0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FOD3125

FOD3125

  • 厂商:

    MURATA-PS(村田)

  • 封装:

    DIP8

  • 描述:

    8Pw 2.5A Gd Dip / Blkbg

  • 数据手册
  • 价格&库存
FOD3125 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. High Temperature, 2.5 A Output Current, Gate Drive Optocoupler FOD3125 Description The FOD3125 is a 2.5 A Output Current Gate Drive Optocoupler, capable of driving most medium IGBTs or MOSFETs across extended industrial temperature range, −40°C to 125°C. It is ideally suited for fast switching driving of power IGBTs and MOSFETs used in motor control inverter applications, and high performance power system. It utilizes ON Semiconductor patented coplanar packaging technology, Optoplanar®, and optimized IC design to achieve high noise immunity, characterized by high common mode rejection. It consists of a gallium aluminum arsenide (AlGaAs) light emitting diode optically coupled to an integrated circuit with a high−speed driver for push−pull MOSFET output stage. www.onsemi.com 8 8 1 1 PDIP8 GW CASE 709AD PDIP8 GW CASE 709AC Features • Extended Industrial Temperate Range, −40°C to 125°C • High Noise Immunity characterized by 35 kV/ms minimum Common • • • • • • • • • 8 1 Mode Rejection 2.5 A Peak Output Current Driving Capability for Most 1200 V/ 20 A IGBT Use of P−channel MOSFETs at Output Stage Enables Output Voltage Swing close to the Supply Rail Wide Supply Voltage Range from 15 V to 30 V Fast Switching Speed ♦ 400 ns maximum Propagation Delay ♦ 100 ns maximum Pulse Width Distortion Under Voltage LockOut (UVLO) with Hysteresis Safety and Regulatory Approvals ♦ UL1577, 5000 VRMS for 1 minute ♦ DIN EN/IEC60747−5−5 (pending approval) >8.0 mm Clearance and Creepage Distance (Option ‘T’ or ‘TS’) 1,414 V Peak Working Insulation Voltage (VIORM) This is a Pb−Free Device Applications • • • • 8 PDIP8 6.6x3.81, 2.54P CASE 646BW 1 PDIP8 9.655x6.6, 2.54P CASE 646CQ FUNCTIONAL BLOCK DIAGRAM NC 1 8 V DD ANODE 2 7 V O2 CATHODE 3 6 V O1 NC 4 5 V SS Note: A 0.1 mF bypass capacitor must be connected between pins 5 and 8. Industrial Inverter Uninterruptible Power Supply Induction Heating Isolated IGBT/Power MOSFET Gate Drive ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. Table 1. TRUTH TABLE LED VDD – VSS “Positive Going” (Turn−on) VDD – VSS “Negative Going” (Turn−off) VO Off On 0 V to 30 V 0 V to 30 V Low 0 V to 11 V 0 V to 9.7 V Low On 11 V to 14 V 9.7 V to 12.7 V Transition On 14 V to 30 V 12.7 V to 30 V High © Semiconductor Components Industries, LLC, 2018 March, 2020 − Rev. 2 1 Publication Order Number: FOD3125/D FOD3125 Table 2. PIN DEFINITIONS Pin # Name Description 1 NC 2 Anode Not Connected 3 Cathode 4 NC Not Connected 5 VSS Negative Supply Voltage 6 VO2 Output Voltage 2 (internally connected to VO1) 7 VO1 Output Voltage 1 8 VDD Positive Supply Voltage LED Anode LED Cathode Table 3. SAFETY AND INSULATION RATINGS As per DIN EN/IEC 60747−5−5 (pending approval). This optocoupler is suitable for “safe electrical insulation” only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. Symbol Parameter Min. Typ. Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Main Voltage < 150 Vrms I–IV For Rated Main Voltage < 300 Vrms I–IV For Rated Main Voltage < 450 Vrms I–III For Rated Main Voltage < 600 Vrms I–III For Rated Main Voltage < 1000 Vrms (option T, TS) I–III Climatic Classification Max. Unit 40/125/21 Pollution Degree (DIN VDE 0110/1.89) 2 CTI Comparative Tracking Index 175 VPR Input to Output Test Voltage, Method b, VIORM x 1.875 = VPR, 100% Production Test with tm = 1 second, Partial Discharge < 5 pC 2651 Input to Output Test Voltage, Method a, VIORM x 1.6 = VPR, Type and Sample Test with tm = 10 second, Partial Discharge < 5 pC 2262 VIORM Max Working Insulation Voltage 1414 Vpeak VIOTM Highest Allowable Over Voltage 6000 Vpeak External Creepage ≥8 mm External Clearance ≥ 7.4 mm ≥ 10.16 mm Insulation Thickness ≥ 0.5 mm Case Temperature – Maximum Values Allowed in the Event of a Failure 175 °C Input Current – Maximum Values Allowed in the Event of a Failure 400 mA Output Power (Duty Factor ≤ 2.7 %) – Maximum Values Allowed in the Event of a Failure 700 mW > 109 W External Clearance (for Option T or TS, 0.4” Lead Spacing) TCase IS,INPUT PS,OUTPUT RIO Insulation Resistance at TS, VIO = 500 V – Maximum Values Allowed in the Event of a Failure www.onsemi.com 2 FOD3125 Table 4. ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise specified.) Symbol Parameter Value Units TSTG Storage Temperature −40 to +125 °C TOPR Operating Temperature −40 to +125 °C Junction Temperature −40 to +125 °C 260 for 10 sec °C TJ Lead Wave Solder Temperature (refer to page 12 for reflow solder profile) TSOL IF(AVG) f VR IO(PEAK) VDD – VSS Average Input Current 25 mA Operating Frequency (1) 50 kHz Reverse Input Voltage 5 V 3 A 0 to 35 V Peak Output Current (2) Supply Voltage TA ≥ 90°C VO(PEAK) tR(IN), tF(IN) 0 to 30 Peak Output Voltage Input Signal Rise and Fall Time 0 to VDD V 500 ns 45 mW 250 mW (3) (5) PDI Input Power Dissipation PDO Output Power Dissipation (4) (5) Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Exponential Waveform, IO(PEAK) ≤ |2.5 A| ≤ 0.3 ms 2. Maximum pulse width = 10 ms, maximum duty cycle = 1.1 %. 3. Derate linearly above 87°C, free air temperature at a rate of 0.77 mW/°C. 4. Derate linearly above 100°C, free air temperature at a rate of 5.7 mW/°C. 5. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings. Table 5. RECOMMENDED OPERATING CONDITIONS Symbol Parameter Value Units −40 to +125 °C Power Supply 15 to 30 V IF(ON) Input Current (ON) 7 to 16 mA VF(OFF) Input Voltage (OFF) 0 to 0.8 V Ambient Operating Temperature TA VDD – VSS Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. Table 6. ISOLATION CHARACTERISTICS Apply over all recommended conditions, typical value is measured at TA = 25°C Symbol Parameter Conditions Min. VISO Input−Output Isolation Voltage TA = 25°C, R.H.< 50 %, t = 1.0 minute, II−O ≤ 10 mA, 50 Hz (6) (7) RISO Isolation Resistance VI−O = 500 V (6) CISO Isolation Capacitance VI−O = 0 V, Frequency = 1.0 MHz Typ. Max. 5000 Units VRMS (6) 1011 W 1 pF 6. Device is considered a two terminal device: pins 2 and 3 are shorted together and pins 5, 6, 7 and 8 are shorted together. 