0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EFR32MG1P233F256GM48-C0

EFR32MG1P233F256GM48-C0

  • 厂商:

    MURATA-PS(村田)

  • 封装:

  • 描述:

    Mcu, 32Bit, 40Mhz, Qfn-48; Product Range:efr32 Family Efr32Mg Series Microcontrollers; Architecture:...

  • 数据手册
  • 价格&库存
EFR32MG1P233F256GM48-C0 数据手册
The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup times, a scalable power amplifier, and no-compromise MCU features. Connected Home Lighting Health and Wellness Metering Building Automation and Security m en de d om RAM Memory Debug Interface DMA Controller D es ig n Energy Management High Frequency RC Oscillator Voltage Regulator Voltage Monitor CRYPTO Low Frequency RC Oscillator Auxiliary High Frequency RC Oscillator DC-DC Converter Power-On Reset CRC Low Frequency Crystal Oscillator Ultra Low Frequency RC Oscillator Brown-Out Detector FRC IFADC BUFC Serial Interfaces I/O Ports Timers and Triggers External Interrupts Timer/Counter Protocol Timer ADC Low Energy UARTTM General Purpose I/O Low Energy Timer Watchdog Timer Analog Comparator I2C Pin Reset Pulse Counter Real Time Counter and Calendar IDAC To RF Frontend Circuits AGC RAC Frequency Synthesizer Analog I/F USART RFSENSE 2.4 GHz RF Frontend: LNA, PA, I/Q Mixer Other High Frequency Crystal Oscillator 32-bit bus CRC ot R N BALUN • Robust peripheral set and up to 32 GPIO Peripheral Reflex System DEMOD PGA • Integrated balun for 2.4 GHz Clock Management Radio Transceiver Sub-GHz RF Frontend: LNA, PA, I/Q Mixer • Supports Zigbee, Thread and Bluetooth Low Energy • Integrated PA with up to 19 dBm (2.4 GHz) or 20 dBm (Sub-GHz) TX power Memory Protection Unit ec Flash Program Memory • 256 kB of flash and 32 kB of RAM • Autonomous Hardware Crypto Accelerator and Random Number Generator Core / Memory ARM CortexTM M4 processor with DSP extensions and FPU • 32-bit ARM® Cortex®-M4 core with 40 MHz maximum operating frequency • 12-channel Peripheral Reflex System enabling autonomous interaction of MCU peripherals Mighty Gecko applications include: • • • • • KEY FEATURES Fo rN ew The Mighty Gecko multi-protocol family of SoCs is part of the Wireless Gecko portfolio. Mighty Gecko SoCs are ideal for enabling energy-friendly multi-protocol, multi-band networking for IoT devices. s EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet MOD Pin Wakeup Cryotimer Lowest power mode with peripheral operational: EM0—Active EM1—Sleep silabs.com | Building a more connected world. EM2—Deep Sleep EM3—Stop EM4—Hibernate EM4—Shutoff Rev. 1.4 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Feature List 1. Feature List The EFR32MG1 highlighted features are listed below. D es ig n s • Wide selection of MCU peripherals • 12-bit 1 Msps SAR Analog to Digital Converter (ADC) • 2 × Analog Comparator (ACMP) • Digital to Analog Current Converter (IDAC) • Up to 32 pins connected to analog channels (APORT) shared between analog peripherals • Up to 32 General Purpose I/O pins with output state retention and asynchronous interrupts • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) • 2 × 16-bit Timer/Counter • 3 or 4 Compare/Capture/PWM channels • 32-bit Real Time Counter and Calendar • 16-bit Low Energy Timer for waveform generation • 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode • 16-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator • 2 × Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S) • Low Energy UART (LEUART™) Fo rN ew • Low Power Wireless System-on-Chip • High Performance 32-bit 40 MHz ARM Cortex®-M4 with DSP instruction and floating-point unit for efficient signal processing • 256 kB flash program memory • 32 kB RAM data memory • 2.4 GHz and Sub-GHz radio operation • Transmit power: • 2.4 GHz radio: Up to 19 dBm • Sub-GHz radio: Up to 20 dBm • Low Energy Consumption • 9.8 mA RX current at 250 kbps, DSSS-OQPSK, 2.4 GHz • 8.7 mA RX current at 1 Mbps, GFSK, 2.4 GHz • 7.6 mA RX current at 38.4 kbps, GFSK, 169 MHz • 8.2 mA TX current at 0 dBm output power at 2.4 GHz • 34.5 mA TX current at 14 dBm output power at 868 MHz • 63 μA/MHz in Active Mode (EM0) • 2.2 μA EM2 DeepSleep current (4 kB RAM retention and RTCC running from LFRCO) • Wake on Radio with signal strength detection, preamble pattern detection, frame detection and timeout • High Receiver Performance • -92.5 dBm sensitivity at 1 Mbit/s GFSK, 2.4 GHz • -99 dBm sensitivity at 250 kbps DSSS-OQPSK, 2.4 GHz • -126.4 dBm sensitivity at 600 bps, GFSK, 915 MHz • -121.4 dBm sensitivity at 2.4 kbps, GFSK, 868 MHz • -107 dBm sensitivity at 4.8 kbps, OOK, 433 MHz • -111.9 dBm sensitivity at 38.4 kbps, GFSK, 169 MHz • Supported Modulation Formats • 2/4 (G)FSK with fully configurable shaping • BPSK / DBPSK TX • OOK / ASK • Shaped OQPSK / (G)MSK • Configurable DSSS and FEC • Supported Protocols • Zigbee • Thread • Bluetooth® Low Energy • • • ec om m en de d • • I2C interface with SMBus support and address recognition in EM3 Stop Wide Operating Range • 1.85 V to 3.8 V single power supply • Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system • Standard (-40 °C to 85 °C) and Extended (-40 °C to 125 °C) temperature grades available Support for Internet Security • General Purpose CRC • Random Number Generator • Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC QFN32 5x5 mm Package QFN48 7x7 mm Package N ot R • Proprietary Protocols • Wireless M-Bus • Selected IEEE 802.15.4g SUN-FSK PHYs • Low Power Wide Area Networks • Suitable for Systems Targeting Compliance With: • FCC Part 90.210 Mask D, FCC part 15.247, 15.231, 15.249 • ETSI Category I Operation, EN 300 220, EN 300 328 • ARIB T-108, T-96 • China regulatory silabs.com | Building a more connected world. Rev. 1.4 | 2 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Ordering Information 2. Ordering Information Table 2.1. Ordering Information @ Max TX Power Flash (kB) RAM (kB) GPIO Package Temp Range Bluetooth LE 2.4 GHz @ 19 dBm 256 32 28 QFN48 -40 to +85°C Zigbee Sub-GHz @ 20 dBm 256 32 28 QFN48 -40 to +125°C Thread Proprietary Bluetooth LE 2.4 GHz @ 19 dBm Zigbee Sub-GHz @ 20 dBm Thread Proprietary EFR32MG1P232F256GM48-C0 Bluetooth LE 2.4 GHz @ 19 dBm 256 32 31 QFN48 -40 to +85°C 2.4 GHz @ 19 dBm 256 32 31 QFN48 -40 to +125°C 2.4 GHz @ 19 dBm 256 32 16 QFN32 -40 to +85°C 2.4 GHz @ 19 dBm 256 32 16 QFN32 -40 to +125°C Sub-GHz @ 20 dBm 256 32 32 QFN48 -40 to +85°C Bluetooth LE 2.4 GHz @ 16.5 dBm 256 32 28 QFN48 -40 to +85°C Zigbee Sub-GHz @ 16.5 dBm Zigbee Thread Proprietary EFR32MG1P232F256IM48-C0 Fo rN ew EFR32MG1P233F256IM48-C0 s EFR32MG1P233F256GM48-C0 Frequency Band D es ig n Ordering Code Protocol Stack Bluetooth LE m en de d Zigbee Thread Proprietary EFR32MG1P232F256GM32-C0 Bluetooth LE Zigbee Thread Proprietary Bluetooth LE om EFR32MG1P232F256IM32-C0 Zigbee ec Thread ot R EFR32MG1P231F256GM48-C0 N EFR32MG1P133F256GM48-C0 Proprietary Zigbee Proprietary Thread Proprietary silabs.com | Building a more connected world. Rev. 1.4 | 3 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Ordering Information Ordering Code Protocol Stack EFR32MG1P132F256GM48-C0 Bluetooth LE Frequency Band @ Max TX Power Flash (kB) RAM (kB) GPIO Package Temp Range 2.4 GHz @ 16.5 dBm 256 32 31 QFN48 -40 to +85°C 2.4 GHz @ 16.5 dBm 256 32 2.4 GHz @ 16.5 dBm 256 32 Zigbee Proprietary EFR32MG1P132F256IM48-C0 Bluetooth LE Zigbee Thread Proprietary EFR32MG1P132F256GM32-C0 Bluetooth LE Thread Proprietary EFR32MG1P132F256IM32-C0 Bluetooth LE Zigbee Thread Proprietary EFR32MG1P131F256GM48-C0 Zigbee 31 QFN48 -40 to +125°C 16 QFN32 -40 to +85°C Fo rN ew Zigbee D es ig n s Thread 2.4 GHz @ 16.5 dBm 256 32 16 QFN32 -40 to +125°C Sub-GHz @ 16.5 dBm 256 32 32 QFN48 -40 to +85°C 2.4 GHz @ 19 dBm 256 32 31 QFN48 -40 to +85°C 2.4 GHz @ 19 dBm 256 32 31 QFN48 -40 to +125°C 2.4 GHz @ 19 dBm 256 32 16 QFN32 -40 to +85°C 2.4 GHz @ 16.5 dBm 256 32 31 QFN48 -40 to +85°C 2.4 GHz @ 16.5 dBm 256 32 16 QFN32 -40 to +85°C 2.4 GHz @ 8 dBm 256 32 31 QFN48 -40 to +85°C 2.4 GHz @ 8 dBm 256 32 16 QFN32 -40 to +85°C m en de d Proprietary EFR32MG1B232F256GM48-C0 Zigbee Thread EFR32MG1B232F256IM48-C0 Zigbee Thread EFR32MG1B232F256GM32-C0 Zigbee om Thread EFR32MG1B132F256GM48-C0 Zigbee Thread ec EFR32MG1B132F256GM32-C0 ot R EFR32MG1V132F256GM48-C0 N EFR32MG1V132F256GM32-C0 Zigbee Thread Zigbee Thread Zigbee Thread silabs.com | Building a more connected world. Rev. 1.4 | 4 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Ordering Information EFR32 X G 1 P 132 F 256 G M 32 – C0 R Tape and Reel (Optional) s Revision D es ig n Pin Count Package – M (QFN), J (CSP) Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) Feature Set Code – r2r1r0 r2: Reserved r1: RF Type – 3 (TRX), 2 (RX), 1 (TX) r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band) Series Gecko Family – M (Mighty), B (Blue), F (Flex) Wireless Gecko 32-bit Fo rN ew Performance Grade – P (Performance), B (Basic), V (Value) N ot R ec om m en de d Figure 2.1. Ordering Code Key silabs.com | Building a more connected world. Rev. 1.4 | 5 Table of Contents 1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 .10 .10 .10 .10 .11 .11 .11 .11 .11 .12 .12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 . . . . . . . . . . . .13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .14 .14 .14 .14 .14 3.7 Communications and Other Digital Peripherals . . . . . . . . . . 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 .15 .15 .15 3.8 Security Features . . . . . . . . . . . . . . . 3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) . 3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .15 .15 3.9 Analog. . . . . . . . . . . 3.9.1 Analog Port (APORT) . . . . 3.9.2 Analog Comparator (ACMP) . . 3.9.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .15 .15 .16 . . . . . . . . . . . . . . . . . . . 3.2 Radio . . . . . . . . . . . . 3.2.1 Antenna Interface . . . . . . 3.2.2 Fractional-N Frequency Synthesizer 3.2.3 Receiver Architecture . . . . . 3.2.4 Transmitter Architecture . . . . 3.2.5 Wake on Radio . . . . . . . 3.2.6 RFSENSE . . . . . . . . . 3.2.7 Flexible Frame Handling . . . . 3.2.8 Packet and State Trace . . . . 3.2.9 Data Buffering . . . . . . . . 3.2.10 Radio Controller (RAC) . . . . 3.2.11 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Power . . . . . . . . . . . 3.3.1 Energy Management Unit (EMU) 3.3.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Clocking . . . . . . . . . . 3.5.1 Clock Management Unit (CMU) . 3.5.2 Internal and External Oscillators. . . . . . . Fo rN ew 3.1 Introduction . D es ig n . . m en de d . s 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 . . . . . . . . . N ot R ec om 3.6 Counters/Timers and PWM . . . . . . . . . 3.6.1 Timer/Counter (TIMER) . . . . . . . . 3.6.2 Real Time Counter and Calendar (RTCC) . . 3.6.3 Low Energy Timer (LETIMER) . . . . . . 3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.6.5 Pulse Counter (PCNT) . . . . . . . . . 3.6.6 Watchdog Timer (WDOG) . . . . . . . . silabs.com | Building a more connected world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rev. 1.4 | 6 . . . . . . . . . . . . . . . . . .16 . . . . . . . . . . . . . . . . . .16 3.11 Core and Memory . . . . . . . . . . . . 3.11.1 Processor Core . . . . . . . . . . . . 3.11.2 Memory System Controller (MSC) . . . . . 3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 .16 .16 .16 3.12 Memory Map . . . . . . . . . . .17 s . . . . . . . . . .18 3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . . . 3.13 Configuration Summary . . . . . . . . . . . . . . . . 4. Electrical Specifications D es ig n 3.9.4 Digital to Analog Current Converter (IDAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 .20 .22 .24 .25 .27 .33 .34 .35 .36 .45 .69 .70 .74 .75 .77 .78 .80 .82 .84 .84 .87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 .89 .91 .93 .99 om m en de d Fo rN ew 4.1 Electrical Characteristics . . . . . . . . 4.1.1 Absolute Maximum Ratings . . . . . . 4.1.2 Operating Conditions . . . . . . . . 4.1.3 Thermal Characteristics . . . . . . . 4.1.4 DC-DC Converter . . . . . . . . . 4.1.5 Current Consumption . . . . . . . . 4.1.6 Wake Up Times . . . . . . . . . . 4.1.7 Brown Out Detector (BOD) . . . . . . 4.1.8 Frequency Synthesizer . . . . . . . . 4.1.9 2.4 GHz RF Transceiver Characteristics . . 4.1.10 Sub-GHz RF Transceiver Characteristics . 4.1.11 Modem. . . . . . . . . . . . . 4.1.12 Oscillators . . . . . . . . . . . 4.1.13 Flash Memory Characteristics . . . . . 4.1.14 General-Purpose I/O (GPIO) . . . . . 4.1.15 Voltage Monitor (VMON) . . . . . . . 4.1.16 Analog to Digital Converter (ADC) . . . 4.1.17 Analog Comparator (ACMP) . . . . . 4.1.18 Current Digital to Analog Converter (IDAC) 4.1.19 Pulse Counter (PCNT) . . . . . . . 4.1.20 I2C . . . . . . . . . . . . . . 4.1.21 USART SPI . . . . . . . . . . . . . . . . ot R ec 4.2 Typical Performance Curves 4.2.1 Supply Current . . . 4.2.2 DC-DC Converter . . 4.2.3 Internal Oscillators . . 4.2.4 2.4 GHz Radio . . . 5. Typical Connection Diagrams 5.1 Power . . . . . . . 5.2 RF Matching Networks N 5.3 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 . . .103 . 104 6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout. . . . . . . . . . . . . . . . . . . 105 6.2 QFN48 2.4 GHz Device Pinout . . . . . . . . . . . . . . . . . . 107 . silabs.com | Building a more connected world. . . . . Rev. 1.4 | 7 6.3 QFN48 Sub-GHz Device Pinout . 6.4 QFN32 2.4 GHz Device Pinout 6.5 GPIO Functionality Table . . . . . . . . . . . . . . . . . . . . . . . .109 . . . . . . . . . . . . . . . . . . . . . . 111 . . . . . . . . . . . . . . . . . . . . . . . 1 . 13 6.6 Alternate Functionality Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 . .130 s 6.7 Analog Port (APORT) Client Maps . 7.1 QFN48 Package Dimensions 7.2 QFN48 PCB Land Pattern . 7.3 QFN48 Package Marking D es ig n 7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 134 . . . . . . . . . . . . . . . . . . . . . . . . 134 . . . . . . . . . . . . . . . . . . . . . . . .136 . . . . . . . . . . . . . . . . . . . . . . . . .138 8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 139 8.2 QFN32 PCB Land Pattern 8.3 QFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . 139 . . . . . . . . . . . . . . . . . . . . . . . .141 . . . . . . . . . . . . . . . . . . . . . . . .143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 N ot R ec om m en de d 9. Revision History . . Fo rN ew 8.1 QFN32 Package Dimensions silabs.com | Building a more connected world. Rev. 1.4 | 8 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3. System Overview 3.1 Introduction s The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG1 Reference Manual. Radio Transciever Port I/O Configuration I PA Q Frequency Synthesizer To RF Frontend Circuits AGC MOD RFVDD Up to 256 KB ISP Flash Program Memory IOVDD Up to 32 KB RAM Voltage Monitor Memory Protection Unit DVDD Floating Point Unit bypass Serial Wire Debug / Programming Watchdog Timer VSS VREGVSS RFVSS PAVSS Brown Out / Power-On Reset ULFRCO AUXHFRCO A A H P B B CRC Analog Peripherals Internal Reference om PCn Port D Drivers PDn VDD VREF Port F Drivers PFn 12-bit ADC VDD Temp Sensor + Analog Comparator Figure 3.1. Detailed EFR32MG1 Block Diagram ec HFXTAL_N LFXO HFXO Port C Drivers IDAC LFRCO LFXTAL_P / N PBn I2C HFRCO HFXTAL_P Port B Drivers CRYPTO Clock Management Reset Management Unit RESETn PAn APORT DECOUPLE USART LEUART DMA Controller Voltage Regulator Port A Drivers Port Mapper Input MUX VREGSW DC-DC Converter m en de d VREGVDD PCNT RTC / RTCC ARM Cortex-M4 Core Energy Management PAVDD AVDD CRYOTIMER Fo rN ew BALUN 2G4RF_ION IOVDD TIMER 2.4 GHz RF LNA 2G4RF_IOP IFADC PGA Q Digital Peripherals LETIMER RAC RFSENSE CRC PA FRC DEMOD LNA BUFC Sub-GHz RF I SUBGRF_IP SUBGRF_IN SUBGRF_OP SUBGRF_ON D es ig n A block diagram of the EFR32MG1 family is shown in Figure 3.1 Detailed EFR32MG1 Block Diagram on page 9. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information. ot R 3.2 Radio N The Mighty Gecko family features a highly configurable radio transceiver supporting a wide range of wireless protocols, including Zigbee, Thread, BLE and proprietary. silabs.com | Building a more connected world. Rev. 1.4 | 9 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.2.1 Antenna Interface The EFR32MG1 family includes devices which support both single-band and dual-band RF communication over separate physical RF interfaces. The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The 2G4RF_ION pin should be grounded externally. s The sub-GHz antenna interface consists of a differential transmit interface (pins SUBGRF_OP and SUBGRF_ON) and a differential receive interface (pinsSUBGRF_IP and SUBGRF_IN). D es ig n The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching Networks section. 3.2.2 Fractional-N Frequency Synthesizer The EFR32MG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier. Fo rN ew The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption. 3.2.3 Receiver Architecture The EFR32MG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC). The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency. m en de d The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz radio can be calibrated on-demand by the user for the desired frequency band. Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS) for 2.4 GHz and sub-GHz bands. A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception. om The EFR32MG1 features integrated support for antenna diversity to mitigate the problem of frequency-selective fading due to multipath propagation and improve link budget. Support for antenna diversity is available for specific PHY configurations in 2.4 GHz and sub-GHz bands. Internal configurable hardware controls an external switch for automatic switching between antennae during RF receive detection operations. ec Note: Due to the shorter preamble of 802.15.4 and BLE packets, RX diversity is not supported. ot R 3.2.4 Transmitter Architecture N The EFR32MG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping. Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32MG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access. silabs.com | Building a more connected world. Rev. 1.4 | 10 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.2.5 Wake on Radio The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals. 3.2.6 RFSENSE D es ig n s The RFSENSE peripheral generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4. RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal RF reception. Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals. 3.2.7 Flexible Frame Handling om m en de d Fo rN ew EFR32MG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator: • Highly adjustable preamble length • Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts • Frame disassembly and address matching (filtering) to accept or reject frames • Automatic ACK frame assembly and transmission • Fully flexible CRC generation and verification: • Multiple CRC values can be embedded in a single frame • 8, 16, 24 or 32-bit CRC value • Configurable CRC bit and byte ordering • Selectable bit-ordering (least significant or most significant bit first) • Optional data whitening • Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding • Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing • Optional symbol interleaving, typically used in combination with FEC • Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware • UART encoding over air, with start and stop bit insertion / removal • Test mode support, such as modulated or unmodulated carrier output • Received frame timestamping 3.2.8 Packet and State Trace ot R ec The EFR32MG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features: • Non-intrusive trace of transmit data, receive data and state information • Data observability on a single-pin UART data output, or on a two-pin SPI data output • Configurable data output bitrate / baudrate • Multiplexed transmitted data, received data and state / meta information in a single serial data stream 3.2.9 Data Buffering N The EFR32MG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations. silabs.com | Building a more connected world. Rev. 1.4 | 11 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.2.10 Radio Controller (RAC) The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1. It performs the following tasks: • Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry • Run-time calibration of receiver, transmitter and frequency synthesizer • Detailed frame transmission timing, including optional LBT or CSMA-CA s 3.2.11 Random Number Generator D es ig n The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications. N ot R ec om m en de d Fo rN ew Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna. silabs.com | Building a more connected world. Rev. 1.4 | 12 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.3 Power The EFR32MG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. D es ig n s AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA. 3.3.1 Energy Management Unit (EMU) The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. Fo rN ew 3.3.2 DC-DC Converter The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients. 