0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FGAF40N60UFDTU

FGAF40N60UFDTU

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    TO-3PF-3

  • 描述:

    安森美半导体的场截止 IGBT 采用新型场截止 IGBT 技术,为太阳能逆变器、UPS、焊接机和 PFC 等低导通和开关损耗至关重要的应用提供最佳性能。

  • 数据手册
  • 价格&库存
FGAF40N60UFDTU 数据手册
Is Now Part of To learn more about ON Semiconductor, please visit our website at www.onsemi.com Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com. ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. FGAF40N60UFD Ultrafast IGBT General Description Features Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature. • • • • High speed switching Low saturation voltage : VCE(sat) = 2.3 V @ IC = 20A High input impedance CO-PAK, IGBT with FRD : trr = 50ns (typ.) Applications AC & DC motor controls, general purpose inverters, robotics, and servo controls. C G TO-3PF E G C E Absolute Maximum Ratings Symbol VCES VGES IC ICM (1) IF IFM PD TJ Tstg TL TC = 25°C unless otherwise noted Description Collector-Emitter Voltage Gate-Emitter Voltage Collector Current Collector Current Pulsed Collector Current Diode Continuous Forward Current Diode Maximum Forward Current Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8” from Case for 5 Seconds @ TC = 25°C @ TC = 100°C @ TC = 100°C @ TC = 25°C @ TC = 100°C FGAF40N60UFD 600 ± 20 40 20 160 15 160 100 40 -55 to +150 -55 to +150 Units V V A A A A A W W °C °C 300 °C Notes : (1) Repetitive rating : Pulse width limited by max. junction temperature Thermal Characteristics Symbol RθJC(IGBT) RθJC(DIODE) RθJA Parameter Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Case Thermal Resistance, Junction-to-Ambient ©2004 Fairchild Semiconductor Corporation Typ. ---- Max. 1.2 2.6 40 Units °C/W °C/W °C/W FGAF40N60UFD Rev. A FGAF40N60UFD IGBT C Symbol Parameter = 25°C unless otherwise noted Test Conditions Min. Typ. Max. Units 600 -- -- V VGE = 0V, IC = 1mA -- 0.6 -- V/°C VCE = VCES, VGE = 0V VGE = VGES, VCE = 0V --- --- 250 ± 100 uA nA 3.5 --- 5.1 2.3 3.1 6.5 3.0 -- V V V ---- 1075 170 50 ---- pF pF pF ------------------- 15 30 65 35 470 130 600 30 37 110 80 500 310 810 77 20 25 14 --130 100 --1000 --200 250 --1200 150 30 40 -- ns ns ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ nC nC nC nH Min. -- Typ. 1.4 Max. 1.7 Units -- 1.3 -- Off Characteristics BVCES ∆BVCES/ ∆TJ ICES IGES Collector-Emitter Breakdown Voltage Temperature Coefficient of Breakdown Voltage Collector Cut-Off Current G-E Leakage Current VGE = 0V, IC = 250uA On Characteristics VGE(th) VCE(sat) G-E Threshold Voltage Collector to Emitter Saturation Voltage IC = 20mA, VCE = VGE IC = 20A, VGE = 15V IC = 40A, VGE = 15V Dynamic Characteristics Cies Coes Cres Input Capacitance Output Capacitance Reverse Transfer Capacitance VCE = 30V, VGE = 0V, f = 1MHz Switching Characteristics td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Eon Eoff Ets Qg Qge Qgc Le Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge Gate-Emitter Charge Gate-Collector Charge Internal Emitter Inductance VCC = 300 V, IC = 20A, RG = 10Ω, VGE = 15V, Inductive Load, TC = 25°C VCC = 300 V, IC = 20A, RG = 10Ω, VGE = 15V, Inductive Load, TC = 125°C VCE = 300 V, IC = 20A, VGE = 15V Measured 5mm