Is Now Part of
To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor
product management systems do not have the ability to manage part nomenclature that utilizes an underscore
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please
email any questions regarding the system integration to Fairchild_questions@onsemi.com.
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FQP8P10
P-Channel QFET® MOSFET
-100 V, -8 A, 530 mΩ
Description
Features
This P-Channel enhancement mode power MOSFET is
produced using Fairchild Semiconductor®’s proprietary
planar stripe and DMOS technology. This advanced
MOSFET technology has been especially tailored to
reduce on-state resistance, and to provide superior
switching performance and high avalanche energy
strength. These devices are suitable for switched mode
power supplies, audio amplifier, DC motor control, and
variable switching power applications.
• -8 A, -100 V, RDS(on)=530 mΩ(Max.) @VGS=-10 V, ID=-4 A
• Low Gate Charge (Typ. 12 nC)
• Low Crss (Typ. 30 pF)
• 100% Avalanche Tested
• 175°C Maximum Junction Temperature Rating
D
G
G
DS
TO-220
S
Absolute Maximum Ratings
Symbol
VDSS
ID
TC = 25°C unless otherwise noted
Parameter
Drain-Source Voltage
- Continuous (TC = 25°C)
Drain Current
- Continuous (TC = 100°C)
FQP8P10
-100
Unit
V
-8.0
A
-5.7
A
-32
A
IDM
Drain Current
VGSS
Gate-Source Voltage
± 30
V
EAS
Single Pulsed Avalanche Energy
(Note 2)
150
mJ
IAR
Avalanche Current
(Note 1)
-8.0
A
EAR
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Power Dissipation (TC = 25°C)
(Note 1)
6.5
-6.0
65
0.43
-55 to +175
mJ
V/ns
W
W/°C
°C
300
°C
dv/dt
PD
TJ, TSTG
TL
- Pulsed
(Note 1)
(Note 3)
- Derate above 25°C
Operating and Storage Temperature Range
Maximum lead temperature for soldering purposes,
1/8" from case for 5 seconds
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
Typ
--
RθCS
Thermal Resistance, Case-to-Sink
0.5
--
°C/W
RθJA
Thermal Resistance, Junction-to-Ambient
--
62.5
°C/W
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
Max
2.31
Unit
°C/W
Symbol
RθJC
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
March 2013
Symbol
TC = 25°C unless otherwise noted
Parameter
Test Conditions
Min
Typ
Max
Unit
-100
--
--
V
--
V/°C
Off Characteristics
BVDSS
Drain-Source Breakdown Voltage
VGS = 0 V, ID = -250 µA
∆BVDSS
/
∆TJ
Breakdown Voltage Temperature
Coefficient
ID = -250 µA, Referenced to 25°C
--
-0.1
VDS = -100 V, VGS = 0 V
--
--
-1
µA
VDS = -80 V, TC = 150°C
--
--
-10
µA
Gate-Body Leakage Current, Forward
VGS = -30 V, VDS = 0 V
--
--
-100
nA
Gate-Body Leakage Current, Reverse
VGS = 30 V, VDS = 0 V
--
--
100
nA
IDSS
IGSSF
IGSSR
Zero Gate Voltage Drain Current
On Characteristics
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = -250 µA
-2.0
--
-4.0
V
RDS(on)
Static Drain-Source
On-Resistance
VGS = -10 V, ID = -4.0 A
--
0.41
0.53
Ω
gFS
Forward Transconductance
VDS = -40 V, ID = -4.0 A
--
4.3
--
S
--
360
470
pF
--
120
155
pF
--
30
40
pF
ns
(Note 4)
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
VDS = -25 V, VGS = 0 V,
f = 1.0 MHz
Switching Characteristics
td(on)
Turn-On Delay Time
tr
Turn-On Rise Time
td(off)
Turn-Off Delay Time
tf
Turn-Off Fall Time
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
VDD = -50 V, ID = -8.0 A,
