Is Now Part of
To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please
email any questions regarding the system integration to Fairchild_questions@onsemi.com.
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FQP19N20C / FQPF19N20C
N-Channel QFET® MOSFET
200 V, 19 A, 170 mΩ
Features
Description
• 19 A, 200 V, RDS(on) = 170 mΩ (Max.) @ VGS = 10 V,
ID = 9.5 A
This N-Channel enhancement mode power MOSFET is
• Low Gate Charge (Typ. 40.5 nC)
planar stripe and DMOS technology. This advanced
• Low Crss (Typ. 85 pF)
MOSFET technology has been especially tailored to reduce
• 100% Avalanche Tested
on-state resistance, and to provide superior switching
produced using Fairchild Semiconductor’s proprietary
performance and high avalanche energy strength. These
devices are suitable for switched mode power supplies,
active power factor correction (PFC), and electronic lamp
ballasts.
D
GD
S
G
G
D
S
TO-220
TO-220F
S
MOSFET Maximum Ratings TC = 25oC unless otherwise noted.
Symbol
VDSS
Drain to Source Voltage
Parameter
ID
Drain Current
IDM
Drain Current
VGSS
Gate to Source Voltage
FQP19N20C
FQPF19N20C
Unit
V
200
-Continuous (TC = 25oC)
-Continuous (TC = 100oC)
- Pulsed
(Note 1)
19.0
19.0 *
A
12.1
12.1 *
A
76.0
76.0 *
A
± 30
V
mJ
EAS
Single Pulsed Avalanche Energy
(Note 2)
433
IAR
Avalanche Current
(Note 1)
19.0
A
EAR
Repetitive Avalanche Energy
(Note 1)
13.9
mJ
dv/dt
Peak Diode Recovery dv/dt
PD
Power Dissipation
TJ, TSTG
Operating and Storage Temperature Range
Maximum Lead Temperature for Soldering Purpose,
1/8” from Case for 5 Seconds
TL
5.5
(Note 3)
(TC = 25oC)
- Derate above 25oC
V/ns
139
43
W
1.11
0.34
W/°C
-55 to +150
°C
300
°C
*Drain current limited by maximum junction temperature
Thermal Characteristics
Symbol
Parameter
FQP19N20C
FQPF19N20C
Unit
RθJC
Thermal Resistance, Junction to Case, Max
0.9
2.89
°C/W
RθJA
Thermal Resistance, Junction to Ambient, Max
62.5
62.5
°C/W
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
1
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
November 2013
Device Marking
FQP19N20C
Device
FQP19N20C
Package
TO-220
Reel Size
Tube
Tape Width
N/A
Quantity
50 units
FQPF19N20C
FQPF19N20C
TO-220F
Tube
N/A
50 units
Electrical Characteristics TC = 25oC unless otherwise noted.
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
200
--
--
V
Off Characteristics
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = 250 μA
ΔBVDSS
/
ΔTJ
Breakdown Voltage Temperature Coefficient
ID = 250 μA, Referenced to 25°C
--
0.24
--
V/°C
VDS = 200 V, VGS = 0 V
--
--
10
μA
VDS = 160 V, TC = 125°C
IDSS
Zero Gate Voltage Drain Current
--
--
100
μA
IGSSF
Gate-Body Leakage Current, Forward
VGS = 30 V, VDS = 0 V
--
--
100
nA
IGSSR
Gate-Body Leakage Current, Reverse
VGS = -30 V, VDS = 0 V
--
--
-100
nA
2.0
--
4.0
V
On Characteristics
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250 μA
RDS(on)
Static Drain-Source
On-Resistance
VGS = 10 V, ID = 9.5 A
--
0.14
0.17
Ω
gFS
Forward Transconductance
VDS = 40 V, ID = 9.5 A
--
10.8
--
S
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz
--
830
1080
pF
--
195
255
pF
--
85
110
pF
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Switching Characteristics
td(on)
Turn-On Delay Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
VDD = 100 V, ID = 19.0 A,
RG = 25 Ω
(Note 4)
VDS = 160 V, ID = 19.0 A,
VGS = 10 V
(Note 4)
--
15
40
ns
--
150
310
ns
--
135
280
ns
--
115
240
ns
--
40.5
53.0
nC
--
6.0
--
nC
--
22.5
--
nC
Drain-Source Diode Characteristics and Maximum Ratings
IS
Maximum Continuous Drain-Source Diode Forward Current
--
--
19.0
A
ISM
Maximum Pulsed Drain-Source Diode Forward Current
VGS = 0 V, IS = 19.0 A
Drain-Source Diode Forward Voltage
--
--
76.0
A
VSD
--
--
1.5
V
trr
Reverse Recovery Time
--
208
--
ns
Qrr
Reverse Recovery Charge
VGS = 0 V, IS = 19.0 A,
dIF / dt = 100 A/μs
--
1.63
--
μC
Notes:
1. Repetitive Rating : Pulse width limited by maximum junction temperature.
2. L = 1.8 mH, IAS = 19.0 A, VDD = 50 V, RG = 25 Ω, starting TJ = 25°C.
3. ISD ≤ 19.0 A, di/dt ≤ 300 A/μs, VDD ≤ BVDSS, starting TJ = 25°C.
4. Essentially independent of operating temperature.
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
2
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Package Marking and Ordering Information
VGS
15.0 V
10.0 V
8.0 V
7.0 V
6.5 V
6.0 V
5.5 V
5.0 V
Bottom : 4.5 V
1
10
ID, Drain Current [A]
ID, Drain Current [A]
Top :
1
10
o
150 C
o
25 C
o
-55 C
0
10
※ Notes :
1. 250μ s Pulse Test
2. TC = 25℃
0
10
※ Notes :
1. VDS = 40V
2. 250μ s Pulse Test
-1
-1
0
10
10
1
10
10
2
4
6
8
10
VGS, Gate-Source Voltage [V]
VDS, Drain-Source Voltage [V]
Figure 1. On-Region Characteristics
Figure 2. Transfer Characteristics
IDR, Reverse Drain Current [A]
RDS(ON) [Ω ],
Drain-Source On-Resistance
0.8
0.6
VGS = 10V
0.4
VGS = 20V
0.2
※ Note : TJ = 25℃
0.0
1
10
0
10
150℃
※ Notes :
1. VGS = 0V
2. 250μ s Pulse Test
-1
0
10
20
30
40
50
10
60
0.0
0.4
Figure 3. On-Resistance Variation vs
Drain Current and Gate Voltage
3000
VGS, Gate-Source Voltage [V]
Ciss
Coss
Crss
1000
※ Notes :
1. VGS = 0 V
2. f = 1 MHz
500
0
-1
10
1.6
2.0
2.4
12
2000
1500
1.2
Figure 4. Body Diode Forward Voltage
Variation with Source Current
and Temperature
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
2500
0.8
VSD, Source-Drain voltage [V]
ID, Drain Current [A]
Capacitance [pF]
25℃
VDS = 40V
10
VDS = 100V
VDS = 160V
8
6
4
2
※ Note : ID = 19.0A
0
10
0
1
10
Figure 5. Capacitance Characteristics
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
0
10
20
30
40
50
QG, Total Gate Charge [nC]
VDS, Drain-Source Voltage [V]
Figure 6. Gate Charge Characteristics
3
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Typical Characteristics
(Continued)
3.0
1.1
1.0
※ Notes :
1. VGS = 0 V
2. ID = 250 μA
0.9
0.8
-100
-50
0
50
100
150
2.5
RDS(ON), (Normalized)
Drain-Source On-Resistance
BVDSS, (Normalized)
Drain-Source Breakdown Voltage
1.2
2.0
1.5
1.0
※ Notes :
1. VGS = 10 V
2. ID = 9.5 A
0.5
0.0
-100
200
-50
50
100
150
TJ, Junction Temperature [ C]
TJ, Junction Temperature [ C]
Figure 7. Breakdown Voltage Variation
vs Temperature
Figure 8. On-Resistance Variation
vs Temperature
Operation in This Area
is Limited by R DS(on)
2
10
10
100 μs
1 ms
1
10
10 ms
DC
0
10
※ Notes :
10 μs
100 μs
1
10
1 ms
10 ms
DC
0
10
※ Notes :
o
o
1. TC = 25 C
1. TC = 25 C
o
o
2. TJ = 150 C
3. Single Pulse
2. TJ = 150 C
3. Single Pulse
-1
10
200
Operation in This Area
is Limited by R DS(on)
2
ID, Drain Current [A]
ID, Drain Current [A]
0
o
o
-1
0
1
10
10
2
10
10
0
10
1
10
2
10
VDS, Drain-Source Voltage [V]
VDS, Drain-Source Voltage [V]
Figure 9-1. Maximum Safe Operating Area
for FQP19N20C
Figure 9-2. Maximum Safe Operating Area
for FQPF19N20C
20
ID, Drain Current [A]
15
10
5
0
25
50
75
100
125
150
TC, Case Temperature [℃]
Figure 10. Maximum Drain Current
vs Case Temperature
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
4
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Typical Characteristics
o
ZθJCZ(t),
Thermal
Response
(t),
Thermal
Response[ C/W]
θJC
10
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Typical Characteristics
(Continued)
0
D = 0 .5
※ N o te s :
1 . Z θ J C ( t) = 0 . 9 0 ℃ /W M a x .