3.4 General Purpose Input/Output (GPIO) m en de d EFR32MG1 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.5 Clocking 3.5.1 Clock Management Unit (CMU) om The Clock Management Unit controls oscillators and clocks in the EFR32MG1. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. ec 3.5.2 Internal and External Oscillators N ot R The EFR32MG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. silabs.com | Building a more connected world. Rev. 1.4 | 13 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.6 Counters/Timers and PWM 3.6.1 Timer/Counter (TIMER) D es ig n s TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. 3.6.2 Real Time Counter and Calendar (RTCC) 3.6.3 Low Energy Timer (LETIMER) Fo rN ew The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H. The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER) 3.6.5 Pulse Counter (PCNT) m en de d The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. om 3.6.6 Watchdog Timer (WDOG) ec The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS. 3.7 Communications and Other Digital Peripherals ot R 3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) N The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S silabs.com | Building a more connected world. Rev. 1.4 | 14 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.7.3 Inter-Integrated Circuit Interface (I2C) D es ig n s The I2C interface enables communication between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.7.4 Peripheral Reflex System (PRS) 3.8 Security Features Fo rN ew The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the needs of the application. 3.8.2 Crypto Accelerator (CRYPTO) m en de d The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256). Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. 3.9 Analog om CRYPTO also provides trigger signals for DMA read and write operations. ec 3.9.1 Analog Port (APORT) ot R The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. 3.9.2 Analog Comparator (ACMP) N The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold. silabs.com | Building a more connected world. Rev. 1.4 | 15 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.9.3 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential. s 3.9.4 Digital to Analog Current Converter (IDAC) D es ig n The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with several ranges consisting of various step sizes. 3.10 Reset Management Unit (RMU) The RMU is responsible for handling reset of the EFR32MG1. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset. Fo rN ew 3.11 Core and Memory 3.11.1 Processor Core The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system: • ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • Configuration and event handling of all peripherals • 2-pin Serial-Wire debug interface m en de d 3.11.2 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep. 3.11.3 Linked Direct Memory Access Controller (LDMA) N ot R ec om The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented. silabs.com | Building a more connected world. Rev. 1.4 | 16 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet System Overview 3.12 Memory Map m en de d Fo rN ew D es ig n s The EFR32MG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration. N ot R ec om Figure 3.2. EFR32MG1 Memory Map — Core Peripherals and Code Space silabs.com | Building a more connected world. Rev. 1.4 | 17 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet m en de d Fo rN ew D es ig n s System Overview Figure 3.3. EFR32MG1 Memory Map — Peripherals 3.13 Configuration Summary Module ec om The features of the EFR32MG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration. ot R USART0 N USART1 TIMER0 TIMER1 silabs.com | Building a more connected world. Table 3.1. Configuration Summary Configuration Pin Connections IrDA US0_TX, US0_RX, US0_CLK, US0_CS SmartCard I2S US1_TX, US1_RX, US1_CLK, US1_CS SmartCard with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIM1_CC[3:0] Rev. 1.4 | 18 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4. Electrical Specifications 4.1 Electrical Characteristics All electrical parameters in all tables are specified under the following conditions, unless stated otherwise: • Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization. D es ig n s • Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna. • Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise. N ot R ec om m en de d Fo rN ew Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits. silabs.com | Building a more connected world. Rev. 1.4 | 19 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.1 Absolute Maximum Ratings Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx. Parameter Symbol Storage temperature range TSTG -50 Voltage on any supply pin VDDMAX -0.3 Voltage ramp rate on any supply pin VDDRAMPMAX DC voltage on any GPIO pin VDIGPIN — Input RF level on pins 2G4RF_IOP and 2G4RF_ION PRFMAX2G4 Voltage differential between RF pins (2G4RF_IOP 2G4RF_ION) VMAXDIFF2G4 Absolute voltage on RF pins 2G4RF_IOP and 2G4RF_ION VMAX2G4 Absolute voltage on SubGHz RF pins VMAXSUBG om Total current into VDD power IVDDMAX lines Max Unit — 150 °C — 3.8 V — 1 V / µs — Min of 5.25 and IOVDD +2 V -0.3 — IOVDD+0.3 V -0.3 — 1.4 V — — 10 dBm -50 — 50 mV -0.3 — 3.3 V Pins SUBGRF_OP and SUBGRF_ON -0.3 — 3.3 V Pins SUBGRF_IP and SUBGRF_IN, -0.3 — 0.3 V Source — — 200 mA m en de d VHFXOPIN -0.3 Typ Fo rN ew 5V tolerant GPIO pins1 2 3 Standard GPIO pins Voltage on HFXO pins Min D es ig n Test Condition s Table 4.1. Absolute Maximum Ratings IVSSMAX Sink — — 200 mA Current per I/O pin IIOMAX Sink — — 50 mA Source — — 50 mA Sink — — 200 mA Source — — 200 mA -G grade devices -40 — 105 °C -I grade devices -40 — 125 °C ec Total current into VSS ground lines ot R Current for all I/O pins TJ N Junction temperature IIOALLMAX silabs.com | Building a more connected world. Rev. 1.4 | 20 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d Fo rN ew D es ig n s Note: 1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD. 2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the maximum IO current specifications. 3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO. silabs.com | Building a more connected world. Rev. 1.4 | 21 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications N ot R ec om m en de d Fo rN ew D es ig n When assigning supply sources, the following requirements must be observed: • VREGVDD must be greater than or equal to AVDD, DVDD, RFVDD, PAVDD and all IOVDD supplies. • VREGVDD = AVDD • DVDD ≤ AVDD • IOVDD ≤ AVDD • RFVDD ≤ AVDD • PAVDD ≤ AVDD s 4.1.2 Operating Conditions silabs.com | Building a more connected world. Rev. 1.4 | 22 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.2.1 General Operating Conditions Table 4.2. General Operating Conditions Test Condition Min Typ Max Operating ambient temperature range1 TA -G temperature grade -40 25 85 -I temperature grade -40 AVDD supply voltage2 VAVDD VREGVDD operating supply voltage2 3 VVREGVDD IVREGVDD RFVDD operating supply voltage VRFVDD DVDD operating supply voltage VDVDD PAVDD operating supply voltage VPAVDD DECOUPLE output capacitor4 2.4 DCDC in bypass, 50mA load 1.85 DCDC not in use. DVDD externally shorted to VREGVDD 1.85 fHFCLK om HFCLK frequency 3.3 3.8 V 3.3 3.8 V 3.3 3.8 V 3.3 3.8 V — 200 mA DCDC in bypass, T > 85 °C — — 100 mA 1.62 — VVREGVDD V 1.62 — VVREGVDD V 1.62 — VVREGVDD V 1.62 — VVREGVDD V 0.75 1.0 2.75 µF — — 0.1 V MODE = WS0 — — 26 MHz MODE = WS1 — — 40 MHz MODE = WS0 — — 26 MHz MODE = WS1 — — 40 MHz All IOVDD pins CDECOUPLE fCORE °C — Difference between AVDD dVDD and VREGVDD, ABS(AVDDVREGVDD)2 HFCORECLK frequency 125 DCDC in bypass, T ≤ 85 °C m en de d IOVDD operating supply volt- VIOVDD age DCDC in regulation °C 25 Fo rN ew VREGVDD current 1.85 Unit s Symbol D es ig n Parameter ot R ec Note: 1. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific application. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for TJ and THETAJA. 2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate. 3. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for other loads can be calculated as VDVDD_min+ILOAD * RBYP_max. N 4. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias. silabs.com | Building a more connected world. Rev. 1.4 | 23 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.3 Thermal Characteristics Table 4.3. Thermal Characteristics Test Condition Min Typ Max Thermal resistance, QFN48 Package THETAJA_QFN48 2-Layer PCB, Air velocity = 0 m/s — 64.5 — 2-Layer PCB, Air velocity = 1 m/s — 2-Layer PCB, Air velocity = 2 m/s — 4-Layer PCB, Air velocity = 0 m/s — 4-Layer PCB, Air velocity = 1 m/s — 4-Layer PCB, Air velocity = 2 m/s — THETAJA_QFN32 2-Layer PCB, Air velocity = 0 m/s — 2-Layer PCB, Air velocity = 1 m/s °C/W 51.6 — °C/W 47.7 — °C/W 26.2 — °C/W 23.1 — °C/W 22.1 — °C/W 79 — °C/W — 62.2 — °C/W 2-Layer PCB, Air velocity = 2 m/s — 54.1 — °C/W 4-Layer PCB, Air velocity = 0 m/s — 32 — °C/W 4-Layer PCB, Air velocity = 1 m/s — 28.1 — °C/W 4-Layer PCB, Air velocity = 2 m/s — 26.9 — °C/W N ot R ec om m en de d Fo rN ew Thermal resistance, QFN32 Package Unit s Symbol D es ig n Parameter silabs.com | Building a more connected world. Rev. 1.4 | 24 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.4 DC-DC Converter Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=1.0 µF (Murata GRM188R71A105KA61D), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated. Table 4.4. DC-DC Converter Test Condition Min Typ Max Input voltage range VDCDC_I Bypass mode, IDCDC_LOAD = 50 mA 1.85 — VVREGVDD_ Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA 2.4 Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA 2.6 Regulation DC accuracy ACCDC Regulation window2 WINREG Steady-state output ripple DC load regulation VVREGVDD_ V MAX — VVREGVDD_ V MAX 1.8 — VVREGVDD V Low Noise (LN) mode, 1.8 V target output 1.7 — 1.9 V Low Power (LP) mode, LPCMPBIAS3 = 0, 1.8 V target output, IDCDC_LOAD ≤ 75 µA 1.63 — 2.2 V Low Power (LP) mode, LPCMPBIAS3 = 3, 1.8 V target output, IDCDC_LOAD ≤ 10 mA 1.63 — 2.1 V Radio disabled — 3 — mVpp VOV CCM Mode (LNFORCECCM3 = 1), Load changes between 0 mA and 100 mA — — 150 mV DCM Mode (LNFORCECCM3 = 0), Load changes between 0 mA and 10 mA — — 150 mV Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode — 200 — mV Undershoot during BYP/LP to LN CCM (LNFORCECCM3 = 1) mode transitions compared to DC level in LN mode — 50 — mV Undershoot during BYP/LP to LN DCM (LNFORCECCM3 = 0) mode transitions compared to DC level in LN mode — 125 — mV VREG Input changes between VVREGVDD_MAX and 2.4 V — 0.1 — % IREG Load changes between 0 mA and 100 mA in CCM mode — 0.1 — % ec ot R N DC line regulation — VR om Output voltage under/overshoot V MAX Fo rN ew VDCDC_O m en de d Output voltage programmable range1 Unit s Symbol D es ig n Parameter silabs.com | Building a more connected world. Rev. 1.4 | 25 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Max load current ILOAD_MAX Low noise (LN) mode, Heavy Drive4, T ≤ 85 °C — — 200 mA Low noise (LN) mode, Heavy Drive4, T > 85 °C — — 100 mA Low noise (LN) mode, Medium Drive4 — — 100 mA Low noise (LN) mode, Light Drive4 — Low power (LP) mode, LPCMPBIAS3 = 0 — Low power (LP) mode, LPCMPBIAS3 = 3 — CDCDC 25% tolerance 1 DCDC nominal output induc- LDCDC tor 20% tolerance DCDC nominal output capacitor Resistance in Bypass mode RBYP s Test Condition D es ig n Symbol — 50 mA — 75 µA — 10 mA 1 4.7 µF Fo rN ew Parameter 4.7 4.7 4.7 µH — 1.2 2.5 Ω Note: 1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD. N ot R ec om m en de d 2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits. 3. In the EMU_DCDCMISCCTRL register. 4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15. silabs.com | Building a more connected world. Rev. 1.4 | 26 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.5 Current Consumption 4.1.5.1 Current Consumption 3.3 V without DC-DC Converter s Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. T = 25 °C. EMU_PWRCFG_PWRCFG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Symbol Current consumption in EM0 IACTIVE mode with all peripherals disabled Current consumption in EM2 IEM2 mode om Current consumption in EM3 IEM3 mode IEM4H ot R ec Current consumption in EM4H mode Current consumption in EM4S mode IEM4S Min 38.4 MHz crystal, CPU running while loop from flash1 — 38 MHz HFRCO, CPU running Prime from flash — 38 MHz HFRCO, CPU running while loop from flash — Typ Max Unit 130 — µA/MHz 88 — µA/MHz 100 105 µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 112 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 102 106 µA/MHz 1 MHz HFRCO, CPU running while loop from flash — 222 350 µA/MHz 38.4 MHz crystal1 — 65 — µA/MHz 38 MHz HFRCO — 35 38 µA/MHz 26 MHz HFRCO — 37 41 µA/MHz 1 MHz HFRCO — 157 275 µA/MHz Full 32 kB RAM retention and RTCC running from LFXO — 3.3 — µA 1 bank (4 kB) RAM retention and RTCC running from LFRCO — 3 6.3 µA Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 2.8 6 µA 128 byte RAM retention, RTCC running from LFXO — 1.1 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.65 — µA 128 byte RAM retention, no RTCC — 0.65 1.3 µA No RAM retention, no RTCC — 0.04 0.11 µA m en de d Current consumption in EM1 IEM1 mode with all peripherals disabled Test Condition Fo rN ew Parameter D es ig n Table 4.5. Current Consumption 3.3 V without DC-DC Converter N Note: 1. CMU_HFXOCTRL_LOWPOWER=0. silabs.com | Building a more connected world. Rev. 1.4 | 27 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.5.2 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.6. Current Consumption 3.3 V using DC-DC Converter Typ Max 38.4 MHz crystal, CPU running while loop from flash2 — 88 — 38 MHz HFRCO, CPU running Prime from flash — 63 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 71 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 78 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 76 — µA/MHz 38.4 MHz crystal, CPU running while loop from flash2 — 98 — µA/MHz 38 MHz HFRCO, CPU running Prime from flash — 75 — µA/MHz 38 MHz HFRCO, CPU running while loop from flash — 81 — µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash — 88 — µA/MHz 26 MHz HFRCO, CPU running while loop from flash — 94 — µA/MHz Current consumption in EM1 IEM1_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 38.4 MHz crystal2 — 49 — µA/MHz 38 MHz HFRCO — 32 — µA/MHz 26 MHz HFRCO — 38 — µA/MHz Current consumption in EM2 IEM2 mode, DCDC in LP mode4 Full RAM retention and RTCC running from LFXO — 2.5 — µA 1 bank (4 kB) RAM retention and RTCC running from LFRCO — 2.2 — µA Current consumption in EM3 IEM3 mode Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 2.1 — µA Current consumption in EM4H mode 128 byte RAM retention, RTCC running from LFXO — 0.86 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.58 — µA 128 byte RAM retention, no RTCC — 0.58 — µA No RAM retention, no RTCC — 0.04 — µA IEM4H N ot R ec om m en de d Current consumption in EM0 IACTIVE_CCM mode with all peripherals disabled, DCDC in Low Noise CCM mode3 Current consumption in EM4S mode IEM4S silabs.com | Building a more connected world. Unit s Min Current consumption in EM0 IACTIVE_DCM mode with all peripherals disabled, DCDC in Low Noise DCM mode1 Test Condition µA/MHz D es ig n Symbol Fo rN ew Parameter Rev. 1.4 | 28 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d Fo rN ew D es ig n s Note: 1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD. 2. CMU_HFXOCTRL_LOWPOWER=0. 3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD. 4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIAS=0, LPCLIMILIMSEL=1, ANASW=DVDD. silabs.com | Building a more connected world. Rev. 1.4 | 29 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.5.3 Current Consumption 1.85 V without DC-DC Converter Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.85 V. T = 25 °C. EMU_PWRCFG_PWRCFG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Symbol Min µA/MHz 88 — µA/MHz 100 — µA/MHz 112 — µA/MHz 102 — µA/MHz — 220 — µA/MHz 38.4 MHz crystal1 — 65 — µA/MHz 38 MHz HFRCO — 35 — µA/MHz 26 MHz HFRCO — 37 — µA/MHz 1 MHz HFRCO — 154 — µA/MHz Full 32 kB RAM retention and RTCC running from LFXO — 3.2 — µA 1 bank (4 kB) RAM retention and RTCC running from LFRCO — 2.8 — µA Current consumption in EM3 IEM3 mode Full 32 kB RAM retention and CRYOTIMER running from ULFRCO — 2.7 — µA Current consumption in EM4H mode 128 byte RAM retention, RTCC running from LFXO — 1 — µA 128 byte RAM retention, RTCC running from LFXO, serial flash in deep power down — 0.62 — µA 128 byte RAM retention, CRYOTIMER running from ULFRCO — 0.62 — µA no RAM retention, no RTCC — 0.02 — µA — 38 MHz HFRCO, CPU running while loop from flash — 38 MHz HFRCO, CPU running CoreMark from flash — 26 MHz HFRCO, CPU running while loop from flash — 1 MHz HFRCO, CPU running while loop from flash m en de d Current consumption in EM2 IEM2 mode IEM4H om ec ot R 38 MHz HFRCO, CPU running Prime from flash Unit — Current consumption in EM4S mode — Max 131 Current consumption in EM1 IEM1 mode with all peripherals disabled 38.4 MHz crystal, CPU running while loop from flash1 Typ Fo rN ew Current consumption in EM0 IACTIVE mode with all peripherals disabled Test Condition D es ig n Parameter s Table 4.7. Current Consumption 1.85 V without DC-DC Converter IEM4S N Note: 1. CMU_HFXOCTRL_LOWPOWER=0. silabs.com | Building a more connected world. Rev. 1.4 | 30 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C. Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C IRX_ACTIVE Typ Max 500 kbit/s, 2GFSK, F = 915 MHz, Radio clock prescaled by 4 — 8.4 10 38.4 kbit/s, 2GFSK, F = 868 MHz, Radio clock prescaled by 4 — 8.1 10 mA 38.4 kbit/s, 2GFSK, F = 490 MHz, Radio clock prescaled by 4 — 7.9 10 mA 50 kbit/s, 2GFSK, F = 433 MHz, Radio clock prescaled by 4 — 7.7 10 mA 38.4 kbit/s, 2GFSK, F = 315 MHz, Radio clock prescaled by 4 — 7.9 10 mA 38.4 kbit/s, 2GFSK, F = 169 MHz, Radio clock prescaled by 4 — 7.6 10 mA 1 Mbit/s, 2GFSK, F = 2.4 GHz, Radio clock prescaled by 4 — 8.7 — mA 802.15.4 receiving frame, F = 2.4 GHz, Radio clock prescaled by 3 — 9.8 — mA 500 kbit/s, 2GFSK, F = 915 MHz, Radio clock prescaled by 4 — — 10.8 mA 38.4 kbit/s, 2GFSK, F = 868 MHz, Radio clock prescaled by 4 — — 10.5 mA 38.4 kbit/s, 2GFSK, F = 490 MHz, Radio clock prescaled by 4 — — 10.8 mA 50 kbit/s, 2GFSK, F = 433 MHz, Radio clock prescaled by 4 — — 10.5 mA 38.4 kbit/s, 2GFSK, F = 315 MHz, Radio clock prescaled by 4 — — 10.9 mA 38.4 kbit/s, 2GFSK, F = 169 MHz, Radio clock prescaled by 4 — — 10.2 mA m en de d IRX_ACTIVE_HT Unit mA N ot R ec om Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T > 85 °C Min s Test Condition D es ig n Symbol Fo rN ew Parameter silabs.com | Building a more connected world. Rev. 1.4 | 31 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Min Typ Max Unit Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T ≤ 85 °C ITX F = 915 MHz, CW, 20 dBm match, External PA supply = 3.3V — 80.2 104 mA F = 915 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — 35.5 40.9 mA F = 868 MHz, CW, 20 dBm match, External PA supply = 3.3V — 84.9 114 F = 868 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — F = 490 MHz, CW, 20 dBm match, External PA supply = 3.3V — F = 433 MHz, CW, 10 dBm match, External PA supply connected to DC-DC output — mA 34.5 42 mA 82.8 112 mA 19.5 22.1 mA — 32.3 37.8 mA F = 315 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — 32.5 39.4 mA F = 169 MHz, CW, 20 dBm match, External PA supply = 3.3V — 80.2 106.9 mA F = 2.4 GHz, CW, 0 dBm output power, Radio clock prescaled by 3 — 8.2 — mA F = 2.4 GHz, CW, 3 dBm output power — 16.5 — mA F = 2.4 GHz, CW, 8 dBm output power — 23.3 — mA F = 2.4 GHz, CW, 10.5 dBm output power — 32.7 — mA F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply — 83.9 — mA F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply — 126.7 — mA m en de d F = 433 MHz, CW, 14 dBm match, External PA supply connected to DCDC output N ot R ec om s Test Condition D es ig n Symbol Fo rN ew Parameter silabs.com | Building a more connected world. Rev. 1.4 | 32 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T > 85 °C ITX_HT 4.1.6 Wake Up Times Typ Max Unit F = 915 MHz, CW, 20 dBm match, External PA supply = 3.3V — — 108.5 mA F = 915 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — — 42.9 mA F = 868 MHz, CW, 20 dBm match, External PA supply = 3.3V — — 118.2 F = 868 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — F = 490 MHz, CW, 20 dBm match, External PA supply = 3.3V — F = 433 MHz, CW, 10 dBm match, External PA supply connected to DC-DC output — mA — 42 mA — 117 mA — 23 mA F = 433 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — — 37.8 mA F = 315 MHz, CW, 14 dBm match, External PA supply connected to DCDC output — — 39.4 mA F = 169 MHz, CW, 20 dBm match, External PA supply = 3.3V — — 110.7 mA — 51 — nA Min Typ Max Unit — 3 — AHB Clocks Code execution from flash — 10.7 — µs Code execution from RAM — 3 — µs Code execution from flash — 10.7 — µs Code execution from RAM — 3 — µs m en de d RFSENSE current consump- IRFSENSE tion Min s Test Condition D es ig n Symbol Fo rN ew Parameter Table 4.9. Wake Up Times Parameter Symbol tEM1_WU om Wake up time from EM1 ec Wake up from EM2 ot R Wake up from EM3 Test Condition tEM2_WU tEM3_WU Wake up from EM4H1 tEM4H_WU Executing from flash — 60 — µs Wake up from EM4S1 tEM4S_WU Executing from flash — 290 — µs N Note: 1. Time from wake up request until first instruction is executed. Wakeup results in device reset. silabs.com | Building a more connected world. Rev. 1.4 | 33 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.7 Brown Out Detector (BOD) Table 4.10. Brown Out Detector (BOD) Test Condition Min Typ Max DVDD BOD threshold VDVDDBOD DVDD rising — — 1.62 DVDD falling 1.35 DVDD BOD hysteresis VDVDDBOD_HYST — DVDD BOD response time tDVDDBOD_DELAY Supply drops at 0.1V/µs rate — AVDD BOD threshold VAVDDBOD AVDD rising — AVDD falling 1.62 V — — V 24 — mV 2.4 — µs — 1.85 V — — V 21 — mV AVDD BOD hysteresis VAVDDBOD_HYST AVDD BOD response time tAVDDBOD_DELAY Supply drops at 0.1V/µs rate — 2.4 — µs EM4 BOD threshold VEM4DBOD — — 1.7 V 1.45 — — V — 46 — mV — 300 — µs AVDD rising AVDD falling VEM4BOD_HYST EM4 BOD response time tEM4BOD_DELAY Supply drops at 0.1V/µs rate N ot R ec om m en de d EM4 BOD hysteresis Fo rN ew — Unit s Symbol D es ig n Parameter silabs.com | Building a more connected world. Rev. 1.4 | 34 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.8 Frequency Synthesizer Table 4.11. Frequency Synthesizer Test Condition Min Typ Max RF synthesizer frequency range fRANGE 2400 - 2483.5 MHz 2400 — 2483.5 779 - 956 MHz 779 390 - 574 MHz 390 195 - 358 MHz 195 110 - 191 MHz 110 fRES dfMAX MHz — 574 MHz — 358 MHz — 191 MHz — 73 Hz — 24 Hz — 779 - 956 MHz — 390 - 574 MHz — — 12.2 Hz 195 - 358 MHz — — 7.3 Hz 110 - 191 MHz — — 4.6 Hz 2400 - 2483.5 MHz — — 73 Hz 779 - 956 MHz — — 24 Hz 390 - 574 MHz — — 12.2 Hz 195 - 358 MHz — — 7.3 Hz 110 - 191 MHz — — 4.6 Hz 2400 - 2483.5 MHz — — 1677 kHz 779 - 956 MHz — — 559 kHz 390 - 574 MHz — — 280 kHz 195 - 358 MHz — — 167 kHz 110 - 191 MHz — — 105 kHz N ot R ec om Maximum frequency deviation with 38.4 MHz crystal dfRES 956 2400 - 2483.5 MHz m en de d Frequency deviation resolution with 38.4 MHz crystal MHz — Fo rN ew LO tuning frequency resolution with 38.4 MHz crystal Unit s Symbol D es ig n Parameter silabs.com | Building a more connected world. Rev. 1.4 | 35 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.9 2.4 GHz RF Transceiver Characteristics 4.1.9.1 RF Transmitter General Characteristics for 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Test Condition Min Maximum TX power1 POUTMAX 19 dBm-rated part numbers. PAVDD connected directly to external 3.3V supply2 — 16 dBm-rated part numbers. PAVDD connected directly to external 3.3V supply — 8 dBm-rated part numbers — D es ig n Symbol Typ Max Unit 19.5 — dBm 16.5 — dBm 8 — dBm -30 — dBm Fo rN ew Parameter s Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band Minimum active TX Power POUTMIN CW Output power step size POUTSTEP -5 dBm< Output power < 0 dBm — 1 — dB 0 dBm < output power < POUTMAX — 0.5 — dB 1.85 V < VVREGVDD < 3.3 V, PAVDD connected directly to external supply, for output power > 10.5 dBm. — 4.5 — dB 1.85 V < VVREGVDD < 3.3 V using DC-DC converter — 2.2 — dB From -40 to +85 °C, PAVDD connected to DC-DC output — 1.5 — dB From -40 to +125 °C, PAVDD connected to DC-DC output — 2.2 — dB From -40 to +85 °C, PAVDD connected to external supply — 1.5 — dB From -40 to +125 °C, PAVDD connected to external supply — 3.4 — dB Over RF tuning frequency range — 0.4 — dB 2400 — 2483.5 MHz POUTVAR_T om Output power variation vs temperature at POUTMAX POUTVAR_V m en de d Output power variation vs supply at POUTMAX ec Output power variation vs RF POUTVAR_F frequency at POUTMAX RF tuning frequency range FRANGE N ot R Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. 2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions. silabs.com | Building a more connected world. Rev. 1.4 | 36 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.9.2 RF Receiver General Characteristics for 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band RF tuning frequency range FRANGE Receive mode maximum spurious emission SPURRX Test Condition Min Typ Max Unit 2400 — 2483.5 -57 — dBm -47 — dBm -55.2 — dBm -47.2 — dBm s Symbol MHz D es ig n Parameter — 1 GHz to 12 GHz — Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216 MHz to 960 MHz, Conducted Measurement — Above 960 MHz, Conducted Measurement — Level above which RFSENSE will trigger1 RFSENSETRIG CW at 2.45 GHz — -24 — dBm Level below which RFSENSE will not trigger1 RFSENSETHRES CW at 2.45 GHz — -50 — dBm 1% PER sensitivity SENS2GFSK 2 Mbps 2GFSK signal2 — -89.2 — dBm 250 kbps 2GFSK signal — -99.1 — dBm Fo rN ew 30 MHz to 1 GHz N ot R ec om m en de d Note: 1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. 2. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83 dBm on this channel. silabs.com | Building a more connected world. Rev. 1.4 | 37 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.9.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4MHz. RF center frequency 2.45 GHz. Maximum duty cycle of 85%. Symbol Test Condition Transmit 6dB bandwidth TXBW 10 dBm — Power spectral density limit PSDLIMIT Per FCC part 15.247 at 10 dBm — Per FCC part 15.247 at 20 dBm — Per ETSI 300.328 at 10 dBm/1 MHz — Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 99% BW at highest and lowest channels in band, 10 dBm In-band spurious emissions, with allowed exceptions1 Spurious emissions out-ofband, excluding harmonics captured in SPURHARM,FCC. Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply SPUROOB_FCC SPURETSI328 ec om Spurious emissions out-ofband; per ETSI 300.328 SPURHRM_FCC ot R Spurious emissions per ETSI SPURETSI440 EN300.440 Max Unit 740 — kHz -6.5 — dBm/ 3kHz -2.6 — dBm/ 3kHz 10 — dBm — 1.1 — MHz At ± 2 MHz, 10 dBm — -39.8 — dBm At ± 3 MHz, 10 dBm — -42.1 — dBm At ± 2 MHz, 20 dBm2 — — -20 dBm At ± 3 MHz, 20 dBm2 — — -30 dBm 2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier — -47 — dBm Per FCC part 15.205/15.209, Above 2.483 GHz or below 2.4 GHz; continuous transmission of CW carrier, Restricted Bands3 — -47 — dBm Per FCC part 15.247, Above 2.483 GHz or below 2.4 GHz; continuous transmission of CW carrier, Non-Restricted Bands — -26 — dBc [2400-BW to 2400] MHz, [2483.5 to 2483.5+BW] MHz — -16 — dBm [2400-2BW to 2400-BW] MHz, [2483.5+BW to 2483.5+2BW] MHz per ETSI 300.328 — -26 — dBm 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz — -60 — dBm 25-1000 MHz — -42 — dBm 1-12 GHz — -36 — dBm m en de d Emissions of harmonics outof-band, per FCC part 15.247 Typ Fo rN ew SPURINB Min D es ig n Parameter s Table 4.14. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate N Note: 1. Per Bluetooth Core_5.0, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less. 2. For 2456 MHz, a maximum output power of 15 dBm is used to achieve this value. 3. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value. silabs.com | Building a more connected world. Rev. 1.4 | 38 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.9.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4MHz. RF center frequency 2.45 GHz. Table 4.15. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate Min Typ Max Max usable receiver input level, 0.1% BER SAT Sensitivity, 0.1% BER2 SENS Signal is reference signal1. Packet length is 20 bytes. — 10 — Signal is reference signal1. Using DC-DC converter. — -92.5 — dBm With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1. — -92 — dBm Signal to co-channel interfer- C/ICC er, 0.1% BER Desired signal 3 dB above reference sensitivity. — 8.3 — dB N+1 adjacent channel selec- C/I1+ tivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at +1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -3 — dB N-1 adjacent channel selec- C/I1tivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at -1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -0.5 — dB Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm Interferer is reference signal at ± 2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz — -43 — dB Interferer is reference signal at ± 3 MHz offset. Desired frequency 2404 MHz ≤ Fc ≤ 2480 MHz — -46.7 — dB Selectivity to image frequen- C/IIM cy, 0.1% BER. Desired is reference signal at -67 dBm Interferer is reference signal at image frequency with 1 MHz precision — -38.7 — dB Selectivity to image frequency ± 1 MHz, 0.1% BER. Desired is reference signal at -67 dBm Interferer is reference signal at image frequency ± 1 MHz with 1 MHz precision — -48.2 — dB Interferer frequency 30 MHz ≤ f ≤ 2000 MHz -5 — — dBm Interferer frequency 2003 MHz ≤ f ≤ 2399 MHz4 -10 — — dBm Interferer frequency 2484 MHz ≤ f ≤ 2997 MHz -10 — — dBm Interferer frequency 3 GHz ≤ f ≤ 6 GHz -10 — — dBm Interferer frequency 6 GHz ≤ f ≤ 12.75 GHz -17 — — dBm Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3 — -25.8 — dBm m en de d C/I3 C/IIM+1 om Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm C/I2 N ot R ec Blocking, less than 0.1% BLOCKOOB BER. Desired is -67dBm BLE reference signal at 2426MHz. Interferer is CW in OOB range3 Intermodulation performance IM silabs.com | Building a more connected world. Unit s Test Condition dBm D es ig n Symbol Fo rN ew Parameter Rev. 1.4 | 39 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d Fo rN ew D es ig n s Note: 1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm. 2. Receive sensitivity on Bluetooth Low Energy channel 26 is -86 dBm. 3. Interferer max power limited by equipment capabilities and path loss. Minimum specified at 25 °C. 4. Except -13 dBm at Desired Frequency - Crystal Frequency. silabs.com | Building a more connected world. Rev. 1.4 | 40 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.9.5 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Maximum duty cycle of 66%. Test Condition Min Error vector magnitude (offset EVM), per 802.15.4-2011, not including 2415 MHz channel1 EVM Average across frequency. Signal is DSSS-OQPSK reference packet2 — Power spectral density limit PSDLIMIT Relative, at carrier ± 3.5 MHz, output power at POUTMAX — Absolute, at carrier ± 3.5 MHz, output power at POUTMAX3 — Typ Max Unit D es ig n Symbol 5.5 — % rms -26 — dBc/ 100kHz -36 — dBm/ 100kHz Fo rN ew Parameter s Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Per FCC part 15.247, output power at POUTMAX — -4.2 — dBm/ 3kHz ETSI — 12 — dBm 99% BW at highest and lowest channels in band — 2.25 — MHz Spurious emissions of harSPURHRM_FCC_ monics in restricted bands R per FCC Part 15.205/15.209, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz Continuous transmission of modulated carrier — -45.8 — dBm Spurious emissions of harSPURHRM_FCC_ monics in non-restricted NRR bands per FCC Part 15.247/15.35, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz Continuous transmission of modulated carrier — -26 — dBc Restricted bands 30-88 MHz; continuous transmission of modulated carrier — -52 — dBm Restricted bands 88-216 MHz; continuous transmission of modulated carrier — -62 — dBm Restricted bands 216-960 MHz; continuous transmission of modulated carrier — -57 — dBm Restricted bands >960 MHz; continuous transmission of modulated carrier4 — -48 — dBm om m en de d Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 SPUROOB_FCC_ R N ot R ec Spurious emissions out-ofband (above 2.483 GHz or below 2.4 GHz) in restricted bands, per FCC part 15.205/15.209, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz silabs.com | Building a more connected world. Rev. 1.4 | 41 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit dBc Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier — -26 — Spurious emissions out-ofband; per ETSI 300.3285 [2400-BW to 2400], [2483.5 to 2483.5+BW]; — -16 — [2400-2BW to 2400-BW], [2483.5+BW to 2483.5+2BW]; per ETSI 300.328 — -26 — dBm 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz — -60 — dBm 25-1000 MHz, excluding above frequencies — -42 — dBm 1G-14G — — dBm dBm D es ig n Spurious emissions per ETSI SPURETSI440 EN300.4405 Fo rN ew SPURETSI328 s SPUROOB_FCC_ Spurious emissions out-ofband in non-restricted bands NR per FCC Part 15.247, Emissions taken at POUTMAX, PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz -36 N ot R ec om m en de d Note: 1. Typical EVM for the 2415 MHz channel is 7.9%. 2. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with pseudo-random packet data content. 3. For 2415 MHz, a maximum duty cycle of 50% is used to achieve this value. 4. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value. 5. Specified at maximum power output level of 10 dBm. silabs.com | Building a more connected world. Rev. 1.4 | 42 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.9.6 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 2.45 GHz. Table 4.17. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Test Condition Min Typ Max Max usable receiver input level, 1% PER SAT Sensitivity, 1% PER2 SENS Unit Signal is reference signal1. Packet length is 20 octets. — 10 — Signal is reference signal. Packet length is 20 octets. Using DC-DC converter. — -99 — dBm Signal is reference signal. Packet length is 20 octets. Without DCDC converter. — -99 — dBm -2.6 — dB s Symbol dBm D es ig n Parameter CCR Desired signal 3 dB above sensitivity limit — High-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level3 ACRP1 Interferer is reference signal at +1 channel-spacing. — 33.75 — dB Interferer is filtered reference signal4 at +1 channel-spacing. — 52.2 — dB Interferer is CW at +1 channelspacing5. — 58.6 — dB Interferer is reference signal at -1 channel-spacing. — 35 — dB Interferer is filtered reference signal4 at -1 channel-spacing. — 54.7 — dB Interferer is CW at -1 channelspacing. — 60.1 — dB Interferer is reference signal at ± 2 channel-spacing — 45.9 — dB Interferer is filtered reference signal4 at ± 2 channel-spacing — 56.8 — dB Interferer is CW at ± 2 channelspacing — 65.5 — dB Image rejection , 1% PER, IR Desired is reference signal at 3dB above reference sensitivity level3 Interferer is CW in image band5 — 49.3 — dB Blocking rejection of all other BLOCK channels. 1% PER, Desired is reference signal at 3dB above reference sensitivity level3. Interferer is reference signal Interferer frequency < Desired frequency - 3 channel-spacing — 57.2 — dB Interferer frequency > Desired frequency + 3 channel-spacing — 57.9 — dB Blocking rejection of 802.11g BLOCK80211G signal centered at +12MHz or -13MHz6 Desired is reference signal at 6dB above reference sensitivity level3 — 51.6 — dB ACR2 N ot R ec om Alternate channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level3 ACRM1 m en de d Low-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level3 Fo rN ew Co-channel interferer rejection, 1% PER silabs.com | Building a more connected world. Rev. 1.4 | 43 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Min Typ Max Unit RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 — — dBm — 0.25 — +/-1 — RSSI resolution RSSIRES RSSI accuracy in the linear region as defined by 802.15.4-2003 RSSILIN Test Condition over RSSIMIN to RSSIMAX — s Symbol dB D es ig n Parameter dB N ot R ec om m en de d Fo rN ew Note: 1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s. 2. Receive sensitivity on 802.15.4 channel 14 is -98 dBm 3. Reference sensitivity level is -85 dBm. 4. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier. 5. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster. 6. This is an IEEE 802.11b/g ERP-PBCC 22 MBit/s signal as defined by the IEEE 802.11 specification and IEEE 802.11g addendum. silabs.com | Building a more connected world. Rev. 1.4 | 44 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications N ot R ec om m en de d Fo rN ew D es ig n s 4.1.10 Sub-GHz RF Transceiver Characteristics silabs.com | Building a more connected world. Rev. 1.4 | 45 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 915 MHz. Table 4.18. Sub-GHz RF Transmitter characteristics for 915 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition Min Typ Max 902 — 930 20.3 24.5 dBm 13.8 17.6 dBm -45.5 — dBm 0.5 — dB External PA supply = 3.3V, 20 dBm output power setting 17.7 External PA supply connected to DC-DC output, 14 dBm output power setting 10.4 MHz Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm Output power variation vs supply at POUTMAX POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = 3.3 V, T = 25 °C — 4.8 — dB 1.8 V < VVREGVDD < 3.3 V, External PA supply connected to DCDC output, T = 25 °C — 1.9 — dB -40 to +85 °C with External PA supply = 3.3 V — 0.6 1.3 dB -40 to +125 °C with External PA supply = 3.3 V — 0.8 1.6 dB -40 to +85 °C with External PA supply connected to DC-DC output — 0.7 1.4 dB -40 to +125 °C with External PA supply connected to DC-DC output — 1.0 1.9 dB External PA supply = 3.3 V, T = 25 °C — 0.2 0.6 dB External PA supply connected to DC-DC output, T = 25 °C — 0.3 0.6 dB SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 — -64.6 -47 dBm In non-restricted bands, per FCC Part 15.231 — -64.2 -42 dBc om Output power variation vs RF POUTVAR_F frequency _20 N ot R ec Spurious emissions of harmonics at 20 dBm output power, Conducted measurement, 20dBm match, External PA supply = 3.3V, Test Frequency = 915 MHz — Fo rN ew POUTVAR_T m en de d Output power variation vs temperature, peak to peak — Unit s Symbol D es ig n Parameter silabs.com | Building a more connected world. Rev. 1.4 | 46 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Spurious emissions of harmonics at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 915 MHz Min Typ Max Unit In non-restricted bands, per FCC Part 15.231 — -76.2 -66 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -68.8 -52 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -67.7 -62 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — s SPUROOB_FCC_ Spurious emissions out-ofband at 20 dBm output pow- 20 er, Conducted measurement, 20dBm match, External PA supply = 3.3V, Test Frequency = 915 MHz Test Condition D es ig n Symbol -69.1 -58 dBm -54.6 -42.4 dBm -75.2 -60 dBm -69 -49 dBc SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 _14 — In non-restricted bands, per FCC Part 15.231 — In non-restricted bands, per FCC Part 15.231 — -87.5 -66 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -74.2 -52 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -73.1 -67 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — -74.3 -58 dBm In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -60.2 -49 dBm m en de d Spurious emissions out-ofSPUROOB_FCC_ band at 14 dBm output pow- 14 er, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 915 MHz Fo rN ew Parameter N ot R ec om Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 47 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 915 MHz. Table 4.19. Sub-GHz RF Receiver Characteristics for 915 MHz Band Tuning frequency range FRANGE Test Condition Min Typ Max 902 — 930 — 10 dBm -104.7 -100.7 dBm — -99.5 dBm Max usable input level, 0.1% SAT500K BER Desired is reference 