4: PA5 8: PB14 12: PC8 17: PD10 20: PD13 24: PF1 28: PF5 1: PA2 5: PB11 9: PB15 13: PC9 18: PD11 21: PD14 25: PF2 29: PF6 2: PA3 6: PB12 10: PC6 14: PC10 19: PD12 22: PD15 26: PF3 30: PF7 3: PA4 7: PB13 11: PC7 15: PC11 23: PF0 27: PF4 31: PA0 R ec US1_RTS N ot US1_RX fo r US1_CS m en de d US1_CLK N ew D US0_TX 16 - 19 es ig ns LOCATION om Alternate silabs.com | Building a more connected world. Description USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI). USART1 clock input / output. USART1 chip select input / output. USART1 Clear To Send hardware flow control input. USART1 Request To Send hardware flow control output. USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). Rev. 1.4 | 152 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions LOCATION Functionality US1_TX 16 - 19 20 - 23 12: PC7 16: PC11 20: PD12 24: PF0 28: PF4 9: PB14 13: PC8 18: PD10 21: PD13 25: PF1 29: PF5 6: PB11 10: PB15 14: PC9 19: PD11 22: PD14 26: PF2 30: PF6 7: PB12 11: PC6 15: PC10 23: PD15 27: PF3 es ig ns Alternate 0-3 4-7 8 - 11 12 - 15 0: PA0 4: PA4 8: PB13 1: PA1 5: PA5 2: PA2 3: PA3 24 - 27 0: PA1 0: PA3 N ew VDAC0_OUT0 / OPA0_OUT 0: PA5 1: PD13 2: PD15 fo r VDAC0_OUT0AL T / OPA0_OUTALT 0: PD14 0: PD12 1: PA2 2: PA4 0: PA0 WTIM0_CC0 1: PA1 2: PA2 15: PB11 5: PA5 16: PB12 26: PC6 28: PC8 17: PB13 27: PC7 29: PC9 18: PB14 30: PC10 19: PB15 31: PC11 16: PB14 24: PC6 28: PC10 1: PA3 14: PB12 17: PB15 25: PC7 29: PC11 15: PB13 26: PC8 R 3: PA5 N ot 0: PA4 WTIM0_CC2 1: PA5 silabs.com | Building a more connected world. USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI). Digital to analog converter VDAC0 external reference input pin. Digital to Analog Converter DAC0 output channel number 0. Digital to Analog Converter DAC0 alternative output for channel 0. Digital to Analog Converter DAC0 alternative output for channel 1. 13: PB11 2: PA4 Description Digital to Analog Converter DAC0 output channel number 1. 0: PA2 ec WTIM0_CC1 4: PA4 om 3: PA3 m en de d VDAC0_OUT1 / OPA1_OUT VDAC0_OUT1AL T / OPA1_OUTALT 31: PF7 D VDAC0_EXT 28 - 31 Wide timer 0 Capture Compare input / output channel 0. Wide timer 0 Capture Compare input / output channel 1. 27: PC9 11: PB11 12: PB12 22: PC6 24: PC8 30: PD10 13: PB13 23: PC7 25: PC9 31: PD11 14: PB14 26: PC10 15: PB15 27: PC11 Wide timer 0 Capture Compare input / output channel 2. Rev. 1.4 | 153 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Alternate LOCATION 4-7 8 - 11 7: PB11 WTIM0_CDTI0 WTIM0_CDTI1 12 - 15 16 - 19 20 - 23 8: PB12 18: PC6 9: PB13 19: PC7 20: PC8 26: PD10 28: PD12 21: PC9 27: PD11 29: PD13 Description Wide timer 0 Complimentary Dead Time Insertion channel 0. 22: PC10 30: PD14 11: PB15 23: PC11 31: PD15 5: PB11 8: PB14 16: PC6 20: PC10 24: PD10 6: PB12 9: PB15 17: PC7 21: PC11 25: PD11 18: PC8 26: PD12 19: PC9 27: PD13 4: PB12 14: PC6 16: PC8 22: PD10 24: PD12 5: PB13 15: PC7 17: PC9 23: PD11 25: PD13 28: PD14 29: PD15 30: PF0 Wide timer 0 Complimentary Dead Time Insertion channel 1. 31: PF1 28: PF0 29: PF1 N ew WTIM0_CDTI2 28 - 31 10: PB14 7: PB13 3: PB11 24 - 27 es ig ns 0-3 D Functionality 6: PB14 18: PC10 26: PD14 30: PF2 7: PB15 19: PC11 27: PD15 31: PF3 Wide timer 0 Complimentary Dead Time Insertion channel 2. Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions selected on that pin (i.e. another alternate function enabled to the same pin inadvertently). fo r Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to the pins for timing-critical signals. m en de d The following table lists the alternate functions and locations with special priority. Table 6.6. Alternate Functionality Priority Alternate Functionality Priority 1: PF7 High Speed N ot R ec om CMU_CLKI0 Location silabs.com | Building a more connected world. Rev. 1.4 | 154 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions 6.6 Analog Port (APORT) Client Maps The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.4 APORT Connection Diagram on page 155 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. ACMP0 PF2 PF3 NEG 1Y 2Y 3Y 4Y NEXT1 NEXT0 POS 1X 2X 3X 4X NEXT0 NEG 1Y 2Y 3Y 4Y NEXT1 PF4 PF5 PF6 ADC0 AX AY BX BY PF7 POS OPA0_P 1X 2X 3X 4X NEG OPA0_N 1Y 2Y 3Y 4Y OPA0 es ig ns D DY DX CY CX OPA1_N 1Y 2Y 3Y 4Y NEG OPA0_P VDAC0_OUT1ALT OUT1ALT ADC_EXTP ADC_EXTN PA0 OPA1_N PD15 OUT om PA2 PA1 OPA1 VDAC0_OUT0ALT OUT0ALT PD14 PD13 ec PD12 PD10 N ot PA4 PA3 POS PD11 R BUSAX, BUSBY, ... VDAC0_OUT1ALT OUT1ALT OUT0 PA5 OUT1 AX, BY, … VDAC0_OUT0ALT OUT0ALT OPA0_N OPA1_P APORTnX, APORTnY PB11 VDAC0_OUT0ALT VDAC0_OUT0ALT nX, nY PB13 PB12 1X 1Y OUT0ALT OUT1ALT OUT OUT0 OUT0ALT OUT1 OUT2 OUT3 OUT4 NEXT0 PB14 NEG OPA1_P 1X 2X 3X 4X OUT1 OUT1ALT OUT1 OUT2 OUT3 OUT4 NEXT1 PB15 ACMP1 IDAC0 m en de d EXTP EXTN N ew PF1 POS fo r POS PC6 PC7 PC8 PC9 PC10 PC11 PF0 1X 2X 3X 4X NEXT1 NEXT0 1Y 2Y 3Y 4Y NEXT1 NEXT0 1X 2X 3X 4X NEXT1 NEXT0 Figure 6.4. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin silabs.com | Building a more connected world. Rev. 1.4 | 155 N ot PB14 PB11 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PD11 PD13 PD15 PA1 PA3 PA5 PD11 PD13 PD15 PA1 PA3 PA5 m en de d PB12 om ec R BUSDY PD10 PD12 PD14 PA0 PA2 PA4 fo r PB12 PB14 BUSCX PC6 PC8 PC10 PC7 PC9 PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC8 PC10 PF0 PF2 PF4 PF6 BUSAX PC6 es ig ns D PC11 PF1 PF3 PF5 PF7 BUSBX N ew PF0 PF2 PF4 PF6 BUSBY CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. Table 6.7. ACMP0 Bus and Pin Mapping Rev. 1.4 | 156 N ot PB12 PB14 PB11 silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PD11 PD13 PD15 PA1 PA3 PA5 PD11 PD13 PD15 PA1 PA3 PA5 PF0 PF2 PF4 PF6 BUSBY PD10 PD12 PD14 PA0 PA2 PC6 PC8 PC10 N ew PA4 PB12 PB14 BUSCX fo r PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX m en de d om ec R BUSDY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC8 PC10 PF0 PF2 PF4 PF6 BUSAX PC6 es ig ns PC7 D PC9 PC11 PF1 PF3 PF5 PF7 BUSBX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Table 6.8. ACMP1 Bus and Pin Mapping Rev. 1.4 | 157 silabs.com | Building a more connected world. PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSCY PD10 PD12 PD14 PA0 PA2 PA4 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 PB12 PB14 BUSDY PB11 PD10 PD12 PD14 PA0 PA2 PA4 PD11 PD13 PD15 PA1 PA3 PA5 PD11 PD13 PD15 PA1 PA3 PA5 PD10 PD12 PD14 PA0 PA2 PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY N ew PA4 PB12 PB14 BUSCX fo r PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC8 PC10 PF0 PF2 PF4 PF6 BUSAX PC6 es ig ns PC7 D PC9 PC11 PF1 PF3 PF5 PF7 BUSBX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port m en de d om CH29 CH30 CH31 Bus ec PB12 PB14 R BUSCX APORT1Y APORT1X Port N ot EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Table 6.9. ADC0 Bus and Pin Mapping Table 6.10. IDAC0 Bus and Pin Mapping Rev. 1.4 | 158 N ot PB13 PB12 PB14 BUSCX PF7 BUSBX silabs.com | Building a more connected world. PD11 PD13 PD15 PA1 PA3 PD10 PD12 PD14 PA0 PA2 PA4 