2 . D u t y F a c to r , D = t 1 /t 2
3 . T J M - T C = P D M * Z θ J C ( t)
0 .2
10
0 .1
-1
0 .0 5
PDM
0 .0 2
0 .0 1
10
t1
s in g le p u ls e
-2
10
-5
10
-4
10
-3
10
-2
10
t2
-1
10
0
10
1
t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ]
D = 0 .5
10
0
※ N o te s :
1 . Z θ J C ( t) = 2 .8 9 ℃ /W M a x .
2 . D u ty F a c to r , D = t 1 /t 2
3 . T J M - T C = P D M * Z θ J C ( t)
0 .2
0 .1
0 .0 5
10
-1
0 .0 2
0 .0 1
PDM
s in g le p u ls e
θJC
o
ZθJC
Thermal
Z (t),(t),
ThermalResponse
Response[ C/W]
Figure 11-1. Transient Thermal Response Curve for FQP19N20C
10
t1
t2
-2
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t 1 , S q u a r e W a v e P u ls e D u r a t io n [s e c ]
Figure 11-2. Transient Thermal Response Curve for FQPF19N20C
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
5
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Figure 12. Gate Charge Test Circuit & Waveform
VGS
Same Type
as DUT
50KΩ
200nF
12V
Qg
10V
300nF
VDS
VGS
Qgs
Qgd
DUT
IG = const.
3mA
Charge
Figure 13. Resistive Switching Test Circuit & Waveforms
VDS
RG
RL
VDS
90%
VDD
VGS
VGS
DUT
V
10V
GS
10%
td(on)
tr
td(off)
t on
tf
t off
Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms
BVDSS
1
EAS = ---- L IAS2 -------------------2
BVDSS - VDD
L
VDS
BVDSS
IAS
ID
RG
V
10V
GS
GS
VDD
ID (t)
tp
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
VDS (t)
VDD
DUT
tp
6
Time
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms
DUT
+
VDS
_
I SD
L
Driver
RG
VGS
VGS
( Driver )
Same Type
as DUT
VDD
• dv/dt controlled by RG
• ISD controlled by pulse period
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
IFM , Body Diode Forward Current
I SD
( DUT )
di/dt
IRM
Body Diode Reverse Current
VDS
( DUT )
Body Diode Recovery dv/dt
VSD
VDD
Body Diode
Forward Voltage Drop
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
7
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Mechanical Dimensions
Figure 16. TO220, Molded, 3-Lead, Jedec Variation AB
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO220-003
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
8
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
Mechanical Dimensions
Figure 17. TO220, Molded, 3-Lead, Full Pack, EIAJ SC91, Straight Lead
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
9
www.fairchildsemi.com
tm
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2.
A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative / In Design
Datasheet contains the design specifications for product development. Specifications
may change in any manner without notice.
Preliminary
First Production
Datasheet contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconductor reserves the right to make changes at any time without
notice to improve design.
No Identification Needed
Full Production
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve the design.
Obsolete
Not In Production
Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
Rev. I66
©2004 Fairchild Semiconductor Corporation
FQP19N20C / FQPF19N20C Rev. C1
10
www.fairchildsemi.com
FQP19N20C / FQPF19N20C — N-Channel QFET® MOSFET
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
AccuPower™
Sync-Lock™
F-PFS™
®
AX-CAP®*
FRFET®
®*
®
SM
Global Power Resource
PowerTrench
BitSiC™
GreenBridge™
PowerXS™
Build it Now™
TinyBoost®
Programmable Active Droop™
Green FPS™
CorePLUS™
TinyBuck®
®
QFET
Green FPS™ e-Series™
CorePOWER™
TinyCalc™
QS™
Gmax™
CROSSVOLT™
TinyLogic®
Quiet Series™
GTO™
CTL™
TINYOPTO™
RapidConfigure™
IntelliMAX™
Current Transfer Logic™
TinyPower™
ISOPLANAR™
DEUXPEED®
™
TinyPWM™
Dual Cool™
Marking Small Speakers Sound Louder
TinyWire™
Saving our world, 1mW/W/kW at a time™
EcoSPARK®
and Better™
TranSiC™
EfficentMax™
SignalWise™
MegaBuck™
TriFault Detect™
ESBC™
SmartMax™
MICROCOUPLER™
TRUECURRENT®*
SMART START™
MicroFET™
®
μSerDes™
Solutions for Your Success™
MicroPak™
SPM®
MicroPak2™
Fairchild®
STEALTH™
MillerDrive™
Fairchild Semiconductor®
UHC®
SuperFET®
MotionMax™
FACT Quiet Series™
®
Ultra FRFET™
SuperSOT™-3
mWSaver
FACT®
UniFET™
OptoHiT™
SuperSOT™-6
FAST®
VCX™
OPTOLOGIC®
SuperSOT™-8
FastvCore™
VisualMax™
OPTOPLANAR®
SupreMOS®
FETBench™
VoltagePlus™
SyncFET™
FPS™
XS™
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
© Semiconductor Components Industries, LLC
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
1
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
www.onsemi.com