500 kbps GFSK signal1 — Sensitivity Desired is reference 4.8 kbps OOK signal2, 20% PER, T ≤ 85 °C — Desired is reference 4.8 kbps OOK signal2, 20% PER, T > 85 °C — Fo rN ew SENS MHz Desired is reference 600 bps GFSK signal3, 0.1% BER — -126.4 — dBm Desired is reference 50 kbps GFSK signal4, 0.1% BER, T ≤ 85 °C — -107.5 -104.2 dBm Desired is reference 50 kbps GFSK signal4, 0.1% BER, T > 85 °C — — -103 dBm Desired is reference 100 kbps GFSK signal5, 0.1% BER, T ≤ 85 °C — -105.1 -101.5 dBm Desired is reference 100 kbps GFSK signal5, 0.1% BER, T > 85 °C — — -101.3 dBm Desired is reference 500 kbps GFSK signal1, 0.1% BER, T ≤ 85 °C — -97.7 -93.2 dBm Desired is reference 500 kbps GFSK signal1, 0.1% BER, T > 85 °C — — -93 dBm Desired is reference 400 kbps 4GFSK signal6, 1% PER, T ≤ 85 °C — -90.9 -87.5 dBm Desired is reference 400 kbps 4GFSK signal6, 1% PER, T > 85 °C — — -86.9 dBm m en de d om ec ot R Unit s Symbol D es ig n Parameter RFSENSETRIG CW at 915 MHz — -25.8 — dBm Level below which RFSENSE will not trigger7 RFSENSETHRES CW at 915 MHz — -50 — dBm N Level above which RFSENSE will trigger7 silabs.com | Building a more connected world. Rev. 1.4 | 48 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 Typ Max Unit Desired is 4.8 kbps OOK signal2 at 3dB above sensitivity level, 20% PER — 43.7 — dB Desired is 600 bps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 65.76 — dB Desired is 50 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 48.24 — Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 51.1 — dB Desired is 500 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 47 — dB — 35.9 — dB Desired is 4.8 kbps OOK signal2 at 3dB above sensitivity level, 20% PER — 57.2 — dB Desired is 600 bps GFSK signal3 at 3dB above sensitivity level, 0.1% BER — 71.76 — dB Desired is 50 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 53.6 — dB Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 56.9 — dB Desired is 500 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 53.6 — dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — 44 — dB N ot R ec om dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER m en de d Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing Min s Test Condition D es ig n Symbol Fo rN ew Parameter silabs.com | Building a more connected world. Rev. 1.4 | 49 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Image rejection, Interferer is CW at image frequency C/IIMAGE Blocking selectivity, 0.1% BER. Desired is 100 kbps GFSK signal at 3dB above sensitivity level C/IBLOCKER Intermod selectivity, 0.1% BER. CW interferers at 400 kHz and 800 kHz offsets C/IIM Min Typ Max Unit Desired is 4.8 kbps OOK signal2 at 3dB above sensitivity level, 20% PER — 41.2 — dB Desired is 50 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 52.4 — dB Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level, 0.1% BER — 50.35 — Desired is 500 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 46.2 — dB Desired is 400 kbps 4GFSK signal6 at 3dB above sensitivity level, 0.1% BER — 35.9 — dB s Test Condition dB D es ig n Symbol Fo rN ew Parameter Interferer CW at Desired ± 1 MHz — 58.7 — dB Interferer CW at Desired ± 2 MHz — 60.9 — dB Interferer CW at Desired ± 10 MHz — 76.4 — dB Desired is 100 kbps GFSK signal5 at 3dB above sensitivity level — 46.1 — dB — — 5 dBm -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — dBm Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216-960 MHz — -77.7 -49.2 dBm Above 960 MHz — -62.7 -51.7 dBm Max spurious emissions dur- SPURRX_ARIB ing active receive mode,per ARIB STD-T108 Section 3.3 Below 710 MHz, RBW=100kHz — -77.7 -60 dBm 710-900 MHz, RBW=1MHz — -75.8 -61 dBm 900-915 MHz, RBW=100kHz — -85.4 -61 dBm 915-930 MHz, RBW=100kHz — -85.6 -55 dBm 930-1000 MHz, RBW=100kHz — -85.1 -60 dBm Above 1000 MHz, RBW=1MHz — -57.9 -47 dBm m en de d Upper limit of input power RSSIMAX range over which RSSI resolution is maintained Lower limit of input power RSSIMIN range over which RSSI resolution is maintained RSSIRES N ot R ec om RSSI resolution silabs.com | Building a more connected world. Rev. 1.4 | 50 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit N ot R ec om m en de d Fo rN ew D es ig n s Note: 1. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 175 kHz, RX channel BW = 2524.8 kHz, channel spacing = 1 MHz. 2. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 315.6 kHz, channel spacing = 500 kHz. 3. Definition of reference signal is 600 bps 2GFSK, BT=0.5, Δf = 0.3 kHz, RX channel BW = 1262 Hz, channel spacing = 300 kHz. 4. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 120.229 kHz, channel spacing = 200 kHz. 5. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz, channel spacing = 400 kHz. 6. Definition of reference signal is 400 kbps 4GFSK, BT=0.5, inner deviation = 33.3 kHz, RX channel BW = 336.64 kHz, channel spacing = 600 kHz. 7. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 51 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 868 MHz. Table 4.20. Sub-GHz RF Transmitter characteristics for 868 MHz Band FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP Output power variation vs supply at POUTMAX POUTVAR_V ec Output power variation vs RF POUTVAR_F frequency Typ Max 863 — 876 19.6 23 dBm — 23.7 dBm 14.7 17.5 dBm External PA supply = 3.3V, 20 dBm output power setting, T ≤ 85 °C 16.6 External PA supply = 3.3V, 20 dBm output power setting, T > 85 °C — External PA supply connected to DC-DC output, 14 dBm output power setting 10 Unit MHz — -43.5 — dBm output power > 0 dBm — 0.5 — dB 1.8 V < VVREGVDD < 3.3 V, External PA supply = 3.3 V, T = 25 °C — 5 — dB 1.8 V < VVREGVDD < 3.3 V, External PA supply connected to DCDC output, T = 25 °C — 2 — dB -40 to +85 °C with External PA supply = 3.3 V — 0.6 0.9 dB -40 to +125 °C with External PA supply = 3.3 V — 0.8 1.3 dB -40 to +85 °C with External PA supply connected to DC-DC output — 0.5 1.2 dB -40 to +125 °C with External PA supply connected to DC-DC output — 0.7 1.5 dB External PA supply = 3.3 V, T = 25 °C — 0.2 0.6 dB External PA supply connected to DC-DC output, T = 25 °C — 0.2 0.8 dB — -44 -30 dBm m en de d POUTVAR_T om Output power variation vs temperature, peak to peak Min s RF tuning frequency range Test Condition D es ig n Symbol Fo rN ew Parameter N ot R Spurious emissions of harSPURHARM_ETSI Per ETSI EN 300-220, Section monics, Conducted meas7.8.2.1 urement, External PA supply connected to DC-DC output, Test Frequency = 868 MHz silabs.com | Building a more connected world. Rev. 1.4 | 52 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Spurious emissions out-ofband, Conducted measurement, External PA supply connected to DC-DC output, Test Frequency = 868 MHz SPUROOB_ETSI Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -61.7 -55.7 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz) — -64.2 -43.5 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz) — s Symbol D es ig n Parameter -59.9 -30 dBm N ot R ec om m en de d Fo rN ew Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 53 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.4 Sub-GHz RF Receiver Characteristics for 868 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 868 MHz. Table 4.21. Sub-GHz RF Receiver Characteristics for 868 MHz Band Tuning frequency range FRANGE Test Condition Min Typ Max Unit 863 — 876 — 10 dBm — 10 dBm -121.4 -116.5 dBm s Symbol MHz D es ig n Parameter Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -109.2 -105.4 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -105.2 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER — -95.1 — dBm SENS Fo rN ew Max usable input level, 0.1% SAT2k4 BER RFSENSETRIG CW at 868 MHz — -25.8 — dBm Level below which RFSENSE will not trigger4 RFSENSETHRES CW at 868 MHz — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 48.5 57.7 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 36.4 44.9 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 59.1 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 47.7 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 47.5 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 47.2 — dB Interferer CW at Desired ± 1 MHz — 71.9 — dB Interferer CW at Desired ± 2 MHz — 77.9 — dB Interferer CW at Desired ± 10 MHz — 90.9 — dB Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing m en de d Level above which RFSENSE will trigger4 C/I1 ec om Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing N ot R Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level C/IIMAGE C/IBLOCKER silabs.com | Building a more connected world. Rev. 1.4 | 54 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Min Typ Max Unit RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 — — dBm Over RSSIMIN to RSSIMAX range — 0.25 — 30 MHz to 1 GHz — -77.1 -69 dBm 1 GHz to 12 GHz — -59.9 -50 dBm RSSI resolution RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Test Condition s Symbol dBm D es ig n Parameter N ot R ec om m en de d Fo rN ew Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz. 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 55 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.5 Sub-GHz RF Transmitter characteristics for 490 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 490 MHz. Table 4.22. Sub-GHz RF Transmitter characteristics for 490 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — Output power variation vs supply, peak to peak POUTVAR_V at 20 dBm;1.8 V < VVREGVDD < 3.3 V, External PA supply connected directly to external supply, T = 25 °C — Output power variation vs temperature, peak to peak POUTVAR_T -40 to +85 °C at 20 dBm — -40 to +125 °C at 20 dBm Output power variation vs RF POUTVAR_F frequency T = 25 °C Harmonic emissions, 20 dBm output power setting, 490 MHz Min Typ Max 470 — 510 21.1 23 dBm -44.9 — dBm 0.5 — dB 4.3 — dB 0.2 0.9 dB — 0.3 1.3 dB — 0.2 0.4 dB Per China SRW Requirement, Section 2.1, frequencies below 1GHz — -41.3 -34.9 dBm Per China SRW Requirement, Section 2.1, frequencies above 1GHz — -47.2 -36 dBm Per China SRW Requirement, Section 3 (48.5-72.5MHz, 76-108MHz, 167-223MHz, 470-556MHz, and 606-798MHz) — -57.5 — dBm Per China SRW Requirement, Section 2.1 (other frequencies below 1GHz) — -58.5 — dBm Per China SRW Requirement, Section 2.1 (frequencies above 1GHz) — -47.9 — dBm om Spurious emissions, 20 dBm SPUROOB_CN output power setting, 490 MHz 18.5 Fo rN ew External PA supply = 3.3V m en de d SPURHARM_CN Test Condition Unit s Symbol MHz D es ig n Parameter N ot R ec Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 56 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 490 MHz. Table 4.23. Sub-GHz RF Receiver Characteristics for 490 MHz Band Tuning frequency range FRANGE Test Condition Min Typ Max Unit 470 — 510 — 10 dBm — 10 dBm -122.2 — dBm s Symbol MHz D es ig n Parameter Max usable input level, 0.1% SAT2k4 BER Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -111.7 -108.9 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -107.9 dBm Desired is reference 10 kbps GFSK signal3, 0.1% BER, T ≤ 85 °C — -117.5 -114.8 dBm Desired is reference 10 kbps GFSK signal3, 0.1% BER, T > 85 °C — — -113.9 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER, T ≤ 85 °C — -107.6 -104.7 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER, T > 85 °C — — -104 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER — -25.8 — dBm RFSENSETRIG om Level above which RFSENSE will trigger5 m en de d Fo rN ew SENS RFSENSETHRES CW at 490 MHz — -50 — dBm Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 48 58.4 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 38.3 47.5 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 60.8 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51.7 — dB ot R ec Level below which RFSENSE will not trigger5 N Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing silabs.com | Building a more connected world. Rev. 1.4 | 57 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Image rejection, Interferer is CW at image frequency C/IIMAGE C/IBLOCKER Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level Min Typ Max Unit Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 60.9 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 53 — dB Interferer CW at Desired ± 1 MHz — 71.9 — Interferer CW at Desired ± 2 MHz — 74.1 — dB Interferer CW at Desired ± 10 MHz — 87.9 — dB — 5 dBm — — dBm — RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 RSSI resolution RSSIRES Max spurious emissions dur- SPURRX ing active receive mode Fo rN ew RSSIMAX Upper limit of input power range over which RSSI resolution is maintained s Symbol dB D es ig n Parameter Over RSSIMIN to RSSIMAX range — 0.25 — dBm 30 MHz to 1 GHz — -84.7 -54 dBm 1 GHz to 12 GHz — -66.8 -54 dBm N ot R ec om m en de d Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 10 kbps 2GFSK, BT=0.5, Δf = 5 kHz, RX channel BW = 21.04 kHz. 4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz. 5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 58 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.7 Sub-GHz RF Transmitter characteristics for 433 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 433 MHz. Table 4.24. Sub-GHz RF Transmitter characteristics for 433 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP Test Condition Min Typ Max 426 — 445 14.3 18 dBm 10.7 14 dBm -42 — dBm External PA supply connected to DC-DC output, 14dBm output power 11 External PA supply connected to DC-DC output, 10dBm output power 7 — Unit s Symbol MHz D es ig n Parameter — 0.5 — dB Output power variation vs POUTVAR_V supply, peak to peak, Pout = 10dBm At 10 dBm;1.8 V < VVREGVDD < 3.3 V, External PA supply = DCDC output, T = 25 °C — 1.7 — dB Output power variation vs temperature, peak to peak, Pout= 10dBm -40 to +85C at 10dBm — 0.5 1.2 dB -40 to +125C at 10dBm — 0.7 1.7 dB T = 25 °C — 0.2 0.6 dB SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 — -61.2 -47 dBm In non-restricted bands, per FCC Part 15.231 — -68.5 -26 dBc In non-restricted bands, per FCC Part 15.231 — -86.2 -26 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -71.9 -52 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -70.2 -62 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — -60.5 -54.5 dBm In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -57.7 -46 dBm SPURHARM_ETSI Per ETSI EN 300-220, Section 7.8.2.1 (frequencies below 1Ghz) — -57.3 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1Ghz) — -84.5 -36 dBm POUTVAR_T Spurious emissions of harmonics FCC, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz SPUROOB_FCC ot R ec om Spurious emissions out-ofband FCC, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz m en de d Output power variation vs RF POUTVAR_F frequency, Pout = 10dBm N Spurious emissions of harmonics ETSI, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz Fo rN ew output power > 0 dBm silabs.com | Building a more connected world. Rev. 1.4 | 59 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Spurious emissions out-ofband ETSI, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz SPUROOB_ETSI Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -65.1 -60 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz) — -63.9 -42 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz) — s Symbol D es ig n Parameter -56.8 -36 dBm N ot R ec om m en de d Fo rN ew Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 60 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.8 Sub-GHz RF Receiver Characteristics for 433 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 433 MHz. Table 4.25. Sub-GHz RF Receiver Characteristics for 433 MHz Band Tuning frequency range FRANGE Test Condition Min Typ Max Unit 426 — 445 — 10 dBm — 10 dBm -107 — dBm s Symbol MHz D es ig n Parameter Max usable input level, 0.1% SAT2k4 BER Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT50k BER Desired is reference 50 kbps GFSK signal2 — Sensitivity Desired is reference 4.8 kbps OOK signal3, 20% PER — Desired is reference 100 kbps GFSK signal4, 0.1% BER, T ≤ 85 °C — -107.5 -105 dBm Desired is reference 100 kbps GFSK signal4, 0.1% BER, T > 85 °C — — -104 dBm Desired is reference 50 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -110 -107.2 dBm Desired is reference 50 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -106.6 dBm Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — -122.3 — dBm Desired is reference 9.6 kbps GFSK signal5, 1% PER, T ≤ 85 °C — -109.4 -106.2 dBm Desired is reference 9.6 kbps GFSK signal5, 1% PER, T > 85 °C — — -105.7 dBm CW at 433 MHz — -25.8 — dBm RFSENSETHRES CW at 433 MHz — -50 — dBm RFSENSETRIG om Level above which RFSENSE will trigger6 m en de d Fo rN ew SENS N ot R ec Level below which RFSENSE will not trigger6 silabs.com | Building a more connected world. Rev. 1.4 | 61 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing C/I1 Desired is 4.8 kbps OOK signal3 at 3dB above sensitivity level, 20% PER — 46 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER 24.8 33.4 — dB Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 47 59.1 — Desired is 50 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 45.6 50.7 — dB 31.2 — dB C/IIMAGE N ot R ec om Image rejection, Interferer is CW at image frequency Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level C/IBLOCKER silabs.com | Building a more connected world. dB Desired is 4.8 kbps OOK signal3 at 3dB above sensitivity level, 20% PER — 56.8 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 56.2 — dB Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 62.2 — dB Desired is 50 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 57.4 — dB Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER — 47.8 — dB Desired is 4.8 kbps OOK signal3 at 3dB above sensitivity level, 20% PER — 42.2 — dB Desired is 100 kbps GFSK signal4 at 3dB above sensitivity level, 0.1% BER — 50 — dB Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 52.3 — dB Desired is 50 kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 53 — dB Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER — 45 — dB Interferer CW at Desired ± 1 MHz — 73.8 — dB Interferer CW at Desired ± 2 MHz — 75.7 — dB Interferer CW at Desired ± 10 MHz — 89.9 — dB m en de d Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing — Fo rN ew Desired is 9.6 kbps 4GFSK signal5 at 3dB above sensitivity level, 1% PER s Symbol D es ig n Parameter Rev. 1.4 | 62 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Intermod selectivity, 0.1% BER. CW interferers at 12.5 kHz and 25 kHz offsets C/IIM Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level — 59.1 — dB RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 — — 0.25 — dBm -83.5 -57 dBm -62.5 -52 dBm -84.6 -57 dBm RSSIRES dBm Over RSSIMIN to RSSIMAX range — Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) 216-960 MHz — Above 960 MHz — Max spurious emissions dur- SPURRX_ETSI ing active receive mode, per ETSI 300-220 Section 8.6 Below 1000 MHz — Above 1000 MHz — -59.7 -52 dBm Max spurious emissions dur- SPURRX_ARIB ing active receive mode, per ARIB STD T67 Section 3.3(5) Below 710 MHz, RBW=100kHz — -83.6 -57 dBm Fo rN ew RSSI resolution s Symbol D es ig n Parameter N ot R ec om m en de d Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 120.229 kHz, channel spacing = 200 kHz. 3. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 315.6 kHz, channel spacing = 500 kHz. 4. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 210.4 kHz, channel spacing = 200 kHz. 5. Definition of reference signal is 9.6 kbps 4GFSK, BT=0.5, inner deviation = 0.8 kHz, RX channel BW = 9.989 kHz, channel spacing = 12.5 kHz. 6. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 63 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.9 Sub-GHz RF Transmitter characteristics for 315 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 315 MHz. Table 4.26. Sub-GHz RF Transmitter characteristics for 315 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Test Condition Min Typ Max 195 — 358 15.3 17 dBm — — dBm -43.9 — dBm 0.5 — dB External PA supply connected to DC-DC output, T ≤ 85 °C 10.8 External PA supply connected to DC-DC output, T > 85 °C 10.5 Unit s Symbol MHz D es ig n Parameter POUTMIN Output power step size POUTSTEP output power > 0 dBm — Output power variation vs supply POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = DC-DC output, T = 25 °C — 1.8 — dB Output power variation vs temperature POUTVAR_T -40 to +85C — 0.5 1.2 dB — 0.7 1.5 dB — 0.1 0.7 dB SPURHARM_FCC In restricted bands, per FCC Part 15.205 / 15.209 — -53.8 -47 dBm In non-restricted bands, per FCC Part 15.231 — -63.4 -26 dBc In non-restricted bands, per FCC Part 15.231 — -76.6 -26 dBc In restricted bands (30-88 MHz), per FCC Part 15.205 / 15.209 — -71.8 -51 dBm In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209 — -70.2 -61 dBm In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209 — -68.2 -57 dBm In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209 — -57.5 -46 dBm -40 to +125C Spurious emissions of harmonics at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 303 MHz T = 25 °C m en de d Output power variation vs RF POUTVAR_F frequency Fo rN ew Minimum active TX Power ot R ec om Spurious emissions out-ofSPUROOB_FCC band at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 303 MHz N Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 64 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 315 MHz. Table 4.27. Sub-GHz RF Receiver Characteristics for 315 MHz Band Tuning frequency range FRANGE Test Condition Min Typ Max 195 — 358 — 10 dBm — 10 dBm -123.5 -120.7 dBm Max usable input level, 0.1% SAT2k4 BER Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER, T ≤ 85 °C — Fo rN ew SENS — — -120 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -111.4 -108.6 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -107.9 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T ≤ 85 °C — -97.2 -94.6 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T > 85 °C — — -93.9 dBm CW at 315 MHz — -25.8 — dBm RFSENSETHRES CW at 315 MHz — -50 — dBm Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 54.1 64.2 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER 46 50 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 66 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level2, 0.1% BER — 54 — dB RFSENSETRIG om Level below which RFSENSE will not trigger4 C/I1 ot R ec Adjacent channel selectivity, Interferer is CW at ± 1 × channel-spacing MHz Desired is reference 2.4 kbps GFSK signal1, 0.1% BER, T > 85 °C m en de d Level above which RFSENSE will trigger4 Unit s Symbol D es ig n Parameter N Alternate channel selectivity, C/I2 Interferer is CW at ± 2 × channel-spacing silabs.com | Building a more connected world. Rev. 1.4 | 65 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Image rejection, Interferer is CW at image frequency C/IIMAGE C/IBLOCKER Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level Min Typ Max Unit Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 54.4 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51.9 — dB Interferer CW at Desired ± 1 MHz — 74.9 — Interferer CW at Desired ± 2 MHz — 76.7 — dB 93.1 — dB — 5 dBm — — dBm Interferer CW at Desired ± 10 MHz 72.6 — RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 RSSI resolution RSSIRES Max spurious emissions dur- SPURRX_FCC ing active receive mode, per FCC Part 15.109(a) Fo rN ew RSSIMAX Upper limit of input power range over which RSSI resolution is maintained s Symbol dB D es ig n Parameter Over RSSIMIN to RSSIMAX range — 0.25 — dBm 216-960 MHz — -87.4 -55 dBm Above 960MHz — -76.7 -47 dBm N ot R ec om m en de d Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz. 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. silabs.com | Building a more connected world. Rev. 1.4 | 66 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.11 Sub-GHz RF Transmitter Characteristics for 169 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 169 MHz. Table 4.28. Sub-GHz RF Transmitter Characteristics for 169 MHz Band RF tuning frequency range FRANGE Maximum TX Power1 POUTMAX Minimum active TX Power POUTMIN Output power step size POUTSTEP output power > 0 dBm — Output power variation vs supply, peak to peak POUTVAR_V 1.8 V < VVREGVDD < 3.3 V, External PA supply = 3.3 V, T = 25 °C — Output power variation vs temperature, peak to peak POUTVAR_T -40 to +85 °C at 20 dBm — om Spurious emissions out-ofSPUROOB_ETSI band, Conducted measurement, External PA supply = 3.3 V, Test Frequency = 169 MHz Min Typ Max 169 — 170 20.4 23.3 dBm -42.6 — dBm 0.5 — dB 4.8 — dB 0.6 1.2 dB 18.4 Fo rN ew External PA supply = 3.3 V Unit MHz -40 to +125 °C at 20 dBm — 0.8 1.5 dB Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -49.3 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz) — -58.2 -53 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz) — -38.9 25.4 dBm Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 MHz, 174-230 MHz, and 470-862 MHz) — -61.8 -36 dBm Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz) — -62 -54 dBm Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz) — -47.6 -41.1 dBm m en de d Spurious emissions of harSPURHARM_ETSI monics, Conducted measurement, External PA supply = 3.3 V, Test Frequency = 169 MHz Test Condition s Symbol D es ig n Parameter N ot R ec Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table. silabs.com | Building a more connected world. Rev. 1.4 | 67 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.10.12 Sub-GHz RF Receiver Characteristics for 169 MHz Band Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency = 38.4 MHz. RF center frequency 169 MHz. Table 4.29. Sub-GHz RF Receiver Characteristics for 169 MHz Band Tuning frequency range FRANGE Test Condition Min Typ Max Unit 169 — 170 — 10 dBm — 10 dBm -124 — dBm s Symbol MHz D es ig n Parameter Max usable input level, 0.1% SAT2k4 BER Desired is reference 2.4 kbps GFSK signal1 — Max usable input level, 0.1% SAT38k4 BER Desired is reference 38.4 kbps GFSK signal2 — Sensitivity Desired is reference 2.4 kbps GFSK signal1, 0.1% BER — Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T ≤ 85 °C — -111.9 -108 dBm Desired is reference 38.4 kbps GFSK signal2, 0.1% BER, T > 85 °C — — -108.5 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T ≤ 85 °C — -97.7 -94.6 dBm Desired is reference 500 kbps GFSK signal3, 0.1% BER, T > 85 °C — — -94 dBm CW at 169 MHz — -25.8 — dBm RFSENSETHRES CW at 169 MHz — -50 — dBm C/I1 Desired is 2.4 kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 65 — dB Desired is 38.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER 43.3 50.4 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 67.9 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 55.5 — dB Desired is 2.4kbps GFSK signal1 at 3dB above sensitivity level, 0.1% BER — 54.6 — dB Desired is 38.4kbps GFSK signal2 at 3dB above sensitivity level, 0.1% BER — 51 — dB Level above which RFSENSE will trigger4 Level below which RFSENSE will not trigger4 RFSENSETRIG om Adjacent channel selectivity, Interferer is CW at ± 1 x channel-spacing m en de d Fo rN ew SENS ot R ec Alternate channel selectivity, C/I2 Interferer is CW at ± 2 x channel-spacing C/IIMAGE N Image rejection, Interferer is CW at image frequency silabs.com | Building a more connected world. Rev. 1.4 | 68 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Test Condition Min Typ Max Unit Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal1 at 3 dB above sensitivity level C/IBLOCKER Interferer CW at Desired ± 1 MHz — 74.2 — dB Interferer CW at Desired ± 2 MHz 68.7 76 — dB 80 90.6 — dB RSSIMAX Upper limit of input power range over which RSSI resolution is maintained — — 5 dBm RSSIMIN Lower limit of input power range over which RSSI resolution is maintained -98 Interferer CW at Desired ± 10 MHz RSSI resolution RSSIRES — 30 MHz to 1 GHz — 1 GHz to 12 GHz — — — dBm 0.25 — dBm -83.7 -63 dBm -58.8 -50 dBm Fo rN ew Max spurious emissions dur- SPURRX ing active receive mode Over RSSIMIN to RSSIMAX range s Symbol D es ig n Parameter Note: 1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 5.05 kHz, channel spacing = 12.5 kHz. 2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 84.16 kHz, channel spacing = 100 kHz. 3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 841.6 kHz. 4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range. m en de d 4.1.11 Modem Table 4.30. Modem Parameter Receive bandwidth IF frequency Test Condition Min Typ Max Unit BWRX Configurable range with 38.4 MHz crystal 0.1 — 2530 kHz fIF Configurable range with 38.4 MHz crystal. Selected steps available. 150 — 1371 kHz SLDSSS Configurable in steps of 1 chip 2 — 32 chips BPSDSSS Configurable 1 — 4 bits/ symbol om DSSS symbol length Symbol N ot R ec DSSS bits per symbol silabs.com | Building a more connected world. Rev. 1.4 | 69 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.12 Oscillators 4.1.12.1 Low-Frequency Crystal Oscillator (LFXO) Symbol Test Condition Crystal frequency fLFXO — Supported crystal equivalent series resistance (ESR) ESRLFXO — Supported range of crystal load capacitance 1 CLFXO_CL 6 On-chip tuning cap range 2 CLFXO_T On-chip tuning cap step size SSLFXO Current consumption after startup 3 ILFXO Start- up time tLFXO 8 Typ Max 32.768 — kHz — 70 kΩ — 18 pF — 40 pF Fo rN ew On each of LFXTAL_N and LFXTAL_P pins Min Unit D es ig n Parameter s Table 4.31. Low-Frequency Crystal Oscillator (LFXO) — 0.25 — pF ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2, AGC4 = 1 — 273 — nA ESR = 70 kOhm, CL = 7 pF, GAIN4 = 2 — 308 — ms N ot R ec om m en de d Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. 4. In CMU_LFXOCTRL register. silabs.com | Building a more connected world. Rev. 1.4 | 70 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.12.2 High-Frequency Crystal Oscillator (HFXO) Table 4.32. High-Frequency Crystal Oscillator (HFXO) Test Condition Min Typ Max Crystal frequency fHFXO 38.4 MHz required for radio transciever operation 38 38.4 40 Supported crystal equivalent series resistance (ESR) ESRHFXO_38M4 Crystal frequency 38.4 MHz — Supported range of crystal load capacitance 1 CHFXO_CL On-chip tuning cap range 2 CHFXO_T On-chip tuning capacitance step SSHFXO Startup time tHFXO 38.4 MHz, ESR = 50 Ohm, CL = 10 pF — Frequency tolerance for the crystal FTHFXO 38.4 MHz, ESR = 50 Ohm, CL = 10 pF -40 6 On each of HFXTAL_N and HFXTAL_P pins 9 MHz — 60 Ω — 12 pF 20 25 pF 0.04 — pF 300 — µs — 40 ppm Fo rN ew — Unit s Symbol D es ig n Parameter m en de d Note: 1. Total load capacitance as seen by the crystal. 2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 4.1.12.3 Low-Frequency RC Oscillator (LFRCO) Table 4.33. Low-Frequency RC Oscillator (LFRCO) Parameter Test Condition fLFRCO ec om Oscillation frequency Symbol tLFRCO Current consumption 2 ILFRCO ot R Startup time Min Typ Max Unit ENVREF1 = 1, T ≤ 85 °C 30.474 32.768 34.243 kHz ENVREF1 = 1, T > 85 °C 30.474 — 39.7 kHz ENVREF1 = 0, T ≤ 85 °C 30.474 32.768 33.915 kHz — 500 — µs ENVREF = 1 in CMU_LFRCOCTRL — 342 — nA ENVREF = 0 in CMU_LFRCOCTRL — 494 — nA N Note: 1. In CMU_LFRCOCTRL register. 2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register. silabs.com | Building a more connected world. Rev. 1.4 | 71 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.12.4 High-Frequency RC Oscillator (HFRCO) Table 4.34. High-Frequency RC Oscillator (HFRCO) Test Condition Min Typ Max Frequency accuracy fHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 Start-up time tHFRCO fHFRCO ≥ 19 MHz — 4 < fHFRCO < 19 MHz — fHFRCO ≤ 4 MHz — fHFRCO = 38 MHz — fHFRCO = 32 MHz — IHFRCO — ns 1 — µs 2.5 — µs 204 228 µA 171 190 µA — 147 164 µA fHFRCO = 19 MHz — 126 138 µA fHFRCO = 16 MHz — 110 120 µA fHFRCO = 13 MHz — 100 110 µA fHFRCO = 7 MHz — 81 91 µA fHFRCO = 4 MHz — 33 35 µA fHFRCO = 2 MHz — 31 35 µA — 30 35 µA — 0.8 — % SSHFRCO_FINE — 0.1 — % PJHFRCO — 0.2 — % RMS m en de d fHFRCO = 26 MHz fHFRCO = 1 MHz Coarse trim step size (% of period) Fine trim step size (% of period) SSHFRCO_COARS E N ot R ec om Period jitter % 300 Fo rN ew Current consumption on all supplies Unit s Symbol D es ig n Parameter silabs.com | Building a more connected world. Rev. 1.4 | 72 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.12.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Table 4.35. Auxiliary High-Frequency RC Oscillator (AUXHFRCO) Test Condition Min Typ Max Frequency accuracy fAUXHFRCO_ACC At production calibrated frequencies, across supply voltage and temperature -2.5 — 2.5 Start-up time tAUXHFRCO fAUXHFRCO ≥ 19 MHz — 4 < fAUXHFRCO < 19 MHz — fAUXHFRCO ≤ 4 MHz — fAUXHFRCO = 38 MHz — fAUXHFRCO = 32 MHz — IAUXHFRCO — ns 1 — µs 2.5 — µs 204 — µA 171 — µA — 147 — µA fAUXHFRCO = 19 MHz — 126 — µA fAUXHFRCO = 16 MHz — 110 — µA fAUXHFRCO = 13 MHz — 100 — µA fAUXHFRCO = 7 MHz — 81 — µA fAUXHFRCO = 4 MHz — 33 — µA fAUXHFRCO = 2 MHz — 31 — µA — 30 — µA — 0.8 — % — 0.1 — % — 0.2 — % RMS Min Typ Max Unit 0.95 1 1.07 kHz m en de d fAUXHFRCO = 26 MHz fAUXHFRCO = 1 MHz Coarse trim step size (% of period) Fine trim step size (% of period) SSAUXHFR- CO_COARSE SSAUXHFR- CO_FINE PJAUXHFRCO om Period jitter % 300 Fo rN ew Current consumption on all supplies Unit s Symbol D es ig n Parameter ec 4.1.12.6 Ultra-low Frequency RC Oscillator (ULFRCO) Table 4.36. Ultra-low Frequency RC Oscillator (ULFRCO) Symbol Oscillation frequency fULFRCO Test Condition N ot R Parameter silabs.com | Building a more connected world. Rev. 1.4 | 73 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.13 Flash Memory Characteristics1 Table 4.37. Flash Memory Characteristics1 ECFLASH Flash data retention RETFLASH Word (32-bit) programming time tW_PROG Page erase time2 tPERASE Mass erase time3 tMERASE Device erase time4 5 tDERASE IERASE IWRITE Max 10000 — — 10 T ≤ 125 °C 10 Burst write, 128 words, average time per word 20 Single word 57 20 T ≤ 85 °C Page Erase Mass or Device Erase Write current6 Typ T ≤ 85 °C T ≤ 125 °C Erase current6 Min Unit s Flash erase cycles before failure Test Condition cycles D es ig n Symbol — — years — — years 26 40 µs 68 82 µs 27 40 ms Fo rN ew Parameter 20 27 40 ms — 60 74 ms — 60 78 ms — — 3 mA — — 5 mA — — 3 mA N ot R ec om m en de d Note: 1. Flash data retention information is published in the Quarterly Quality and Reliability Report. 2. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 3. Mass erase is issued by the CPU and erases all flash. 4. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW). 5. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup and hold times for flash control signals are included. 6. Measured at 25 °C. silabs.com | Building a more connected world. Rev. 1.4 | 74 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.14 General-Purpose I/O (GPIO) Table 4.38. General-Purpose I/O (GPIO) Test Condition Min Typ Max Input low voltage VIL Input high voltage Output high voltage relative to IOVDD Unit GPIO pins — — IOVDD*0.3 VIH GPIO pins IOVDD*0.7 VOH Sourcing 3 mA, IOVDD ≥ 3 V, IOVDD*0.8 s Symbol V D es ig n Parameter — — V — — V — — V IOVDD*0.8 — — V IOVDD*0.6 — — V — — IOVDD*0.2 V — — IOVDD*0.4 V — — IOVDD*0.2 V — — IOVDD*0.4 V All GPIO except LFXO pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 30 nA LFXO Pins, GPIO ≤ IOVDD, T ≤ 85 °C — 0.1 50 nA All GPIO except LFXO pins, GPIO ≤ IOVDD, T > 85 °C — — 110 nA LFXO Pins, GPIO ≤ IOVDD, T > 85 °C — — 250 nA IOVDD < GPIO ≤ IOVDD + 2 V — 3.3 15 µA 30 43 65 kΩ 20 25 35 ns DRIVESTRENGTH1 = WEAK Sourcing 1.2 mA, IOVDD ≥ 1.62 V, IOVDD*0.6 DRIVESTRENGTH1 = WEAK Fo rN ew Sourcing 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sourcing 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG Output low voltage relative to VOL IOVDD Sinking 3 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = WEAK Sinking 1.2 mA, IOVDD ≥ 1.62 V, m en de d DRIVESTRENGTH1 = WEAK Sinking 20 mA, IOVDD ≥ 3 V, DRIVESTRENGTH1 = STRONG Sinking 8 mA, IOVDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG IIOLEAK ot R ec om Input leakage current Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK I/O pin pull-up/pull-down resistor RPUD N Pulse width of pulses retIOGLITCH moved by the glitch suppression filter silabs.com | Building a more connected world. Rev. 1.4 | 75 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Parameter Symbol Test Condition Output fall time, From 70% to 30% of VIO tIOOF CL = 50 pF, Min Typ Max Unit — 1.8 — ns — 4.5 — ns DRIVESTRENGTH1 = STRONG, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 tIOOR Output rise time, From 30% to 70% of VIO CL = 50 pF, — DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 CL = 50 pF, 2.2 — ns 7.4 — ns Fo rN ew — D es ig n CL = 50 pF, s SLEWRATE1 = 0x6 DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 N ot R ec om m en de d Note: 1. In GPIO_Pn_CTRL register. silabs.com | Building a more connected world. Rev. 1.4 | 76 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.15 Voltage Monitor (VMON) Table 4.39. Voltage Monitor (VMON) Supply current (including I_SENSE) IVMON Loading of monitored supply ISENSE Threshold range VVMON_RANGE Threshold step size NVMON_STESP Min Typ Max In EM0 or EM1, 1 supply monitored — 5.8 8.26 In EM0 or EM1, 4 supplies monitored — In EM2, EM3 or EM4, 1 channel active and above threshold — In EM2, EM3 or EM4, 1 channel active and below threshold — In EM2, EM3 or EM4, All channels active and above threshold — In EM2, EM3 or EM4, All channels active and below threshold — In EM0 or EM1 In EM2, EM3 or EM4 Coarse m en de d Fine Response time tVMON_RES VVMON_HYST µA 11.8 16.8 µA 62 — nA 62 — nA 99 — nA 99 — nA — 2 — µA — 2 — nA 1.62 — 3.4 V — 200 — mV — 20 — mV — 460 — ns — 26 — mV N ot R ec om Hysteresis Supply drops at 1V/µs rate Unit s Test Condition D es ig n Symbol Fo rN ew Parameter silabs.com | Building a more connected world. Rev. 1.4 | 77 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.16 Analog to Digital Converter (ADC) Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated. Table 4.40. Analog to Digital Converter (ADC) Resolution VRESOLUTION Input voltage range1 VADCIN Test Condition Single ended Min Typ Max 6 — 12 — Differential -VFS/2 Input range of external refer- VADCREFIN_P ence voltage, single ended and differential 1 PSRRADC At DC — Analog input common mode rejection ratio CMRRADC At DC — Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_LP Continuous operation. WARMUPMODE3 = KEEPADCWARM Bits — VFS V — VFS/2 V — VAVDD V 80 — dB 80 — dB Fo rN ew Power supply rejection2 Unit s Symbol D es ig n Parameter — 301 350 µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 4 — 149 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 1 4 — 91 — µA Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 1 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 1 4 — 51 — µA — 9 — µA Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 117 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 — 79 — µA 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 345 — µA 250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 4 — 191 — µA 62.5 ksps / 1 MHz ADCCLK, BIASPROG = 15, GPBIASACC = 0 4 — 132 — µA Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIAing internal reference buffer. SPROG = 0, GPBIASACC = 0 4 Duty-cycled operation. WAR5 ksps / 16 MHz ADCCLK BIAMUPMODE3 = NORMAL SPROG = 0, GPBIASACC = 0 4 — 102 — µA — 17 — µA m en de d 1 Msps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 1 4 ot R ec om Current from all supplies, us- IADC_CONTINUing internal reference buffer. OUS_HP Continuous operation. WARMUPMODE3 = KEEPADCWARM 125 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 162 — µA 35 ksps / 16 MHz ADCCLK, BIASPROG = 0, GPBIASACC = 0 4 — 123 — µA Current from HFPERCLK HFPERCLK = 16 MHz — 140 — µA N Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP Duty-cycled operation. AWARMUPMODE3 = KEEPINSTANDBY or KEEPINSLOWACC IADC_CLK silabs.com | Building a more connected world. Rev. 1.4 | 78 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Min Typ Max Unit fADCCLK — — 16 MHz Throughput rate fADCRATE — — 1 Msps Conversion time5 tADCCONV 6 bit — 7 — cycles 8 bit — 9 — cycles 12 bit — 13 — WARMUPMODE3 = NORMAL — — 5 µs WARMUPMODE3 = KEEPINSTANDBY — — 2 µs WARMUPMODE3 = KEEPINSLOWACC — — 1 µs Internal reference6, differential measurement 58 67 — dB Startup time of reference generator and ADC core tADCSTART SNDR at 1Msps and fIN = 10kHz SNDRADC s ADC clock frequency Test Condition cycles D es ig n Symbol Fo rN ew Parameter — 68 — dB Spurious-free dynamic range SFDRADC (SFDR) 1 MSamples/s, 10 kHz full-scale sine wave — 75 — dB Differential non-linearity (DNL) DNLADC 12 bit resolution, No missing codes -1 — 2 LSB Integral non-linearity (INL), End point method INLADC 12 bit resolution -6 — 6 LSB Offset error VADCOFFSETERR -3 0.25 3 LSB Using internal reference — -0.2 3.5 % Using external reference — -1 — % — -1.84 — mV/°C Gain error in ADC Temperature sensor slope m en de d External reference7, differential measurement VADCGAIN VTS_SLOPE N ot R ec om Note: 1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin. 2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL. 3. In ADCn_CNTL register. 