from PKG Electrical Characteristics of DIODE T C Symbol Parameter VFM Diode Forward Voltage trr Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge ©2004 Fairchild Semiconductor Corporation = 25°C unless otherwise noted Test Conditions TC = 25°C IF = 15A TC = 100°C IF = 15A, di/dt = 200A/us TC = 25°C -- 50 95 TC = 100°C -- 74 -- TC = 25°C -- 4.5 6.0 TC = 100°C -- 6.5 -- TC = 25°C -- 80 180 TC = 100°C -- 220 -- V ns A nC FGAF40N60UFD Rev. A FGAF40N60UFD Electrical Characteristics of the IGBT T 80 Common Emitter Tc = 25℃ 20V 15V 120 Common Emitter VGE=15V Tc= 25℃ Tc= 125℃ 70 Collector Current , Ic (A) Collector Current, Ic (A) FGAF40N60UFD 160 12V 80 VGE = 10V 40 60 50 40 30 20 10 0 0 0 2 4 6 0.5 8 1 Collector-Emitter Voltage,VCE(V) 10 Collector-Emitter Voltage, VCE(V) Fig 1. Typical Output Characteristics Fig 2. Typical Saturation Voltage Characteristics 30 4 Common Emitter Vge=15V Vcc = 300V Load Current : peak of square wave 3 40A Load Current [A] Collector - Emitter Voltage, VCE [V] 25 20A 2 Ic=10A 1 20 15 10 5 0 0 30 60 90 120 Duty cycle : 50% Tc = 100℃ Powe Dissipation = 24W 0 150 0.1 1 Case Temperature, TC [℃] Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level 1000 20 [V] Common Emitter TC = 25℃ CE 16 Collector - Emitter Voltage, V [V] CE 100 Fig 4. Load Current vs. Frequency 20 Collector - Emitter Voltage, V 10 Frequency [kHz] 12 8 20A 4 40A IC = 10A 0 Common Emitter TC = 125℃ 16 12 8 40A 4 20A Ic=10A 0 0 4 8 12 Gate - Emitter Voltage, VGE [V] Fig 5. Saturation Voltage vs. VGE ©2004 Fairchild Semiconductor Corporation 16 20 0 4 8 12 16 20 Gate - Emitter Voltage, VGE [V] Fig 6. Saturation Voltage vs. VGE FGAF40N60UFD Rev. A 300 Common Emitter VGE = 0V, f = 1MHz TC = 25℃ 2500 Common Emitter Vcc=300V,VGE= ± 15V Ic=20A Tc = 25℃ Tc = 125℃ - - - - Switching Time (ns) Cies Capacitance (pF) 2000 Coes 1500 FGAF40N60UFD 3000 1000 Cres 100 Ton Tr 500 10 0 1 1 30 10 10 Fig 7. Capacitance Characteristics 200 Fig 8. Turn-On Characteristics vs. Gate Resistance 1000 2000 Common Emitter Vcc=300V,VGE= ± 15V Ic=20A Tc = 25℃ Tc = 125℃ Common Emitter Vcc=300V,VGE=± 15V Ic=20A Tc = 25℃ Tc = 125℃ 1000 Toff Eon Switching Time (uJ) Switching Time (ns) 100 Gate Resistance, RG( Ω ) Collector-Emitter Voltage, VCE (V) 100 Tf Eoff 100 Tf 50 20 1 10 100 200 1 10 100 200 Gate Resistance, RG( Ω ) Gate Resistance, RG( Ω ) Fig 9. Turn-Off Characteristics vs. Gate Resistance Fig 10. Switching Loss vs. Gate Resistance 1000 200 Common Emitter VCC = 300V, VGE = ± 15V RG = 10Ω 100 TC = 25℃ Ton Common Emitter V CC = 300V, VGE = ± 15V 10 R G = 10 Ω Tr Switching Time [nS] Switching Time (ns) TC = 125℃ Toff 100 Toff Tf TC = 25℃ Tf TC = 125℃ 20 10 15 20 25 30 Collector Current, Ic (A) Fig 11. Turn-On Characteristics vs. Collector Current ©2004 Fairchild Semiconductor Corporation 35 40 10 15 20 25 30 35 40 Collector Current, IC [A] Fig 12. Turn-Off Characteristics vs. Collector Current FGAF40N60UFD Rev. A FGAF40N60UFD 15 3000 Common Emitter RL=15 Ω Eon 100 Eoff Common Emitter VCC = 300V, VGE = ± 15V Eoff RG = 10Ω TC = 25℃ (Tc=25 ℃) 12 Gate-Emitter Voltage, V GE (V) Switching Time (uJ) 1000 300V 200V 9 Vcc=100V 6 3 TC = 125℃ 10 0 10 15 20 25 30 35 40 0 30 Collector