7. 5,000 VRMS for 1 minute duration is equivalent to 6,000 VACRMS for 1 second duration. Table 7. ELECTRICAL CHARACTERISTICS Symbol VF Parameter Input Forward Voltage Conditions IF = 10 mA Min. Typ. Max. Units 1.1 1.5 1.8 V D(VF / TA) Temperature Coefficient of Forward Voltage BVR Input Reverse Breakdown Voltage −1.8 5 IR = 10 mA www.onsemi.com 3 mV/°C V FOD3125 Table 7. ELECTRICAL CHARACTERISTICS (continued) Symbol CIN IOH IOL VOH VOL Parameter Conditions Input Capacitance Min. Typ. f = 1 MHz, VF = 0 V High Level Output Current (1) Low Level Output Current (1) High Level Output Voltage Low Level Output Voltage VO = VDD – 3 V −1.0 VO = VDD – 6 V −2.0 VO = VSS + 3 V 1.0 VO = VSS + 6 V 2.0 Max. Units 20 pF −2.0 A 2.0 A V IF = 10 mA, IO = −2.5 A VDD – 6.25 V VDD – 2.5 V IF = 10 mA, IO = −100 mA VDD – 0.25 V VDD – 0.1 V IF = 0 mA, IO = 2.5 A VSS + 2.5 V VSS + 6.25 V IF = 0 mA, IO = 100 mA VSS + 0.1 V VSS + 0.25 V V IDDH High Level Supply Current VO = Open, IF = 7 to 16 mA 2.8 3.8 mA IDDL Low Level Supply Current VO = Open, VF = 0 to 0.8 V 2.8 3.8 mA IFLH Threshold Input Current Low to High IO = 0 mA, VO > 5 V 2.3 5.0 mA VFHL Threshold Input Voltage High to Low IO = 0 mA, VO < 5 V 0.8 IF = 1 0mA, VO > 5 V 11 12.7 14 V IF = 10 mA, VO < 5 V 9.7 11.2 12.7 V VUVLO+ Under Voltage Lockout Threshold VUVLO– V UVLOHYS Under Voltage Lockout Threshold Hysteresis 1.5 V Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 8. Maximum pulse width = 10 ms, maximum duty cycle = 1.1 %. Table 8. SWITCHING CHARACTERISTICS Apply over all recommended conditions, typical value is measured at VDD = 30 V, VSS = Ground, TA = 25°C unless otherwise specified. Symbol Parameter Conditions tPHL Propagation Delay Time to Logic Low Output tPLH Propagation Delay Time to Logic High Output PWD Pulse Width Distortion, | tPHL – tPLH | PDD (Skew) IF = 7 mA to 16 mA, Rg = 10 W, Cg = 10 nF, f = 10 kHz, Duty Cycle = 50 % Min. Typ. Max. Units 150 275 400 ns 150 255 400 ns 20 100 ns 250 ns −250 Propagation Delay Difference Between Any Two Parts or Channels, (tPHL – tPLH) (9) tr Output Rise Time (10% – 90%) 60 ns tf Output Fall Time (90% – 10%) 60 ns tUVLO ON UVLO Turn On Delay IF = 10 mA , VO > 5 V 1.6 ms tUVLO OFF UVLO Turn Off Delay IF = 10 mA , VO < 5 V 0.4 ms | CMH | Common Mode Transient Immunity at Output High TA = 25°C, VDD = 30 V, IF = 7 to 16 mA, VCM = 2000 V (10) 35 50 kV/ms | CML | Common Mode Transient Immunity at Output Low TA = 25°C, VDD = 30 V, VF = 0 V, VCM = 2000 V (11) 35 50 kV/ms 9. The difference between tPHL and tPLH between any two FOD3125 parts under same test conditions. 10. Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common mode impulse signal, Vcm, to assure that the output will remain high (i.e., VO > 15.0 V). 11. Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, Vcm, to assure that the output will remain low (i.e., VO < 1.0 V). www.onsemi.com 4 FOD3125 0.5 (V OH− VDD ) - HIGH OUTPUT VOLTAGE DROP (V) (VOH − VDD ) - OUTPUT HIGH VOLTAGE DROP (V) TYPICAL PERFORMANCE CURVES 0.0 −0.5 TA= −40 oC −1.0 TA = 25 oC −1.5 Frequency = 250 Hz, Duty Cycle = 0.1% IF = 7 mA to 16 mA −2.5 V = 15 V to 30 V DD TA= 125 oC VSS= 0 V −3.0 0.0 0.5 1.0 1.5 −2.0 2.0 2.5 IOH − OUTPUT HIGH CURRENT (A) VO= V DD − 6 V 4 VO= VDD − 3 V 2 20 40 60 −0.15 −0.20 VDD = 15 V to 30 V VSS = 0V −0.25 IF = 7 mA to 16 mA IO= −100 mA −0.30 −40 −20 0 20 80 100 40 60 80 100 120 o (V OL− VSS ) - OUTPUT LOW VOLTAGE (V) I OH - OUTPUT HIGH CURRENT (A) f = 200 Hz Duty Cycle = 0.2% VDD− V SS = 15 V to 30 V 6 IF= 7 mA to 16 mA 0 −0.10 Figure 2. Output High Voltage Drop vs. Ambient Temperature 8 −20 −0.05 TA − AMBIENT TEMPERATURE ( C) Figure 1. Output High Voltage Drop vs. Output High Current 0 −40 0.00 4 Frequency = 250 Hz, Duty Cycle = 99.9% VF(off) = −3 V to 0.8 V 3 V DD = 15 V to 30 V VSS = 0 V TA= 125 oC 2 1 TA= 25 oC TA= −40 C 0 0.0 120 o o 0.5 1.0 1.5 2.0 2.5 IOL − OUTPUT LOW CURRENT (A) TA − AMBIENT TEMPERATURE ( C) Figure 4. Output Low Voltage vs. Output Low Current Figure 3. Output High Current vs. Ambient Temperature www.onsemi.com 5 0.25 8 VDD = 15 V to 30 V VSS = 0V 0.20 VF = −3 V to 0.8 V IO = 100 mA f = 200 Hz Duty Cycle = 99.8% VDD− VSS = 15 V to 30 V 6 IF = 7 mA to 16 mA I OL - OUTPUT LOW CURRENT (A) V OL - OUTPUT LOW VOLTAGE (V) FOD3125 0.15 0.10 0.05 0.00 −40 −20 0 20 40 60 80 100 VO− VSS = 6 V 4 VO− VSS = 3 V 2 0 −40 120 o −20 0 20 40 60 80 100 120 TA − AMBIENT TEMPERATURE ( oC) TA − AMBIENT TEMPERATURE ( C) Figure 5. Output Low Voltage vs. Ambient Temperature Figure 6. Output Low Current vs. Ambient Temperature 3.6 3.6 I DD - SUPPLY CURRENT (mA ) I DD - SUPPLY CURRENT (mA ) 3.4 3.2 3.0 IDDH 2.8 IDDL 2.6 VDD = 30 V 2.4 V = 0V SS 2.2 IF = 0 mA (for IDDL) IF = 10 mA (for IDDH) 2.0 −40 −20 0 20 40 60 80 100 3.2 IDDH 2.8 IDDL 2.4 IF = 0 mA (for IDDL) IF = 10 mA (for IDDH) VSS = 0 V TA = 25°C 2.0 15 120 20 25 VDD − SUPPLY VOLTAGE (V) TA − AMBIENT TEMPERATURE ( oC) Figure 8. Supply Current vs. Supply Voltage Figure 7. Supply Current vs. Ambient Temperature www.onsemi.com 6 30 FOD3125 400 VDD = 15 V to 30V 3.5 VSS = 0 V Output = Open 3.0 tP − PROPAGATION DELAY (ns) IFLH − LOW−TO−HIGH CURRENT THRESHOLD (mA) 4.0 2.5 2.0 1.5 1.0 0.5 0.0 −40 −20 0 20 40 60 80 100 IF = 10 mA T = 25°C 350 A Rg = 10 W, Cg = 10 nF f = 10 KHz, 300 Duty Cycle = 50% 250 t PLH 200 150 100 15 120 18 TA − AMBIENT TEMPERATURE (°C) tP − PROPAGATION DELAY (ns) tP − PROPAGATION DELAY (ns) t PHL t PLH 200 8 10 12 14 16 IF = 10 mA VDD = 30 V, VSS = 0 V Rg = 10 W, Cg = 10 nF 400 f = 10 KHz, Duty Cycle = 50% 300 t PHL 200 t PLH 100 −40 IF − LED FORWARD CURRENT (mA) tP − PROPAGATION DELAY (ns) tP − PROPAGATION DELAY (ns) 300 t PHL t PLH 10 20 20 40 60 80 100 120 500 IF = 10 mA VDD = 30 V, VSS = 0 V Cg = 10 nF 400 TA = 25°C Duty Cycle = 50% f = 10 kHz 0 0 Figure 12. Propagation Delay vs. Ambient Temperature 500 100 −20 TA − AMBIENT TEMPERATURE (°C) Figure 11. Propagation Delay vs. LED Forward Current 200 30 500 400 100 6 21 24 27 VDD − SUPPLY VOLTAGE (V) Figure 10. Propagation Delay vs. Supply