4. In ADCn_BIASPROG register. 5. Derived from ADCCLK. 6. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale. 7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is ± 1.25 V. silabs.com | Building a more connected world. Rev. 1.4 | 79 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.17 Analog Comparator (ACMP) Table 4.41. Analog Comparator (ACMP) Test Condition Input voltage range VACMPIN ACMPVDD = ACMPn_CTRL_PWRSEL 1 Supply voltage VACMPVDD BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0 1.85 0x10 < BIASPROG2 ≤ 0x20 and FULLBIAS2 = 1 2.1 BIASPROG2 = 1, FULLBIAS2 = 0 — BIASPROG2 = 0x10, FULLBIAS2 =0 — BIASPROG2 = 0x20, FULLBIAS2 =1 — VLP selected as input using 2.5 V Reference / 4 (0.625 V) IACMP VACMPHYST N ot R ec om Hysteresis (VCM = 1.25 V, BIASPROG2 = 0x10, FULLBIAS2 = 1) silabs.com | Building a more connected world. Max Unit 0 — VACMPVDD V — VVREGVDD_ V MAX — VVREGVDD_ V MAX 50 — nA 306 — nA 74 95 µA — 50 — nA VLP selected as input using VDD — 20 — nA VBDIV selected as input using 1.25 V reference / 1 — 4.1 — µA VADIV selected as input using VDD/1 — 2.4 — µA HYSTSEL4 = HYST0 -1.75 0 1.75 mV HYSTSEL4 = HYST1 10 18 26 mV HYSTSEL4 = HYST2 21 32 46 mV HYSTSEL4 = HYST3 27 44 63 mV HYSTSEL4 = HYST4 32 55 80 mV HYSTSEL4 = HYST5 38 65 100 mV HYSTSEL4 = HYST6 43 77 121 mV HYSTSEL4 = HYST7 47 86 148 mV HYSTSEL4 = HYST8 -4 0 4 mV HYSTSEL4 = HYST9 -27 -18 -10 mV HYSTSEL4 = HYST10 -47 -32 -18 mV HYSTSEL4 = HYST11 -64 -43 -27 mV HYSTSEL4 = HYST12 -78 -54 -32 mV HYSTSEL4 = HYST13 -93 -64 -37 mV HYSTSEL4 = HYST14 -113 -74 -42 mV HYSTSEL4 = HYST15 -135 -85 -47 mV m en de d Current consumption of inter- IACMPREF nal voltage reference3 Typ Fo rN ew Active current not including voltage reference3 Min s Symbol D es ig n Parameter Rev. 1.4 | 80 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Symbol Test Condition Min Typ Max Unit Comparator delay5 tACMPDELAY BIASPROG2 = 1, FULLBIAS2 = 0 — 30 — µs BIASPROG2 = 0x10, FULLBIAS2 =0 — 3.7 — µs BIASPROG2 = 0x20, FULLBIAS2 =1 — 35 — ns -35 — 35 1.25 1.47 V 2.5 2.8 V infinite — kΩ 15 — kΩ 27 — kΩ s Parameter mV VACMPOFFSET BIASPROG2 =0x10, FULLBIAS2 =1 Reference voltage VACMPREF Internal 1.25 V reference 1 Internal 2.5 V reference 2 CSRESSEL6 = 0 — CSRESSEL6 = 1 — CSRESSEL6 = 2 — CSRESSEL6 = 3 — 39 — kΩ CSRESSEL6 = 4 — 51 — kΩ CSRESSEL6 = 5 — 102 — kΩ CSRESSEL6 = 6 — 164 — kΩ CSRESSEL6 = 7 — 239 — kΩ Fo rN ew Capacitive sense internal re- RCSRES sistance D es ig n Offset voltage m en de d Note: 1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD. 2. In ACMPn_CTRL register. 3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP + IACMPREF. N ot R ec om 4. In ACMPn_HYSTERESIS registers. 5. ± 100 mV differential drive. 6. In ACMPn_INPUTSEL register. silabs.com | Building a more connected world. Rev. 1.4 | 81 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.18 Current Digital to Analog Converter (IDAC) Table 4.42. Current Digital to Analog Converter (IDAC) NIDAC_RANGES Output current IIDAC_OUT Linear steps within each range NIDAC_STEPS Step size SSIDAC Typ Max Unit — 4 — ranges RANGSEL1 = RANGE0 0.05 — 1.6 RANGSEL1 = RANGE1 1.6 — 4.7 µA RANGSEL1 = RANGE2 0.5 — 16 µA RANGSEL1 = RANGE3 2 — 64 µA 32 — steps 50 — nA — RANGSEL1 = RANGE0 om ec ot R N Start up time tIDAC_SU silabs.com | Building a more connected world. — µA RANGSEL1 = RANGE1 — 100 — nA RANGSEL1 = RANGE2 — 500 — nA RANGSEL1 = RANGE3 — 2 — µA EM0 or EM1, AVDD=3.3 V, T = 25 °C -2 — 2 % EM0 or EM1, Across operating temperature range -18 — 22 % EM2 or EM3, Source mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -2 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -1.7 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.8 — % EM2 or EM3, Source mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T = 25 °C — -0.7 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T = 25 °C — -0.6 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T = 25 °C — -0.5 — % EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T = 25 °C — -0.5 — % Output within 1% of steady state value — 5 — µs m en de d Total accuracy, STEPSEL1 = ACCIDAC 0x10 Min s Number of ranges Test Condition D es ig n Symbol Fo rN ew Parameter Rev. 1.4 | 82 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications IIDAC Current consumption2 Typ Max Unit Range setting is changed — 5 — µs Step value is changed — 1 — µs EM0 or EM1 Source mode, excluding output current, Across operating temperature range — 8.9 13 µA EM0 or EM1 Sink mode, excluding output current, Across operating temperature range — 12 16 EM2 or EM3 Source mode, excluding output current, T = 25 °C — 1.04 — µA EM2 or EM3 Sink mode, excluding output current, T = 25 °C — 1.08 — µA EM2 or EM3 Source mode, excluding output current, T ≥ 85 °C — 8.9 — µA om Output voltage compliance in ICOMP_SINK sink mode, sink current change relative to current sunk at IOVDD µA EM2 or EM3 Sink mode, excluding output current, T ≥ 85 °C — 12 — µA RANGESEL1=0, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.04 — % RANGESEL1=1, output voltage = min(VIOVDD, VAVDD2-100 mV) — 0.02 — % RANGESEL1=2, output voltage = min(VIOVDD, VAVDD2-150 mV) — 0.02 — % RANGESEL1=3, output voltage = min(VIOVDD, VAVDD2-250 mV) — 0.02 — % RANGESEL1=0, output voltage = 100 mV — 0.18 — % RANGESEL1=1, output voltage = 100 mV — 0.12 — % RANGESEL1=2, output voltage = 150 mV — 0.08 — % RANGESEL1=3, output voltage = 250 mV — 0.02 — % m en de d Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V Min s Settling time, (output settled tIDAC_SETTLE within 1% of steady state value), Test Condition D es ig n Symbol Fo rN ew Parameter N ot R ec Note: 1. In IDAC_CURPROG register. 2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1). silabs.com | Building a more connected world. Rev. 1.4 | 83 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.19 Pulse Counter (PCNT) Table 4.43. Pulse Counter (PCNT) Test Condition Min Typ Max Input frequency FIN Asynchronous Single and Quadrature Modes — — 10 Sampled Modes with Debounce filter set to 0. — 4.1.20 I2C — Fo rN ew 4.1.20.1 I2C Standard-mode (Sm)1 Unit s Symbol MHz D es ig n Parameter 8 kHz Table 4.44. I2C Standard-mode (Sm)1 Symbol SCL clock frequency2 fSCL SCL clock low time tLOW SCL clock high time tHIGH SDA set-up time tSU_DAT Min Typ Max Unit 0 — 100 kHz 4.7 — — µs 4 — — µs 250 — — ns tHD_DAT 100 — 3450 ns tSU_STA 4.7 — — µs (Repeated) START condition tHD_STA hold time 4 — — µs STOP condition set-up time 4 — — µs 4.7 — — µs SDA hold time3 Repeated START condition set-up time tSU_STO tBUF om Bus free time between a STOP and START condition Test Condition m en de d Parameter N ot R ec Note: 1. For CLHR set to 0 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.4 | 84 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.20.2 I2C Fast-mode (Fm)1 Table 4.45. I2C Fast-mode (Fm)1 Min Typ Max fSCL 0 — 400 SCL clock low time tLOW 1.3 SCL clock high time tHIGH 0.6 SDA set-up time tSU_DAT 100 SDA hold time3 tHD_DAT 100 Repeated START condition set-up time tSU_STA 0.6 (Repeated) START condition tHD_STA hold time STOP condition set-up time tSU_STO Bus free time between a STOP and START condition tBUF Unit s SCL clock frequency2 Test Condition kHz D es ig n Symbol — — µs — — µs — — ns — 900 ns — — µs 0.6 — — µs 0.6 — — µs 1.3 — — µs Fo rN ew Parameter N ot R ec om m en de d Note: 1. For CLHR set to 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual. 3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). silabs.com | Building a more connected world. Rev. 1.4 | 85 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.20.3 I2C Fast-mode Plus (Fm+)1 Table 4.46. I2C Fast-mode Plus (Fm+)1 Min Typ Max fSCL 0 — 1000 SCL clock low time tLOW 0.5 SCL clock high time tHIGH 0.26 SDA set-up time tSU_DAT 50 SDA hold time tHD_DAT 100 Repeated START condition set-up time tSU_STA 0.26 (Repeated) START condition tHD_STA hold time STOP condition set-up time tSU_STO Bus free time between a STOP and START condition tBUF Unit s SCL clock frequency2 Test Condition kHz D es ig n Symbol — — µs — — µs — — ns — — ns — — µs 0.26 — — µs 0.26 — — µs 0.5 — — µs Fo rN ew Parameter N ot R ec om m en de d Note: 1. For CLHR set to 0 or 1 in the I2Cn_CTRL register. 2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual. silabs.com | Building a more connected world. Rev. 1.4 | 86 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.1.21 USART SPI SPI Master Timing Test Condition Min Max SCLK period 1 2 3 tSCLK — — ns CS to MOSI 1 2 tCS_MO -9 — 10 ns SCLK to MOSI 1 2 tSCLK_MO -6 — 6.5 ns MISO setup time 1 2 tSU_MI — — ns — — ns — ns 2* tHFPERCLK IOVDD = 1.62 V 60 IOVDD = 3.0 V 40 tH_MI Unit D es ig n Symbol MISO hold time 1 2 Typ Fo rN ew Parameter s Table 4.47. SPI Master Timing -13 — Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). 3. tHFPERCLK is one period of the selected HFPERCLK. CS tCS_MO m en de d tSCKL_MO SCLK CLKPOL = 0 tSCLK SCLK CLKPOL = 1 MOSI tSU_MI tH_MI Figure 4.1. SPI Master Timing Diagram N ot R ec om MISO silabs.com | Building a more connected world. Rev. 1.4 | 87 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications SPI Slave Timing Table 4.48. SPI Slave Timing Min Typ Max tSCLK 6* tHFPERCLK — — SCLK high time1 2 3 tSCLK_HI 2.5 * tHFPERCLK SCLK low time1 2 3 tSCLK_LO 2.5 * tHFPERCLK CS active to MISO 1 2 tCS_ACT_MI 4 CS disable to MISO 1 2 tCS_DIS_MI 4 MOSI setup time 1 2 tSU_MO MOSI hold time 1 2 3 tH_MO SCLK to MISO 1 2 3 tSCLK_MI Unit s SCLK period 1 2 3 Test Condition ns D es ig n Symbol — — ns — — ns — 70 ns — 50 ns Fo rN ew Parameter 8 — — ns 7 — — ns 10 + 1.5 * tHFPERCLK — 65 + 2.5 * tHFPERCLK ns Note: 1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0). 2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD). CS SCLK CLKPOL = 0 SCLK CLKPOL = 1 tCS_ACT_MI om MOSI m en de d 3. tHFPERCLK is one period of the selected HFPERCLK. tSCLK_HI tSU_MO tCS_DIS_MI tSCLK_LO tSCLK tH_MO tSCLK_MI Figure 4.2. SPI Slave Timing Diagram ot R ec MISO 4.2 Typical Performance Curves N Typical performance curves indicate typical characterized performance under the stated conditions. silabs.com | Building a more connected world. Rev. 1.4 | 88 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Fo rN ew D es ig n s 4.2.1 Supply Current Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature ot R ec om m en de d Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature N Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories. silabs.com | Building a more connected world. Rev. 1.4 | 89 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature N ot R ec om m en de d Fo rN ew D es ig n s Electrical Specifications silabs.com | Building a more connected world. Rev. 1.4 | 90 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications 4.2.2 DC-DC Converter Figure 4.6. DC-DC Converter Typical Performance Characteristics N ot R ec om m en de d Fo rN ew D es ig n s Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz silabs.com | Building a more connected world. Rev. 1.4 | 91 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications DVDD s Load Step Response in LN (CCM) mode (Heavy Drive) LN (CCM) and LP mode transition (load: 5mA) 50mV/div offset:1.8V 100mA VSW ILOAD 2V/div offset:1.8V 1mA D es ig n DVDD 60mV/div offset:1.8V 10μs/div 100μs/div N ot R ec om m en de d Fo rN ew Figure 4.7. DC-DC Converter Transition Waveforms silabs.com | Building a more connected world. Rev. 1.4 | 92 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Fo rN ew D es ig n s 4.2.3 Internal Oscillators Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 32 MHz N ot R ec om m en de d Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz silabs.com | Building a more connected world. Rev. 1.4 | 93 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Fo rN ew D es ig n s Electrical Specifications Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 19 MHz N ot R ec om m en de d Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 26 MHz silabs.com | Building a more connected world. Rev. 1.4 | 94 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Fo rN ew D es ig n s Electrical Specifications Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz N ot R ec om m en de d Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz silabs.com | Building a more connected world. Rev. 1.4 | 95 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Fo rN ew D es ig n s Electrical Specifications Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 4 MHz N ot R ec om m en de d Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 7 MHz silabs.com | Building a more connected world. Rev. 1.4 | 96 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Fo rN ew D es ig n s Electrical Specifications Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 1 MHz N ot R ec om m en de d Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 2 MHz silabs.com | Building a more connected world. Rev. 1.4 | 97 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Fo rN ew D es ig n s Electrical Specifications Figure 4.19. ULFRCO Typical Performance at 1 kHz N ot R ec om m en de d Figure 4.18. LFRCO Typical Performance at 32.768 kHz silabs.com | Building a more connected world. Rev. 1.4 | 98 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Electrical Specifications Figure 4.20. 2.4 GHz RF Transmitter Output Power N ot R ec om m en de d Fo rN ew D es ig n s 4.2.4 2.4 GHz Radio silabs.com | Building a more connected world. Rev. 1.4 | 99 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Fo rN ew D es ig n s Electrical Specifications N ot R ec om m en de d Figure 4.21. 2.4 GHz RF Receiver Sensitivity silabs.com | Building a more connected world. Rev. 1.4 | 100 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Typical Connection Diagrams 5. Typical Connection Diagrams 5.1 Power Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure. VDD s + – VREGVDD AVDD VREGSW D es ig n Main Supply IOVDD HFXTAL_N VREGVSS HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE PAVDD Fo rN ew RFVDD Figure 5.1. EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm. VDD m en de d Main Supply + – VREGVDD VDCDC VREGSW VREGVSS IOVDD HFXTAL_N HFXTAL_P LFXTAL_N LFXTAL_P DECOUPLE RFVDD PAVDD ot R ec om DVDD AVDD N Figure 5.2. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) silabs.com | Building a more connected world. Rev. 1.4 | 101 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Typical Connection Diagrams VDD + – VREGVDD VREGSW IOVDD HFXTAL_N VREGVSS s VDCDC AVDD HFXTAL_P DVDD LFXTAL_N LFXTAL_P DECOUPLE RFVDD PAVDD D es ig n Main Supply N ot R ec om m en de d Fo rN ew Figure 5.3. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD) silabs.com | Building a more connected world. Rev. 1.4 | 102 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Typical Connection Diagrams 5.2 RF Matching Networks 4-Element Match for 2.4GHz Band 2-Element Match for 2.4GHz Band PAVDD PAVDD PAVDD PAVDD L0 C0 L1 50Ω C0 2G4RF_ION C1 Fo rN ew 2G4RF_ION L0 2G4RF_IOP 50Ω 2G4RF_IOP D es ig n s Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 103 for applications in the 2.4GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 103 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32xG1 Reference Manual. For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm). Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits Sub-GHz Match Topology I (169-500 MHz) PAVDD L1 L2 C0 L3 L5 C5 m en de d SUBGRF_IN L6 L7 50Ω C2 C4 L0 C7 C8 C9 C10 C3 SUBGRF_IP C1 SUBGRF_ON SUBGRF_OP L4 C6 BAL1 om Sub-GHz Match Topology 2 (500-915 MHz) C0 L3 PAVDD L5 L6 50Ω ec SUBGRF_IN L0 C4 C7 C8 C9 ot R SUBGRF_IP C1 L4 BAL1 SUBGRF_ON N SUBGRF_OP Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits silabs.com | Building a more connected world. Rev. 1.4 | 103 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Typical Connection Diagrams 5.3 Other Connections N ot R ec om m en de d Fo rN ew D es ig n s Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes). silabs.com | Building a more connected world. Rev. 1.4 | 104 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions 6. Pin Definitions om m en de d Fo rN ew D es ig n s 6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout Figure 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout ot R ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview. Pin Name Pin(s) Table 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout Description Pin Name Pin(s) Description 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) PF4 5 GPIO (5V) PF5 6 GPIO (5V) PF6 7 GPIO (5V) PF7 8 GPIO (5V) RFVDD 9 Radio power supply HFXTAL_N 10 High Frequency Crystal input pin. HFXTAL_P 11 High Frequency Crystal output pin. N VSS silabs.com | Building a more connected world. Rev. 1.4 | 105 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description SUBGRF_OP 13 Sub GHz Differential RF output, positive path. SUBGRF_IP 15 Sub GHz Differential RF input, positive path. 12 SUBGRF_ON 14 Sub GHz Differential RF output, negative path. SUBGRF_IN 16 Sub GHz Differential RF input, negative path. RFVSS 17 Radio Ground PAVSS 18 Power Amplifier (PA) voltage regulator VSS 2G4RF_ION 19 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 2G4RF_IOP 20 2.4 GHz Differential RF input/output, positive path. PAVDD 21 Power Amplifier (PA) voltage regulator VDD input PD13 22 GPIO (5V) PD14 23 GPIO (5V) PD15 24 GPIO (5V) PA1 26 GPIO PA3 28 GPIO (5V) PA5 30 GPIO (5V) PB12 32 GPIO (5V) AVDD 34 Analog power supply. PB15 36 GPIO VREGSW 38 DVDD Fo rN ew D es ig n s RESETn Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. 25 GPIO PA2 27 GPIO (5V) PA4 29 GPIO (5V) PB11 31 GPIO (5V) PB13 33 GPIO (5V) PB14 35 GPIO VREGVSS 37 Voltage regulator VSS DCDC regulator switching node VREGVDD 39 Voltage regulator VDD input 40 Digital power supply. DECOUPLE 41 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. IOVDD 42 Digital IO power supply. PC6 43 GPIO (5V) PC7 44 GPIO (5V) PC8 45 GPIO (5V) PC9 46 GPIO (5V) PC10 47 GPIO (5V) PC11 48 GPIO (5V) om m en de d PA0 N ot R ec Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 106 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions m en de d Fo rN ew D es ig n s 6.2 QFN48 2.4 GHz Device Pinout om Figure 6.2. QFN48 2.4 GHz Device Pinout ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview. Pin(s) ot R Pin Name Table 6.2. QFN48 2.4 GHz Device Pinout Description Pin Name Pin(s) Description 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) PF4 5 GPIO (5V) PF5 6 GPIO (5V) PF6 7 GPIO (5V) PF7 8 GPIO (5V) RFVDD 9 Radio power supply HFXTAL_N 10 High Frequency Crystal input pin. HFXTAL_P 11 High Frequency Crystal output pin. N VSS silabs.com | Building a more connected world. Rev. 1.4 | 107 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description NC 13 No Connect. PAVSS 15 Power Amplifier (PA) voltage regulator VSS 12 RFVSS 14 Radio Ground 2G4RF_ION 16 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. 