Current , Ic (A) 60 90 120 Gate Charge, Qg (nC) Fig 13. Switching Loss vs. Collector Current Fig 14. Gate Charge Characteristics 500 Ic MAX (Pulsed) 100 Collector Current, IC [A] Collector Current, Ic [A] 100 50µs Ic MAX (Continuous) 100µs 1ms 10 DC Operation 1 Single Nonrepetitive o Pulse Tc = 25 C Curves must be derated linearly with increase in temperature 10 1 Safe Operating Area o V GE=20V, TC=100 C 0.1 0.1 1 1 10 100 100 1000 Collector-Emitter Voltage, VCE [V] Collector - Emitter Voltage, VCE [V] Fig 16. Turn-Off SOA Characteristics Fig 15. SOA Characteristics Thermal Response [Zthjc] 10 1000 1 0 .5 0 .2 0 .1 0 .1 0 .0 5 Pdm 0 .0 2 t1 0 .0 1 t2 0 .0 1 Duty factor D = t1 / t2 Peak Tj = Pdm × Zthjc + TC sin gle p ulse 1 E -5 1 E -4 1 E -3 0 .0 1 0 .1 1 10 Rectangular Pulse Duration [sec] Fig 17. Transient Thermal Impedance of IGBT ©2004 Fairchild Semiconductor Corporation FGAF40N60UFD Rev. A IF = 15A Reverse Recovery Current, I rr [A] Forward Current, I V R = 200V T C = 100℃ 100 FGAF40N60UFD 100 T C = 25℃ 10 TC = 25℃ TC = 100℃ 10 1 1 0 1 2 200 3 Fig 18. Forward Characteristics 800 1000 Fig 19. Reverse Recovery Current 800 120 V R = 200V V R = 200V I F = 15A IF = 15A Reverce Recovery Time, t rr [ns] T C = 25℃ 600 600 di/dt [A/us] Forward Voltage Drop, V Stored Recovery Charge, Q rr [nC] 400 T C = 100℃ 400 200 0 TC = 25℃ 100 TC = 100℃ 80 60 40 20 200 400 di/dt [A/us] Fig 20. Stored Charge ©2004 Fairchild Semiconductor Corporation 600 800 1000 200 400 600 800 1000 di/dt [A/us] Fig 21. Reverse Recovery Time FGAF40N60UFD Rev. A FGAF40N60UFD Package Dimensions TO-3PF 4.50 ±0.20 5.50 ±0.20 15.50 ±0.20 2.00 ±0.20 2.00 ±0.20 2.00 ±0.20 22.00 ±0.20 1.50 ±0.20 16.50 ±0.20 2.50 ±0.20 0.85 ±0.03 23.00 ±0.20 10 ° 10.00 ±0.20 (1.50) 2.00 ±0.20 14.50 ±0.20 16.50 ±0.20 2.00 ±0.20 4.00 ±0.20 3.30 ±0.20 +0.20 0.75 –0.10 2.00 ±0.20 3.30 ±0.20 5.45TYP [5.45 ±0.30] 5.45TYP [5.45 ±0.30] +0.20 0.90 –0.10 5.50 ±0.20 26.50 ±0.20 14.80 ±0.20 3.00 ±0.20 ø3.60 ±0.20 Dimensions in Millimeters ©2004 Fairchild Semiconductor Corporation FGAF40N60UFD Rev. A TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FACT Quiet Series™ ACEx™ FAST® ActiveArray™ FASTr™ Bottomless™ FPS™ CoolFET™ CROSSVOLT™ FRFET™ GlobalOptoisolator™ DOME™ GTO™ EcoSPARK™ HiSeC™ E2CMOS™ EnSigna™ I2C™ ImpliedDisconnect™ FACT™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerSaver™ PowerTrench® QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TINYOPTO™ TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be or (b) support or sustain life, or (c) whose failure to perform reasonably expected to cause the failure of the life support when properly used in accordance with instructions for use device or system, or to affect its safety or effectiveness. provided in the labeling, can be reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. ©2004 Fairchild Semiconductor Corporation Rev. I8 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com © Semiconductor Components Industries, LLC N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 1 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative www.onsemi.com
FGAF40N60UFDTU 价格&库存

很抱歉,暂时无法提供与“FGAF40N60UFDTU”相匹配的价格&库存,您可以联系我们找货

免费人工找货