RG = 25 Ω
(Note 4, 5)
VDS = -80 V, ID = -8.0 A,
VGS = -10 V
(Note 4, 5)
--
11
30
--
110
230
ns
--
20
50
ns
--
35
80
ns
--
12
15
nC
--
3.0
--
nC
--
6.4
--
nC
Drain-Source Diode Characteristics and Maximum Ratings
IS
Maximum Continuous Drain-Source Diode Forward Current
--
--
-8.0
A
ISM
--
--
-32
A
VSD
Maximum Pulsed Drain-Source Diode Forward Current
VGS = 0 V, IS = -8.0 A
Drain-Source Diode Forward Voltage
--
--
-4.0
V
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
VGS = 0 V, IS = -8.0 A,
dIF / dt = 100 A/µs
(Note 4)
--
98
--
ns
--
0.35
--
µC
Notes:
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L = 3.5mH, IAS = -8.0A, VDD = -25V, RG = 25 Ω, Starting TJ = 25°C
3. ISD ≤ -8.0A, di/dt ≤ 300A/µs, VDD ≤ BVDSS, Starting TJ = 25°C
4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2%
5. Essentially independent of operating temperature
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
Electrical Characteristics
FQP8P10 P-Channel MOSFET
Typical Characteristics
VGS
-15.0 V
-10.0 V
-8.0 V
-7.0 V
-6.5 V
-5.5 V
-5.0 V
Bottom : -4.5 V
Top :
-ID, Drain Current [A]
10
0
10
1
10
-I D , Drain Current [A]
1
-1
10
175℃
0
10
25℃
-55℃
※ Notes :
1. VDS = -40V
2. 250μ s Pulse Test
※ Notes :
1. 250μ s Pulse Test
2. TC = 25℃
-1
-2
10
10
-1
0
10
2
1
10
10
4
6
8
10
-VGS , Gate-Source Voltage [V]
-VDS, Drain-Source Voltage [V]
Figure 1. On-Region Characteristics
Figure 2. Transfer Characteristics
VGS = - 10V
1.2
0.9
1
10
-I DR , Reverse Drain Current [A]
RDS(on) [ Ω ],
Drain-Source On-Resistance
1.5
VGS = - 20V
0.6
0.3
※ Note : TJ = 25℃
0.0
0
10
175℃
※ Notes :
1. VGS = 0V
2. 250μ s Pulse Test
-1
0
5
10
15
20
25
10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-ID , Drain Current [A]
-VSD , Source-Drain Voltage [V]
Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation vs. Source Current
and Temperature
12
900
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
800
Coss
600
※ Notes :
1. VGS = 0 V
2. f = 1 MHz
500
400
Crss
300
200
100
0
-1
10
VDS = -20V
10
VDS = -50V
Ciss
-V GS , Gate-Source Voltage [V]
700
Capacitance [pF]
25℃
VDS = -80V
8
6
4
2
※ Note : ID = -8.0 A
0
0
10
1
10
-VDS, Drain-Source Voltage [V]
Figure 5. Capacitance Characteristics
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
0
2
4
6
8
10
12
14
QG, Total Gate Charge [nC]
Figure 6. Gate Charge Characteristics
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
Typical Characteristics
(Continued)
1.2
3.0
RDS(ON) , (Normalized)
Drain-Source On-Resistance
-BV DSS , (Normalized)
Drain-Source Breakdown Voltage
2.5
1.1
1.0
※ Notes :
1. VGS = 0 V
2. ID = -250 μ A
0.9
0.8
-100
-50
0
50
100
150
2.0
1.5
1.0
※ Notes :
1. VGS = -10 V
2. ID = -4.0 A
0.5
0.0
-100
200
-50
o
0
50
100
150
200
o
TJ, Junction Temperature [ C]
TJ, Junction Temperature [ C]
Figure 7. Breakdown Voltage Variation
vs. Temperature
Figure 8. On-Resistance Variation
vs. Temperature
10
2
10
Operation in This Area
is Limited by R DS(on)
8
1 ms
1
-I D, Drain Current [A]
-I D, Drain Current [A]
100 µs
10
10 ms
DC
0
10
※ Notes :
6
4
2
o
1. TC = 25 C
o
2. TJ = 175 C
3. Single Pulse
-1
10
0
1
10
0
25
2
10
10
50
100
125
150
175
Figure 10. Maximum Drain Current
vs. Case Temperature
D = 0 .5
0
※ N o te s :
1 . Z θ J C ( t ) = 2 . 3 1 ℃ /W M a x .