2G4RF_IOP 17 2.4 GHz Differential RF input/output, positive path. PAVDD 18 Power Amplifier (PA) voltage regulator VDD input PD10 19 GPIO (5V) PD11 20 GPIO (5V) PD12 21 GPIO (5V) PD13 22 GPIO (5V) PD14 23 GPIO (5V) PD15 24 GPIO (5V) PA0 25 GPIO PA1 26 GPIO PA2 27 GPIO (5V) PA3 28 GPIO (5V) PA4 29 GPIO (5V) PA5 30 GPIO (5V) PB11 31 GPIO (5V) PB12 32 GPIO (5V) PB13 33 GPIO (5V) AVDD 34 Analog power supply. PB14 35 GPIO PB15 36 GPIO VREGVSS 37 Voltage regulator VSS VREGSW 38 DCDC regulator switching node VREGVDD 39 Voltage regulator VDD input DVDD 40 Digital power supply. DECOUPLE 41 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. IOVDD 42 Digital IO power supply. PC6 43 GPIO (5V) PC7 44 GPIO (5V) PC8 45 GPIO (5V) PC9 46 GPIO (5V) PC10 47 GPIO (5V) PC11 48 GPIO (5V) m en de d Fo rN ew D es ig n s RESETn Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. N ot R ec om Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 108 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions m en de d Fo rN ew D es ig n s 6.3 QFN48 Sub-GHz Device Pinout om Figure 6.3. QFN48 Sub-GHz Device Pinout ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview. Pin(s) ot R Pin Name Table 6.3. QFN48 Sub-GHz Device Pinout Description Pin Name Pin(s) Description 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) PF4 5 GPIO (5V) PF5 6 GPIO (5V) PF6 7 GPIO (5V) PF7 8 GPIO (5V) RFVDD 9 Radio power supply HFXTAL_N 10 High Frequency Crystal input pin. HFXTAL_P 11 High Frequency Crystal output pin. N VSS silabs.com | Building a more connected world. Rev. 1.4 | 109 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description SUBGRF_OP 13 Sub GHz Differential RF output, positive path. SUBGRF_IP 15 Sub GHz Differential RF input, positive path. RFVSS 17 Radio Ground 12 SUBGRF_ON 14 Sub GHz Differential RF output, negative path. SUBGRF_IN 16 Sub GHz Differential RF input, negative path. PD9 18 GPIO (5V) PD10 19 GPIO (5V) PD11 20 GPIO (5V) PD12 21 GPIO (5V) PD13 22 GPIO (5V) PD14 23 GPIO (5V) PD15 24 GPIO (5V) PA0 25 GPIO PA1 26 GPIO PA2 27 GPIO (5V) PA3 28 GPIO (5V) PA4 29 GPIO (5V) PA5 30 GPIO (5V) PB11 31 GPIO (5V) PB12 32 GPIO (5V) PB13 33 GPIO (5V) AVDD 34 Analog power supply. PB14 35 GPIO PB15 36 GPIO VREGVSS 37 Voltage regulator VSS VREGSW 38 DCDC regulator switching node VREGVDD 39 Voltage regulator VDD input DVDD 40 Digital power supply. DECOUPLE 41 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. IOVDD 42 Digital IO power supply. PC6 43 GPIO (5V) PC7 44 GPIO (5V) PC8 45 GPIO (5V) PC9 46 GPIO (5V) PC10 47 GPIO (5V) PC11 48 GPIO (5V) m en de d Fo rN ew D es ig n s RESETn Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. N ot R ec om Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 110 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions m en de d Fo rN ew D es ig n s 6.4 QFN32 2.4 GHz Device Pinout om Figure 6.4. QFN32 2.4 GHz Device Pinout ec The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.5 GPIO Functionality Table or 6.6 Alternate Functionality Overview. Pin(s) ot R Pin Name Table 6.4. QFN32 2.4 GHz Device Pinout Description Pin Name Pin(s) Description 0 Ground PF0 1 GPIO (5V) PF1 2 GPIO (5V) PF2 3 GPIO (5V) PF3 4 GPIO (5V) RFVDD 5 Radio power supply HFXTAL_N 6 High Frequency Crystal input pin. HFXTAL_P 7 High Frequency Crystal output pin. 8 Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. RFVSS 9 Radio Ground N VSS RESETn silabs.com | Building a more connected world. Rev. 1.4 | 111 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Pin Name Pin(s) Description Pin Name Pin(s) Description 11 2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded. PAVDD 13 Power Amplifier (PA) voltage regulator VDD input GPIO (5V) PD14 15 GPIO (5V) 16 GPIO (5V) PA0 17 GPIO PA1 18 GPIO PB11 19 GPIO (5V) PB12 20 GPIO (5V) PB13 21 GPIO (5V) AVDD 22 Analog power supply. PB14 23 GPIO PB15 24 GPIO VREGVSS 25 Voltage regulator VSS VREGSW 26 DCDC regulator switching node VREGVDD 27 Voltage regulator VDD input DVDD 28 Digital power supply. IOVDD 30 Digital IO power supply. PC11 32 GPIO (5V) 2G4RF_IOP 12 2.4 GHz Differential RF input/output, positive path. PD13 14 PD15 D es ig n Power Amplifier (PA) voltage regulator VSS DECOUPLE 29 Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. PC10 31 GPIO (5V) Fo rN ew 10 s 2G4RF_ION PAVSS N ot R ec om m en de d Note: 1. GPIO with 5V tolerance are indicated by (5V). 2. The pins PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5V domains. silabs.com | Building a more connected world. Rev. 1.4 | 112 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions 6.5 GPIO Functionality Table A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 6.6 Alternate Functionality Overview for a list of GPIO locations available for each function. Pin Alternate Functionality / Description Analog Timers Communication Radio Other BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30 MODEM_ANT0 #29 MODEM_ANT1 #28 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 BUSCY BUSDX ADC0_EXTP TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31 MODEM_ANT0 #30 MODEM_ANT1 #29 CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 FRC_DCLK #2 FRC_DOUT #1 FRC_DFRAME #0 MODEM_DCLK #2 MODEM_DIN #1 MODEM_DOUT #0 MODEM_ANT0 #31 MODEM_ANT1 #30 PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 m en de d Fo rN ew PA0 D es ig n GPIO Name BUSDY BUSCX N ot R ec PA2 om PA1 s Table 6.5. GPIO Functionality Table silabs.com | Building a more connected world. Rev. 1.4 | 113 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Radio Other BUSCY BUSDX TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 FRC_DCLK #3 FRC_DOUT #2 FRC_DFRAME #1 MODEM_DCLK #3 MODEM_DIN #2 MODEM_DOUT #1 MODEM_ANT0 #0 MODEM_ANT1 #31 PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 GPIO_EM4WU8 BUSDY BUSCX TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CS #1 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 FRC_DCLK #4 FRC_DOUT #3 FRC_DFRAME #2 MODEM_DCLK #4 MODEM_DIN #3 MODEM_DOUT #2 MODEM_ANT0 #1 MODEM_ANT1 #0 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CS #2 US1_CTS #1 US1_RTS #0 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 FRC_DCLK #5 FRC_DOUT #4 FRC_DFRAME #3 MODEM_DCLK #5 MODEM_DIN #4 MODEM_DOUT #3 MODEM_ANT0 #2 MODEM_ANT1 #1 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4 MODEM_ANT0 #3 MODEM_ANT1 #2 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 BUSCY BUSDX ot R ec om PA5 BUSCY BUSDX N PB11 silabs.com | Building a more connected world. D es ig n s Communication m en de d PA4 Timers Fo rN ew PA3 Analog Rev. 1.4 | 114 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Radio Other BUSDY BUSCX TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 FRC_DCLK #7 FRC_DOUT #6 FRC_DFRAME #5 MODEM_DCLK #7 MODEM_DIN #6 MODEM_DOUT #5 MODEM_ANT0 #4 MODEM_ANT1 #3 PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7 BUSCY BUSDX TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6 MODEM_ANT0 #5 MODEM_ANT1 #4 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 FRC_DCLK #9 FRC_DOUT #8 FRC_DFRAME #7 MODEM_DCLK #9 MODEM_DIN #8 MODEM_DOUT #7 MODEM_ANT0 #6 MODEM_ANT1 #5 CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9 TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 FRC_DCLK #10 FRC_DOUT #9 FRC_DFRAME #8 MODEM_DCLK #10 MODEM_DIN #9 MODEM_DOUT #8 MODEM_ANT0 #7 MODEM_ANT1 #6 CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10 BUSDY BUSCX LFXTAL_N ot R ec om PB14 BUSCY BUSDX LFXTAL_P N PB15 silabs.com | Building a more connected world. D es ig n s Communication m en de d PB13 Timers Fo rN ew PB12 Analog Rev. 1.4 | 115 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSBY BUSAX TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CS #8 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10 FRC_DCLK #11 FRC_DOUT #10 FRC_DFRAME #9 MODEM_DCLK #11 MODEM_DIN #10 MODEM_DOUT #9 MODEM_ANT0 #8 MODEM_ANT1 #7 CMU_CLK0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11 BUSAY BUSBX TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 FRC_DCLK #12 FRC_DOUT #11 FRC_DFRAME #10 MODEM_DCLK #12 MODEM_DIN #11 MODEM_DOUT #10 MODEM_ANT0 #9 MODEM_ANT1 #8 CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12 TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 FRC_DCLK #13 FRC_DOUT #12 FRC_DFRAME #11 MODEM_DCLK #13 MODEM_DIN #12 MODEM_DOUT #11 MODEM_ANT0 #10 MODEM_ANT1 #9 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 om BUSBY BUSAX D es ig n N ot R s Radio ec PC8 Communication m en de d PC7 Timers Fo rN ew PC6 Analog silabs.com | Building a more connected world. Rev. 1.4 | 116 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSAY BUSBX TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 FRC_DCLK #14 FRC_DOUT #13 FRC_DFRAME #12 MODEM_DCLK #14 MODEM_DIN #13 MODEM_DOUT #12 MODEM_ANT0 #11 MODEM_ANT1 #10 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13 MODEM_ANT0 #12 MODEM_ANT1 #11 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 FRC_DCLK #16 FRC_DOUT #15 FRC_DFRAME #14 MODEM_DCLK #16 MODEM_DIN #15 MODEM_DOUT #14 MODEM_ANT0 #13 MODEM_ANT1 #12 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 om BUSAY BUSBX D es ig n N ot R s Radio ec PC11 Communication m en de d PC10 Timers Fo rN ew PC9 Analog silabs.com | Building a more connected world. Rev. 1.4 | 117 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSCY BUSDX TIM0_CC0 #17 TIM0_CC1 #16 TIM0_CC2 #15 TIM0_CDTI0 #14 TIM0_CDTI1 #13 TIM0_CDTI2 #12 TIM1_CC0 #17 TIM1_CC1 #16 TIM1_CC2 #15 TIM1_CC3 #14 LETIM0_OUT0 #17 LETIM0_OUT1 #16 PCNT0_S0IN #17 PCNT0_S1IN #16 US0_TX #17 US0_RX #16 US0_CLK #15 US0_CS #14 US0_CTS #13 US0_RTS #12 US1_TX #17 US1_RX #16 US1_CLK #15 US1_CS #14 US1_CTS #13 US1_RTS #12 LEU0_TX #17 LEU0_RX #16 I2C0_SDA #17 I2C0_SCL #16 FRC_DCLK #17 FRC_DOUT #16 FRC_DFRAME #15 MODEM_DCLK #17 MODEM_DIN #16 MODEM_DOUT #15 MODEM_ANT0 #14 MODEM_ANT1 #13 CMU_CLK0 #4 PRS_CH3 #8 PRS_CH4 #0 PRS_CH5 #6 PRS_CH6 #11 ACMP0_O #17 ACMP1_O #17 BUSDY BUSCX TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS #14 US0_RTS #13 US1_TX #18 US1_RX #17 US1_CLK #16 US1_CS #15 US1_CTS #14 US1_RTS #13 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 FRC_DCLK #18 FRC_DOUT #17 FRC_DFRAME #16 MODEM_DCLK #18 MODEM_DIN #17 MODEM_DOUT #16 MODEM_ANT0 #15 MODEM_ANT1 #14 CMU_CLK1 #4 PRS_CH3 #9 PRS_CH4 #1 PRS_CH5 #0 PRS_CH6 #12 ACMP0_O #18 ACMP1_O #18 TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 US1_CLK #17 US1_CS #16 US1_CTS #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 FRC_DCLK #19 FRC_DOUT #18 FRC_DFRAME #17 MODEM_DCLK #19 MODEM_DIN #18 MODEM_DOUT #17 MODEM_ANT0 #16 MODEM_ANT1 #15 PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_O #19 ACMP1_O #19 om BUSCY BUSDX D es ig n N ot R s Radio ec PD11 Communication m en de d PD10 Timers Fo rN ew PD9 Analog silabs.com | Building a more connected world. Rev. 1.4 | 118 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSDY BUSCX TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 FRC_DCLK #20 FRC_DOUT #19 FRC_DFRAME #18 MODEM_DCLK #20 MODEM_DIN #19 MODEM_DOUT #18 MODEM_ANT0 #17 MODEM_ANT1 #16 PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 BUSCY BUSDX TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19 MODEM_ANT0 #18 MODEM_ANT1 #17 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20 MODEM_ANT0 #19 MODEM_ANT1 #18 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4 om BUSDY BUSCX D es ig n N ot R s Radio ec PD14 Communication m en de d PD13 Timers Fo rN ew PD12 Analog silabs.com | Building a more connected world. Rev. 1.4 | 119 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSCY BUSDX TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21 MODEM_ANT0 #20 MODEM_ANT1 #19 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2 BUSBY BUSAX TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22 MODEM_ANT0 #21 MODEM_ANT1 #20 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23 MODEM_ANT0 #22 MODEM_ANT1 #21 PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS om BUSAY BUSBX D es ig n N ot R s Radio ec PF1 Communication m en de d PF0 Timers Fo rN ew PD15 Analog silabs.com | Building a more connected world. Rev. 1.4 | 120 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24 MODEM_ANT0 #23 MODEM_ANT1 #22 CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO DBG_SWO #0 GPIO_EM4WU0 BUSAY BUSBX TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25 MODEM_ANT0 #24 MODEM_ANT1 #23 CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 FRC_DCLK #28 FRC_DOUT #27 FRC_DFRAME #26 MODEM_DCLK #28 MODEM_DIN #27 MODEM_DOUT #26 MODEM_ANT0 #25 MODEM_ANT1 #24 PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28 om BUSBY BUSAX D es ig n N ot R s Radio ec PF4 Communication m en de d PF3 Timers Fo rN ew PF2 Analog silabs.com | Building a more connected world. Rev. 1.4 | 121 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions GPIO Name Pin Alternate Functionality / Description Other BUSAY BUSBX TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 FRC_DCLK #29 FRC_DOUT #28 FRC_DFRAME #27 MODEM_DCLK #29 MODEM_DIN #28 MODEM_DOUT #27 MODEM_ANT0 #26 MODEM_ANT1 #25 PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29 BUSBY BUSAX TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 FRC_DCLK #30 FRC_DOUT #29 FRC_DFRAME #28 MODEM_DCLK #30 MODEM_DIN #29 MODEM_DOUT #28 MODEM_ANT0 #27 MODEM_ANT1 #26 CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_RTS #26 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 FRC_DCLK #31 FRC_DOUT #30 FRC_DFRAME #29 MODEM_DCLK #31 MODEM_DIN #30 MODEM_DOUT #29 MODEM_ANT0 #28 MODEM_ANT1 #27 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1 om BUSAY BUSBX D es ig n N ot R s Radio ec PF7 Communication m en de d PF6 Timers Fo rN ew PF5 Analog silabs.com | Building a more connected world. Rev. 1.4 | 122 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions 6.6 Alternate Functionality Overview A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 6.5 GPIO Functionality Table for a list of functions available on each GPIO pin. Table 6.6. Alternate Functionality Overview Alternate LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 ACMP0_O 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 ACMP1_O 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 0: PA0 ADC0_EXTN 0: PA1 CMU_CLK1 0: PA0 1: PB14 2: PC7 3: PC10 24: PF0 25: PF1 26: PF2 27: PF3 28 - 31 28: PF4 29: PF5 30: PF6 31: PF7 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Description Analog comparator ACMP0, digital output. Analog comparator ACMP1, digital output. Analog to digital converter ADC0 external reference input negative pin. Analog to digital converter ADC0 external reference input positive pin. 4: PD9 5: PD14 6: PF2 7: PF7 Clock Management Unit, clock output number 0. 4: PD10 5: PD15 6: PF3 7: PF6 Clock Management Unit, clock output number 1. om CMU_CLK0 0: PA1 1: PB15 2: PC6 3: PC11 16: PC11 17: PD9 18: PD10 19: PD11 m en de d ADC0_EXTP 24 - 27 Fo rN ew Functionality D es ig n s Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. ec 0: PF0 Note that this function is enabled to the pin out of reset, and has a built-in pull down. N ot R DBG_SWCLKTCK Debug-interface Serial Wire clock input and JTAG Test Clock. silabs.com | Building a more connected world. Rev. 1.4 | 123 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Alternate LOCATION Functionality 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Debug-interface Serial Wire data input / output and JTAG Test Mode Select. s 0: PF1 Description DBG_SWDIOTMS D es ig n Note that this function is enabled to the pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. 0: PF2 1: PB13 2: PD15 3: PC11 Fo rN ew DBG_SWO 0: PF3 0: PF2 om DBG_TDO m en de d DBG_TDI Note that this function is not enabled after reset, and must be enabled by software to be used. Debug-interface JTAG Test Data In. Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active. Debug-interface JTAG Test Data Out. Note that this function becomes available after the first valid JTAG command is received. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Frame Controller, Data Sniffer Clock. FRC_DFRAME 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Frame Controller, Data Sniffer Frame active FRC_DOUT 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Frame Controller, Data Sniffer Output. N ot R ec FRC_DCLK 0: PF2 GPIO_EM4WU0 silabs.com | Building a more connected world. Pin can be used to wake the system up from EM4 Rev. 1.4 | 124 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Alternate LOCATION Functionality 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PF7 Description Pin can be used to wake the system up from EM4 s GPIO_EM4WU1 0: PD14 D es ig n Pin can be used to wake the system up from EM4 GPIO_EM4WU4 0: PA3 Pin can be used to wake the system up from EM4 GPIO_EM4WU8 0: PB13 0: PC10 GPIO_EM4WU12 Fo rN ew GPIO_EM4WU9 Pin can be used to wake the system up from EM4 Pin can be used to wake the system up from EM4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 I2C0 Serial Clock Line input / output. I2C0_SDA 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 I2C0 Serial Data input / output. LETIM0_OUT0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Low Energy Timer LETIM0, output channel 0. LETIM0_OUT1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Low Energy Timer LETIM0, output channel 1. 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 LEUART0 Receive input. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 om ot R ec LEU0_RX m en de d I2C0_SCL 0: PA1 1: PA2 2: PA3 3: PA4 0: PB14 N LEU0_TX LFXTAL_N silabs.com | Building a more connected world. LEUART0 Transmit output. Also used as receive input in half duplex communication. Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. Rev. 1.4 | 125 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Alternate LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PB15 Description Low Frequency Crystal (typically 32.768 kHz) positive pin. LFXTAL_P s Functionality 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 MODEM antenna control output 0, used for antenna diversity. MODEM_ANT1 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 MODEM antenna control output 1, used for antenna diversity. MODEM_DCLK 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 MODEM data clock out. MODEM_DIN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 MODEM data in. MODEM_DOUT 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 MODEM data out. PCNT0_S0IN 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Pulse Counter PCNT0 input number 0. PCNT0_S1IN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Pulse Counter PCNT0 input number 1. PRS_CH0 0: PF0 1: PF1 2: PF2 3: PF3 4: PF4 5: PF5 6: PF6 7: PF7 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 Fo rN ew m en de d om D es ig n MODEM_ANT0 0: PA3 1: PA4 2: PA5 3: PB11 Peripheral Reflex System PRS, channel 0. 0: PF1 1: PF2 2: PF3 3: PF4 4: PF5 5: PF6 6: PF7 7: PF0 Peripheral Reflex System PRS, channel 1. PRS_CH2 0: PF2 1: PF3 2: PF4 3: PF5 4: PF6 5: PF7 6: PF0 7: PF1 Peripheral Reflex System PRS, channel 2. PRS_CH3 0: PF3 1: PF4 2: PF5 3: PF6 4: PF7 5: PF0 6: PF1 7: PF2 0: PD9 1: PD10 2: PD11 3: PD12 4: PD13 5: PD14 6: PD15 N ot R ec PRS_CH1 PRS_CH4 silabs.com | Building a more connected world. 8: PD9 9: PD10 10: PD11 11: PD12 12: PD13 13: PD14 14: PD15 Peripheral Reflex System PRS, channel 3. Peripheral Reflex System PRS, channel 4. Rev. 1.4 | 126 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Alternate LOCATION 8 - 11 PRS_CH5 0: PD10 1: PD11 2: PD12 3: PD13 4: PD14 5: PD15 6: PD9 PRS_CH6 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PD9 PRS_CH7 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PA0 PRS_CH8 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PA0 10: PA1 PRS_CH9 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PA0 9: PA1 10: PA2 11: PC6 PRS_CH10 0: PC6 1: PC7 2: PC8 3: PC9 4: PC10 5: PC11 PRS_CH11 0: PC7 1: PC8 2: PC9 3: PC10 4: PC11 5: PC6 TIM0_CC0 0: PA0 1: PA1 2: PA2 3: PA3 TIM0_CC1 0: PA1 1: PA2 2: PA3 3: PA4 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Description Peripheral Reflex System PRS, channel 5. 12: PD10 13: PD11 14: PD12 15: PD13 s 4-7 16: PD14 17: PD15 Peripheral Reflex System PRS, channel 6. D es ig n 0-3 Peripheral Reflex System PRS, channel 7. Fo rN ew Functionality 16: PC11 m en de d 12: PC7 13: PC8 14: PC9 15: PC10 Peripheral Reflex System PRS, channel 8. Peripheral Reflex System PRS, channel 9. Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 0 Capture Compare input / output channel 0. 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 0 Capture Compare input / output channel 1. 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 0 Complimentary Dead Time Insertion channel 0. TIM0_CDTI1 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 Timer 0 Complimentary Dead Time Insertion channel 1. 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 Timer 0 Complimentary Dead Time Insertion channel 2. N ot R ec TIM0_CC2 om 4: PA4 5: PA5 6: PB11 7: PB12 TIM0_CDTI2 silabs.com | Building a more connected world. Rev. 1.4 | 127 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Alternate LOCATION 12 - 15 16 - 19 20 - 23 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 1 Capture Compare input / output channel 2. TIM1_CC3 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 1 Capture Compare input / output channel 3. US0_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART0 clock input / output. US0_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART0 chip select input / output. US0_CTS 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART0 Clear To Send hardware flow control input. US0_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART0 Request To Send hardware flow control output. 