Voltage Figure 9. Low to High Input Current Threshold vs. Ambient Temperature VDD = 30 V, VSS = 0 V Rg = 10 W, Cg = 10 nF TA = 25°C f = 10 KHz, 300 Duty Cycle = 50% t PHL 30 40 IF = 10 mA VDD = 30 V, VSS = 0 V Rg = 10 W 400 TA = 25°C Duty Cycle = 50% f = 10 kHz 300 tPLH 200 100 0 50 tPHL Rg − SERIES LOAD RESISTANCE (W) 20 40 60 80 100 Cg − SERIES LOAD CAPACITANCE (nF) Figure 13. Propagation Delay vs. Series Load Resistance Figure 14. Propagation Delay vs. Load Capacitance www.onsemi.com 7 FOD3125 100 35 IF − INPUT FORWARD CURRENT (mA) V O − OUTPUT VOLTAGE (V) VDD = 30 V T 30 A = 25°C 25 20 15 10 5 10 1 0 1 2 3 4 TA = −40°C 0.1 TA = 25°C 0.01 0.001 0.6 0 TA = 125°C 5 0.8 1.0 1.2 1.4 1.6 1.8 VF − FORWARD VOLTAGE (V) IF − FORWARD CURRENT (mA) Figure 16. Input Forward Current vs. Forward Voltage Figure 15. Transfer Characteristics V O − OUTPUT VOLTAGE (V) 15 (12.90V, 12.89 V) (11.50V, 11.50V) 10 5 (11.45V, 0V) (12.85V,0 V) 0 0 5 10 15 20 VDD − VSS − FORWARD VOLTAGE (V) Figure 17. Under Voltage Lockout www.onsemi.com 8 FOD3125 TEST CIRCUIT Power Supply + + C1 0.1 mF VDD = 15 V to 30 V C2 47 mF Pulse Generator PW = 4.99 ms Period = 5 ms ROUT = 50  1 8 2 7 3 6 Pulse−In R2 100  Iol D1 VOL LED−IFmon Power Supply + + C3 0.1 mF V=6V C4 47 mF 5 4 R1 100  To Scope Test Conditions: Frequency = 200 Hz Duty Cycle = 99.8 % VDD = 15 V to 30 V VSS = 0 V VF(OFF) = −3.0 V to 0.8 V Figure 18. IOL Test Circuit Power Supply + + C1 0.1 mF VDD = 15 V to 30 V C2 47 mF Pulse Generator PW = 10 ms Period = 5 ms ROUT = 50  1 8 2 7 Pulse−In R2 100  + + C3 0.1 mF Ioh VOH LED−IFmon 5 4 R1 100  Test Conditions: Frequency = 200 Hz Duty Cycle = 0.2 % VDD = 15 V to 30 V V SS = 0 V I F = 7 mA to 16 mA Figure 19. IOH Test Circuit www.onsemi.com 9 D1 Current Probe To Scope Power Supply V=6V – 6 3 C4 47 mF FOD3125 1 8 2 7 0.1 mF IF = 7 to 16 mA VDD = 15 to 30 V + – VDD = 15 to 30 V VO 6 3 + – 100 mA 5 4 Figure 20. VOH Test Circuit 1 8 2 7 100 mA 3 6 4 5 0.1 mF VO Figure 21. VOL Test Circuit 1 8 2 7 0.1 mF IF = 7 to 16 mA 3 6 4 5 + – VDD = 30 V + – VDD = 30 V VO Figure 22. IDDH Test Circuit + – 1 8 2 7 0.1 mF VF = 0 to 0.8 V 3 6 4 5 Figure 23. IDDL Test Circuit www.onsemi.com 10 VO FOD3125 IF 1 8 2 7 3 6 4 5 0.1 mF + – VDD = 15 to 30 V + – VDD = 15 to 30 V VO > 5 V Figure 24. IFLH Test Circuit + – 1 8 2 7 0.1 mF VF = 0 to 0.8 V 3 6 4 5 VO Figure 25. VFHL Test Circuit 1 8 2 7 0.1 ∝F IF = 10 mA 3 6 4 5 Figure 26. UVLO Test Circuit www.onsemi.com 11 VO = 5 V + – 15 V or 30 V VDD Ramp FOD3125 1 8 2 7 0.1 mF VO + – 3 Probe F = 10 kHz DC = 50 % + – VDD = 15 to 30 V Rg = 10 W 6 Cg = 10 nF 50 W 4 5 IF tr tf 90 % 50 % VOUT 10 % tPHL tPLH Figure 27. tPHL, tPLH, tR and tF Test Circuit and Waveforms IF 1 8 2 7 A 0.1 mF + – B 5V + – 3 6 4 5 VDD = 30V VO +– VCM = 2,000 V VCM 0V Dt VOH VO Switch at A: I F = 10 mA VO VOL Switch at B: IF = 0 mA Figure 28. CMR Test Circuit and Waveforms www.onsemi.com 12 FOD3125 REFLOW PROFILE 245 C, 10–30 s 300 260 C peak Temperature (ºC) 250 200 150 Time above 183 C,
FOD3125 价格&库存

很抱歉,暂时无法提供与“FOD3125”相匹配的价格&库存,您可以联系我们找货

免费人工找货