2 . D u ty F a c t o r , D = t 1 /t 2
3 . T J M - T C = P D M * Z θ J C( t )
0 .2
0 .1
0 .0 5
10
-1
0 .0 2
0 .0 1
JC
( t) , T h e r m a l R e s p o n s e
Figure 9. Maximum Safe Operating Area
10
75
TC, Case Temperature [℃]
-VDS, Drain-Source Voltage [V]
PDM
t1
Z
θ
s in g le p u ls e
10
t2
-2
10
-5
10
-4
10
-3
10
-2
10
-1
10
0
10
1
t 1 , S q u a r e W a v e P u ls e D u r a t io n [ s e c ]
Figure 11. Transient Thermal Response Curve
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
Gate Charge Test Circuit & Waveform
VGS
Same Type
as DUT
50KΩ
Qg
200nF
12V
-10V
300nF
VDS
VGS
Qgs
Qgd
DUT
-3mA
Charge
Resistive Switching Test Circuit & Waveforms
VDS
RL
t on
VDD
VGS
RG
td(on)
VGS
t off
tr
td(off)
tf
10%
DUT
-10V
VDS
90%
Unclamped Inductive Switching Test Circuit & Waveforms
BVDSS
1
EAS = ---- L IAS2 -------------------2
BVDSS - VDD
L
VDS
tp
ID
RG
VDD
DUT
-10V
tp
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
VDD
Time
VDS (t)
ID (t)
IAS
BVDSS
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
Peak Diode Recovery dv/dt Test Circuit & Waveforms
+
VDS
DUT
_
I SD
L
Driver
RG
VGS
VGS
( Driver )
I SD
( DUT )
Compliment of DUT
(N-Channel)
VDD
• dv/dt controlled by RG
• ISD controlled by pulse period
Gate Pulse Width
D = -------------------------Gate Pulse Period
10V
Body Diode Reverse Current
IRM
di/dt
IFM , Body Diode Forward Current
VDS
( DUT )
VSD
Body Diode
Forward Voltage Drop
VDD
Body Diode Recovery dv/dt
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
Mechanical Dimensions
TO-220
Dimensions in Millimeters
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
www.fairchildsemi.com
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2.
A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative / In Design
Datasheet contains the design specifications for product development. Specifications
may change in any manner without notice.
Preliminary
First Production
Datasheet contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconductor reserves the right to make changes at any time without
notice to improve design.
No Identification Needed
Full Production
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve the design.
Obsolete
Not In Production
Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
Rev. I64
©2002 Fairchild Semiconductor Corporation
FQP8P10 Rev. C0
www.fairchildsemi.com
FQP8P10 P-Channel MOSFET
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
FPS™
Sync-Lock™
2Cool™
®
F-PFS™
AccuPower™
®*
®
®
®
FRFET
PowerTrench
AX-CAP *
SM
BitSiC™
Global Power Resource
PowerXS™
TinyBoost™
Green Bridge™
Build it Now™
Programmable Active Droop™
TinyBuck™
Green FPS™
CorePLUS™
QFET®
TinyCalc™
Green FPS™ e-Series™
QS™
CorePOWER™
TinyLogic®
CROSSVOLT™
Gmax™
Quiet Series™
TINYOPTO™
CTL™
GTO™
RapidConfigure™
TinyPower™
Current Transfer Logic™
IntelliMAX™
™
TinyPWM™
®
DEUXPEED
ISOPLANAR™
TinyWire™
Dual Cool™
Marking Small Speakers Sound Louder Saving our world, 1mW/W/kW at a time™
TranSiC®
EcoSPARK®
and Better™
SignalWise™
TriFault Detect™
EfficentMax™
MegaBuck™
SmartMax™
TRUECURRENT®*
ESBC™
MICROCOUPLER™
SMART START™
μSerDes™
MicroFET™
Solutions for Your Success™
®
MicroPak™
SPM®
STEALTH™
MicroPak2™
Fairchild®
UHC®
SuperFET®
MillerDrive™
Fairchild Semiconductor®
Ultra FRFET™
SuperSOT™-3
MotionMax™
FACT Quiet Series™
UniFET™
SuperSOT™-6
mWSaver™
FACT®
VCX™
SuperSOT™-8
OptoHiT™
FAST®
VisualMax™
SupreMOS®
OPTOLOGIC®
FastvCore™
VoltagePlus™
OPTOPLANAR®
SyncFET™
FETBench™
XS™
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
© Semiconductor Components Industries, LLC
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
1
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
www.onsemi.com