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 USART0 Asynchronous Receive. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 USART0 Asynchronous Transmit. Also used as receive input in half duplex communication. 0: PA0 1: PA1 2: PA2 3: PA3 ot R ec US0_RX 0: PA1 1: PA2 2: PA3 3: PA4 28 - 31 N US0_TX US1_CLK Description D es ig n TIM1_CC0 0: PA0 1: PA1 2: PA2 3: PA3 24 - 27 s 8 - 11 Fo rN ew 4-7 m en de d 0-3 om Functionality USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Synchronous mode Master Output / Slave Input (MOSI). 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 silabs.com | Building a more connected world. 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 15: PD9 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART1 clock input / output. Rev. 1.4 | 128 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Alternate LOCATION 8 - 11 US1_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 US1_CTS 0: PA4 1: PA5 2: PB11 3: PB12 US1_RTS US1_RX 12 - 15 16 - 19 20 - 23 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 14: PD9 15: PD10 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART1 chip select input / output. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 13: PD9 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART1 Clear To Send hardware flow control input. 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 12: PD9 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART1 Request To Send hardware flow control output. 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 16: PD9 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 USART1 Asynchronous Receive. 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 17: PD9 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. 28 - 31 Description USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Synchronous mode Master Output / Slave Input (MOSI). N ot R ec om m en de d US1_TX 24 - 27 s 4-7 D es ig n 0-3 Fo rN ew Functionality silabs.com | Building a more connected world. Rev. 1.4 | 129 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions 6.7 Analog Port (APORT) Client Maps PF0 PF1 PF2 POS PF3 1X 2X 3X 4X ACMP0 PF4 NEG PF5 PF6 1Y 2Y 3Y 4Y PF7 1X 2X 3X 4X 1X 2X 3X 4X POS ACMP1 1Y 2Y 3Y 4Y NEG ADC0 NEG PB15 PB14 PB13 PB12 PB11 PA5 PA4 PA3 m en de d AX AY BX BY POS Fo rN ew DY DX CY CX D es ig n PC6 PC7 PC8 PC9 PC10 PC11 s The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.5 APORT Connection Diagram on page 130 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual. PA2 1Y 2Y 3Y 4Y ADC_EXTP PA1 EXTP EXTN ADC_EXTN PA0 PD15 1X 1Y ec om IDAC0 APORTnX, APORTnY AX, BY, … BUSAX, BUSBY, ... N PD14 PD13 PD12 PD11 PD10 PD9 ot R nX, nY Figure 6.5. APORT Connection Diagram Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins. In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin silabs.com | Building a more connected world. Rev. 1.4 | 130 PB14 BUSDY PB11 PB11 silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PD9 PD11 PD13 PD15 PA1 PA3 PA5 m en de d PB12 PB13 PB15 PB15 PB13 BUSCY BUSDX PF2 PF4 PF6 BUSBY PF1 PF3 PF5 PF7 BUSBX PD10 PD12 PD14 PA0 PA2 PC6 PC8 PC10 PF0 PC7 PC9 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY PC8 PC10 PF0 PF2 PF4 PF6 BUSAX PC7 PC6 D es ig n PC11 Fo rN ew PA4 PB12 PB14 BUSCX CH0 CH1 s CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port om ec ot R N EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column. Table 6.7. ACMP0 Bus and Pin Mapping Rev. 1.4 | 131 om ec ot R N PB11 silabs.com | Building a more connected world. PD10 PD12 PD14 PA0 PA2 PA4 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA4 PB12 PB14 BUSCX PF2 PF4 PF6 BUSBY PD9 PD11 PD13 PD15 PA1 PA3 PD10 PD12 PD14 PA0 PA2 PC6 PC8 PC10 PF0 Fo rN ew PA5 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX m en de d PB12 PB14 BUSDY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY s PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX D es ig n PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Table 6.8. ACMP1 Bus and Pin Mapping Rev. 1.4 | 132 silabs.com | Building a more connected world. PD9 PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSCY PD10 PD12 PD14 PA0 PA2 PA4 PB12 om CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus ec PB14 BUSCX APORT1Y APORT1X Port ot R N PB11 PD10 PD12 PD14 PA0 PA2 PA4 PD9 PD11 PD13 PD15 PA1 PA3 PA5 PA4 PB12 PB14 BUSCX PF2 PF4 PF6 BUSBY PD9 PD11 PD13 PD15 PA1 PA3 PD10 PD12 PD14 PA0 PA2 PC6 PC8 PC10 PF0 Fo rN ew PA5 PB11 PB13 PB15 PB15 PB13 BUSCY BUSDX m en de d PB12 PB14 BUSDY PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY s PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX D es ig n PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSBX CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 CH9 CH10 CH11 CH12 CH13 CH14 CH15 CH16 CH17 CH18 CH19 CH20 CH21 CH22 CH23 CH24 CH25 CH26 CH27 CH28 CH29 CH30 CH31 Bus APORT4Y APORT4X APORT3Y APORT3X APORT2Y APORT2X APORT1Y APORT1X Port EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Pin Definitions Table 6.9. ADC0 Bus and Pin Mapping Table 6.10. IDAC0 Bus and Pin Mapping Rev. 1.4 | 133 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN48 Package Specifications 7. QFN48 Package Specifications Figure 7.1. QFN48 Package Drawing N ot R ec om m en de d Fo rN ew D es ig n s 7.1 QFN48 Package Dimensions silabs.com | Building a more connected world. Rev. 1.4 | 134 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN48 Package Specifications Table 7.1. QFN48 Package Dimensions Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 0.20 REF b 0.18 0.25 D 6.90 7.00 E 6.90 7.00 D2 4.60 4.70 E2 4.60 4.70 0.50 BSC ddd Fo rN ew e D es ig n A3 s Dimension eee 0.08 L 0.30 K 0.20 R 0.09 aaa 0.30 7.10 7.10 4.80 4.80 0.40 0.50 — — — 0.14 0.15 bbb 0.10 ccc 0.10 m en de d 0.05 fff 0.10 N ot R ec om Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 135 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN48 Package Specifications Figure 7.2. QFN48 PCB Land Pattern Drawing N ot R ec om m en de d Fo rN ew D es ig n s 7.2 QFN48 PCB Land Pattern silabs.com | Building a more connected world. Rev. 1.4 | 136 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN48 Package Specifications Typ S1 6.01 S 6.01 L1 4.70 D es ig n Dimension s Table 7.2. QFN48 PCB Land Pattern Dimensions W1 4.70 e 0.50 W 0.26 L 0.86 N ot R ec om m en de d Fo rN ew Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 137 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN48 Package Specifications Fo rN ew EFR32 PPPPPPPPP YYWWTTTTTT # D es ig n s 7.3 QFN48 Package Marking m en de d Figure 7.3. QFN48 Package Marking N ot R ec om The package marking consists of: • PPPPPPPPP – The part number designation. 1. Family Code (B | M | F) 2. G (Gecko) 3. Series (1, 2,...) 4. Performance Grade (P | B | V) 5. Feature Code (1 to 7) 6. TRX Code (3 = TXRX | 2= RX | 1 = TX) 7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band) 8. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K) 9. Temperature Grade (G = -40 to 85 | I = -40 to 125) • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • # – Bootloader revision number. silabs.com | Building a more connected world. Rev. 1.4 | 138 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN32 Package Specifications 8. QFN32 Package Specifications Figure 8.1. QFN32 Package Drawing N ot R ec om m en de d Fo rN ew D es ig n s 8.1 QFN32 Package Dimensions silabs.com | Building a more connected world. Rev. 1.4 | 139 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN32 Package Specifications Table 8.1. QFN32 Package Dimensions Min Typ Max A 0.80 0.85 0.90 A1 0.00 0.02 0.05 0.20 REF b 0.18 0.25 D/E 4.90 5.00 D2/E2 3.40 3.50 E 0.50 BSC 0.30 0.40 K 0.20 — R 0.09 aaa Fo rN ew L D es ig n A3 s Dimension — 0.30 5.10 3.60 0.50 — 0.14 0.15 bbb 0.10 ccc 0.10 ddd 0.05 eee 0.08 fff 0.10 N ot R ec om m en de d Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 140 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN32 Package Specifications m en de d Fo rN ew D es ig n s 8.2 QFN32 PCB Land Pattern N ot R ec om Figure 8.2. QFN32 PCB Land Pattern Drawing silabs.com | Building a more connected world. Rev. 1.4 | 141 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN32 Package Specifications Typ S1 4.01 S 4.01 L1 3.50 D es ig n Dimension s Table 8.2. QFN32 PCB Land Pattern Dimensions W1 3.50 e 0.50 W 0.26 L 0.86 N ot R ec om m en de d Fo rN ew Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. silabs.com | Building a more connected world. Rev. 1.4 | 142 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet QFN32 Package Specifications D es ig n Fo rN ew EFR32 PPPPPPPPP YYWWTTTTTT s 8.3 QFN32 Package Marking Figure 8.3. QFN32 Package Marking N ot R ec om m en de d The package marking consists of: • PPPPPPPPP – The part number designation. 1. Family Code (B | M | F) 2. G (Gecko) 3. Series (1, 2,...) 4. Performance Grade (P | B | V) 5. Feature Code (1 to 7) 6. TRX Code (3 = TXRX | 2= RX | 1 = TX) 7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band) 8. Flash (J = 1024K | H = 512k | G = 256K | F = 128K | E = 64K | D = 32K) 9. Temperature Grade (G = -40 to 85 | I = -40 to 125) • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. silabs.com | Building a more connected world. Rev. 1.4 | 143 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Revision History 9. Revision History Revision 1.4 October, 2018 • • • s D es ig n • • 2. Ordering Information - Added OPN for QFN48 sub-GHz devices. 4.1.2.1 General Operating Conditions - Removed voltage scaling footnote from DECOUPLE output capacitor specification. 4.1.5 Current Consumption - Removed “across supply voltage" from header. 4.1.10 Sub-GHz RF Transceiver Characteristics - Replaced "PAVDD" with "External PA Supply". 4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band & 4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band - Corrected tuning frequency range units from "dBM" to "MHz". 4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band - Replaced "GFSK" with "4GFSK" for 400 kbps test condition. 4.1.15 Voltage Monitor (VMON) - Replaced "1 supply monitored" with "1 channel active" and replaced "4 supplies monitored" with "all channels active" in VMON supply current test conditions. Table 4.40 Analog to Digital Converter (ADC) on page 78 - Minor wording and typographical error fixes. Table 4.41 Analog Comparator (ACMP) on page 80 - Minor wording and typographical error fixes. 6.3 QFN48 Sub-GHz Device Pinout - Added GPIO pinout information for QFN48 sub-GHz devices. Fo rN ew • • • • • Revision 1.3 April, 2018 • Table 3.1 Configuration Summary on page 18: Corrected USART1 features (removed IrDA). • Table 4.6 Current Consumption 3.3 V using DC-DC Converter on page 28: • Typical values for IEM2 updated to 2.5 and 2.2 uA per errata CUR_E201. • Typical value for IEM3 updated to 2.1 uA per errata CUR_E201. N ot R ec om m en de d • Table 4.15 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate on page 39: typical value for SENS updated to -92.5 dBm per errata RADIO_E206. • Table 4.17 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band on page 43: Typical values for SENS updated to -99 dBm per errata RADIO_E201. silabs.com | Building a more connected world. Rev. 1.4 | 144 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Revision History Revision 1.2 November, 2017 Applied latest formatting, style, and sequence guidelines. Updated front page with new title and messaging. "Bluetooth Smart" changed to "Bluetooth Low Energy" Added high-temperature (-I grade) part numbers and associated sections / specifications. Parameter Names, Symbol Names, and Test Conditions throughout electrical specification tables updated for consistency across all EFR32xG1x product families. • Electrical specification changes not related to formatting consistency, typographical errors, or the addition of high-temperature part numbers are listed below. • 4.1.1 Absolute Maximum Ratings: • VDDMAX: Min value changed from 0 to -0.3 V. • Removed PRFMAXSUBG, VMAXDIFFSUBG, and DeltaVDD specifications. D es ig n s • • • • • • Split VMAXSUBG into separate line items for SUBGRF_OP/SUBGRF_ON and SUBGRF_IP/SUBGRF_IN. • VMAXSUBG for SUBGRF_IP/SUBGRF_IN: Min = -0.3 V, Max = +0.3 V. Fo rN ew • Added footnotes to clarify VDIGPIN specification for 5V tolerant GPIO. • Table 4.2 General Operating Conditions on page 23: • Added CDECOUPLE and fHFCLK specifications. • Added footnote for additional information on peak current during voltage scaling operations. • Table 4.6 Current Consumption 3.3 V using DC-DC Converter on page 28: • IEM1: CCM Mode specifications removed from table. m en de d • Low Power Mode footnote corrected from "LPBIAS=3" to "LPCMPBIAS=0", and "LPCILIMSEL" to "LPCLIMILIMSEL". • 4.1.9.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4GHz Band, 1 Mbps Data Rate: • TXBW: Test Condition at 10 dBm added. • Footnote referring to Bluetooth Core specification updated to "Bluetooth Core_5.0..." from "Bluetooth Core_4.2..." • Table 4.17 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band on page 43: RSSIMAX value placed in Max column and RSSIMIN value placed in Min column. • Table 4.19 Sub-GHz RF Receiver Characteristics for 915 MHz Band on page 48: 100kbps reference signal footnote corrected to show 400 kHz channel spacing instead of 200 kHz. • Table 4.34 HFRCO on page 72 and Table 4.35 AUXHFRCO on page 73 tables separated (specifications are identical for this product). • Table 4.37 Flash Memory Characteristics1 on page 74: om • Added single-word programming time and clarified existing specification as per-word timing for a 128-word burst write. • Added footnotes to clarify mass, device, and page erase timing conditions. • Table 4.39 Voltage Monitor (VMON) on page 77: IVMON specifications for EM2/3/4 separated into above threshold and below threshold conditions. • Table 4.40 Analog to Digital Converter (ADC) on page 78 • VADCIN specification changed to reference VFS instead of VREF. ot R ec • Input referred ADC noise specification removed. • Footnotes added to clarify internal and external reference configurations. • Table 4.41 Analog Comparator (ACMP) on page 80: Text explaining total ACMP current calculation brought into table as a footnote. • 4.1.21 USART SPI: • SPI Master Timing: Updated with relaxed values. • SPI Slave Timing: Corrected tSCLK Min value to "6 * tHFPERCLK" from "2 * tHFPERCLK". • Updated remainder of specifications to match formatting and common specs in all EFR32xG1x product families. Added PCNT electrical specifications table: Table 4.43 Pulse Counter (PCNT) on page 84. 4.2 Typical Performance Curves: Added data for >85C operation. 5.2 RF Matching Networks: Removed redundant paragraph in introduction. Added section 5.3 Other Connections. Condensed pinout tables and moved detailed GPIO functionality information to . Added Figure 6.5 APORT Connection Diagram on page 130. N • • • • • • silabs.com | Building a more connected world. Rev. 1.4 | 145 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Revision History • Corrected flash designator description in Package Marking sections. Revision 1.1 2016-Oct-26 D es ig n s • Ordering Information: Removed Encryption column. All products in family include full encryption capabilites. Previously EFR32MG1V devices listed as "AES only". • System Overview Sections: Minor wording and typographical error fixes. • Electrical Characteristics: Minor wording and typographical error fixes. • "Sub-GHz Receiver Characteristics for 433 MHz Band" table in Electrical Characteristics: Corrected Sensitivity spec error where data for 50 kbps and 2.4 kbps were swapped. • "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC. • Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections. • Updated APORT client map sections. Fo rN ew Revision 1.0 2016-Jul-22 ot R ec om m en de d • Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range. • Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include: • Absolute Maximum Ratings • General Operating Conditions • DC-DC Converter • Current Consumption Using Radio 3.3V with DC-DC • RF Transmitter General Characteristics for 2.4 GHz Band • RF Receiver General Characteristics for 2.4 GHz Band • RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band • RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band • RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band • Sub-GHz RF Transmitter characteristics for 868 MHz Band • Sub-GHz RF Transmitter characteristics for 490 MHz Band • Sub-GHz RF Receiver characteristics for 490 MHz Band • Sub-GHz RF Receiver characteristics for 433 MHz Band • HFRCO and AUXHFRCO • ADC • IDAC • Updated Typical Performance Graphs. • Added external ground note to 2G4RF_ION pin descriptions. • Added note for 5V tolerance to pinout GPIO Overview sections. • Updated OPN decoder with latest revision. • Updated Package Marking text with latest descriptions. Revision 0.97 2016-06-06 N • Added dual-band and sub-GHz OPNs. Revision 0.951 2016-06-03 • Electrical specification tables updated with additional characterization data. silabs.com | Building a more connected world. Rev. 1.4 | 146 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Revision History Revision 0.95 2016-04-11 Revision 0.9 2016-01-12 • Updated electrical specifications with latest characterization data. • Added thermal characteristics table. • Updated OPN decoder figure to include extended family options. Fo rN ew Revision 0.8 D es ig n s • All OPNs changed to rev C0. Note the following: • All OPNs ending in -B0 are Engineering Samples based on an older revision of silicon and are being removed from the OPN table. These older revisions should be used for evaluation only and will not be supported for production. • OPNs ending in -C0 are the Current Revision of Silicon and are intended for production. • Electrical specification tables updated with latest characterization data and production test limits. 2015-12-01 • Engineering samples note added to ordering information table. • Updated electrcal specifications with latest available data. Revision 0.75 2015-11-3 m en de d Consolidated individual device datasheets into single-family document. Re-formatted ordering information table and OPN decoder. Updated block diagrams for front page and system overview. Removed extraneous sections from DC-DC and wake-on-radio from system overview. Updated table formatting for electrical specifications to tech pubs standards. Updated electrcal specifications with latest available data. Added I2C and USART SPI timing tables. Moved DC-DC graph to typical performance curves. Updated APORT tables and APORT references to correct nomenclature. N ot R ec om • • • • • • • • • silabs.com | Building a more connected world. Rev. 1.4 | 147 EFR32MG1 Mighty Gecko Multi-Protocol SoC Family Data Sheet Revision History Revision 0.7 N ot R ec om m en de d Fo rN ew D es ig n Outcome of comprehensive review cycle of EFR32BG Datasheets. Major changes span the following sections • Section 2: Ordering Information • Section 3.3.4: Receiver Architecture • Section 3.3.5: Transmitter Architecture • Section 4: Electrical Characteristics • Section 4.3.1: General Operating Conditions • Section 4.4: DC-DC Converter • Section 4.5: Current Consumption • Section 4.9.1: RF Transmitter Characteristics for 2.4 GHz Band • Section 4.9.2: RF Receiver General Characteristics for 2.4 GHz Band • Section 4.9.3: RF Transmitter Characteristics for Bluetooth Smart in 2.4 GHz Band • Section 4.9.4: RF Receiver Characteristics for Bluetooth Smart in 2.4 GHz Band • Section 4.11.1: LFXO • Section 4.11.2: HFXO • Section 4.12: GPIO • Section 4.13: VMON • Section 4.14: ADC • Section 4.15: IDAC • Section 4.16: Analog Comparator • Section 5: Application Circuits • Section 6.5: QFNxx Package • Section 6.7: QFNxx Package Marking s 2015-08-31 silabs.com | Building a more connected world. Rev. 1.4 | 148 s D es ig n Fo rN ew One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! om IoT Portfolio www.silabs.com/IoT m en de d Simplicity Studio SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com ot R ec Disclaimer Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. N Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com
EFR32MG1P233F256GM48-C0 价格&库存

很抱歉,暂时无法提供与“EFR32MG1P233F256GM48-C0”相匹配的价格&库存,您可以联系我们找货

免费人工找货