PC7 PC9 PC11 PC6 PC8 PC10 fo r PF0 PF2 PF4 PF6 BUSAX PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSDY PD11 PD13 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC6 PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY es ig ns D PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSCY APORT4Y APORT3Y APORT2Y APORT1Y N ew OPA0_P PA5 PF1 PF3 PF5 m en de d PB11 om ec R PB15 BUSDX APORT4X APORT3X APORT2X APORT1X CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions Table 6.11. VDAC0 / OPA Bus and Pin Mapping OPA0_N Rev. 1.4 | 159 N ot silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PD11 PD13 PD15 PA1 PA3 PC6 PC8 PC10 PF0 PF2 PF4 PF6 PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PB11 PB13 PB15 BUSDX PB12 PB14 BUSCX PD11 PD13 PD15 PA1 PA3 PA5 PD10 PD12 PD14 PA0 PA2 PA4 PC7 PC9 PC11 PA4 PB12 PB14 BUSDY PC6 PC8 PC10 PD10 PD12 PD14 PD11 PD13 PD15 PA1 PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC6 es ig ns D PA0 PA2 PA3 PA5 PB11 PB13 PB15 BUSCY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y N ew PF0 PF2 PF4 PF6 BUSAX fo r PF1 PF3 PF5 PF7 BUSBX m en de d om ec R BUSBY VDAC0_OUT0 / OPA0_OUT PA5 PB11 PB13 PB15 BUSCY APORT4X APORT3X APORT2X APORT1X OPA1_P PA4 PB12 PB14 BUSDY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions OPA1_N Rev. 1.4 | 160 N ot m en de d om ec R fo r silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSCY PC8 PC10 PF0 PF2 PF4 PF6 BUSBY PC6 es ig ns D PA2 PA4 N ew PB12 PB14 BUSDY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY APORT4Y APORT3Y APORT2Y APORT1Y CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus Port EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Pin Definitions VDAC0_OUT1 / OPA1_OUT Rev. 1.4 | 161 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN48 Package Specifications 7. QFN48 Package Specifications Figure 7.1. QFN48 Package Drawing N ot R ec om m en de d fo r N ew D es ig ns 7.1 QFN48 Package Dimensions silabs.com | Building a more connected world. Rev. 1.4 | 162 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN48 Package Specifications Table 7.1. QFN48 Package Dimensions Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 0.20 REF b 0.18 0.25 D 6.90 7.00 E 6.90 7.00 D2 4.60 4.70 E2 4.60 4.70 0.50 BSC L 0.30 K 0.20 R 0.09 7.10 7.10 4.80 N ew e 0.30 D A3 es ig ns Dimension aaa 4.80 0.40 0.50 — — — 0.14 0.15 0.10 fo r bbb ccc 0.10 0.05 m en de d ddd eee fff 0.08 0.10 N ot R ec om Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 163 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN48 Package Specifications Figure 7.2. QFN48 PCB Land Pattern Drawing N ot R ec om m en de d fo r N ew D es ig ns 7.2 QFN48 PCB Land Pattern silabs.com | Building a more connected world. Rev. 1.4 | 164 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN48 Package Specifications Table 7.2. QFN48 PCB Land Pattern Dimensions Typ S1 6.01 S 6.01 L1 4.70 W1 4.70 e 0.50 W 0.26 L 0.86 es ig ns Dimension N ot R ec om m en de d fo r N ew D Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 165 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN48 Package Specifications D fo r N ew EFR32 PPPPPPPPPP YYWWTTTTTT es ig ns 7.3 QFN48 Package Marking m en de d Figure 7.3. QFN48 Package Marking N ot R ec om The package marking consists of: • PPPPPPPPP – The part number designation. 1. Family Code (B | M | F) 2. G (Gecko) 3. Series (1, 2,...) 4. Device Configuration (1, 2,...) 5. Performance Grade (P | B | V) 6. Feature Code (1, 2,...) 7. TRX Code (3 = TXRX | 2 = RX | 1 = TX) 8. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band) 9. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K) 10. Temperature Grade (G = -40 to 85 | I = -40 to 125) • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. silabs.com | Building a more connected world. Rev. 1.4 | 166 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN32 Package Specifications 8. QFN32 Package Specifications Figure 8.1. QFN32 Package Drawing N ot R ec om m en de d fo r N ew D es ig ns 8.1 QFN32 Package Dimensions silabs.com | Building a more connected world. Rev. 1.4 | 167 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN32 Package Specifications Table 8.1. QFN32 Package Dimensions Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 0.20 REF b 0.18 0.25 D/E 4.90 5.00 D2/E2 3.40 3.50 E 0.50 BSC 0.30 0.40 K 0.20 — R 0.09 5.10 3.60 N ew L 0.30 D A3 es ig ns Dimension — aaa 0.50 — 0.14 0.15 bbb 0.10 ccc 0.10 0.05 fo r ddd eee 0.08 0.10 m en de d fff N ot R ec om Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 168 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN32 Package Specifications fo r N ew D es ig ns 8.2 QFN32 PCB Land Pattern Figure 8.2. QFN32 PCB Land Pattern Drawing m en de d Table 8.2. QFN32 PCB Land Pattern Dimensions Dimension S1 S L1 W1 om e W 4.01 4.01 3.50 3.50 0.50 0.26 0.86 ec L Typ N ot R Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 169 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet QFN32 Package Specifications D N ew EFR32 PPPPPPPPPP YYWWTTTTTT es ig ns 8.3 QFN32 Package Marking Figure 8.3. QFN32 Package Marking N ot R ec om m en de d fo r The package marking consists of: • PPPPPPPPP – The part number designation. 1. Family Code (B | M | F) 2. G (Gecko) 3. Series (1, 2,...) 4. Device Configuration (1, 2,...) 5. Performance Grade (P | B | V) 6. Feature Code (1, 2,...) 7. TRX Code (3 = TXRX | 2 = RX | 1 = TX) 8. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band) 9. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K) 10. Temperature Grade (G = -40 to 85 | I = -40 to 125) • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. silabs.com | Building a more connected world. Rev. 1.4 | 170 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Revision History 9. Revision History Revision 1.4 December, 2020 es ig ns • Removed EFR32MG14P731F256GM48-B from Table 2.1 Ordering Information on page 3. • Changed maximum available number of GPIO from 32 to 31 throughout document due to the removal of OPN EFR32MG14P731F256GM48-B. • Removed section 6.3 QFN48 Sub-GHz Device Pinout. • Removed PD9 from all pin functionality and pin mapping tables throughout document. Revision 1.3 In 1. Feature List, removed Wake on Radio reference. In the front page block diagram, updated the lowest energy mode for LETIMER. Updated 3.6.4 Low Energy Timer (LETIMER) lowest energy mode. In 4.1.2.1 General Operating Conditions for fCORE : N ew • • • • D September, 2020 • Added conditions for all usable wait state settings • Corrected maximum specification from 20 MHz to 7 MHz for test condition VSCALE0, MODE = WS0 • In, 4.1.14 General-Purpose I/O (GPIO), added footnotes to VIL, VIH (footnote 1), and RPUD (footnote 2). • In 4.1.15 Voltage Monitor (VMON), updated test conditions for IVMON. fo r • In 4.1.18 Digital to Analog Converter (VDAC), updated test conditions for IDAC, 200 Hz refresh rate. • SPUROOB_FCC_20 • SPURHARM_FCC_14 m en de d • Updated External PA supply connection conditions for SPURHARM_ETSI and SPUROOB_ETSI in section 4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band. • In 4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band: • Corrected FCC reference for non-restricted bands in: • SPURHARM_FCC_20 • SPUROOB_FCC_14 • Updated typical and maximum specifications for restricted bands (30-88 MHz) in: • SPUROOB_FCC_20 • SPUROOB_FCC_14 ec om • Added footnote to PSD. • In 4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band, updated typical and maximum specifications for SPURRX_ARIB, 930-1000 MHz, RBW=100 kHz. • In 7.3 QFN48 Package Marking, updated feature code. • In 8.3 QFN32 Package Marking, updated feature code. • Minor typographical, style, and phrasing changes throughout document. R Revision 1.2 N ot August, 2018 • Removed TRNG. • “PAVDD” references in Sub-GHz specification tables clarified to refer to “External PA Supply”. The PAVDD pin is for the 2.4 GHz radio. • GPIO Functionality table re-sorted to list pins alphabetically by GPIO Name column. • Added EFR32MG14P731F256GM48-B part number and associated pinout information. silabs.com | Building a more connected world. Rev. 1.4 | 171 EFR32MG14 Mighty Gecko Multi-Protocol Wireless SoC Family Data Sheet Revision History Revision 1.1 March, 2018 Removed PLFRCO. Removed 2 Mbps sensitivity plot from Figure 4.11 2.4 GHz RF Receiver Sensitivity on page 110. Figure 6.4 APORT Connection Diagram on page 155: Corrected OPA output connections to route through "Y" buses. Removed "Confidential" watermark. es ig ns • • • • Revision 1.0 D October, 2017 • Front Page: Fixed PLFRCO EM mode color. • Front Page and Feature List: Updated highlighted features for consistency across product line. • Multiprotocol support added to Ordering Information descriptions. • Ordering Code Key Figure: Removed L (BGA) from package designation. • System Overview: Memory maps updated with LE peripherals and new formatting. • Absolute Maximum Ratings Table: Added footnote to clarify VDIGPIN specification for 5V tolerant GPIO. fo r N ew • General Operating Conditions Table: Added footnote for additional information on peak current during voltage scaling operations. • Updated all specification table values, conditions, and footnotes according to latest characterization data, spec standards, and production test limits. • Sub-GHz RF Receiver Characteristics for 868 MHz Band Table: Removed BPSK DSSS signal specifications from table and footnotes. • 2.4 GHz RF Transmitter Output Power Figure: Extended temperature range to 125 C. • 2.4 GHz RF Receiver Sensitivity Figure: Updated with latest characterization data and added 125 C operational plots. • Updated pinout table formatting. • Removed 2 Mbps BLE RX and TX specification tables and associated information. m en de d Revision 0.1 June 21, 2017 N ot R ec om Initial release. silabs.com | Building a more connected world. Rev. 1.4 | 172 es ig ns Simplicity Studio IoT Portfolio www.silabs.com/IoT m en de d fo r N ew D One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support & Community www.silabs.com/community N ot R ec om Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required, or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications. Trademark Information Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
EFR32MG14P632F256GM32-B 价格&库存

很抱歉,暂时无法提供与“EFR32MG14P632F256GM32-B”相匹配的价格&库存,您可以联系我们找货

免费人工找货